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Abstract 

DEFECTIVE KERNEL 1 (DEK1) is a highly conserved phytocalpain, embedded in the 

membrane of all plant cells examined. Null alleles of dek1 are lethal and dek1 mutants have 

shown that functional DEK1 protein is essential for proper development of both epidermal 

cell layer in plant embryos, and for positional dependant aleurone cell formation during seed 

development in maize, Arabidopsis and in tobacco plant. Transgenic Arabidopsis lines 

overexpressing the membrane-anchored domain of DEK1 have shown a dominant negative 

phenotype, suggesting that the AtDEK1-MEM plays role in the transmission of proposed 

positional cues. In this research we used the dominant negative effect and cross-species 

domain swap analysis in order to study conserved features of the extracellular DEK1-LOOP 

domain in Arabidopsis thaliana in an evolutionary context. Two constructs, designed to 

overexpress the AtMEM part of DEK1, where the LOOP domain was replaced by the DEK1-

LOOP sequence from other organisms, were successfully cloned and transformed into wild 

type Arabidopsis thaliana background. Transgenic plants overexpressing the AtDEK1-MEM 

construct, where the Arabidopsis loop sequence was replaced with loop from the unicellular 

alga Mesostigma viride, showed phenotype frequencies significantly similar to those 

observed in plants overexpressing the membrane-anchored domain of DEK1 that results in 

dominant negative phenotype. These results suggest that the DEK1-LOOP of Mesostigma 

viride most probably interacts with the same positional cues or the same family of proteins 

as the DEK1-LOOP in Arabidopsis thaliana. Transgenic lines overexpressing the AtDEK1-

MEM construct, where the AtDEK1-LOOP sequence was replaced with DEK1-LOOP from 

maize (Zea mays), only alleviated the dominant negative effect by exerting significantly 

lower frequency of the respective phenotype, also compatible to phenotypic frequencies 

observed in plants overexpressing the AtDEK1-MEM-DEL construct, where the loop 

domain is deleted. These results suggest that the DEK1-LOOP domain could have 

functionally diverged in species-specific manner between Arabidopsis and maize.  However, 

all these speculations are true only if the observed phenotypes are result of dominant 

negative effect caused by the DEK1-LOOP domain. Q-PCR analyses of the transgenic 

transcripts in two and five weeks old plants could not be correlated to the observed 

phenotypes.  
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1.  Introduction 

1.1 Defective Kernel 1 (Dek1) 

The DEFECTIVE KERNEL 1 is a highly conserved phytocalpain, which has been shown to 

be essential for proper development of both the epidermal cell layer in plant embryos and for 

positional-dependent aleurone cell formation during seed maturation in Zea mays, 

Arabidopsis thaliana and Nicotiana tabacum (Lid et al., 2002 & 2005; Ahn et al., 2004; 

Johnson et al., 2005). The interest in defective kernels in maize led to the discovery of Dek1. 

A large class of maize mutations effecting both endosperm and embryo development of 

kernels was characterized already in 1920 by Jones and Mangelsdorf (Jones 1920; 

Mangelsdorf, 1923 & 1926) and was termed defective kernel (dek) mutations.  The maize 

DEFECTIVE KERNEL 1 (DEK1) gene was the first to be phenotypically characterized and 

cloned in studies of aleurone cell fate specification in maize endosperm development 

(Becraft & Asuncion-Crabb, 2000; Becraft et al., 2002; Lid et al., 2002). The aleurone cells 

compose the outer epidermal layer/s of the endosperm. In most cereals, including typical 

maize (Zea mays) lines, the aleurone is a single celled layer, in barley (Hordeum vulgare) the 

aleurone comprises about three cell layers and in rice (Oryza sativa), the number of layers 

varies. The most well known function of the aleurone is as a digestive tissue along with 

protection from and communication with the external environment (reviewed by Becraft & 

Yi, 2010). In Arabidopsis thaliana the aleurone also controls seed dormancy and 

germination (Bethke et al., 2007).  

 

1.1.1 DEK1 is Membrane Anchored Member of the Calpain Gene 
Superfamily 

The DEK1 gene in maize encodes a 240 kDa protein predicted to be anchored in the plasma 

membrane of all plant cells. To identify the DEK1 gene, Lid et al (2002) screened a 

population of maize lines containing a high-copy number of Mu elements, then identified 

and cloned a Mu element cosegregating with the dekl mutant phenotype, and used the 

sequences flanking the Mu insertion to clone maize DEK1. The predicted sequence 

identified DEK1 as a member of the calpain gene superfamily by the presence of a conserved 

cysteine proteinase domain (II) shared by all calpains, and by domain III, found in most 
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calpains (Sorimachi & Suzuki, 2001). Submission of the DEK1 amino acid sequence in the 

TMHMM 2.0 program (Krogh et al., 2001) predicted 21 transmembrane domains (Lid et al., 

2002).  

 

 

Figure 1 Predicted structure of maize DEK1, model based on the TMHMM 2.0 program (Krogh et al., 2001). 
DEK1-MEM consists of the membrane anchored domains (one gray and the rest yellow) and the extracellular loop domain 
(in blue). DEK1-CALP corresponds to the cytoplasmic part of the protein, divided into DEK-ARM and the true DEK1-
CALP, the calpain (modified figure from Lid et al, 2002). 

 

The maize (Zea mays) DEK1 protein consists of 2159 amino acid residues and contains 

about seven distinguishable domains (Figure 1). Domain A (gray) is located at the N-

terminus containing a predicted endoplasmic reticulum and membrane targeting signals. 

Following is domain B1 (yellow) containing eight transmembrane stretches disrupted by ! 

300 amino acids long extracellular loop, the C domain (blue). Domain B2 (yellow) consist of 

13 membrane-anchored stretches, followed by the DEK1-ARM, domain D (green) a 

hydrophilic and charged region, which connect the membrane part (DEK1-MEM) to the 

calpain domain (DEK1-CALP), at the C-terminal and the very end of the protein. Domain II 

(orange) is the highly conserved, catalytic, cystein proteinase domain and domain III (red) is 

found in most calpains. The presence of those two domains (II and III) was the reason why 

DEK1 was identified as a member of the Calpain Gene Superfamily (Lid et al., 2002; Wang 

et al., 2003).  
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1.1.2 The Calpain Domain 

Calpains are a large class of intracellular, calcium dependent, cysteine proteinases that play 

essential roles in multiple developmental pathways in animals; like cell differentiation, 

proliferation and apoptosis (Perrin & Huttenlocher, 2002; Goll et al., 2003). Active calpain 

enzymes in mammals and invertebrates associate both with the plasma membrane and with 

internal membranes, like the endosomal reticulum (ER). In addition calpains associate with 

proteins or phospholipids in the plasma membrane and undergo autolysis (Sato & 

Kawashima, 2001; Shao et al., 2006). The calpain domain is the most conserved part of 

DEK1 in plants and the modeled maize calpain shows high structural similarity in addition 

to proteinase activity similar to animal milli (m)-calpains (Wang et al., 2003). There are 

currently 14 known human calpain isoform genes, which are defined by the presence of a 

protease domain that is similar to that found in micro (µ)-calpain and m-calpain which are 

the two most extensively studied and ubiquitously expressed isoforms (Goll et al., 2003). In 

contrast to m-calpain, the DEK1 calpain is active in the absence of calcium, although its 

activity is stimulated by the addition of calcium (Wang et al., 2003). In animals, calpains are 

activated in a multistep route involving translocation to the plasma membrane, activation by 

Ca2+, and catalytic cleavage by intramolecular processes (Zalewska et al., 2004). In maize, 

DEK1-CALP failed to complement the loss-of-aleurone cell phenotype in homozygous 

maize dek1 mutant endosperm under the control of the 27-kD g-Zein promoter. The 

expression of AtDEK1-CALP under the control of the AtDEK1 promoter also failed to fully 

complement the Arabidopsis dek1-1 mutant phenotype. These results led to the conclusion 

that DEK1-MEM is necessary for the DEK1-CALP activity (Tian et al., 2007). In contrast, 

Johnson et al. (2008) were able to fully complement the embryo lethal mutant dek1-3 

phenotype with a DEK1-CALP construct under the control of ribosomal protein 5A 

(RPS5A) promoter, showing that the membrane part of the protein is not required for its 

function, but probably plays a regulatory role (Johnson et al., 2008). Localization of 

AtDEK1 to the plasma membrane, endomembrane system and the cytosol suggested that 

DEK1 might undergo a regulatory cleavage event, like those described in animal calpains. 

Further investigation implied that DEK1 undergoes autolytic cleavage within the 

juxtamembrane domain and at the start of the calpain domain, releasing it from the 

membrane into the cytoplasm and that the cleaved calpain domain is the biologically active 

form of the DEK1 protein (Johnson et al., 2008).  
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1.1.3 Localization of DEK1 

The maize DEK1 protein was predicted to have 21 membrane-spanning domains, interrupted 

by an extracytosolic side and ending of cytosolic part by the TMHMM 2.0 program (Lid et 

al., 2002). The subcellular localization of DEK1 was determined by polyclonal antibodies 

generated in rabbits against five different regions of DEK1. The results showed that DEK1 

localizes to the plasma membrane and endosomal compartments (Tian et al., 2007). To test 

whether posttranscriptional regulation and subcellular localization of the DEK1 protein are 

likely to be important for its function (as it is in animals), Johnson et al. (2008) designed a 

construct expressing DEK1 fused with the GFP protein and used confocal microscopy to 

observe the subcellular localization of DEK1-GFP protein in fully complemented 

Arabidopsis dek1 mutant plants. The GFP-fluorescence observed in all studied tissues was 

associated with the plasma membrane and the endoplasmic reticulum (ER). In addition the 

presence of a GFP-pool was detected in the cytoplasm (Johnson et al., 2008).  

 

1.1.4 DEK1s role in aleurone fate specification and maintenance  

Loss-of-function mutants in maize dek1 lack aleurone layer, indicating that functional DEK1 

is required for the signaling or perception of signals that specify the development of the 

outer cell coat (Becraft et al., 2002; Lid et al., 2002). Similar observations have been 

reported in Arabidopsis thaliana and in rice (Lid et al., 2005; Hibara et al., 2009).  

 

 

Figure 2 Phenotypes of dek1-mum1 homozygous maize kernels. A: An ear that segregates 3:1 for wild-type (dark) 
and dek1 (white) grains. B: Section of a dek1 kernel: starchy endosperm (SE) is located in the periphery of the endosperm 
close to the remnants of the nucellus (arrow); P represents the maternal pericarp. C: Hand section of a wild type kernel with 
aleurone cells (A,) starchy endosperm (SE) and pericarp (P). (Modified figure from Lid et al. 2002). 
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Figure 2. Phenotypes of dek1 homozygous maize kernels. A. an ear that segregates 3:1 for 

wild-type (dark) and dek1 (white) grains. B. Section of a dek1 kernel: starchy endosperm (SE) 

is located in the periphery of the endosperm close to the remnants of the nucellus (arrow); P 

represents the maternal pericarp. C. Hand section of a wild type kernel with aleurone cells 

(A,) starchy endosperm (SE) and pericarp (P). The figure is from Lid et al. 2002. 

 

Studies in Arabidopsis showed that aleurone cell formation is initiated at an early stage of 

seed development; it is not maintained in mature grains, which completely lack aleurone cells 

(Lid et al., 2002). Aleurone cell fate specification occurs in response to surface position, 

which means that all cells positioned on the surface become aleurone cells. Observations from 

maize show that the fate of endosperm cells is flexible such that starchy endosperm cells may 

convert to aleurone cells if they become positioned on the surface. In addition, an internalized 

daughter cell resulting from a periclinally divided aleurone cell loses its identity and 

differentiates to a starchy endosperm cell. The surface-dependent response requires active 

DEK1 (Becraft and Asuncion-Crabb, 2000). It is proposed that DEK1, which is present in all 

cell layers, is activated only in the outer membrane of cells positioned on the surface. It has 

been suggested that activation of the DEK1 calpain activity is controlled by the membrane 

part of DEK1. According to this model, the extracellular loop region (DEK1-Loop) receives a 

signal which is transmitted through DEK1-Arm to activate the calpain proteinase. 

Subsequently, the activated calpain cleaves a substrate that leads to the specification of 

aleurone (epidermal) cell fate (Tian et al., 2007).  

1.2 Mutant dek1 phenotypes 

A number of maize dek1 alleles with specific phenotypes have been described in detail. 

Embryos homozygous for some of these alleles develop into viable, but abnormal plants with 

crinkled leaves, shortened internodes and nodes that bend alternately back and forth. But 

often mutant kernels do not germinate due to the arrest of embryo development at an early 

stage (Becraft et al., 2002). Arabidopsis dek1 mutant phenotypes are similar to maize, 
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The aleurone layer of specific maize line that contains anthocyanin pigments, which give the 

kernels a dark, bluish-black color was used to visualize the defect in the aleurone cell layer. 

Homozygous dek1 maize kernels are white because they lack the aleurone layer and 

consequently the anthocyanin pigments (Figure 2 A). Homozygous dekl-mum1 mutant 

endosperms initiate aleurone cell fate specification at a high frequency, indicated by the 

presence of peripheral cells containing darkly stained cytoplasm, and in mature endosperm, 

aleurone cells are almost completely lacking (Figure 2 C). These results suggested that the 

initiation of aleurone cell fate does not depend on DEK1, and that its function plays a role in 

maintaining the aleurone cell fate specified at early developmental stage in the endosperm 

(Lid et al., 2002).  

Homozygous Arabidopsis dek1 mutant embryos lack proper control of mitotic divisions and 

the endosperm forms only a partial aleurone-like cell layer (Lid et al., 2005). Loss of 

AtDEK1 activity in Arabidopsis leads to early embryonic arrest phenotype (Lid et al., 2005; 

Johnson et al., 2005), which makes studying the role of DEK1 in the maintenance of 

epidermal identity after germination and during embryogenesis impossible. This problem 

was circumvented by the production of transgenic Arabidopsis thaliana plants expressing an 

AtDek1-RNAi construct under the control of the 35S promoter, which is not active during 

early embryo development. This approach allowed the embryo to partially complete its 

development before the AtDEK1 transcript have being silenced by the RNAi construct 

(Johnson et al, 2005).  

 

 

Figure 3 Phenotypic analysis of AtDek1-RNAi knockdown seedlings. A: AtDEK1RNAi seedlings showing severe 
developmental defects including fusion of the cotyledons (c) and mesophyll-like cells replacing the epidermis (arrowhead). 
B: AtDEK1-RNAi seedling with no fusion of cotyledons and zones of ‘lacy’ epidermis on the adaxial surface (arrowhead). 
C and D: Less severe AtDEK1-RNAi knockdowns produce central organs such as radialized spikes, sometimes bearing 
trichomes (arrowhead in C). (Modified figure form Johnson et al., 2005, scale bar 100 µm). 

 

A B C D
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The transgenic RNAi Arabidopsis seedlings formed cotyledons with mesophyll-like cells at 

the lamina surface, and in the most severe lines the cotyledons were fused together (Figure 

3). These results implied that AtDEK1, which is required for the initial differentiation of 

protodermal cell fate are also required to maintain the observation of positional signaling, 

continuously stimulating epidermal identity during late embryogenesis (Johnson et al., 

2005).  

 

1.1.5 DEK1 is growth regulator and plays global role in plant 
development 

The observations of the AtRNAi phenotypes where mesophyll-like tissue occurred on the 

organs and stems of plants showing low levels of AtDEK1 activity suggested that when 

levels of AtDEK1 activity are limited, epidermal growth can no longer keep up with that of 

underlying tissues, leading to a loss of epidermal continuity, and thus the ability to maintain 

epidermal identity. The role of AtDEK1 in maintaining epidermal cell fate could be an 

indirect consequence of a fundamental role in coordinating growth (Johnson et al., 2008). 

Virus-induced silencing of the tobacco NbDEK1 gene in Nicotiana benthamiana causes 

arrested organ development and hyperplasia in all major organs examined. These defects 

include hyper proliferation of leaf and stem epidermis and reduced stomata and trichome 

development, inferring that DEK1 plays a global role in plant development (Ahn et al., 

2004).  

 

1.1.6 DEK1 responses to positional cues 

An internalized daughter cell resulting from a periclinally divided aleurone cell loses its 

identity and differentiates to a starchy endosperm cell in maize and starchy endosperm cells 

may convert to aleurone cells if they become positioned on the surface showing that the fate 

of endosperm cells maintain flexible until late in their development. Dek1 mutant cells are 

unable to perceive or respond to the positional cues that normally specify aleurone identity, 

showing that the function of DEK1 seems to be required for this surface-dependent response 

throughout endosperm development (Becraft & Asuncion-Crabb, 2000; Becraft et al., 2002; 

Lid et al., 2002).  
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Figure 4 Developmental plasticity of endosperm cells. (A) Reversion of a dek1 mutant cell to wild type results in the 
transdifferentiation of the peripheral cell from starchy endosperm to aleurone. (B) Induction of a dek1 mutant cell in a wild-
type background results in the transdifferentiation of aleurone to starchy endosperm. These transdifferentiation events can 
occur even late in development, illustrating that the cues that specify aleurone cell fate are present throughout development 
and required to maintain aleurone identity (modified figure from Becraft & Yi, 2010). 

 

Transdifferentiation was similarly observed in cultured endosperms when fissures developed 

and starchy endosperm cells newly exposed to a surface became aleurone (Gruis et al., 

2006). A maize mutant produces an endosperm composed of multiple spheroid masses of 

cells, each with a layer of aleurone cells, since some of these aleurone cells were not in 

contact with maternal tissues, proposing that surface position induces aleurone identity 

(Olsen, 2004). This hypothesis is supported by recent reports of aleurone differentiation on 

isolated endosperms grown in vitro in the absence of maternal tissues (Gruis et al., 2006; 

Reyes et al., 2010). The function of DEK1 has also been implicated in epidermal cell fate 

specification in Arabidopsis embryos, leaves, and meristems (Johnson et al., 2005; Lid et al., 

2005), suggesting that the mechanisms involved in surface position recognition described by 

Gruis et al. (2006) for endosperms may be universal to epidermal cell formation in all plants.  

In situ hybridization experiments show that DEK1 is ubiquitously expressed, and could have 

the flexibility to respond to surface position upon cell repositioning (Lid et al., 2005; Gruis 

et al., 2006). Analysis of DEK1 expression by massively parallel signature sequencing on 

microbead arrays from a total of 37 maize and 11 Arabidopsis tissues, showed that the DEK1 

gene is expressed in most maize tissues at a level ranging from 30 to 55 ppm (parts per 

million). In Arabidopsis thaliana, a low level of the AtDEK1 transcript occurred in young 

and germinating seeds (10 ppm), but the transcript was undetected in older seeds and 

seedlings. The highest level of the AtDEK1 transcript was observed in seedling roots (67 

ppm). Examination of Arabidopsis embryo and endosperm showed that the DEK1 gene is 
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expressed evenly throughout early developmental stages, declining as the seeds mature, and 

is present in all vegetative plant organs examined. Together, these results suggest that DEK1 

functions in diverse developing tissues (Lid et al., 2002; Lid et al., 2005). In addition these 

results demonstrate that the expression of DEK1 is not restricted to the outermost cell layer 

(L1), even though revertant sector analysis revealed that DEK1 functions cell-autonomously 

because wild-type cells cannot rescue the phenotype of adjacent dek1 mutant cells, and dek1 

mutant cells cannot impose their phenotype onto adjacent wild-type cells (Becraft et al., 

2002).  

