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Abstract   33 

Quantifying kill rates and sources of variation in kill rates remains an important challenge in 34 

linking predators to their prey.  We address current approaches to using GPS-based movement 35 

data for quantifying key predation components of large carnivores.  We review approaches to 36 

identify kill sites from GPS-movement data as a means to estimate kill rates and address 37 

advantages of using GPS-based data over past approaches.  Despite considerable progress, 38 

modeling the probability that a cluster of GPS points is a kill site is no substitute for field visits 39 

but can guide our field efforts.  Once kill sites are identified, time spent at a kill site (handling 40 

time) and time between kills (killing time) can be determined. We show how statistical models 41 

can be used to investigate the influence of factors such as animal characteristics (e.g., age, sex, 42 

group size) and landscape features on either handling time or killing efficiency.  If we know the 43 

prey densities along paths to a kill, we can quantify the “attack success” parameter in functional 44 

response models directly.  Problems remain in incorporating the behavioural complexity derived 45 

from GPS movement paths into functional response models, particularly in multi-prey systems, 46 

but we believe that exploring the details of GPS-movement data has put us on the right path.  47 

 48 

 49 

 50 

 51 

 52 

53 
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1.  INTRODUCTION 54 

The direct effects of predation on prey populations have been studied by understanding the 55 

numerical and functional response, i.e., changes in predator density and kill rates as a function of 56 

prey density (Solomon 1949).  Quantifying kill rates for estimating functional response curves 57 

remains an important challenge in linking predators to their prey.  High variation around 58 

empirically derived functional response models constrains our ability to specify model form 59 

(sensu Holling 1959) and therefore limits our ability to model population-level interactions (Dale 60 

et al. 1994; Marshal & Boutin 1999;Vucetich et al. 2002).  More mechanistic rather than 61 

statistical curve-fitting perspectives of predation processes are needed to resolve the current 62 

debates about the nature of functional responses (Abrams & Ginzburg 2000).  Progress towards 63 

understanding the functional response of large carnivores has lagged behind that for large 64 

herbivores (see Spalinger & Hobbs 1992).  This may be, in part, because of their secretive nature 65 

and wide-ranging movements, but also the relatively long temporal scale over which 66 

observations are needed to obtain kill rates.  The advent of global positioning system (GPS) 67 

technology in wildlife studies has enhanced opportunities to examine movement behaviours of 68 

carnivores that reflect spatial processes in predation.  The use of GPS technology can provide not 69 

only cost-efficient and often more precise estimates of kill rates, but can lead to a better 70 

understanding of how variation in kill rates is related to both prey densities and landscape 71 

features that may influence predator search rate, prey detection, and prey vulnerability in 72 

naturally heterogeneous environments.    73 

In this paper we address current approaches to using GPS-based movement data for 74 

quantifying kill rates and indicate how GPS data can be used to improve estimates of kill rates 75 

and their variances.  Next, we briefly review Holling’s disc equation (1959), which gives a 76 
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simple conceptual approach to viewing allocation of time along a GPS-movement path to key 77 

components of predation: handling time and killing time.  We review approaches to identify kill 78 

sites from GPS-movement data and illustrate new approaches to determine what environmental 79 

(e.g., habitat features) or animal factors (e.g., age, sex, or group sizes) influence killing 80 

efficiency.  Finally, we show how to estimate attack rates when prey densities are known and 81 

discuss further issues for linking these measures to functional responses.  Our paper focuses on 82 

terrestrial large carnivores, in particular wolves (Canis lupus) and cougars (Puma concolour), 83 

because availability of GPS data are most abundant for these species due to their size and the 84 

demands of the initial generation of GPS collars.  Technological advances in GPS units design 85 

will make these approaches accessible to a wider range of carnivore species in the near future 86 

(see Tomkiewicz et al. this volume), but the potential usefulness of GPS data may depend on the 87 

spatio-temporal dynamics in their predatory behaviours.   88 

2. GPS-BASED MOVEMENT ANALYSIS TO ESTIMATE KILL RATES  89 

To date the most common approach to estimating kill rates of carnivores has been to identify kill 90 

sites based on variety of methods (see below) over an extended monitoring period (Peterson 91 

1977; Dale et al. 1995; Hayes et al. 2000; Garrott et al. 2007).  Counts of kills (PK) are divided 92 

by total observation time (T), and kill rates are expressed based on an individual, pack, or 93 

population-level basis, and a ratio estimator of the variation in PK/T is derived (Hebblewhite et 94 

al. 2005).  In the past, ecologists have used radiotelemetry techniques in combination with snow-95 

tracking, either from an airplane or on the ground, to estimate kill rates of carnivores (Haglund 96 

1966; Peterson 1977; Fuller 1989; Okarma et al. 1997, Jobin et al. 2000, Jedrzejewski et al. 97 