 

1.2 AtDEK1-MEM and the Dominant Negative Phenotype 

Dominant mutations have had important consequences in evolution and are especially 

attractive to geneticists, as they are recognized in the T1 generation, thus simplifying 

phenotypic characterization. Traditional approaches for characterizing protein function have 

significant limitations especially in identifying the roles specific proteins play in vivo. An 

alternative approach is to engineer mutations in the protein of interest that abolish its 

function and that also inhibit the function of simultaneously expressed wild-type protein. 

Those mutations, whose gene products act antagonistically to the normal, wild-type gene 

products within the same cell are called dominant negative mutations or antimorphic 

mutations (Herskowitz, 1987). The dominant negative phenotype usually occurs if the 

mutant product can still interact with the same elements as the wild-type product, but block 

some aspect of its function. An example can be a mutation in a transcription factor that 

removes the activation domain, but still contains DNA binding domain, this product can 

block the wild-type transcriptional factor from binding the DNA site leading to reduced 

levels of gene activation. Dominant negative mutants have already provided insights into the 

molecular mechanisms of a number of protein families, including hormone receptors, 

oncogenes, and growth factor receptors, and have been identified as the cause of at least a 

few autosomal dominant diseases. Expression of dominant negative mutants under the 

control of highly active promoters holds great promise for the study of the roles specific 

proteins and protein families play in development, health, and disease (Sheppard, 1994).  

Over-expression of AtDEK1-MEM under the control of the strong Cauliflower Mosaic Virus 

(CaMV35S) promoter gives a spectrum of dominant negative phenotypes, ranging from 
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plants with defective shoot apical meristems unable to produce adult leaves, to cotyledons 

with disorganized or no epidermal cells, to plants producing radialized rosette leaves in 

Arabidopsis thaliana. In order to provide a baseline for AtDEK1-MEM overexpression 

phenotypes, Tian et al (2007) generated Dek1 knockdown phenotypes, by expressing an 

AtDEK1-RNA-interference (RNAi) construct under the control of the CaMV35S promoter. 

The observed phenotypes closely resembled the AtDEK1-MEM lines, and were also 

compatible with the phenotypes observed previously in a similar experiment by Johnson et 

al.  (2005). 

 

 

Figure 5 Phenotypic analysis and comparison of Arabidopsis lines overexpressing AtDEK1-MEM and 
AtDEK1-RNAi. From A to E Phenotypes of At DEK1-MEM seedlings, from F to J Comparable developmental stages 
and organs in wild-type seedlings, and from K to O Comparable developmental stages and organs in At DEK1-RNAi 
seedlings. The shoot apex is severely affected in At DEK1-MEM plants (A and B) and severely affected in RNAi lines (K 
and L). Cotyledons from At DEK1- MEM (C) and At DEK1-RNAi (M) seedlings are also distorted. Note in the cross 
sections of cotyledons from At DEK1-MEM (D) and At DEK1-RNAi (N) plants that the cells exposed to both adaxial and 
abaxial surfaces contain chloroplasts, suggesting that they have not completely differentiated into epidermal cells. Shoot 
apices from less severely affected seedlings in both At DEK1-MEM and At DEK1-RNAi lines can display one terminal 
radialized rosette leaf (E) or several radial rosette leaves (O). Bars 100 µm (Modified figure from Tian et al., 2007). 

 

An explanation for the dominant negative phenotype caused by AtDEK1-MEM 

overexpression could be that AtDEK1-MEM interacts with either a ligand or interacting 

membrane proteins that normally mediate the activation of the resident AtDEK1. The 

overexpressed AtDEK1-MEM truncated protein may compete effectively with native Dek1 

for the activators and/or interactors, and since it lacks the cytoplasmic calpain domain, it 

cannot trigger the downstream signaling pathways, leading to a dominant negative 

of the aleurone and embryo phenotypes to the wild type did not
occur.

Plants with Ectopic Expression of At DEK1-MEM in
Arabidopsis Have Similar Phenotypes as At DEK1 RNA
Interference Plants

DEK1-MEM has been proposed to regulate the DEK1 calpain
Cys proteinase activity (Lid et al., 2002). To further investigate the
role of the DEK1-MEM domain, we expressed At DEK1-MEM in
wild-type Arabidopsis plants under the control of the At DEK1
and cauliflower mosaic virus (CaMV) 35S promoters. In these ex-
periments, we expressed both untagged At DEK1-MEM protein
and an At DEK1-MEM-GFP fusion protein, with both constructs
giving identical phenotypes.

Whereas the expression of At DEK1-MEMand At DEK1-MEM-
GFP inwild-type plants under the control of the AtDek1promoter
caused no deviating phenotype from the wild type, the overex-
pression of the At DEK1-MEM and At DEK1-MEM-GFP proteins
with the CaMV35S promoter resulted in a gradient of develop-
mental aberrations, ranging from plants with defective shoot
apical meristems unable to produce adult leaves (Figures 4A and
4B) to cotyledons with lack of or disorganized epidermal cells
(Figures 4C and 4D) to plants producing radialized rosette leaves
(Figure 4E). To demonstrate that the overexpressed At DEK1-
MEMproteins were targeted to plasmamembranes, we performed
immunolabeling in roots overexpressing At DEK1-MEM-GFP with
ananti-GFPantibody. These experiments confirmed the presence
of the fusion protein in the plasma membrane of root cells (see
Supplemental Figure 2A online).

Figure 4. Phenotypic Analysis of Arabidopsis Lines Expressing At DEK1-MEM and At DEK1-RNAi.

(A) to (E) Phenotypes of At DEK1-MEM seedlings.

(F) to (J) Comparable developmental stages and organs in wild-type seedlings.

(K) to (O) Comparable developmental stages and organs in At DEK1-RNAi seedlings.
The shoot apex is severely affected in At DEK1-MEM plants ([A] and [B]) and severely affected in RNAi lines ([K] and [L]). Cotyledons from At DEK1-

MEM (C) and At DEK1-RNAi (M) seedlings are also distorted. Note in the cross sections of cotyledons from At DEK1-MEM (D) and At DEK1-RNAi (N)
plants that the cells exposed to both adaxial and abaxial surfaces contain chloroplasts, suggesting that they have not completely differentiated into

epidermal cells. Shoot apices from less severely affected seedlings in both At DEK1-MEM and At DEK1-RNAi lines can display one terminal radialized
rosette leaf (E) or several radial rosette leaves (O). Bars ¼ 100 mm.

(P) and (Q) RT-PCR analyses showing At DEK1 transcripts in At DEK1-MEM and wild-type seedlings (P) and in At DEK1-RNAi and wild-type seedlings

(Q). The three primer sets used, specific for the At DEK1-MEM region, the At DEK1-CALP region, and EF-1a as a control to monitor template presence,

are indicated at top. DNA marker sizes are indicated at left in kb.

3132 The Plant Cell
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phenotype. Plants expressing AtDEK1-MEM under the weaker AtDEK1 promoter produced 

a phenotype indistinguishable form wild type suggesting that there is a threshold level of 

truncated protein that has to be surpassed to be able to interfere with endogenous DEK1 

function. Wild type phenotype was also observed in plants overexpressing AtDEK1-MEM-

DEL, which lacks the extracellular loop region, supporting the speculation that the loop 

region is essential for either the perception and/or the transmission of positional signals. The 

AtDEK1-MEM-DEL construct was designed in order to rule out the possibility that the 

AtDEK1-MEM phenotype represents a pleiotropic effect caused by ectopic expression of a 

large membrane protein and also led to the conclusion that the observed dominant negative 

phenotype is specific to AtDEK1- MEM (Tian et al., 2007).  

 

1.3 Proposed models for DEK1 function  

Investigation of cell fate specification and development in maize, cereal grains, Arabidopsis 

and rice have identified three genes involved in cell-fate specification of aleurone cells 

and/or epidermal cells; Crinkly4 (Cr4), encoding a receptor-like protein kinase that shares 

some sequence similarity with the tumor necrosis factor receptor (TNFR), Supernumerary 

aleurone layers 1 (Sal1) encoding a maize homolog of the human Chmp1 gene implicated in 

endosome trafficking, and Defective kernel 1 (Dek1)  (Becraft et al., 1996 & 2002; Sheridan 

& Neuffer, 1980; Howard et al., 2001; Shen et al., 2003). Defects in DEK1 or in or in 

CRINKLY4 (CR4), prevent the differentiation of an aleurone layer and lead to the presence 

of starchy endosperm cells in peripheral positions (Becraft et al., 1996; Becraft & Asuncion-

Crabb, 2000). Phenotypic analysis of the dek1 ⁄ cr4 double mutant suggests that the two gene 

products function in partially overlapping pathways, as strong dek1 alleles were epistatic to 

cr4 (Becraft et al., 2002). These findings led to the initial model proposing a role for DEK1 

in the release of signals that are perceived by receptor-like kinase CR4, because maize cr4 

mutants share some of the dek1 phenotypes, and cr4/dek1 double mutants show dek1 

phenotypes (Becraft et al., 2000). The cr4 homolog in Arabidopsis, acr4, and the acr4/dek1 

double mutants show additive effects, which suggests that dek1 and acr4 act in different 

pathways of epidermis specification (Johnson et al 2005).  
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Figure 6 A Model for the Role of DEK1, CR4, and SAL1 in Aleurone Cell Specification. DEK1 at the surface of 
the endosperm is activated by an unknown mechanism (a), its calpain domain in the cytosol cleaving a postulated substrate 
(b) that leads to the specification of aleurone cell fate. DEK1 in all other positions is inactive (c). In cells with active DEK1 
signaling, CR4 concentrates on plasmodesmata between aleurone cells (pda) and increases the plasmodesma exclusion 
limit, allowing the activated DEK1 substrate to move laterally between aleurone cells, thereby reinforcing the signal for 
aleurone cell fate specification (d). Plasmodesmata in cell walls between starchy endosperm cells are narrow (pds), whereas 
plasmodesmata in cell walls between aleurone cells and starchy endosperm cells are intermediary in width (pdi). DEK1 and 
CR4 are internalized by endocytosis (e) and traffic through endosomes. Whereas some DEK1 and CR4 molecules may be 
recycled back to the plasma membrane (f), others are sorted for degradation in the vacuole in a process that requires SAL1. 
Some endosomes are recycled back to the plasma membrane (f). Figure and text are cited from Tian et al. (2007). 

 

In another model, DEK1 is proposed to cleave homeodomain–leucine zipper IV (HDZipIV) 

transcription factors, which regulate epidermal cell fate (Johnson et al 2005). This model is 

consistent with the cell-autonomous function of DEK1 and the fact that DEK1 carries 

nuclear targeting signals (Ahn et al 2004). At the cellular level, cell divisions are stimulated 

in already differentiated tissues, interfering with normal tissue differentiation. Based on the 

observation that protein levels of D-type cyclins, as well as transcript levels of 

retinoblastoma, transcription factor E2F, S-phase genes and KNOTTED1-type homeobox 

genes were elevated in DEK1 silenced tissue, the authors proposed that DEK1 regulates cell 

proliferation and differentiation during plant organogenesis, and that it acts partly by 

controlling the CycD/Rb pathway (Ahn et al., 2004). 

Johnson et al (2008) analyzed gene expression during early leaf development of proteins 

known to be involved in growth regulatory pathways. The results suggested that DEK1 plays 

In the same experiments, we also demonstrated that DEK1-
and CR4-positive organelles stained positive with FM4-64, lead-
ing us to speculate that DEK1 and CR4 are both internalized by
endocytosis and routed through endosomal compartments. The
functional significance of an internalization process has yet to be
determined, but a quantitative regulation of vital cellular recep-
tors by endosomal degradation is common in animal systems,
including animal growth hormone receptors (Mellman, 1996;
Katzmann et al., 2002). As demonstrated by the presence of
extra layers of aleurone cells in the maize sal1-2mutant, SAL1 is
a negative regulator of aleurone cell fate. In animal systems,
the SAL1 homolog CHMP1 mediates the trafficking of cargo
proteins frommultivesicular bodies to lysosomes for degradation
(Howard et al., 2001). We earlier proposed that the supernumer-
ary aleurone layer phenotype of sal1 mutants is caused by an
overabundance of positive regulators of aleurone cell fate due to
defective degradation via endosomes. The data presented here
support this proposal in two ways. First, by demonstrating that
SAL1 localizes to endosomes, and second, by demonstrating
that SAL1 colocalizes with the two known regulators of aleurone
cell fate, DEK1 and CR4. The immunolocalization experiments
performed here did not show differences between the distribu-
tion of DEK1 and CR4 in wild-type and sal1-2 mutant endo-
sperms. We ascribe this observation to the fact that the sal1-2
mutant is not a null mutant, the protein being present in mutant
endosperm at a reduced level compared with the wild type.
Nevertheless, sal1-2mutant endosperms display multiple layers
of aleurone cells in in vitro organ cultures (Gruis et al., 2006).

Therefore, we speculate that the multiple aleurone layer pheno-
type of sal1mutants is caused by an overabundance of aleurone
signaling membrane proteins (e.g., DEK1 and CR4).

Aleurone Cells of Young Endosperm Form a Symplastic
Subdomain through Wide Plasmodesmata Enriched in CR4

The localization pattern of CR4 in maize endosperm and roots
shown in this study is in agreement with data presented by
Johnson et al. (2005) on Arabidopsis root cells. These data
support the notion that CR4 is present inmany different cell types
across monocot and dicot species and that targeting, function,
and regulationmaybe thesame in all of thesecells. InArabidopsis
root cells, the ACR4 has been described as an L1 cell layer–
specific kinase (Johnson et al., 2005). This conclusion is not
supportedbyour data fromendosperm, inwhichCR4was shown
to be expressed in all cell layers. Interestingly, however, CR4 is
primarily associated with plasmodesmata only in the aleurone
layer and not in the starchy endosperm. Whether the preferential
presence of CR4 in periclinal epidermal cell walls of Arabidopsis
leaf primordia and ovules (Tanaka et al., 2002;Gifford et al., 2003)
also reflects an association with specialized plasmodesmata
remains to be determined. The CR4-positive plasmodesmata in
anticlinal walls of aleurone cells show a larger inner diameter and
also exhibit a larger plasmodesmata exclusion size, leading to the
development of symplastic subdomains of aleurone cells in
young endosperm, as demonstrated by the movement of fluo-
rescent tracers. The association of CR4with these plasmodesmata

Figure 11. A Model for the Role of DEK1, CR4, and SAL1 in Aleurone Cell Specification.

DEK1 at the surface of the endosperm is activated by an unknown mechanism (a), its calpain domain in the cytosol cleaving a postulated substrate (b)

that leads to the specification of aleurone cell fate. DEK1 in all other positions is inactive (c). In cells with active DEK1 signaling, CR4 concentrates on

plasmodesmata between aleurone cells (pda) and increases the plasmodesma exclusion limit, allowing the activated DEK1 substrate to move laterally

between aleurone cells, thereby reinforcing the signal for aleurone cell fate specification (d). Plasmodesmata in cell walls between starchy endosperm
cells are narrow (pds), whereas plasmodesmata in cell walls between aleurone cells and starchy endosperm cells are intermediary in width (pdi). DEK1

and CR4 are internalized by endocytosis (e) and traffic through endosomes. Whereas some DEK1 and CR4 molecules may be recycled back to the

plasma membrane (f), others are sorted for degradation in the vacuole in a process that requires SAL1. Some endosomes are recycled back to the
plasma membrane (f).

DEK1 in Maize and Arabidopsis 3139
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a key role in plant growth regulation by acting downstream for the CYP78a7 gene, and for 

GA2Ox8 gene. The diversity of genes with changed expression due to overexpression or 

suppression of the CALPAIN implies that DEK1 is likely to act through a number of 

developmental pathways to regulate growth (Johnson et al., 2008, and references therein).  

Due to the severity of mutant phenotypes, the role of DEK1 in plant development remains 

unclear. Null alleles of dek1 cause early embryo lethality, making this phenotype useless in 

making conclusions about the gene function in plant development. The RNA interference 

approach solved this problem, and the results showed that DEK1 is required for the 

maintenance of epidermal cell fate during late embryogenesis (Johnson et al., 2005).  

A number of maize dek1 alleles with specific phenotypes have been described in detail 

(Becraft et al., 2002). Embryos homozygous for some of these alleles develop into viable, 

but abnormal plants with crinkled leaves, shortened internodes and nodes that bend 

alternately back and forth, mutant dek1 kernels often do not germinate due to the arrest of 

embryo development at an early stage (Becraft et al., 2002). Arabidopsis dek1 mutant 

phenotypes are similar to maize; including lack of the aleurone layer and arrest of embryo 

development. Studies of dek1 mutant and transgenic phenotypes in maize, Arabidopsis 

thaliana and in tobacco have demonstrated the importance of both DEK1-MEM and DEK1-

CALP in determining epidermal cell fate and are summarized in the table below (Ahl et al., 

2004; Johnson et al., 2005 & 2008; Lid et al., 2002 & 2005; Tian et al., 2007).  
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Table 1 Summary of known and published facts about DEK1 (modified table from van der Hoorn, 2008) 

Gene name DEK1 (maize) AtDEK1 (Arabidopsis) NbDEK1 (tobacco)  

Described alleles 
dek1-1…12 (Becraft et 
al., 2002) 
 

dek1- 1…4 (Johnson et al., 
2005; Lid et al., 2005) _ 

Knockout phenotypes 

Embryo lethal, aleurone 
deficient (Becraft & 
Asuncion-Crabb, 2000; 
Becraft et al., 2002; Lid 
et al., 2002) 

Embryo lethal, aleurone 
deficient (Johnson et al., 
2005; Lid et al., 2005) 

_ 

Knockdown phenotypes _ 

Deformed plants, lack of 
epidermis (Johnson et al., 
2005) 
 

Callus formation on all 
surfaces (Ahn et al., 2004) 

Overexpression phenotype _ 

Loss of trichomes (only in 
specific ecotype), different 
epidermal cell shape and 
organization (Lid et al., 
2005) 

_ 

Endogenous expression 
Ubiquitous at low levels 
(Lid et al., 2002; Wang 
et al., 2003) 

Ubiquitous at low levels 
(Lid et al., 2005) 

Ubiquitous at low levels  
(Ahn et al., 2004) 

Localization 
Plasma membrane, 
endogenous system 
(Tian et al., 2007) 

Plasma membrane, 
endoplasmic reticulum and 
cytoplasm (Johnson et al., 
2008) 

Nuclear membrane (Ahn et 
al., 2004) 

Putative genetic interactions  

Function of receptor-like 
kinase CR4 depends on 
Dek1 (Becraft et al., 
2002) 
 

Receptor-like kinase ACR4 
acts independent of Dek1 
(Lid et al., 2005) 

_ 

Proteolytic activity 

Domains II and III 
cleave casein in vitro, 
stimulated by Ca2+ 
(Wang et al., 2003) 
 

_ _ 

Proposed mechanisms May cleave transcription factors in response to signals from the extracellular 
environment  (Johnson et al., 2005 & 2008; Lid et al., 2002 & 2005; Tian et al., 2007) 

 

The table above summarizes described alleles, knockdown, knockout and overexpression 

phenotypes, expression levels, proteolytic activity, putative genetic interactions and 

proposed mechanisms of DEK1 studied and published so far.  

 

1.4 Homology and Evolution of DEK1 

DEK1 is highly conserved in higher plants. Sequencing data from both angiosperms and 

gymnosperms demonstrate a significant degree of sequence conservation. Comparison 

between the maize and Arabidopsis orthologs reveal 70 % overall identity, with highest 

score of 86% in the calpain domain, about 70 % in the membrane anchored domains, and 

lowest conservation (57 %) in the extracellular loop domain (Lid et al., 2002). 



 20 

 

Figure 7 Phylogenetic tree based on DEK1 sequence (Modified figure from Liang, 2010, unpublished) 

 

Johnson et al., (2008) defined DEK1 as a plant-specific phytocalpain, however  DEK1 was 

recently identified in the single celled green algae, Mesostigma viride, probably containing 

two or more DEK1 genes (Johansen and Wilson 2010, unpublished results), and in the 

flagellated protozoan Thecamonas trahens, indicating that DEK1 is not plant-specific and 

originated long before multicellular organisms. Newly, DEK1 was also identified in the 

moss Physcomitrella patens, separated from angiosperms by ! 500 million years of 

evolution (Quatrano et al., 2007) and in the liverwort Marchantia polymorpha (the Kohchi 

lab at Kyoto University, unpublished results). Amino acid sequence comparison of DEK1 

from moss and maize revealed 59 % identity and even higher identity (80 %) in the calpain 

domain (Tian et at. 2007).  

 

1.5 Arabidopsis thaliana as model organism 

Arabidopsis thaliana was discovered in the Harz Mountains, in the sixteenth century by 

Johannes Thal, at this time he called the plant Pilosella siliquosa, and the name has gone 

Dicots 

Monocots 

Bryophytes 

!Chlorophyta 

Streptophyta algae 
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through a number of changes since. The earliest appearance of mutant Arabidopsis in the 

scientific literature appears to be in 1873 by Alexander Broun. In 1943 F. Laibach was the 

first to summarize the potential of Arabidopsis thaliana as a model organism for genetics 

(Meyerowitz, 2001). 

 

 

 
Figure 8 Arabidopsis thaliana. Picture to the right shoes the vegetative stage, before flowering and growth of the floral 
stalk (bottom left). On the centre an adult plant at full flowering/seed set. On the right, flower, floral stem and seeds. White 
bars represent 1 cm, except for flower and seeds: 1 mm. (Picture borrowed from http://www-
ijpb.versailles.inra.fr/en/arabido/arabido.htm) 

 

Arabidopsis thaliana, commonly known as thale-cress or mouse-ear cress, is a small dicot, 

angiosperm (a flowering plant) member of the mustard family (Brassicaceae). Arabidopsis 

may not have been of agronomic importance like its relatives cabbage and radish, for 

instance, but it has been widely used as model organism because of the many advantages this 

small plant offers to basic research in genetics and molecular biology.  

Some of the significant advantages Arabidopsis offers as model organism is the small 

genome (one of the smallest in the plant kingdom) containing 115 409 949 base pairs of 

DNA distributed in five chromosomes. Very little of its genome is “junk DNA” which 

means most of the DNA collectively encodes an estimate of 25 498 genes. The short life 

cycle of six weeks and its prolific seed production of about 10 000 per plant make genetic 

studies easier. The easy cultivation and its small size of about 25 cm in high and about 5 cm 

in diameter make it a perfect laboratory tool and mutants are easily achieved by efficient 

transformation with Agrobacterium tumefaciens (reviewed by Meinke et al., 1998; TAIR, 

Sept. 2010). 
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The aims of this study  

The aim of this study was to further investigate and understand the function of the essential 

plant protein Defective Kernel 1 with a focus on the extracellular loop domain of the protein. 

Based on the dominant negative effect caused by the loop domain in transgenic AtDEK1-

MEM Arabidopsis thaliana plants (Tian et al., 2007) and by the creation of chimeric genes 

with swapped loop domain from different species, we tried to assess the functional 

significance of conserved residues in the AtDEK1-LOOP domain. The research question was 

whether the DEK1-LOOP sequences from Zea mays, Physcomitrella patens and Mesostigma 

viride could functionally replace the Arabidopsis thaliana DEK1-LOOP. The answer to that 

question should give an idea of how well this domain is conserved and whether it 

participates in the same signaling processes in these species separated by evolution by 

millions of years. A sub-aim of the study was to further investigate the pleiotropic nature of 

the dominant negative phenotype. 
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2. Materials and Methods 

 

All laboratory procedures were performed in the laboratory facilities in Biohus, Hedmark 

University College, Hamar in strict accordance with the Norwegian Gene Technology Act 

(LOV 1993-04-02 nr 38) for production, use and application of genetically modified 

organisms.  

 

2.1 Bioinformatics 

2.1.1 BLAST search and LOOP identification 

Sequence similarity searches were performed on the National Center for Biotechnology 

Information (NCBI) databases using the Basic Local Alignment Search Tool (BLAST). 

Based on annotations of the Zea mays (Zm) DEK1, the homologs LOOP regions of DEK1 in 

Arabidopsis thaliana (At) and Physcomitrella patens (Pp) were identified. The putative 

Mesostigma viride (Mv) DEK1-LOOP sequence was identified using a 5’-RACE cDNA 

cloned in our laboratory as query. The Mv sequence was submitted to the TMHMM Server 

v.2.0 (Prediction of transmembrane helices in proteins, at 

www.cbs.dtu.dk/services/TMHMM/) to identify the Mv-LOOP region. The data collected 

from BLAST was also used to create multiple sequence alignment (MSA) and to compare 

the identity percentage between the identified putative loop sequences. 

 

2.1.2 In silico PCR, restriction digestion, cloning and sequence analysis 

PCR primers and products were respectively designed and simulated using CLC Genomics 

Workbench v4.5.1. The chimeric constructs were submitted to FGENESH, HMM-based 

gene structure prediction server at SoftBerry.com and the predicted gene further analyzed in 

TMHMM Server v.2.0. to show the transmembrane forecast. The designed chimeric PCR 

products were cloned in silico in the pCR-Zero-Blunt vector (Invitrogen), enzyme restriction 

was simulated and further the products were cloned in silico in the binary vector pSEL1:35S-



 24 

AMG (Tian et al., 2007). The sequence outputs generated from sequencing reactions were 

analyzed by assembling the examined sequences to reference DNA in CLC Genomic Bench 

v4.5.1.  

 

2.1.3 Protein structure prediction and alignments 

The amino acid sequences of the Zm-, Pp- and Mv-DEK1-LOOPs were submitted to 

different structure, function and similarity prediction servers like PSIPRED 

(http://bioinf.cs.ucl.ac.uk/psipred/), Predict Protein (http://www.predictprotein.org/), Prosite 

(http://prosite.expasy.org/) and others. The Phyre (Protein Homology/analogY Recognition 

Engine) v 0.2 engine was used to search for similarities in three dimensional structures with 

known function that may indicate similar functions, and further submitted to the 

3DLigandSite (predicting ligand-binding sites using similar structures) as a follow up 

analysis of the 3D structure alignments. Search for possible substrates was performed at 

Calpain for Modulatory Proteolysis site (CaMPDB, http://calpain.org/). 

 

 

2.2 Creation of the chimeric AtDEK1-MEM-LOOP-replaced 
construct 

 

The lack of compatible restriction sites on the ends of the loop coding regions of the DEK1 

orthologs in the species used in this study led to the use of Overlapping Expression PCR 

approach (Wurch et al., 1998) for the creation of the interspecies domain swapped chimera 

genes. In these chimeras the sequence of AtDEK1-extracellular-loop coding region in the 

AtDEK1-MEM construct was replaced with DEK1-loop coding regions from Zea mays 

(Zm), Physcomitrella patens (Pp) and Mesostigma viride (Mv). The strategy is represented 

schematically in Figure 9.  
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Figure 9 Strategy for creating chimera genes by replacing AtDek1-MEM-Loop with Zm-, Pp-, and Mv-Loops. 
In the first step, fragments A (5’-end of AtDek1-MEM), B (Loop part of Zm) and C (3’-end of AtDek1-MEM) are PCR-
amplified separately with the indicated primers. Primers SP/At_5’-fragment, ASP/At_3’-fragmet, SP/Zm_Loop and 
ASP/Zm_Loop are fully identical to their respective template. Primers ASP/At_5’-fragment_Zm and SP/At_3’-
fragment_Zm possess 5’-extentions (indicated in red), complementary to the 5’-end and the 3’-end, respectively, of 
fragment B. In the second step all three fragments are fused together in Overlapping Expression PCR reaction with the 
indicated primers. The product is a chimeric gene where the Loop part of AtDek1-MEM is replaced or swapped with the 
loop from Zm (Zea mays), Pp (Physcomitrella patens) and Mv (Mesostigma viride).  

 

 

2.2.1 Template DNA isolation 

Templates for PCR amplification of the DEK1-LOOP sequences (fragment B, Fig. 9) were 

obtained as follows: Total genomic DNA from Physcomitrella patens was isolated and 

purified with DNeasy 96 Blood & Tissue Kit (QIAGEN) following the “Purification of Total 

DNA from Animal Tissues, Spin-Column Protocol”. A 5’-cDNA fragment containing the 

entire putative Loop cDNA from Mesostigma viride was previously cloned in our laboratory 

(W. Johansen, unpublished results) and used for the amplification of the MvDEK1-LOOP. 

As template for ZmDEK1-LOOP amplification was used a plasmid clone containing part of 

the genomic Zm-DEK1 gene, harboring the ZmDEK1-LOOP sequence (kindly provided by 

UMB, Ås). The template DNA used for amplification of fragments A and C (Figure 9) was 

the purified plasmid pSEL1:35S-AMG (Tian et al., 2007). Primers were designed in Vector 
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NTI Advance™ Software (Invitrogen), indicated in the Appendix 1 (Table 1 A1) together 

with the PCR conditions used. 

 

2.2.2 PCR amplification of the construct fragments  

The construct fragments (Figure 9) were amplified using a High-Fidelity PCR Kit 

(FINNZYMES). The fragments were amplified separately in a reaction volume of 20 µl 

containing the following components: 1x Phusion HF Buffer (Finnzymes), 200 µM of each 

dNTPs, 0.5 µM Sense and Antisense primers (Appendix 1, Table 1 A1) and 0.4 U/µl 

Phusion Polymerase (Finnzymes). 5 ng plasmid DNA or 100 ng genomic DNA was used as 

templates. The cycling conditions used in the different PCR reactions are included in 

Appendix 1 Table 1A, along with the primer sequences. PCR products were purified using 

the QIAquick PCR-Purification Kit (QIAGEN). 

 

2.2.3 Overlapping Expression PCR 

The PCR amplification of the chimeric sequences was performed as described in 2.2.2. The 

primers used for amplification were: SP/At-5’-fragment (5’-

ATACTGAGCGCTGAAATGTTCTCATTC-3’) and ASP/At-3’-fragment (5’-

GTGGGCAACTGATCATCTCTAGATTTTA-3’) introducing a unique 5’ Eco47III (AfeI) 

restriction site. The amplified PCR products contain an internal 3’ XbaI restriction site. As 

template for the reactions each of the PCR-amplified fragments; A, B and C (Figure 9) were 

used. The cycling conditions for the PCR reactions consisted of initial denaturation at 98 °C 

for 30 sec., 30 repetitive cycles of 98 °C for 10 sec., 58 °C for 15 sec., and 72 °C for 60 sec., 

and a final elongation step at 72 °C for 10 min. PCR products were purified on 0.7 % low-

melting agarose gel electrophoresis (80 V/h).  

 

2.2.4 Cloning and verification of the chimeric genes  

The purified over-lapping PCR products were cloned into vector pCR-Blunt using the PCR-

Zero Blunt PCR Cloning kit (Invitrogen) according to the manufacturers instructions. One 
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Shot TOP10 Chemically Competent E.coli cells (Invitrogen) were transformed by heat shock 

according to manufacturers protocol and selected on Luria Bertani (LB) plates (1 % tryptone, 

0.5 % yeast extract, 0.17 M NaCl and 1.5 % agar) supplemented with 50 !g/ml kanamycin. 

Plates were inverted and incubated at 37 °C over night.  

Positive clones were selected by colony PCR using AmpliTaq Gold Polymerase (Applied 

Biosystems) and the appropriate primers (Appendix 1, Table 1 A1). Plasmid DNA from the 

selected colonies was isolated from overnight cultures using Pure YieldTM Plasmid Miniprep 

System Kit (Promega). The purified plasmid was verified by restriction digestion with EcoRI 

restriction enzyme (BioLabs, New England), which has restriction sites on the pCR-Blunt 

vector just upstream and downstream of the insert. Confirmed plasmid DNA was sequenced 

using the BigDye" Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) with 

overlapping sequencing primers (Appendix 1, Table 2 A1) and sequenced in sequencing 

machine Applied Biosystems 3130xl Genetic Analyzer (Applied Biosystems) to verify 

sequence composition. 

 

2.2.5 Mutation of the XbaI restriction site on the Zm-loop 

The ZmDEK1-LOOP sequence contains an internal XbaI restriction site that was removed 

prior to ligation into the final binary vector using the Gene TailorTM Site-Directed 

Mutagenesis System Kit (Ivitrogen) with primers ZmLoopMutF and ZmLoopMutR 

(Appendix 1, Table 3 A1). The methylation reaction contained 1.6 µl 10x SAM, 1.6 µl 

Methylation Buffer, 100 ng pCR-AtMEM-ZmLoop plasmid DNA, and 1 µl 4 U/µl DNA 

Methylase in a final volume of 16 µl and was incubated at 37 °C for 1 hour. The 

mutagenesis reaction using Phusion Hot Start Polymerase contained 1x Phusion HF Buffer, 

200 µM dNTPs, 0.5 µM SP/Zm-loop-MutaF, 0.5 µM ASP/Zm-loop-MutaR, 2 µl Metilation 

reaction (! 12.5 ng methylated plasmid DNA), and 0.02 U/µl Phusion Hot Start II 

Polymerase in final reaction volume of 50 µl. PCR conditions: 98 °C for 30 sec., 25 cycles 

of 98 °C for 10 sec., 65 °C for 10 sec., 72 °C for 2 min., and final elongation step at 72 °C 

for 10 min. The site-mutated pCR-AtMEM-ZmLoop plasmid was checked on 1 % agarose 

gel electrophoresis and transformed into DH#-T1R E.coli cells (Invitrogen) following 

manufacturer protocol. Selection, plasmid DNA isolation and sequencing was performed as 

in 2.2.4. 
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2.3 Cloning of the chimeric gene construct into pSEL1:35S-
AMG vector 

2.3.1 Restriction digestion 

The pCR-plasmids containing the chimeric constructs and the pSEL1:35S-AMG plasmid 

were digested in separate reactions with XbaI and PstI restriction enzymes (NewEngland, 

BioLabs). The restriction reactions contained 1 !l NEB 3 Buffer, 1 !l 10x BSA, 2 !l 

plasmid (! 300 ng/ml), 0.5 !l XbaI and 0.5 !l PstI in final volume of 10 !l. The reaction was 

incubated at 37 °C for 2 h. The desired fragments were separated on 0.7% low-melting 

agarose gel electrophoresis. 

 

2.3.2 Ligation reaction 

The ligation reaction contained 1!l Buffer for T4 DNA Ligase (NewEngland, BioLabs), 1 !l 

agarose bit containing XbaI and PstI digested pSEL1:35S-AMG, 1 !l agarose bit containing 

digested chimeric construct (both incubated at 60 °C  for 10 min.) and 1 !l of T4 DNA 

Ligase (NewEngland, BioLabs) in final volume of 10 !l. The reaction was incubated at room 

temperature for 20 min and heat inactivated at 65 °C for 10 min.   

Chemically competent Top10 E.coli cells (Invitrogen) were transformed with 2 !l Ligation 

reaction and putative transformants were selected on LB-medium agar plates supplemented 

with 50 !l/ml kanamycin. Positive colonies were confirmed by Colony PCR, the 

pSEL1:35S-chimeric-gene plasmid was isolated and analyzed by restriction reaction on gel 

electrophoresis, and then sequenced as described earlier (2.2.4).  

 



 29 

2.4 Agrobacterium mediated Arabidopsis transformation 

2.4.1 Transformation of Agrobacterium by electroporation 

Preparing Electrocompetent Agrobacterium cells: 1 ml of an over night culture of 

Agrobacterium tumefaciens C58 pGV2330 (Deblaere et al, 1985) was used to inoculate 100 

ml of YEB-medium (5 % Meat Extract, 1 % Soytone Peptone, 5 % Yeast extract, 1 % 

Sucrose and 2 mM MgCl2, pH 7.2) supplemented with 100 µg/ml Carbenicillin. The cells 

were incubated at 28 °C shaking 200 rpm to a density  (OD600) of ! 0.4. Then the cells were 

harvested in sterile centrifuge tube and pelleted at 5000x g at 4 °C for 15 minutes. The pellet 

was washed three times with 500, 250 and 100 ml sterile ice-cold water and then two times 

with 50 ml sterile 10 % ice-cold glycerol. The pellet was finally resuspended in 3 ml 10 % 

ice-cold glycerol. Electrocompetent cell suspension was aliquoted and stored at - 85 °C.  

Electroporation: 50 µl of electrocompetent Agrobacterium cells were gently mixed with 2 µl 

(! 50 ng/µl) of the binary plasmid pSEL1:35S-AMG-NOS carrying the construct of interest 

in 1 mm gap electroporation cuvette (BTX, Harvard Apparatus) on ice. The cells were 

electroporated (Eppendorf, Electroporator 2510) at pulse 1250 V (1.25 kV/mm) and then 1 

ml of SOC-medium (2 % bacto tryptone, 0.5 % bacto yeast extract, 100 mM NaCl, 2.5 M 

KCl, 10 mM MgCl2, 10 mM MgSO4, 20 % glucose) was immediately added, the cells 

transferred to sterile Falcon tubes and incubated at 28 °C, 200 rpm for 1 hour. Putative 

transformants were selected on YEB agar plates supplemented with 50 µg/ml rifampicillin, 

100 µg/ml carbenicillin and 50 µg/ml kanamycin, incubated at 28 °C for 2-3 days. Colonies 

were analyzed using colony PCR with primers specific to the cloned gene (Appendix 1, 

Table 1 A1) to verify the presence of desired the constructs. Positive colonies were 

inoculated into 50 ml LB-medium supplemented with 100 µg/ml carbenicillin and 50 µg/ml 

kanamycin and incubated at 28 °C for two days (to a stationary phase, OD550 ! 1.3) on rotary 

shaker at 200 rpm.  

 

2.4.2 Transformation of Arabidopsis thaliana 

Wild type Arabidopsis thaliana ecotype Col-0 plants were transformed by direct drop-by-

drop inoculation to every flower by using a micropipette (Martínez-Trujillo et al., 2004) a 
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modified version of the floral-dip method (Clough & Bent 1998). Bolts of flowering healthy 

wt Arabidopsis plants were clipped once to encourage proliferation of many secondary bolts 

before transformation. 40 ml transformed Agrobacterium cells (from overnight culture) were 

centrifuged at 3000x g for 15 min. at room temperature. The cell pellet was resuspended in 

45 ml Infiltration medium (5 % sucrose, 0.5 x M&S-medium, pH 5.8) to an OD600 ! 0.8. 

Prior to transformation 0.05 % Silwert L-77 was added to cell suspention.   

Co-transformation was performed by the same method; two Agrobacterum cultures at equal 

concentrations (OD600 ! 0.8), each carrying different plasmid; pSEL1:35S-AMG (Tian et al., 

2007) and pRPS5A:CALPAIN-GFP (Johnson et al., 2008) were mixed just before 

transformation (Buck et al., 2009). 

 

2.4.3 Plant material, growth conditions and selection of transformed 
plants 

Seeds from transformed and wild type Arabidopsis thaliana (provided by UMB, Ås, 

Norway) were surface sterilized as follows: about 1 mg (! 50 seed) volume of seeds were 

first treated with 1 ml 75 % ethanol for 5 minutes (on inverter), and then with 1 ml 10 % 

chloride solution for 20 minutes, followed by five rinses with sterile water.  

Surface-sterilized seeds were resuspended in approximately 5 ml 0.75 % Phyto Agar 

(Duchefa Biochemie) solution before sowing on 1x M&S (Murashige & Skoog, 1962) plates 

containing M&S Medium (Duchefa Biochemie), 1 % sucrose and 0.05 % MES, pH adjusted 

to 5.7, and 0.8 % Phyto Agar. Selective plates were supplemented with 50 µg/ml kanamycin 

(and 20 µg/ml hygromycin for selection of co-transformants). Plates were placed in dark and 

cold (4 °C) for 2 days (stratification period). Germination and cultivation occurred in a 

growth room at 22 °C with light intensity (85 µmol m-2
 s-1), 60-70 % humidity and 18 h light 

and 6 h dark period. With each selection of putative transgenic plants, positive and negative 

control were also sown: wild type on non-selective medium and wild type on selective 

medium respectively. Seedlings were phonotypically characterized and transferred from 

selective medium to sterilized soil by the age of two weeks.  
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2.5 Analyzing transgenic lines 

2.5.1 Identification of transgenic lines 

Transgene insertion in kanamycin resistant plants was verified by PCR using the Extract-N-

AmpTM Plant Kit (SIGMA) with primers SP/pSEL-AtMEM-GT and ASP/pSEL-AtMEM-

GT (oligo sequences are included in Appendix 1, Table 4 A1) according to the 

manufacturer’s instructions. DNA extracted from wild type plants was used as negative 

control. The PCR reaction contained 10 !l Extract-N-Amp Ready Mix (SIGMA), 0.4  !M 

form each forward and reverse primers, and 4 !l Plant extract (DNA template) in a total 

volume of 20 !l. PCR conditions were as follow: denaturation step at 94 °C for 3 min., 40 

cycles of 94 °C for 30 sec., 58 °C for 30 sec., and 72 °C for 3 " min., and final elongation 

step at 72 °C for 10 min. PCR products were verified on 0.8 % agarose gel electrophoresis 

(90 V/h).  

 

2.5.2 Phenotypical characterization 

Transgenic plans were characterized phenotypically using a dissecting microscope   (Nikon 

SMZ 1500) and pictures were taken with Camera (Nikon, Digital Sight, DS-Fi1) using the 

NIS-Elements F3.0 software. Statistical analysis of phenotypic frequencies was performed in 

R statistical analysis program. 

 

2.5.3 Total RNA isolation from Arabidopsis plants 

Total RNA from wild type and transgenic Arabidopsis lines was extracted using RNeasy 

Mini Kit (QIAGEN), following the Plant cell and tissue protocol. Plant tissue material (~100 

mg) was gathered from two and five weeks old seedlings. The tissue was taken with sharp 

tweezers (sterilized between each sample) and collected into Eppendorf tubes containing 3 

steel beads, pretreated with 0.1 % DEPC and autoclaved (Sambrook et al., 1989). Then 450 

!l buffer RLT (QIAGENE) supplemented with #-mercaptoethanol (10 µl/ml) was added to 

the tubes and the tissue was disrupted for 45 seconds in the mini-bead beater machine. The 

Qiagene protocol was then followed from step 4 (page 54, RNeasy® Mini Handbook, 
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Version September 2010). RNA concentrations and purity were determined 

spectrophotometrically (NanoDrop 1000 v3.7.1, Thermo Scientific). 

 

2.5.4 First-Strand cDNA Synthesis 

Total RNA was first diluted to ! 50 ng/µl. To 8 µl diluted total RNA was added 1 µl 10x 

DNase I Buffer (Invitrogen) and 1 µl DNase I (Invitrogen). The reaction was incubated at 

room temperature for 15 min. To each reaction was added 1 µl of 25 mM EDTA (Stop 

solution) and incubated at 65 °C for 10 min. Then 1 µl of 250 ng/µl random primer mixture 

pd(N)6 (Amersham Pharmacia Biotech Inc) and 1 µl of 10 mM dNTPs was added to each 

reaction, and incubated at 65 °C for 5 min. A 7 µl of reverse transcription mixture containing 

4 µl 5x First-Strand buffer, 1 µl 0.1 M DTT, 1 µl 40 U/µl RiboLock RNase inhibitor 

(Fermentas) and 1 µl 200 U/µl SuperScript III Reverse Transcriptase (Invitrogen) was added 

to each well. The reverse transcription reaction (cDNA synthesis) was carried out according 

to the manufacturers conditions: 25°C for 5 min, 50 °C for 30 min and 70 °C for 15 min. The 

control reactions were performed without Reverse Transcriptase.  

 

2.5.5 Real-time quantitative PCR (qPCR) 

Real-time qPCR was performed in the 7500 Real-time PCR System (Applied Biosystems) 

using Eva Green Fire Pol qPCR Mix. The qPCR reaction contained 5x Eva Green Fire Pol 

qPCR Mix (Solis Bio Dyne), 0.1 µM of each sense and antisense primer and 5 µl of 10-fold 

diluted cDNA in a total reaction volume of 20 µl. The reactions were performed in optical 

96-well plates. Cycling conditions applied was at 95 °C for 15 min, and then 40 cycles with 

95 °C for 15 sec, 60 °C for 15 sec and 72 °C for 20 sec. Specific primers were designed to 

amplify cDNA representing each inserted transgene (the different loop regions): AtDEK1-

LOOP, AtDEK1-LOOP-DEL, MvDEK1-LOOP and ZmDEK1-LOOP, the DEK1-Calpain 

and protein phosphatase 2A (PP2A) used as reference gene. Primer sequences and respective 

amplicon size are represented in Appendix 1, Table 5 A1. Negative control omitting cDNA 

was performed for each run.  
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The data resulting from monitoring the qPCR reactions was analyzed and determined in the 

LinRegPCR program. The program uses non-baseline corrected data, performs a baseline 

correction on each sample separately, determines a window-of-linearity and then uses linear 

regression analysis to fit a straight line through the PCR data set. From the slope of this line 

the PCR efficiency of each individual sample is calculated. The mean PCR efficiency per 

amplicon and the Ct value per sample are used to calculate a starting concentration per 

sample (N0), expressed in arbitrary fluorescence units (Ramakers et al., 2003; Ruijter et al., 

2009).  

 

2.5.6 Verification of qPCR products 

The PCR products were verified on the 1 % agarose gel electrophoresis and by sequencing 

using BigDye Terminator v3.1 Sequencing Kit (Applied Biosystems). Prior to the 

sequencing reaction, PCR products were treated with Exonuclease I (New England Biolabs) 

to degrade ssDNA (excess PCR primers) from the samples. The reaction contained 2 µl of 

PCR product, 1x Big Dye Sequencing Buffer and 4 U ExoI in a total reaction volume of 10 

µl. The samples were incubated at 37 °C for 60 min and 85 °C for 15 min. The resulting 

PCR products were sequenced with overlapping specific primers (Appendix 1, Table 5 A1). 

To 5 µl of ExoI-treated PCR product 1x BigDye Sequencing Buffer, 0.32 µM gene specific 

forward (or reverse) primer and 0.5 µl of BigDye Terminator mix v3.1 were added in a 10 µl 

reaction volume. The cycling conditions: 96 °C for 1 min, 15 cycles: 96 °C for 10 sec, 50 °C 

for 5 sec, 60 °C for 1 min 15 sec, 5 cycles: 96 °C for 10 sec, 50 °C for 5 sec, 60 °C for 90 

sec. and 5 cycles: 96 °C for 10 sec, 50 °C for 5 sec, 60 °C for 2 min. To clean up the 

sequencing reactions BigDye Xterminator Purification Kit was used; 10 µl of sequencing 

reaction was mixed with 45 µl SAM solution and 10 µl Xterminator solution. The plate 

containing reaction mixtures was placed on shaker for 1 hour at RT and then centrifuged 

prior to sequencing. 
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3. Results 

3.1 Bioinformatics analyses 

3.1.1 BLAST search showes that the DEK1 sequence is highly conserved 
in Streptohyta  

BLASTp search in the NCBI databases using the Arabidopsis thaliana DEK1 sequence (Lid 

et al., 2002) as query identified several DEK1 homologs in other plant species including 

castorbean, wine grape, tobacco plant, rice, maize, barley and black cottonwood. The DEK1 

sequences in these organisms is highly conserved sharing from 63 to 98 % overall amino 

acid sequence identity. The identities in the DEK1-LOOP domain from these organisms are 

between 39 - 96% (Table 2). A pairwise alignment of Arabidopsis DEK1-LOOP and the 

putative Mesostigma viride DEK1-LOOP sequence (identified from a cDNA cloned in our 

laboratory by Johansen, 2010) revealed 16 % identity.  

 

Table 2 Dek1 homologues identified by BLASTp and their identity shared with AtDek1 and AtDek1-Loop 

Organism Accession No. Overall Dek1 
Identity 

Loop Domain 
Identity 

Calpain Domain 
Identity 

Arabidopsis lyrata gb/AAR72488.1/ 98 % 96 % 99 % 
Ricinus communis gb/EEF38998.1/ 83 % 76 % 86 % 
Vitis vinifera ref/XP002285732.1/ 81 % 75% 85 % 
Nicotina 
benthamiana gb/AAQ55288.2/ 79 % 70 % 84 % 

Oryza sativa gb/AAL38190.1/ 72 % 60 % 78 % 
Sorhum bicolor gb/EER95003.1/ 72 % 59% 77 % 
Zea mays gb/AAL38189.1/ 71 % 60 % 77 % 
Hordeum vulgare gb/ABW81402.1/ 71 % 58 % 78 % 
Brachypodium 
distachyon gb/ACF22702.1/ 65 % 53 % - 

Selaginella  
moellendorffii gb/EFJ08518.1/ 64 % 46 % 72 % 

Physcomitrella 
patens gb/EDQ60982.1/ 63 % 39 % 69 % 

Mesostigma viride - - 16 % - 
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The overall DEK1 identity percentage reported by BLASTp show that the DEK1 sequence is 

highly conserved in Streptohyta organisms. A. thaliana diverged from its close relative A. 

lyrata about 10 million years ago (Koch et al., 2000; Wright et al., 2002; Ossowski et al., 

2010), yet DEK1 is highly conserved, sharing 98 % overall sequence identity and 96 % in 

the loop domain. The overall AtDEK1 shared percentage identity with maize and 

Physcomitrella is 71 % and 63 % respectively, and 60 and 39 % for the loop domain. The 

whole MvDEK1 sequence has not been annotated yet, nevertheless the MvDEK1-LOOP 

sequence share quite low percentage identity with A.thaliana loop. Compared to the 

percentage identity of the Calpain domain, known to be the most conserved and biologically 

active domain in DEK1, the LOOP domain is less conserved and does not have known 

function (Table 2).  

 

3.1.2 Multiple sequence alignment of the DEK1-LOOP sequence reveals 
conserved amino acid residues 

In order to reveal conserved residues and putative common features in the DEK1-LOOP 

protein-coding region, multiple sequence alignment (MSA) was performed in CLC Genomic 

Workbench (v 4.5.1) using the amino acid sequences recognized as homologs of AtDEK1-

LOOP by the BLASTp search and the amino acid sequences of MvDEK1-LOOP generated 

from Mesostigma viride cDNA in our laboratory. The MSA was performed using the 

ClustalW method (Edgar and Batzoglou, 2006; Thompson et al., 1994). 
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Figure 10 Multiple sequence alignment of the Dek1-Loop amino acid sequences, performed in CLC Work 
Bench (using ClustalW) . Abbreviations for the organisms used in the alignment: Rc (Ricinus communis), Vv (Vitis 
vinifera), At (Arabidopsis thaliana), Nb (Nicotina benthamiana), Bd (Brachypodium distachyon), Hv (Hordeum vulgare), 
Os (Oryza sativa), Zm (Zea mays), Sm (Selaginella  moellendorffii), Pp (Phiscomitrella patens), and Mv (Mesostigma 
viride). The most conserved predicted residues are indicated in red and least conserved areas in blue.  

 

The predicted multiple sequence alignment of the amino acid sequences of DEK1-LOOP 

domain reveals conserved clusters of amino acids shared by Streptohyta organisms. The 

Mesostigma viride (Mv) DEK1-LOOP sequence is less then half the size of DEK1-LOOP 

sequence in Arabidopsis (115 aa and 273 respectively). However, it is notable that the 
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MvDEK1-LOOP sequence show preserved amino acid residues in areas where the sequences 

of more derived plants are well conserved. For instance the Proline, Arginine, Leucine, 

Valine, Serine and Glysin residues in the first conserved cluster at the beginning of the 

alignment (Figure 10). In addition, the MvLOOP sequence was predicted to contain a few 

phosphorilation sites and one myristoylation site common also for the Arabidopsis and 

maize sequences predicted by Prosite (Appendix 2, Figure 2 A2). For instance at residue 40 

KRSS on the At and Zm sequences and RRLS on the Mv- sequence were predicted as 

cAMP- and cGMP-dependent protein kinase phosphorylation sites, and on the conserved 

cluster at around residues 260 in the alignment, SSLD (on AtLOOP and ZmLOOP) and 

SPHE (on MvLOOP) were predicted as Casein kinase II phosphorylation sites (Figure 10).  

 

3.1.3 Similarity tree   

To reveal presumed evolutionary relationship between the homolog DEK1-LOOP 

sequences, a phylogenetic tree was constructed based on the multiple sequence alignment 

produced by CLC Work Bench, using the clustering algorithm Unweighted Pair Group 

Method using arithmetic averages (UPGMA) for distance data (Michener & Sokal, 1957; 

Sneath & Sokal, 1973). 

 

 

Figure 11 Phylogenetic relationship between DEK1-Loop homologs. The tree was constructed in CLC based on the 
MSA produced by CLC Work Bench (by the UPGMA algorithm) from amino acid sequences identified by BLASTp as 
AtDEK1-LOOP homologues. Abbreviations for the organisms used: Mv (Mesostigma viride), Rc (Ricinus communis), Vv 
(Vitis vinifera), At (Arabidopsis thaliana), Nb (Nicotina benthamiana), Os (Oryza sativa), Hv (Hordeum vulgare), Zm (Zea 
mays), Sm (Selaginella  moellendorffii), Bd (Brachypodium distachyon), and Pp (Phiscomitrella patens). 
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Several different programs and MSAs were used to generate similarity threes and all 

predicting similar branching, of these the one with highest bootstrap scores is shown here 

(Figure 11). The predicted tree is also comparable to the Lineage Report (see Appendix 2, 

Figure 1 A2) provided by the BLAST search, which show how closely the organisms in the 

BLAST hitlist are related to the query sequence (AtDEK1-LOOP), according to their 

classification in the taxonomy database. The predicted phylogenic tree based on DEK1-

LOOP sequences is also very similar to the phylogenetic tree of the whole DEK1 protein 

(Figure 3), suggesting that divergence has accrued between monocots and dicots from a 

common ancestor, and the Loop domain sequence is clearly affected by this divergence.  

 

3.1.4 Bioinformatics anlyses did not reveal clues about DEK1-LOOP 
potential function 

In search for homolog domains to the DEK1-LOOP, the amino acid sequences of At- Zm-, 

Pp- and Mv-Dek1-Loop were submitted to different structure, function and similarity 

prediction servers. Search for homolog sequences in the NCBI non-redundant database using 

the Zm-, Pp- and Mv-DEK1-LOOP as queries, did not result in significant matches, except 

one that was recognized as putative conserved domain argS, arginyl-tRNA synthetase (E-

value = 4.79e-03) on the AtDEK1-LOOP sequence. Closer examination of the alignment of 

this hit suggested that this is a false positive result. The Pfam server found no hits for neither 

of the sequences, and the Phyre engine recognized EF-hand motif in the AtDEK1-LOOP, 

which could have been quite interesting, if biologically relevant. However, the sequence 

alignment was very weak, and the estimated precision and the percentage of identical 

residues in the sequence alignment were too low. This EF-hand motif was not detected in the 

other sequences. The At-, Zm-, Pp- and Mv-Dek1-Loop amino acid sequences were also 

submitted in the 3DLigandSite; predicting ligand-binding sites using similar structures 

(Wass et al., 2010) where sufficient homologous structures with ligands bound could not be 

identified.  

Interesting results were generated from the Predict Protein server  

(http://www.predictprotein.org/). Prosite predicted a few putative N-glycosylation sites on 

the Arabidopsis and Zea mays DEK1-LOOP amino acid sequences. One cAMP- and cGMP-

dependent protein kinase phosphorylation site was predicted common for all three 
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sequences. Also a few Protein kinase C phosphorylation sites, a number of Casein kinase II 

phosphorylation sites and some N-myristoylation sites were predicted common on all At-, 

Zm-, and Mv-Dek1-Loops. An extra Amidation site was predicted only on the Mesostigma 

viride DEK1-LOOP sequence (Appendix 2, Figure 2 A2).  

In summary, the performed bioinformatics analyses on the DEK1-LOOP revealed that the 

sequence is not as conserved as the biologically active part of the DEK1 the Calpain domain. 

No significant results that could indicate anything about the DEK1-LOOP function were 

identified by searching in bioinformatics databases. 

 

 

3.2 Phenotypic screening and characterization of transformants 

Wild type plants transformed with the four different constructs; AtDEK1-MEM, AtDEK1-

MEM-DEL (with deleted loop domain), AtDEK1-MEM-MvLoop (with replaced loop 

domain from Mesostigma viride), and AtDEK1-MEM-ZmLoop (with replaced loop domain 

from Zea mays) were selected on M&S medium supplemented with kanamycin. The putative 

transformants were studied under dissecting microscope at the age of two weeks, and then 

verified by PCR with the appropriate primers (data not shown).  

 

3.2.1 Phenotypes of the AtDek1-MEM-over-expressing plants  

The observed phenotypes of AtDek1-MEM overexpressing transformants obtained in this 

study closely resembled the phenotypes described by Tian et al. (2007) in a identical 

research. In addition these phenotypes resembled very closely the range of phenotypes 

described in plants overexpressing the At DEK1-RNAi construct by Johnson et al. (2005) 

and Tian et al. (2007). Combined these studies suggest that overexpression of the DEK1 

membrane anchored domain induces a dominant negative effect comparable to the loss or 

down-regulation of DEK1 function. In the present experiment a total of 80 independent T1 

lines were obtained and studied. Phenotypic alterations were observed in 62 % of the 

obtained independent T1 lines, which is consistent with the percentage (! 50 %) observed by 
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Tian et al (2007) in the initial experiment. About 38 % of the transgenic plants showed 

phenotype nearly undistinguishable form wild type plants (wt).   

The most common observed phenotype was represented by 19 plants (24 % of transgenic 

lines), showing partially or completely damaged epidermal cell layer on the cotyledons 

(DEC, Figure 12 D and F). Of these plants 12 grew up normally with wild type appearance 

after being transferred to soil, 1 of them was sterile and 6 died.  

Another common and more severe phenotype represented by 14 plants (18 % of transgenic 

plants) was observed with wrinkled, damaged cotyledons, which were partially or 

completely fused on the adaxial faces (FC, Figure 12 J, K and L).  The same phenotype has 

been described by Johnson et al (2005) in 25% of the RNAi knockdown mutants, identified 

as class 1, and by Tian et al (2007) in AtDek1-MEM overexpressing plants and in AtDek1-

RNAi knockdown plants. Most of the seedlings classified as FC (fused cotyledons) died 

soon after being transferred to soil, however a few FC plants managed to produce several 

strange structured leaves from the apical meristem (Figure 12 L) before they died and one of 

them grew up normally and showed no further developmental defects.  

A third common phenotype was represented by 9 plants (11 % of transgenic plants) with 

fully missing or partly defective shoot apical meristem (DSAM, Figure 12 G, H and I), 

which were unable to produce any other leaves beyond the cotyledons. This phenotype was 

most frequently combined with the DEC phenotype (8 of the 9 seedlings). All off these 

seedlings died shortly after being transferred to soil (by the age of around two and a half 

weeks). 

A small number of transgenic seedlings (n = 4) could be distinguished by having only single 

first true leaf (SFTL, Figure 12 E), three of those also showed the DEC phenotype. Two of 

the SFTL classified seedlings grew up normally and the other two showed phenotypes on 

soil; they did not produce further organs beyond the rosette leaves, which were also 

abnormal (Appendix 2, Figure 4 A2, 19MEM2 and 20MEM1).  

Another small phenotype group (n = 4) produced only one, single cotyledon (SC, Figure 12 

M, N and O) and meristem-structure-like formation on the stalk (N), which in two of the 

four seedlings developed into abnormal true leaves (O). One of these seedlings managed to 

grow up normally with wild type appearance, but it was sterile. This phenotype was not 

described previously in the initial experiment performed by Tian et al. (2007). 
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Figure 12 Examples of the most common phenotypes observed in 2 weeks old AtDEK1-MEM overexpressing 
seedlings. A: wild type Arabidopsis seedling, B: normal shoot apical meristem, C: normal cotyledon, D: defective 
epidermal cell layer on the cotyledons (DEC) phenotype, E: single first true leave (SFTL) phenotype combined with DEC, 
F:  close up of defective cotyledon, G: defective shoot apical meristem (DSAM) phenotype combined with DEC, H & I: 
close up of the defective shoot apical maristem (DSAM), J, K and L: fused cotyledons (FC) phenotype, M, N and O: single 
cotyledon (SC) phenotypes. Pictures were taken under dissecting microscope Nikon SMZ 1500. Bar size is 1mm. 
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One transformation attempt was enough to generate a sufficient number of independent T1 

lines. After being transferred to soil 73 % of the seedlings showing wild type phenotype 

grow up normally and formed healthy siliques with seeds, and 27 % of them were sterile. 

About 28 % of seedling showing abnormal phenotypes grew up normally without further 

developmental defects observed, 8 % were sterile and 64 % died shortly after being 

transferred to soil. Very few plants (5 %) showed a phenotype after being transferred to soil 

(see Appendix 2, figure 4 A2) by the age of two weeks.  

 

3.2.2 Phenotypes of the At-MEM-DEK1-DEL-over-expressing plants  

Three transformation attempts with the At-MEM-DEK1-DEL construct were performed with 

very low transformation efficiency accomplished. A total of 33 independent T1 lines were 

obtained and studied. About 73 % (24 seedlings) of the kanamycin resistant seedlings 

showed phenotype very closely mimicking or undistinguishable from wild type phenotype 

(Figure 13). Structural alterations with a degree of variation were observed in 27 % of the 

obtained independent T1 lines, which is contradictory with data published by Tian et al. 

(2007), where wild type phenotype was observed in all kanamycin resistant seedlings.  

The phenotypes obtained in transgenic plants expressing the AtMEM-DEK1-DEL construct 

could be compared with the phenotypes observed in AtDEK1-MEM overexpressing 

seedlings. The most common phenotype shown in 6 seedlings (18 % of transgenic plants), 

was the one that could be described by the presence of only one or single first true leaf 

(SFTL, Figure 13 D and E), five of them were also combined with the DEC phenotype 

(Figure 13 F and I), where the epidermal layer on the cotyledons was damaged.  

Three seedlings (9 % of transformants) showed the DSAM phenotype (Figure 13 G and H) 

with fully missing or partly defective shoot apical meristem, two of them were combined 

with the DEC phenotype (defects on the epidermal layer of the cotyledons).  
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Figure 13 Examples of the most common phenotype observed in 2 weeks old AtDEK1-MEM-DEL 
overexpressing seedlings. A: wild type phenotype, B: normal shoot apical meristem (SAM), C: normal cotyledon, D and 
E: single first true leave (SFTL), F and I: defective ephidermal layer on the cotyledons (DEC), G: defective shoot apical 
meristem (DSAM), H: close up of defective shoot apical meristem. Pictures were taken under dissecting microscope Nikon 
SMZ 1500. Bar 1mm. 

 

After being transferred to soil 62% of the seedlings showing wild type phenotype grew up 

normally and formed healthy siliques with seeds, and 38% were sterile. About 22 % of 

seedling showing abnormal phenotypes grew up normally without any further developmental 

abnormalities, while 22% of those were sterile and 56 % died shortly after being transferred 

to soil. 

 

3.2.3 Phenotypes of AtDEK1-MEM-MvLOOP-over-expressing plants  

A total of 46 independent transgenic lines were obtained and studied from one 

transformation attempt with the AtDek1-MEM-MvLoop construct. 17 (37 %) of the 

transformants produced a phenotype undistinguishable from wild type and 63 % showed a 

variety of developmental defects similar to those observed in seedlings overexpressing the 
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AtDEK1-MEM construct. Of these 69 % (20 transgenic plants) showed the most common 

phenotype with defective epidermal layer on the cotyledons (DEC, Figure 14 C), all of those 

developed normal rosette leaves, 11 grew up normally with wild type appearance, 1 was 

sterile and 8 died. 5 seedlings (17 %) showed the single first true leave (SFTL, Figure 14 D) 

phenotype combined with DEC phenotype. Two seedlings expressed the fused cotyledon 

(FC, Figure 14 E) phenotype. Only one seedling lacked shoot apical meristem (DSAM) and 

only one showed the single cotyledon (SC, Figure 14 F) phenotype. 

 

 

Figure 14 Examples of the most common phenotypes observed in 2 weeks old AtDEK1-MEM-MvLoop 
overexpressing seedlings. A: wild typet phenotype, B and C: defective shoot apical meristem (DSAM) phenotype (the 
actual DSAM is not shown), C: defective ephidermal layer on the cotyledon (DEC) close up, D: single first true leave 
(SFTL) phenotype, E: fused cotyledons (FC) phenotype, and F: singel cotyledon (SC) phenotype. Pictures were taken under 
dissecting microscope Nikon SMZ 1500. Bar 1mm. 

 

After being transferred to soil 65 % of the wild type phenotype plants grew up normally and 

developed seeds, 29 % of them were sterile and one plant died. About 59 % of the seedlings 

expressing abnormal phenotypes grow up to be normal, one of them was sterile and the rest 

died soon after being transferred to soil.   

One distinction between the AtMEM-DEK1-MV-LOOP expressing plants and those 

expressing the AtDEK1-MEM construct with or without the At LOOP was that the 

MvLOOP expressing plants grew faster and taller then the other transgenic plants. At the 

same age the MvLOOP overexpressing plants were growing approximately 5 cm taller then 
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wild type control plants and AtDEK1-MEM transgenic plants (Appendix 2, figure 5 A2). 

This particular characteristic was not observed in any of the other transgenic plants obtained 

in this study, however it was not further investigated.  

 

3.2.4 Phenotypes of AtDEK1-MEM-ZmLOOP-over-expressing plants  

Seedling overexpressing the AtDEK1-MEM-ZmLOOP where the loop of Arabidopsis was 

replaced with the loop from maize showed 38 % phenotypic abnormalities, which were 

comparable with the range of phenotypes observed in plants overexpressing the other 

constructs (AtDEK1-MEM, AtDEK1-MEM-DEL, and AtDEK1-MEM-MvLoop). Two 

transformation attempts generated 37 T1 independent transformants, of these 23 (62 %) 

showed wild type phenotype.  

Only two seedlings showed the DEC (defective epidermal layer on the cotyledons) 

phenotype, which was the most common phenotype observed in AtDEK1-MEM 

overexpressing seedlings. Of the transgenic lines 6 (16 %) had a defective shoot apical 

meristem (DSAM, Figure 15 B and C). 3 seedlings produced only one first true leaf or spike-

like structure classified as SFTL (Figure 15 D and E) phenotype and 3 seedlings produced 

the phenotype with fused cotyledons on the abaxial sides (FC, Figure 15 G and H).  

One seedling showed a phenotype not observed previously, the seedling had three normally 

looking cotyledons and three normal first true leaves (Figure 15 I). This phenotype has been 

observed previously in wild type populations (Wenche Johansen, personal communication) 

and was therefore classified as wild type phenotype in this experiment. 
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Figure 15 Examples of the most common phenotypes observed in 2 weeks old AtDEK1-MEM-ZmLOOP 
overexpressing seedlings. A wild type phenotype, B: the defective epidermal layer on the cotyledons with defective 
shoot apical meristem (DEC+DSAM), C: single first true leave (SFTL), and D: fused cotyledons (FC). Pictures were taken 
under dissecting microscope Nikon SMZ 1500. Bar 1mm 

 

Of the wild type expressing seedlings 13 (57 %) grew up with normal physiology, 4 (17 %) 

of them where sterile and 5 died, 11 (79 %) of the seedlings showing abnormal phenotypes 

died shortly after being transferred to soil. Two of the DEC phenotype seedlings showed no 

further developmental defects after being transferred to soil, two of them grew up normal 

and one was sterile.  

 

3.3 Frequencies of the observed phenotypes    

The observed variations in phenotypes of all the independent transformation events could be 

grouped into six different classes or categories; 1) wild type phenotype (wt), 2) defective 

epidermal cells on the cotyledon (DEC) characterized by wrinkled cotyledons with defects in 

the epidermal cell layer most frequently on the adaxial side, 3) defective shoot apical 
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meristem (DSAM) phenotype where the apical meristem was missing or in some way was 

defective, very often observed in combination with the DEC phenotype, 4) single first true 

leaf (SFTL), where the leaf could vary from normal to variation of appearance, to spike-like 

form. This phenotype was also very often combined with the DEC phenotype, 5) partially or 

completely fused cotyledons (FC) that also had damages on the epidermal layer of the 

cotyledons but were also partially or completely fused together on the adaxial side of the 

leafs, and finally 6) single cotyledon only (SC).  

The frequencies of the six different classes of phenotypes were calculated to investigate if 

they appear in different ratios in the different lines of transformants (Table 3, Figure 16). 

 

Table 3 Calculated frequencies of the distinctive phenotype classes observed in the different 
transformations   
 
 wt DEC DSAM SFTL FC SC Total 

AtMEM 30 (38%) 19 (24%) 9 (11%) 4 (5%) 14 (18%) 4 (5) 80 

AtMEM-DEL 24 (73%) 0 3 (9%) 6 (18%) 0 0 33 

MvLoop 17 (37%) 20 (43%) 1 (2%) 5 (11%) 1 (4%) 1 (2%) 46 

ZmLoop 23 (62%) 2 (5%) 6 (16%) 3 (8%) 3 (8%) 0 37 

 

Table 3 above shows the phenotypic frequencies appearing in the different transformant 

populations, both the number of counted representatives and the corresponding percentage 

calculated are presented. The total number of obtained independent lines from each 

transformation with the different constructs is shown in the last column (Table 3).  

In order to provide better overview of table 3, the data of the calculated frequencies is 

presented graphically in Figure 16.  
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Figure 16 The frequencies of observed phenotypes in seedlings overexpressing the four different constructs. 
AtDEK1-MEM, AtDEK1-MEM-DEL, AtDEK1-MEM-MvLoop, and AtDEK1-MEM-ZmLoop. Wild type phenotype are 
represented in green, DEC in dark red, DSAM in red, SFTL in pink, FC light pink and SC in pale pink.  

 

The figures above represents an overview of the different phenotype frequencies observed in 

the transgenic populations obtained from transformation with the four different constructs; 

AtDEK1-MEM, AtDEK1-MEM-DEL, AtDEK1-MEM-MvLoop, and AtDEK1-MEM-

ZmLoop.  Seedlings overexpressing the AtDEK1-MEM show 38 % wild type phenotype, 24 

% DEC, 11 % DSAM, 5 % SFTL, 18 % FC and 5 % SC phenotypes. The AtDEK1-MEM-

DEL overexpressing seedlings showed 73 % wt phenotype, 9 % DSAM, and 18 % SFTL 

phenotypes. Differences in phenotypes between the AtDEK1-MEM and AtDEK1-MEM-

DEL overexpressing seedlings that may be worth noticing in addition to the main differences 

in wild type phenotype frequencies: The most common phenotype observed in AtDEK1-

MEM seedling was defects on the epidermis of the cotyledons (DEC) with no further 

meristem or leaf abnormalities. This phenotype was not observed in AtDEK1-MEM-DEL 

seedlings. The fused cotyledons (FC) and single cotyledon (SC) phenotypes were also absent 

in the AtDEK1-MEM-DEL overexpressing population (figure 16). However this observed 

deviation could be an artifact from the much lower number of independent lines obtained. 
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Seedlings overexpressing AtDEK1-MEM-MvLoop closely resemble the frequencies of 

phenotypes observed in AtDEK1-MEM overexpressing seedlings: 37% showed wt, 43 % 

DEC, 2 % DSAM, 11 % SFTL; 4 % FC and 1 plant showed the SC phenotype. The 

AtDEK1-MEM-ZmLoop overexpressing seedling resembled the phenotype frequencies 

shown by the AtDEK1-MEM-DEL: 62 % showed the wt phenotype, 5 % DEC, 16 % 

DSAM, 8 % SFTL and 8 % FC.  

Even though there is clear variation in phenotypes exerted in the different transformants, 

they most frequently share one common feature; the damaged epidermal layer on the 

cotyledons. 

From Figure 16 it becomes clear that there is a difference in phenotypic frequencies between 

the AtDEK1-MEM lines compared to AtDEK1-MEM-DEL and AtDEK1-MEM-ZmLoop 

lines. However compared to the AtDEK1-MEM-MvLoop lines the phenotype frequencies 

are quite similar. In order to investigate if this observed differences and similarities are 

significant, we used $2 statistical test of independence, which tests the hypothesis that 

proportions (frequencies in our case) are the same in different groups or transformed lines. 

The chi-squared test was performed based on the numbers represented in table 3. The 

categorical variables used in the test were; seedlings showing phenotype and seedlings not 

showing phenotype (undistinguishable from wild type). 

 

Table 4 Chi-squared test based on phenotype vs. no phenotype appearance in the different transformants  

 MEM/DEL MEM/Mv MEM/Zm DEL/Mv DEL/Zm Mv/Zm 
$2 15.3 0.98 9.14 7.65 0.88 3.57 
d.f. 1 1 1 1 1 1 
p-value 0.00009 0.321 0.00249 0.00568 0.348 0.059 
Min. 
expected 
value 

14.6 16.4 15.5 15.0 10.8 18.3 

 

The chi-squared test and the estimated p-values in table 4 confirm that there are significant 

differences in phenotypic expression between the AtDEK1-MEM and AtDEK1-MEM-DEL 

overexpressing seedlings, between the AtDEK1-MEM and AtDEK1-MEM-ZmLOOP 

seedlings and the AtDEK1-MEM-DEL and AtDEK1-MEM-MvLOOP overexpressing 

seedlings. The differences in observed phenotypes between AtDEK1-MEM and AtDEK1-

MEM-MvLOOP, AtDEK1-MEM-DEL and AtDEK1-MEM-Zm were found to be 
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statistically insignificant. The minimum expected value show how well the test fits to the 

data, if this number is lower then 5; the test is unsuitable (Table 4). 

 

3.4 Quantification of the transgene transcripts by qRT-PCR 

Quantitative reverse-transcriptase PCR (qRT-PCR) was performed to investigate if the 

transgene expression levels correlated with the variation in phenotypes observed, or if the 

transgene is silenced in mature transgenic plants showing no abnormalities. Three 

representatives of each phenotype class of the AtDek1-MEM, AtDek1-MEM-DEL, AtDek1-

MEM-MvLoop and AtDek1-MEM-ZmLoop lines were selected for qPCR analysis. Samples 

were collected from cotyledons two weeks after germination and from rosette leaves of five-

week-old plants. Corresponding tissues from wild type plants grown side-by-side with the 

transgenic lines were also analyzed in order to compare the relative expression ratio with that 

of the transgenic lines.  

Total RNA was isolated from sample tissue, reverse-transcribed into cDNA in two technical 

replicates, and then quantified by qPCR with the appropriate primers (see Appendix 1, Table 

5 A1) specific towards the Loop region (the gene of interest), the reference gene used in the 

assay (protein phosphatase 2A gene), which is constitutively expressed (Czechowski et al., 

2005), and the DEK1 calpain.  Amplicon size and composition was verified by agarose gel 

electrophoresis and by sequencing (data not shown).  

Real-time-PCR data was analyzed with the LinRegPCR program, where the PCR efficiency 

is calculated for each individual sample. The mean PCR efficiency per amplicon and the Ct 

value per sample are used to calculate a starting concentration per sample (N0), expressed in 

arbitrary fluorescence units. The results from the qRT-PCR analysis are presented by three 

different calculations; 1) as relative expression ratio of N0 between target gene and the 

calpain gene (Loop/Calp)), a measure of transgene expression relative to native DEK1 

expression, 2) relative expression ratio of target gene and reference gene (Loop/PP2A), also 

a measure of transgene expression level but “normalized” to the reference gene (PP2A), and 

3) relative expression ratio of native DEK1 “normalized” to the reference gene (Calp/PP2A), 

a measure included to investigate if the native DEK1 expression was affected by the 

expression of the transgene. 
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The primers used to detect transgenic transcript in the AtDEK1-MEM lines will also detect 

endogenous DEK1 transcripts. Therefore, in wild type plants, one expects a Loop/Calp ratio 

of 1, which, as shown in Figure 17 (first two samples), was also experimentally confirmed.  

The relative expression levels of the endogenous AtMEM-Loop (Loop/Calp and 

Loop/PP2A) and the Caplain (Calp/PP2A) in two- and five-week-old wild type plants were 

comparable (the first two samples in Figure 17). The Loop/Calp ratio in all analyzed 

transgenic lines are higher then 1 (the wild type ratio), confirming that the LOOP transcripts 

are overexpressed in these lines, and that non of the transgenic lines are subjected to 

transgene silencing (Figure 17). Thorough examination of the Loop/Calp expression ratios in 

the transgenic lines suggests that there are no correlation between the level of transgene 

expression and the severity of the phenotype observed. These results are confirmed by the 

Loop/PP2A ratios, using the expression level of constitutively expressed PP2A as reference 

transcript. In addition, it seems that there are no consistency in transgene expression level 

between individuals within a specific phenotypic class. For example, in transgenic lines 

classified as wild-type phenotype (lines 1, 10 and 33), the transgene expression levels vary 

strongly, between 3 (in line 33) to 42 (in line 10). In transgenic lines expressing the most 

common phenotype, the DEC phenotype, (line 14, 75 and 77) the relative expression level of 

the transgene also varies from approximately 2 (in lines 14 and 75) to 54 (in line 77). 

Relative expression ratios of the transgene (Loop/Calp and Loop/PP2A) in plants with wild 

type phenotype do not appear lower or different then the ratios observed in seedling showing 

severe abnormalities.  
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Figure 17 Quantitative analysis of the AtDek1-MEM construct in transgenic Arabidopsis lines. The relative 
expression ratio (based on starting concentration in the samples) of the Loop/Calpain, Loop/PP2A and Calp/PP2A are 
represented for each transgenic line. Each number represents independent transgenic line, the (5w) stands for sample taken 
from five weeks old plants from the same line, and the abbreviations are for the phenotypes: wt (wild type) phenotype, DEC 
(defective epidermal cell layer), DSAM (defective shoot apical meristem), SFTL (single first true leaf), FC (fused 
cotyledons) and SC (single cotyledon). The standard deviation for three technical replicates is shown.  

 

In order to investigate if overexpression of the AtDEK1-MEM-LOOP sequence influences 

the expression of endogenous DEK1, the ratio of Calp/PP2A was analyzed and calculated 

(third column for each sample in Figure 17). In most of the transgenic lines analyzed, the 

result suggest that the endogenous expression of DEK1 is not affected by the transgene 

insert, except for a few transgenic lines where the relative expression ratio of the calpain is 

lower then observed in wild type (the first two samples in Figure 17) in lines 33 (“wt”), 30 

(DSAM), 27 (SFTL) and 2 (FC). Based on these inconsistent results it is not possible to 

conclude whether the endogenous DEK1 transcript is influenced by the overexpression of 

AtDEK1-MEM.  

The q-PCR analysis also shows that the relative expression levels of the analyzed transcripts 

(all three calculations) in two-week-old seedlings (tissue from cotyledon) remain relatively 

unchanged or comparable to expression levels in mature plants (five-week-old, tissue from 

rosette leaves). Low relative expression ratio in two-week-old seedling observed in line 1 

seems to be unchanged in the mature plant, and the high expression ratio in line 10 (two-

weeks) is also high in the five-weeks-old plant.  
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Taken together, these results suggest that there are no correlation between the expression 

level of the transgene and the phenotypes observed in AtDEK1-MEM overexpressing plants, 

and it is uncertain if the endogenous DEK1 transcript is affected by the transformation.   

The primers designed to detect transgene transcripts in the AtDEK1-MEM-DEL, AtDEK1-

MEM-MvLoop, AtDEK1-MEM-ZmLoop lines do not amplify endogenous DEK1 

transcripts, this was confirmed experimentally in a negative control for the primers, using 

cDNA generated from wild type plants. Q-PCR results obtained from transgenic plants 

transformed AtDEK1-MEM-DEL, AtDEK1-MEM-MvLoop, AtDEK1-MEM-ZmLoop 

constructs do not differ from the results obtained and described for the AtDEK1-MEM 

expression.  

 

 

Figure 18 Quantitative analysis of the AtDek1-MEM-DEL construct in transgenic Arabidopsis lines. The 
relative expression ratio (based on starting concentration in the samples) of the Loop/Calpain, Loop/PP2A and Calp/PP2A 
are represented for each transgenic line. Each number represents independent transgenic line, the (5w) stands for sample 
taken from five weeks old plants from the same line, and the abbreviations are for the phenotypes: wt (wild type) 
phenotype, DSAM (defective shoot apical meristem), SFTL (single first true leaf), The standard deviation for three 
technical replicates is shown.  

 

Q-PCR analyses of transgenic lines harboring the AtDEK1-MEM-DEL construct 

(represented in Figure 18) are similar to the results observed in AtDEK1-MEM transgenic 
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lines (Figure 17). There is no consistency in expression levels of the transgene (Loop/Calp 

and Loop/PP2A) in plants showing the same class of phenotype. For instance, transgenic 

lines 2, 12, 9 and 15 in Figure 18 represent plants with wild type appearing phenotype, 

where the observed relative expression ratio is quiet variable. The expression levels in 5-

weeks-old lines 2 and 9, which represent fertile plants, and lines 11 and 15 represent sterile 

plants can not be correlated.  

There is inconsistency in calpain expression (third columns for each sample, Calp/PP2A)  

observed here as well (as in AtDEK1-MEM lines); in lines 2 and 15 the calpain expression is 

much lower then expected (compared to wild type expression, Figure 17) and in the other 

lines no significant difference from wild type in calpain expression is observed. 

Previously, in the qPCR analyses of the AtDEK1-MEM transgenic lines (Figure 17) we 

observed that expression in two-weeks-old seedlings was comparable to the expression 

levels in the mature plant (at the five weeks of age). In AtDEK1-MEM-DEL line 9 the 

transgene is expressed at around 7 in two-weeks-old seedling, but in the 5-weeks-old plant 

the transcript does not appear to be overexpressed (Figure 18), which could be a sign of 

transgene silencing in this mature plant. However such observation in only one sample is not 

convincing.  Lines 14 and 11 show abnormal phenotypes DSAM and SFTL respectively, the 

transgenic transcript is not very highly overexpressed in these seedlings, as one would expect 

in a dominant negative phenotype. Line 14 was dead before the age of 5 weeks and line 11 

showed sterility with no significant change in expression levels form the 2 weeks old 

seedling. These results suggest that there is no correlation between the expression levels of 

the transgene and the phenotypes observed in AtDEK1-MEM-DEL overexpressing plants.  

Similar to the previous observations, the relative expression ratio of AtDEK1-MEM-

MvLoop also could not be correlated to phenotypic variation in seedlings or to sterility in 

mature plants (Figure 19). An inconsistency in calpain expression levels are also observed 

here and is unclear whether the AtDEK1-MEM-MvLoop overexpression has an effect on the 

endogenous expression of DEK1 (Calp/PP2A columns in Figure 19).  
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Figure 19 Quantitative analysis of the AtDek1-MEM-MvLoop construct in transgenic Arabidopsis lines. The 
relative expression ratio (based on starting concentration in the samples) of the Loop/Calpain, Loop/PP2A and Calp/PP2A 
are represented for each transgenic line. Each number represents independent transgenic line, the (5w) stands for sample 
taken from five weeks old plants from the same line, and the abbreviations are for the phenotypes: “wt” (wild type 
phenotype), DEC (defective epidermal cell layer), DSAM (defective shoot apical meristem), SFTL (single first true leaf), 
and FC (fused cotyledons). The standard deviation for three technical replicates is shown.  

 

Lines 1, 4 and 5 in represent transgenic plants with wild type appearance. All three plans had 

wild type appearance as grown plans and line 1 was sterile. The expression ratios 

(Loop/Calp and Loop/PP2A) in these wild type appearing transgene plans vary strongly 

between these lines, lines 3, 8 and 16 represent the DEC phenotype, here is also variation in 

expression in-between the lines, suggesting that expression ratio can not be correlated to 

phenotype. In addition, the expression levels in plans showing severe phenotypes (23, 2 and 

14) can not be described as different from the expression levels in wild type appearing lines 

(1, 4 and 5). These results suggest that there is no correlation in expression levels of the 

transgene and the phenotype observed in AtDEK1-MEM-MvLoop overexpressing plants.  

The relative expression ratio of the AtDEK1-MEM-ZmLoop construct also could not be 

correlated to the phenotypes observed (Figure 20).  
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Figure 20 Quantitative analysis of the AtDek1-MEM-ZmLoop construct in transgenic Arabidopsis lines. The 
relative expression ratio (based on starting concentration in the samples) of the Loop/Calpain, Loop/PP2A and Calp/PP2A 
are represented for each transgenic line. Each number represents independent transgenic line, the (5w) stands for sample 
taken from five weeks old plants from the same line, and the abbreviations are for the phenotypes: wt (wild type) 
phenotype, DSAM (defective shoot apical meristem), SFTL (single first true leaf). The standard deviation for three 
technical replicates is shown.  

 

The relative expression ratio of Loop/Calp (first column for each sample in Figure 20), 

shows that the inserted transgene is overexpressed in transgenic lines both in two-weeks-old 

seedlings and in five-weeks-old plants at comparable levels. These results are showing that 

the transgene is not subject to silencing in plants showing wild type phenotype as young 

seedlings or as mature plants. This is confirmed by the Loop/PP2A ratio (second column), 

however there is no obvious correlation in expression ratio to phenotypes observed or no 

similarities in expression levels in plans that show the same phenotype class. As observed in 

the previous qPCR analysis of the other transformants, the relative expression ratio of the 

endogenous DEK1 (Calp/PP2A) is also inconsistent in the different lines. Taken together, 

these results suggest that there is no correlation between the expression level of the transgene 

and the phenotypes observed in AtDEK1-MEM-ZmLoop overexpressing plants (Figure 20).  
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4. Discussion 

 

Arabidopsis thaliana has been recommended as a model plant for functional studies of 

DEK1 due to the similarities in dek1 mutant phenotypes with maize, including lack of the 

endosperm aleurone layer and arrest at early embryo development. The DEK1 protein is 

remarkably conserved throughout the plant kingdom, and it is, therefore, tempting to 

speculate that it may interact with the same protein, or family of proteins in different species. 

It is proposed that DEK1 functions to convey positional information to individual cells by 

sensing their developmental context in a tissue, probably mediated by DEK1’s proposed 

extra cellular domain (Becraft et al., 2002; Lid et al., 2002 & 2005; Johnson et al., 2005; 

Tian et al., 2007). This extracellular domain, also called Loop, is the least conserved part of 

the DEK1 protein in comparison with the membrane domains and the intracellular calpain 

and arm domains. It has been postulated that DEK1-LOOP function to conveying positional 

information from the extracellular environment to the biologically active DEK1-Calpain 

domain. This hypothesis is supported by the dominant negative phenotype shown by 

Arabidopsis thaliana seedlings overexpressing only the membrane part (AtDEK1-MEM) of 

DEK1 (Tian et al., 2007). In this study we try to investigate whether the DEK1-LOOP 

interacts as proposed with the same positional cues, substance/s, protein/s, or ligands in 

species separated by millions of years of evolution. In addition, we try to examine whether 

the expression levels of transgene AtDEK1-MEM transcript can be correlated to the 

pleiotropic nature of the dominant negative phenotype.   

 

4.1 Relative expression levels of AtDEK1-MEM transcript could 
not be correlated to pleiotropic phenotypes 

The dominant negative phenotype observed in AtDEK1-MEM overexpressing transformants 

led to the hypothesis that the Loop domain of DEK1 may interact with either a ligand or 

other membrane proteins, and function in the initial activation of DEK1 (Tian et al., 2007). 

In this model, the overexpressed truncated protein competes with the native DEK1 for DEK1 

activators and/or interactors, and since it lacks the cytoplasmic calpain domain (which is the 

biologically active domain), it cannot trigger the downstream signaling pathways, leading to 
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a dominant negative phenotype. This hypothesis was supported by three lines of evidence: 1) 

the observation that the overexpression of AtDEK1-MEM under the weaker AtDEK1 

promoter failed to give a detectable phenotype (Tian et al., 2007), 2) similar phenotypes 

were observed in AtDEK1-RNAi transformants where DEK1 is down-regulated (Johnson et 

al., 2005; Tian et al., 2007), and 3) the observations that plants overexpressing AtDEK1-

MEM-DEL, which lack the loop region, show a phenotype indistinguishable from wild type 

plants. These evidences strengthened the speculation that the extracellular loop domain is 

essential for either the perception and/or the transmission of important signals and that the 

observed dominant negative phenotype is not a pleiotropic effect caused by ectopic 

expression of a large membrane protein (Tian et al., 2007). Based on these evidences and 

hypothesis, we decided to use the AtDEK1-MEM experimental system to investigate cross-

species functionality analysis of the extracellular loop. Our hypothesis was that if the 

replaced loop domain from one species is able to functionally replace Arabidopsis DEK1-

LOOP, the transformation should result in plants with the same dominant negative 

phenotype as observed in AtDEK1-MEM over-expressing plants.  

In this study a total of 80 independent transgenic AtDEK1-MEM lines were generated and 

studied. Of these 30 showed phenotypes undistinguishable from wild type and the rest 

demonstrated certain degrees of variation in phenotypic abnormalities like defects in the 

shoot apical meristem, radialized rosette leaves, and most frequently defects on the 

epidermal cell layer of the cotyledons. Our results are consistent with results from the initial 

experiment performed by Tian et al (2007), but they also raise few important questions 

which have not been addressed earlier; 1) why as many as 38 % of the transformants 

expressing AtDEK1-MEM do not show a phenotype and are indistinguishable from wild type 

plants, 2) what is the reason for the phenotypic variation in abnormalities among the 

independent transgenic lines, and 3) why as many as 36 % of plants with abnormal 

phenotype managed to recover, attaining a wild-type appearance later in development, after 

being transferred from selective medium to soil. 

To be able to give possible and reasonable answers to these questions, one should take under 

consideration all possible factors that may influence the expression of the transgene. For 

instance, the promoter and the selective marker used in the experiment. Since both the nptII-

gene (the selective maker gene providing kanamycin resistance) and the AtDEK1-MEM-

construct are each controlled by the 35S promoter one possible explanation for the variation 

in phenotypes could be that the 35S promoter controlling AtDEK1-MEM expression was 
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somehow silenced in transgenic lines showing the wild type phenotype and in plants 

recovering to a apparent normal phenotype at a later developmental stage. That transgene 

expression is subjected to silencing, which may also first become manifested later in plant 

development, is a well-known and common phenomenon, and has also been suggested to 

explain the apparent reversion to normal wild type phenotype in AtDEK1-RNAi lines 

(Johnson et al., 2005). We attempted to investigate whether the AtDEK1-MEM expression 

was silenced in two weeks old seedlings showing the wild type phenotype and in more 

mature plants (at the age of 5 weeks), by measuring the steady-state level of the transgene 

transcript by qRT-PCR analysis. We were also interested to examine if expression levels of 

the transgene construct could be involved in the sterility observed in about 37 % of the 

transgenic lines. The qPCR analyses did show that the construct was overexpressed in both 

two weeks old seedlings and in five weeks old plants. The construct was highly expressed in 

some five weeks old plants with no significant differences in expression between fertile and 

sterile plants. Unfortunately the expression measurements at those developmental stages did 

not reveal any specific pattern of expression that could be correlated with the observed 

variation in phenotypes. However, the qRT-PCR analyses showed that the expression of the 

transgene is definitely not silenced in plans that do not exert developmental abnormalities  

(wild type phenotype). These observations may suggest a hypothesis that developmental 

stage specific timing of transgene expression might be important for the dominant negative 

effect of the AtDEK1-MEM-construct. According to this model, expression of the AtDEK1-

MEM during later developmental stages alone would not have any effects on phenotype.  

Because it is postulated that the observed phenotypes are result of negative dominant effect 

one could expect low expression levels of the transgene in plants not showing phenotype (or 

wild type phenotype) and elevated expression levels in the seedlings exerting more severe 

phenotypes. Johnson et al (2005) performed semi-quantitative PCR of plants overexpressing 

the AtDEK1-RNAi construct and reported the AtDEK1 expression was visibly reduced in 

seedlings showing the most severe phenotypes compared to wild type, while in 

transformants showing weaker or wild type phenotypes, no significant decrease in AtDEK1 

expression was observed (Johnson et al., 2005). Q-PCR analysis of DEK1 expression in 

homozygous dek1-3 lines complemented with pRPS5A:AtDEK1-GFP, which showed a 

range of phenotypes from similar to AtDEK1-RNAi knockdown plants to wild-type in 

appearance, showed that levels of DEK1-GFP transcript and fusion protein expression were 

variable and correlated with the phenotypes observed (Johnson et al., 2008). As already 
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mentioned, the qPCR analysis of the steady-state level of transgene transcripts obtained in 

this study did not appear to correlate to the phenotypic pleiotropy observed in AtDEK1-

MEM transformants or to fertility verse sterility in grown plants.  

It is important to be aware that the qPCR analyses only provide information of how well our 

transgene is expressed in form of mRNA and not how effectively this transcript is translated 

into protein or how this protein is further treated in the cells. We do not know if some kind 

of repair or repression system are involved and somehow regulates or demolishes the 

expressed truncated protein. The qPCR analyses showing that transformants with wild type 

appearances expressed the transgene at very high levels, suggest that AtDEK1-MEM could 

be regulated post-transcriptionally or that could be a subject to post-transcriptional transgene 

silencing (PTGS) specifically at the translation level. It is well known that transgenes 

expressed at high levels are subject to PTGS (De Wilde et al., 2000, and references therein). 

In order to further investigate this case Western blotting to detect transgene protein product 

must be performed.  

There may be few important factors that can also explain why the qPCR analysis did not 

appear to correlate to the observed phenotypes as expected. In order to investigate if there 

exists a relationship between the level of transgene expression and phenotype observed it is 

important that the tissue collected from the samples are harvested from plants at similar 

developmental stage and that the collected tissue were comparable. This was a challenge due 

to the severe developmental defects in some of the analyzed plants. With the intention of 

allowing seedlings growth and to collect sample from identical tissue, a cotyledon was the 

only option at this stage. Some of the tissue sampled was not suitable for Q-PCR analysis 

because of poor or bad RNA isolation, most probably because of the small size/weight of the 

sample and unhealthy looking tissue (prerequisite for good RNA isolation results). The 

tissue samples gathered from plants showing the fused cotyledon phenotype most probably 

also contained meristem cells, making this samples inequitable to compare with samples 

gathered from only one cotyledon. And even though the quest was to gather samples from 

plants at the same developmental stage, we cannot firmly guaranty that seedlings at the same 

age  (two weeks) were at the same developmental stage; some seedlings were developing 

more slowly then others in comparison to wild type control, and others had arrested 

development i.e. because of lack of a shoot apical meristem. The time points at which the 

samples were taken should also be considered, and the small window they represents. We 

can not assume that detection of transgene transcripts at these two time points (two and five 
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weeks) provides information about expression during early stages of development that may 

be more important for the onset of the dominant negative effect.  

Another very important factor in qPCR analysis is the reference gene of choice, which is 

used in the calculations of the relative expression ratios. The expression of the reference 

gene should not be altered or effected in any way by the target gene or growth conditions 

used (Thellin et al., 1999; Schmittgen et al., 2000; Tong et al., 2009). In this study we used 

protein phospatase 2A as reference gene (Czechowski et al., 2005), which is not supposed to 

be affected by the overexpression of the target gene, but this is not certain. PP2A is a 

serine/threonine-specific Ca2+-independent protein phosphatase, which is expressed 

ubiquitously in eukaryotic cells, and is an important component in the regulation of signal 

transduction, in the reversible protein phosphorilation events in plants and in the control of 

cell metabolism (Rundle et al., 1995; Terolet al., 2002). The PP2A gene have shown superior 

expression stability in addition to low absolute expression levels, which makes this gene a 

good candidate for quantification of transcript levels in Arabidopsis (Czechowski et al., 

2005)), especially when analyzing low-abundant transcripts, such as DEK1. Recently, partial 

degradation of PP2A by m-calpain was reported in apoptotic cells (Janssens et al., 2009) In 

addition, it was suggested that PP2A is involved in calpain-mediated FoxO regulation and 

that PP2A regulatory subunits B56 alpha and gamma are in vitro substrates of calpain. The 

calpain regulates B56 alpha stability in vivo, suggesting a direct role of calpain in the 

regulation of PP2A function in animal cells (Bertoli et al., 2009). This is not necessary the 

situation in plant systems, but it should be considered, especially because we do not know if 

the endogenous DEK1 protein and therefore the calpain are affected by the incretion and 

expression of the transgene in analyzed plants. Probably the use of PP2A gene as reference 

gene to analyze the DEK1 transcript levels should be reconsidered. Even though our 

analyses are performed at the transcript level and calpain regulation of PP2A reported in this 

literature occurs at protein level.  

The fact that as many as 36 % of the transgenic plants with developmental defects recovered 

to wild-type appearance after being transferred to soil, and that the phenotypes were 

observed mainly in seedlings growing on selective medium, inflate a suspicion of a probable 

toxic effect of kanamycin on the seedlings, or silencing of the ntpII-gene promoter in 

seedlings showing phenotypes or morphological abnormalities. The transformants are not 

under kanamycin selection before the germination stage, and even here, there is some 

window when it comes to the timing of ntpII expression and the ability of the seedlings to 
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survive on kanamycin. If this expression was silenced or not “turned on” on time (before the 

root reaches the selective medium) a toxic effect could result in a phenotype. In a collection 

of 111 transgenic Arabidopsis thaliana lines, silencing of the nptII gene was observed in 56 

% of the lines and three distinct nptII-silencing phenotypes were identified (Meza et al., 

2001). However, the phenotypes described in the nptII-silenced lines were not comparable 

with the phenotypes observed in our study. A parallel qPCR analysis of ntpII gene 

expression levels should be performed to rule out this possibility. 

The DEK1 gene has been suggested to be important for multiple developmental processes 

(Becraft et al., 2002; Johnson et al., 2008), and the observed phenotypic pleiotrophy may 

simply be a consequence of disturbance of these processes. Depending on which process was 

first affected by the lack of DEK1 activity, this could lead to several different malfunctions 

manifested by a variation in abnormalities observed. Again, this could be explained if 

developmental stage specific timing of transgene expression is important for the onset of the 

dominant negative effect shown in the AtDEK1-MEM transformants.  

 

4.2 Expression of AtDEK1-MEM where the Loop domain is 
deleted only alleviates the dominant negative effect 

The AtDEK1-MEM-DEL construct, which is identical to the AtDEK1-MEM-construct except 

that it lacks the Loop domain, was designed and transformed into Arabidopsis by Tian et al. 

(2007) to investigate the possibility that the phenotypes observed in plants overexpressing 

AtDEK1-MEM do not represent a pleiotropic effect caused by ectopic expression of a large 

membrane protein. All of the 51 AtDEK1-MEM-DEL T1 lines obtained by Tian et al. (2007) 

were indistinguishable from wild-type control plants, suggesting that the AtDEK1-Loop 

domain is essential for either the perception and/or the transmission of positional signals. 

In our study, the insertion of the AtDEK1-MEM-DEL-construct in wild type background was 

used as a control to generate a baseline for comparing the dominant negative phenotype of 

plants overexpressing AtDEK1-MEM construct to those harboring the cross-species replaced 

loop construct. We obtained a total of 33 independent transgenic lines of which 27 % 

showed phenotypes similar to those observed in plants overexpressing AtDEK1-MEM and 

to those overexpressing the AtDEK1-RNAi construct (Johnson et al., 2005; Tian et al., 
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2007). The variation in abnormalities was most frequently associated with damaged 

epidermal cells on the cotyledons combined with either missing or defective shoot apical 

meristem or the production of only one single first true leaf. Our results are inconsistent with 

the results obtained in the initial study performed by Tian et al. (2007), and depict that the 

deletion of the loop was not enough to eliminate the dominant negative effect, but it was 

enough to alleviate it, considering the lower phenotipic frequency emerged in the 

transformed lines.  

These unexpected results bring back the question of whether the phenotypes of AtDEK1-

MEM overexpressing seedlings are the result of ectopic expression of a large membrane 

protein. The phenotypes of AtDEK1-MEM-DEL are similar and comparable to AtDEK1-

MEM overexpressing seedlings, except that they are observed in significantly lower 

frequency. In addition, the phenotypes observed resemble the down regulation of DEK1s 

function (Johnson et al., 2005) and not phenotypes of seedling overexpressing the DEK1 

protein (Lid et al 2005). Considering the much lower frequency of phenotypes observed in 

AtDEK1-MEM-DEL transgenic lines and their nature, it is quite unlikely that they are result 

of pleiotropic effect of a large membrane protein. However, these conflicting results are 

difficult to interpret based on the present data.  

One reasonable explanation for the unexpected observed phenotypes in the AtDEK1-MEM-

DEL lines could be the presence of an important binding domain on the membrane part of 

the protein, which is only partially affected by the removal of the Loop, perhaps managing to 

bind reversibly or moderately to the proposed ligand, substrate, protein or positional cues. If 

this could explain the situation we would expect to see a higher expression levels of the 

transgene in seedling showing a phenotype. However the results of qPCR analysis do not 

support this hypothesis. As discussed earlier, we have to keep in mind the reliability of the 

qPCR analysis given the difficulties of obtaining tissue at the same developmental stage and 

the possibility that the transgene could be post-transcriptionaly regulated. One way to assess 

this question is to transform Arabidopsis with AtDEK1-MEM construct containing larger 

deletion region, or a series of deletions. 

We did try to further investigate the dominant negative effect by co-transforming the 

pSEL1:35S-AMG (Tian et al., 2007) and the pRPS5A:CALPAIN-GFP (which was able to 

complement dek1 mutants, Johnson et al., 2008) constructs in Arabidopsis. If the observed 

phenotypes in AtDEK1-MEM transgenic plants are the result of dominant negative effect, 
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the insertion of an active calpain protein should in theory alleviate this effect. Seeds from co-

transformed plants were germinated on M&S medium supplemented with both kanamycin 

and hygromycin, for selection of both constructs. However, no resistant progeny was 

identified. Putative transgenic seeds were then sowed on M&S medium with only kanamycin 

to escape probable toxic effect of hygromycin, still no resistant progeny was detected. In 

both experiments, some seedlings that were distinguishable from others, by their greener 

appearance, where detected even after three weeks of growth, suggesting antibiotics 

resistance, but their development was clearly arrested and they did not produce any other 

organs beyond the cotyledons (Figure 5 A2 in Appendix 2). Since this phenomenon was not 

observed in the control plates (wild type plants), there was a suspicion that expression of 

both constructs could possible result in a lethal phenotype. To investigate this possibility, 

seeds were sown on unselective medium, where all seed germinated and grow up normally 

showing that no lethal phenotype was detected. This result led to the conclusion that the co-

transformation was most probably unsuccessful. This experiment should be carried out and 

completed in the further work. In fact, confirming or invalidating the dominant negative 

phenotype observed in AtDEK1-MEM overexpressing seedlings by any approach should be 

priority number one in further work.  

Some small and maybe important differences in growth conditions between the initial 

experiment performed by Tian et al (2007) and in this study should be mentioned. It is well 

known that environmental conditions influence Arabidopsis phenotypes, and could explain 

the discrepancy obtained in our study and that of Tian et al. (2007). In the initial experiment, 

the Arabidopsis plants were grown in growth chambers where all conditions are constant and 

easily controlled. In our study the plants were grown in a plant room, where some 

temperature and humidity fluctuation has been observed, however this temperature 

fluctuation was never more then ± 2°C, which should not be of that large influence on 

germinating seeds or seedlings growing in closed petri-dishes. Maybe more important is the 

difference in light and dark periods used in the experiments; Tian et al (2007) were growing 

plants for 8 h of dark and 16 h of light, while in our study 18 h of light and 6 h dark period 

was used as growth conditions. If this factor infuenced phenotype frequencies in the 

AtDEK1-MEM-DEL lines, it should be considered to also influence the other transgenic 

lines as well.  
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Another important observation regarding the AtDEK1-MEM-DEL experiment is the 

relatively low number of transformants achieved (33 independent lines), despite the three 

transformation attempts made. The low number of generated transformants could simply be 

a result of low transformation efficiency, but could also be a consequence of a lethal 

phenotype. If this is the case, it is more probable that the observed phenotypes in plans 

overexpressing both the AtDEK1-MEM and AtDEK1-MEM-DEL constructs are a result of a 

pleiotropic effect of large membrane protein. Higher number of AtDEK1-MEM-DEL 

transformants should be generated and investigated, and the T1 generation should be 

thoroughly inspected for defective T1 seeds in order to assess this question.  

 

4.3 Plants overexpressing the DEK1-LOOP domain from the 
single celled algae Mesostigma veride exert similar phenotype 
frequencies as AtDEK1-MEM plants 

To examine species-specific interaction features of the DEK1-LOOP domain, a construct 

was designed where the Loop domain of AtDEK1 in the AtDEK1-MEM-construct was 

swapped with the Loop domain from the single-celled alga Mesostigma viride, and 

transformed into wild type Arabidopsis background. Arabidopsis and Mesostigma are 

separated by approximately 725-1200 million years of evolution according to different 

estimates by molecular clock methods (Hedges et al., 2004; Yoon et al., 2004; Zimmer et al., 

2007). A pairwise alignment of Arabidopsis and Mesostigma DEK1-LOOP sequences 

revealed 16 % identity, which is relatively low. However, multiple sequence alignment of 

DEK1-LOOP homologs revealed that the Mesostigma sequence was conserved in regions 

where the sequences of more derived plants are well conserved (Figure 10). Further 

bioinformatics analyses revealed several putative conserved phosphorylation sites and one 

myristoylation site shared by both sequences, which could be important for DEK1-LOOP 

function. One of the putative phosphorylation sites was for Casein kinase II. Phosphorylation 

by the protein kinase CK2 promotes calpain-mediated degradation of I-kappa B-alpha in B 

cells (Shen et al., 2001). Myristoylation plays a vital role in membrane targeting and in 

signal transduction in plant, in responses to environmental stress (Podell & Gribskov, 2004). 

These predicted sites may be important and could be interesting for further investigation.  
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The cross-species domain swap experiments were build on the prospect that the phenotypes 

observed in AtDEK1-MEM transformants are the result of dominant negative phenotype, in 

witch the Loop plays an essential role (Tian et al., 2007). Our results obtained from the 

AtDEK1-MEM-DEL transformation (discussed earlier), suggest that the DEK1-LOOP alone 

may not be the only important component for the dominant negative phenotype, as 

previously proposed. Based on the unexpected phenotype that was observed in the control 

transformants with AtDEK1-MEM-DEL and the consequent complications they infer, it is 

difficult to make any conclusions to the results achieved from the swapped domain 

experiments.  

A total of 46 independent transgenic lines were obtained and studied from transformation 

with the AtDEK1-MEM-MvLoop construct. Of these, 63 % showed variation of seedling 

phenotypes similar or undistinguishable from the dominant negative phenotypes observed in 

seedling overexpressing the AtDEK1-MEM construct. The phenotypic frequencies observed 

in seedling overexpressing the AtDEK1-MEM construct with Mesostigma viride swapped 

Loop domain are similar to the frequencies observed in AtDEK1-MEM transgenic lines and 

significantly different from those in AtDEK1-MEM-DEL overexpressing plants, where the 

AtDEK1-LOOP is deleted. These results may suggest that despite the low sequence identity 

(16 %) and the millions of years of evolution that separate these two species, the DEK1-

LOOP from Mesostigma viride is able to functionally replace the Arabidopsis DEK1-LOOP 

sequence. This proposal further implies that there could be well-conserved functional sites or 

motifs in the MvDEK1-LOOP sequence. These functional sites most probably interacts with 

the same positional cues or the same family of proteins as in the AtDEK1-LOOP domain, 

and are probably essential for conveying information to the intracellular calpain domain. It is 

important to emphasize that the proposal that the MvLOOP can functionally replace the 

AtLOOP domain only holds true if the observed phenotypes are the result of dominant 

negative effect, caused by the Loop domain. 

 

4.4 The replacement of Arabidopsis-dek1-Loop with maize-dek1-
Loop also alleviates the dominant negative effect 

Surprisingly, the phenotype frequencies of seedlings overexpressing the AtDEK1-MEM-

ZmLoop construct, in which the AtDEK1-LOOP domain is replaced with dek1-loop domain 
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from maize, resembled the frequencies observed in seedlings overexpressing the AtDEK1-

MEM-DEL construct, where the loop domain is deleted. In total 37 independent transgenic 

lines were obtained, of which 38 % showed phenotypic alternations similar to those 

described for the other transformants obtained in this study. The performed statistical test 

indicated significant differences in the observed phenotype frequencies between the 

AtDEK1-MEM overexpressing seedling and the AtDEK1-MEM-ZmLoop transformants, 

and no significant difference with the frequencies observed in AtDEK1-MEM-DEL 

transgenic lines. These results suggest that there may exist functional species-specific 

divergence between Arabidopsis and maize DEK1-Loops, or that the ZmDEK1-LOOP 

interacts with different substances, proteins or positional cues, since it could not compete 

effectively with the endogenous AtDEK1-LOOP. This result is in contrast to the result 

achieved from the MvLoop swap experiment where the LOOP sequences have actually 

diverged considerably. Despite the much higher sequence identity and closer evolutionary 

ancestor compared with Mesostigma viride, the DEK1-LOOP domain in maize seems to 

have a different function than the AtDEK1-LOOP according to the results obtained in this 

study.  

The hypothesis that the DEK1-LOOP function has diverged between Arabidopsis and maize 

is also supported by the similarity tree build based on the predicted AtDEK1-LOOP 

homologues, suggesting that the sequence diverged between monocots and dicots from 

common ancestor. Another evidence supporting different functional roles for DEK1 in maize 

and Arabidopsis is the reported differences in maize and Arabidopsis double dek1/cr4 

mutants. In contrast to CR4, which is a critically important protein for aleurone and embryo 

development in maize, null mutation in ACR4, one of five CR4-like RLKs (receptor-like 

kinases) in Arabidopsis, result in only a very weak null mutant phenotype characterized by 

disorganization of ovule integuments and sepal margins as well as weak epidermal defects. 

Strong dek1 alleles are epistatic to cr4, and the phenotype in maize dek1/cr4 double mutant 

suggests that the two gene products function in partially overlapping pathways (Becraft et 

al., 2002). In contrast, the Arabidopsis thaliana homologues of crinkly 4 (acr4)/dek1 double 

mutants show additive effects, suggesting that dek1 and acr4 act in different pathways both 

involved in epidermis specification (Johnson et al., 2005). Complementation experiments in 

Arabidopsis dek1-1 mutant with ZmDEK1-CALP showed that although DEK1-CALP 

improved the growth of both endosperm and embryos of homozygous dek1-1 seeds, a full 

complementation of the aleurone and embryo phenotypes to wild type was not achieved 
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(Tian et al., 2007). DEK1 in maize could also be localized differently to DEK1 in 

Arabidopsis, since Tian et al. (2007) detected maize DEK1 largely in FM4-64-labeled 

endosomal compartments whereas Johnson et al. (2008) did not find this to be the case for 

DEK1-GFP fusion proteins in Arabidopsis thaliana, which where only weakly associated 

with BFA bodies in roots (Tian et al., 2007; Johnson et al., 2008). 

Finally, it should be clear that all the discussion and speculations regarding the loop-domain-

swap results are based on the assumption that the phenotypes observed in AtDEK1-MEM 

transformants are the result of dominant negative effect caused by the loop domain. This 

effect has not been validated.  

 

4.5 Further work 

4.5.1 Verification of the dominant negative phenotype 

In this study we used transgenic plants transformed with the AtDek1-MEM-DEL construct 

as control or as a baseline. In the initial study performed by Tian et al. (2007) the AtDek1-

MEM-DEL was designed and transformed into wild type background with the intention to 

show that the observed dominant negative phenotype observed in AtDEK1-MEM 

transformants was not a pleiotropic effect caused be the ectopic expression of large 

membrane protein. All the AtDEK1-MEM-DEL transgenic lines described by Tian et al., 

(2007) where undistinguishable from wild type, confirming that the loop domain is 

important for the dominant negative phenotype observed in AtDEK1-MEM transgenic lines 

(Tian et al., 2007). In the study presented in this thesis an unexpected phenotype was 

observed in 27 % of transformed seedlings overexpressing the AtDek1-MEM-DEL construct 

complicating the experimental system chosen for the cross-species domain swap analyses. 

There are two ways to clear this out: 

1) Verification of the dominant negative effect in AtDEK1-MEM transformants. The 

dominant negative phenotype should be confirmed before any further work with cross-

species swap-domain experiments can be done. This can be done by few approaches, for 

instance by co-transformation of wild type plants with the AtDek1-MEM construct and 

Capain construct under the promoter RPS5A, which is sufficient to complement dek1-3-
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mutants (Johnson et al., 2008). This experiment was performed once in this study, but 

unfortunately resulted in no transformatns. Alternatively, the negative dominant effect can 

also be assessed by a genetic cross between a transgenic AtDek1-MEM line showing a 

phenotype with plant overexpressing the Calpain domain.  

2) Investigation of the phenotypes observed in AtDEK1-MEM-DEL expressing plants. As 

discussed and proposed earlier, there could be a motif on the dek1 membrane sequence, just 

outside of the loop-coding region, that is involved in signal transduction. The expression of 

an AtDEK1-MEM construct with deletion beyond the Loop sequence or a series of deletions 

can help to clear this out. If this is the case, the chosen system for cross-species domain swap 

experiments has to be optimized according to the obtained results.   

 

4.5.2 Validation of the qPCR analysis  

The relative expression ratios of the transgene transcripts, performed by qPCR analyses in 

this study, could not be correlated to the phenotypic pleiotropy observed in all transformants. 

Earlier in the discussion we proposed that the transgene could be post-transcriptionaly 

regulated and that Western blotting assay can elucidate this. We also suspect that the 

reference gene used in the qPCR analysis can be affected by calpain expression. Since it was 

shown that the PP2A gene is directly involved in calpain regulation in animal cells (Xu & 

Deng, 2006; Jonssen et al., 2009; Bertoli et al., 2009), and as discussed earlier the PP2A 

gene could be inappropriate as reference gene in these experiments.  Jonson et al. (2005) and 

Lid et al. (2005) have used the EIF2 (EUKARYOTIC TRANSLATION INITIATION 

FACTOR2) gene, which is considered to be constitutively expressed in Arabidopsis (Metz et 

al., 1992) in qPCR analysis of dek1 and the calpain transcript expression. Since they have 

achieved conclusive results, maybe this gene could be used in our experimental system as 

well, as long as the transgene expression is not post-transcriptionally regulated.  

 

4.5.3 Further evolutional and cross-species domain swap analysis 

As mentioned earlier it is essential that the system used for cross-species domain swap 

analyses is the correct one for these experiments. The results obtained in this study put this 
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in question, due to an unexpected phenotype shown in control AtDEK1-MEM-DEL 

transformants.  

The results obtained from our and other experiments studies suggest that DEK1 may localize 

and act slightly different in Arabidopsis and maize, which can also lead to a suspicion that 

DEK1 may have slightly divergent function in monocots and dicots. In order to be more 

confident in such speculations, more independent transgenetic lines with both the AtDek1-

MEM-ZmLoop and AtDEK1-MEM-MvLoop have to be obtained to confirm the observed 

statistical significant differences in the calculated frequencies. It will be quite interesting to 

investigate if there is functional divergence in DEK1 between monocots and dicots, which 

means that cross-species domain-swap experiments with different representatives of 

monocots and dicots have to be performed, when a proper system for these experiments is 

confirmed or developed.  

The obtained results also bring up a curiosity about what to expect from the replacement of 

the AtDEK1-LOOP with the loop of the moss Phiscomitrella patens, which was initially one 

of the goals in this study. Unfortunately, due to difficulties in amplifying the Dek1-Loop 

from Phiscomitrella patens, the presence of PstI restriction site on the loop sequence, the 

presence of unexpected second AfeI restriction site on the pSEL1:35S-AMG, and the time 

limitation of the project, Arabidopsis transformats with Pp-replaced-loop were not achieved. 

The work has come to the point where the construct can be cloned into the binary vector 

pSEL1:35S-AMG. Prior to this reaction the PstI restriction site on the Pp-loop sequence 

have to be mutated as depicted in materials and methods or a new infusion cloning approach 

can be used. Primers for the site-directed mutagenesis and for the infusion cloning are 

designed and stored at Biohus, Hamar.  
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5. Conclusion 

Utilizing the dominant negative effect in plants overexpressing the AtDEK1-MEM construct 

in Arabidopsis thaliana to study cross-species functional analysis in the DEK1-LOOP 

domain, is an easy and fast approach. However, in this study we met complications; 

unexpected phenotype emerged at low frequency in the control transformants overexpressing 

the AtDEK1-MEM-DEL construct, where the loop domain is deleted, inconsistent with 

results obtained in the initial experiment performed by Tian et al. (2007). This result 

compromised the experimental system chosen for the cross-species domain-swap analysis. 

The attempt to elucidate the dominant negative effect in a co-transformation experiment, 

ended with no transformats, leaving this bottleneck for the further work. 

Two constructs harboring swapped cross-species DEK1-LOOP domains were designed and 

successfully cloned and transformed in wild type Arabidopsis thaliana. Phenotypic analysis 

of the obtained independent transgenic lines suggests that the DEK1-LOOP from 

Mesostigma viride was able to functionally replace the DEK1-LOOP in Arabidopsis 

thaliana. Surprisingly the replacement of AtDEK1-LOOP with DEK1-LOOP from maize 

suggests divergent function, since the observed phenotypic frequencies resemble the 

frequencies of transformants with deleted dek1-loop. However, before it is validated that 

there is a negative dominant effect exerted by the loop domain, it is difficult to conclude 

anything from the results obtained in the cross-species domain swap experiments.  

Analysis of the expression levels of transgenic transcript by qRT-PCR confirmed that the 

inserted constructs were overexpressed in transgenic lines, however the expression ratios 

could not be correlated to phenotypic variation observed. In addition, high expression levels 

of the transgene in wild type appearing plants suggest that AtDEK1-MEM may be regulated 

post-transcriptionaly.   
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Appendix 1  
 

Table 1 A1 Primers and PCR-conditions used for fragment amplification prior to overlapping PCR, also used 
for identification of positive colonies in “colony PCR” reactions 

Fragment 
(size) Primers name (sequence; 5’ !  3’)  PCR-conditions 

SP/At_5’-fragment (ATACTGAGCGCTGAAATGTTCTCATTC) 
 

A: At-5´-
fragment_Zm  
(623 bp) 
 ASP/At_5’-fragment_Zm (TGGAGATCCAGCTAAATGATGGAATA) 

SP/At_5’-fragment (ATACTGAGCGCTGAAATGTTCTCATTC) A: At-5´-
fragment_Pp  
(593 bp) 

ASP/At-5’-fragment_Pp 
(CTTTAAGGCAGCTCGACGAGCTGCTTCTGGGTCTGTTATAGATAGA
TGCCGAGAAAC) 

SP/At_5’-fragment (ATACTGAGCGCTGAAATGTTCTCATTC) A: At-5´-
fragment_Mv 
(621 bp) 

ASP/At_5’-fragment_Mv 
(CGAGGGCGGCGCGGCGCTCGGCGAGAGGGTCTGTTATAGATAGAT
GCCGAGAAAC) 
SP/Zm_Loop (CCCTCAGTTGCAAGGATAGACGCT)  B: Zm-Loop  

(840 bp) ASP/Zm_Loop (TGGAGATCCAGCTAAATGATGGAATA) 
SP/Pp_Loop (CCAGAAGCAGCTCGTCGAGCT) B: Pp-Loop  

(837 bp) 
 ASP/Pp_Loop (TGGTGTCCCCACAAAGAACTGTAC) 

SP/Mv_Loop (CCTCTCGCCGAGCGCCGCGCC) B: Mv-Loop 
(345 bp) 
 ASP/Mv_Loop (TCCACGGAAGGCAGCACGCA) 

98 °C- 30 sec., (98 
°C- 5 sec., 58 °C- 
15 sec., 72 °C- 30 
sec.) x30, 72°C- 10 
min. 
 

SP/At_3’-fragment_Zm 
(CTAATATTCCATCATTTAGCTGGATCTCCAGAGAGAGCATGGGGCC
TCTTTAGTC) 

C: At-3´-
fragment_Zm 
(1397 bp) ASP/At_3’-fragment (GTGGGCAACTGATCATCTCTAGATTTTA) 

SP/At_3fragment_Pp 
(GATGTTGTACAGTTCTTTGTGGGGACACCAGAGAGAGCATGGGGC
CTCTTTAGTC) 

C: At-3´-
fragment_Pp 
(1367 bp) ASP/At_3’-fragment (GTGGGCAACTGATCATCTCTAGATTTTA) 

SP/At_3’-fragment_Mv 
(TGCGCTGGGTGCGTGCTGCCTTCCGTGGAGAGAGAGCATGGGGCCT
CTTTAGTC) 

C: At-3´-
fragment_Mv 
(1367 bp) ASP/At_3’-fragment (GTGGGCAACTGATCATCTCTAGATTTTA) 

98 °C- 30 sec., (98 
°C- 5 sec., 58 °C- 
15 sec., 72 °C- 45 
sec.) x30, 72 °C- 10 
min. 
 

 

Table 2 A1 Primers used for the sequencing of the chimeric genes 

Name Oligo sequence (5’!  3’) 
T7 universal forward primer TAATACGACTCACTATAGGG 
M13 universal reverse primer CAGGAAACAGCTATGACC 

SP/At_5Fragment_Seq_1  TGGCATATCCCGTCTTTTCCT 
 

ASP/At_3Fragment_Seq_2  GGTGGAACTCACCTGTTGATGACT 
 

SP/At_3Fragment_Seq_3  TTTTCGCACAATGGTCACAGG 
ASP/At_3fragment_Seq_4   TGGGAACAGCAATAGACAGGCA 



Table 3 A1 Primers used in Site-directed mutagenesis 

Name Oligo sequence (5’!  3’) 
Zm_Loop_MutF ACTAAGGAGAAGTGGTCTTGAAAAATGGTT 
Zm_Loop_MutR AGACCACTTCTCCTTAGTTCTTCTGACAGAG 
Pp_Loop_MutF GGGGAAACGAAAACTCAACCGCAGGCTTGAA 
Pp_Loop_MutR GCAGAGATCCAGGGGGAAACGAAAACTCAAC 
 

 

 

Table 4 A1 Primers used for verification of the insert in kanamycin resistant plants 

Name Oligo sequence (5’!  3’) 

SP/pSEL_AtMEM-GT  CTCTGCCGACAGTGGTCCCAAA 
 

ASP/pSEL_AtMEM-GT GCCATTATTATCGCCAGCCCAA 
 

 

 

 

Table 5 A1 Primers used in qPCR for quantification of the transcript of the inserted gene and for its verification 

Amplicon Name  Oligo Sequence 
AtDEK1 exon 7 qPCR SP AAGAATTGAGACTCCGTGGACTAG AtDek1-MEM (size 216 bp) AtDEK1 exon 8 qPCR ASP GTGACAATAGCAGCACAGAGAAAC 
AtDEK1 exon 27-28 qPCR SP GCTTACTCCGTCTTACAGGTGAG AtDek1-CALP (size 167 bp) AtDEK1 exon 27-28 qPCR ASP CCTTCTTTTGACTGTGGAACATG 
AtPP2A SP CTCCAGTCTTGGGTAAGGATG At-PP2A (size 128 bp) 
AtPP2A ASP AATAACCTGGTTCACTTGGTCAAG 
AtDEK1 exon 7a qPCR_SP  GCATCAGTTCTATCAGGTGCTG AtDek1-MEM-DEL (size 205 bp) AtDEK1 exon8 qPCR ASP2  CAGACAACAGGTGACAATAGCAG 
Mv loop-exon7b qPCR SP TGCCTTCCGTGGAGAGAG AtDek1-MvLoop (size 152 bp) AtDEK1 exon 8 qPCR ASP GTGACAATAGCAGCACAGAGAAAC 
Zm loop-exon7b qPCR SP TGGATCTCCAGAGAGAGCATG AtDek1-ZmLoop (212 bp) AtDEK1 exon 8 qPCR ASP GTGACAATAGCAGCACAGAGAAAC 

 



Appendix 2  
Results from bioinformatics anlyses 

 

Figure 1 A2 Lineage report provided by BLASTp search using the AtDEK1-LOOP sequence as query. Showing how 
closely are the organisms in the BLAST hitlist related to the query sequence according to their classification in the 
taxonomy database.  

 

 

 

Figure 2 A2 Prosite protein-protein interaction prediction on the AtDEK1-LOOP (to the left), ZmDEK1-LOOP (in the 
middle) and MvDEK1-LOOP (to the right) sequences 

AtLoop ZmLoop MvLoop



Results from phenotypic characterizations 

 

Figure 3 A2 Picture of 5 weeks old plants expressing phenotype on soil 

 

 

 

Figure 4 A2 Picture showing growth differences between AtDEK1-MEM-MvLoop transformants (to the left) and 
AtDEK1-MEM transformants (to the right), wild type plants are in the middle  

 

 



Table 1 A2 Overview of phenotypes plants expressed after being transferred to soil  

On plate On soil MEM MEM-DEL MvLoop ZmLoop 

wt 22 (73 %) 15 (63 %) 11 (65 %) 13 (56 %) 

sterile 8 (27 %) 9 (37 %) 5 (29 %) 4 (17 %) 

 

wt 

 dead 0 0 1 (6 %) 5 (21 %) 

wt 14 (28 %) 2 (22 %) 17 (58 %) 2 (14 %) 

sterile 4 (8 %) 2 (22 %) 1 (3 %) 1 (7 %) 

 

phenotype 

 dead 32 (64 %) 5 (56 %) 11 (37 %) 11 (78 %) 

 

 

Results from qRT-PCR analysis; data used to create histograms  

Table 2 A2 Average of the relative expression ratio determined by qPCR analysis in AtDEK1-MEM transgenic lines  

Name Line/phenotype Loop/Calp Loop/PP2A Calp/PP2A 
Wt (2 weeks old) - 1,1 1,0 0,98 
Wt (5 weeks old) - 1,0 0,7 0,73 
1MEM1 1 "wt" 4,3 4,0 0,92 
1Mem1g 1(5w) "wt" 4,3 4,0 0,92 
9_MEM_1 10 "wt" 25 15 0,71 
9_MEM_1g 10(5w) sterile 42 24 0,62 
22_MEM2 33 "wt" 3,8 1,1 0,31 
22_MEM_2 33(5wo) sterile 3,1 1,2 0,46 
11_MEM_2 14 DEC 2,2 1,4 0,65 
35_MEM_2 77 DEC 54 26 0,46 
34_MEM_3 75 DEC 3,3 1,4 0,44 
2_MEM_4 5 DSAM 2,9 1,5 0,61 
14_MEM_1 17 DSAM 1,9 0,9 0,59 
21_MEM_1 30 DSAM 1,3 0,3 0,20 
18MEM2 25 SFTL 20,9 14,4 0,69 
19MEM2 27 SFTL 1,0 0,3 0,30 
20MEM1 29 SFTL 1,7 0,7 0,61 
20MEM1g 29(5w) sterile 3,3 0,9 0,41 
2MEM1 2 FC 1,2 0,4 0,32 
2MEM2 3 FC 3,1 1,1 0,51 
12MEM1 15 FC 2,1 1,0 0,47 
8MEM1 9 SC 1,6 0,8 0,63 
12MEM2 16 SC 2,6 2,5 0,96 

 
 



 

Table 3 A2 Average of the relative expression ratio determined by qPCR analysis in AtDEK1-MEM-DEL transgenic 
lines  

Name Line/Pheno Loop/Calp Loop/PP2A Calp/PP2A 
1DEL1 2 "wt" 44 12 0,28 
1DEL1v 2(5w) "wt" 62 15 0,25 
8DEL1 12 "wt" 1,84 1,02 0,55 
5DEL1 9 wt 7,21 2,56 0,35 
5DEL1v 9(5w) "wt" 0,82 0,49 0,59 
10DEL1 15 "wt" 5,90 0,83 0,15 
10DEL1v 15(5w) stetile 6,14 0,83 0,15 
9DEL1 14 DSAM 3,06 1,80 0,59 
7DEL1 11 SFTL 1,35 0,92 0,68 
7DEL1v 11(5w) sterile 1,01 0,70 0,69 

 
 
 
 
 
 
Table 4 A2 Average of the relative expression ratio determined by qPCR analysis in AtDEK1-MEM-MvLoop 
transgenic lines  

Name Line/Phenotype Loop/Calp Loop/PP2A Calp/PP2A 
2Mv1 1 wt 9,49 6,01 0,63 
2Mv1g 1(5wo) sterile 6,68 4,29 0,64 
9Mv1 4 wt 2,64 0,19 0,73 
9Mv1g 4(5wo) wt 1,26 0,83 0,63 
11Mv1 5 wt 2,11 1,32 0,63 
11Mv1g 5(5wo) wt 1,25 0,24 0,19 
8Mv1 3 DEC 4,21 3,92 0,93 
11Mv4 8 DEC 2,14 1,31 0,61 
16Mv1 16 DEC 1,13 0,36 0,32 
16Mv1g 16(5wo) wt 1,25 0,24 0,19 
18Mv4 23 DSAM 5,28 0,57 0,11 
6Mv1 2 SFTL 1,16 1,12 0,97 
13Mv1 9 SFTL 7,24 0,68 0,09 
13Mv1g 9(5wo) sterile 3,17 0,37 0,12 
17Mv2 19 SFTL 3,84 2,10 0,55 
17Mv2g 19(5wo) wt 0,85 0,61 0,72 
14Mv5 14 FC 1,25 0,83 0,66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Table 5 A2 Average of the relative expression ratio determined by qPCR analysis in AtDEK1-MEM-ZmLoop 
transgenic lines  

Name Line/phenotype Loop/Calp Loop/PP2A Calp/PP2A 
11Zm2 24 "wt" 69,19 22,04 0,32 
11Zm2v 24(5wo) "wt" 43,11 6,56 0,15 
10Zm2 22 "wt" 19,57 8,74 0,45 
10Zm2v 22(5wo) sterile 18,65 5,38 0,29 
10Zm1 21 DSAM 1,01 2,80 2,93 
18Zm1 34 DSAM 0,85 0,61 0,72 
11Zm1 23 SFTL 8,10 1,88 0,23 
11Zm1v 23(5wo) "wt" 5,61 1,02 0,18 
20Zm1 37 SFTL 1,25 0,83 0,66 

 
 
 
 
 
Results from co-transformation experiment 
 
 
 

 
 

Figure 5 A2 Four weeks old seedlings on kan50/ hyg20 selective medium from co-transformation attempt   

 

 

 