2002).  These methods demand extensive field efforts, i.e., highly frequent and accurate 98 

telemetry locations, or long ground-tracking sequences by foot, especially for large predators 99 
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(Jedrzejewski et al. 2002).  In snow-free periods, predators cannot be tracked readily back to 100 

kills. With aerial approaches only snapshots of their daily position during daylight is usually 101 

possible.  Unfavorable weather or dense vegetation may limit or preclude aerial observation of 102 

radiocollared predators, their tracks, or remains of killed prey even during winter, introducing the 103 

potential for substantial bias.   104 

       When working with species such as wolves, these approaches frequently have been the only 105 

available to produce estimates of kill rate for large sized prey (Peterson 1977; Fuller & Keith 106 

1980; Huggard 1993; Dale et al. 1994; Okarma et al. 1997; Jobin et al. 2000; Bergman et al. 107 

2006; Nilsen et al. 2009).  Despite the potential biases, the estimates have been considered 108 

reliable due to the assumed habit of some carnivore species to stay close to the killed carcasses 109 

of large prey species, e.g. ungulates (Peterson et al. 1984; Ballard et al. 1987; Hayes et al. 2000; 110 

Smith et al. 2004).  For small and mid-sized prey species these approaches most likely have 111 

resulted in gross under-estimates of kill rate (Fuller 1989; Sand et al. 2005).  Consequently, as 112 

GPS technology became available, it was clear that quantitative data on movement behaviour 113 

could be useful for identifying kill sites of prey made at any time of the day, season and year, 114 

with low manpower input (Hulbert 2001; Rodgers 2001) resulting in increased availability and 115 

reliability of information on kill rates (Sand et al. 2005) .  116 

Because GPS movement data provide more consistent and continual sequences for 117 

monitoring animals (Cagnacci et al. this issue; Frair et al. this issue), these data may minimize 118 

several past limitations.  For example, when there are differences in the time carnivores spend 119 

handling prey, the number of days they are relocated using aerial telemetry will influence the 120 

probability of locating them on a kill (Mech 1977, Fuller & Keith 1980).  In contrast, GPS data 121 

provides regular sampling intervals. Previous field-based methods often were able to sample 122 
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only 10-30% of the winter to estimate wolf kill rates.  Because GPS collars can provide data 123 

from a greater proportion of the period of interest, they will provide more precise estimates of 124 

kill-rates because the variance in ratio-based estimators depends on the proportion of the 125 

sampling period (e.g., winter) during which kills are located (Hebblewhite et al. 2003).  Several 126 

different approaches have been used to truncate the “predation period” (sensu Hayes et al. 2000) 127 

that defines the start and finish of ground tracking period (see Hebblewhite et al. 2003 for 128 

review).  Although sampling rates may still differ when using GPS data, use of long, continuous 129 

sequences of GPS data likely will reduce the influence of these differences and may lead to 130 

standardization among approaches.  Finally, with more consistent monitoring over time, 131 

heterogeneity in kill rates are more easily identified, and lead to stratification that can improve 132 

the precision of the estimate. 133 

Despite these advantages, GPS data bring their own problems.  Relocations of animals 134 

based on GPS collars may miss relocations due to habitat bias (Frair et al. 2004, Frair et al. this 135 

issue), and they may fail to identify kill sites by not identifying clusters of relocations or as a 136 

result of the uncertainty from statistical models that identify clusters as kill sites (e.g., Webb et 137 

al. 2008).  As GPS data are used more commonly for defining kill rates, more thought about how 138 

to incorporate the error into predictions kill-rates will be required. Regardless, improved 139 

estimates of kill-rates will be possible simply because of the vast improvement in our ability to 140 

estimate kill-rates over longer periods than most traditional methods.  141 

3.  GPS-MOVEMENT BEHAVIOUR: COMPONENTS OF PREDATION REVISITED  142 

From the perspective of time budgets, the total time measured in estimating kill rates can be 143 

viewed as two key behaviours that potentially can be distinguished in movement patterns: (1) 144 

time allocated to searching, capturing, and killing prey (TK) and (2) time devoted to handling 145 



7 

 

prey (TH) at a kill site.   Allocation of time to this simple dichotomy of behaviours was described 146 

by Holling (1959) by the “disc equation”, where blindfolded human subjects (predators) tried to 147 

find and pick up small discs of sandpaper (prey) on a flat surface at different densities.  This 148 

assumes that the number of prey captured and killed (PK) over the experiment (T) decreases with 149 

prey density and increases the available time searching (Ts) and the efficiency of searching or 150 

attack rate (a) of the predator as: 151 

NaTP sK =         Eq. 1 152 

Because Ts = T – ThPK where Th is the handling time per prey, substituting this into Eq. 1 and 153 

rearranging we have the number prey killed over a period: 154 

NaT
aN

T
P

h

K

+
=

1
       Eq. 2 155 

where PK/T is considered the kill rate. 156 

In large carnivores, sources of variation in handling times per prey (Th) have been related 157 

to prey size and biomass consumed, number of predators and age or sex composition of a feeding 158 

group, specialized handling behaviour like caching, digestive constraints, other large carnivores 159 

stealing their kill, and disturbance by humans (Hayes et al. 2000; Packard 2003; Zimmermann et 160 

al. 2007; MacNulty et al. 2009).  On the other hand, search efficiency (s) is the time necessary to 161 

find a prey and is a function of movement rate and the perceptual range of the animal, which is 162 

expressed as area searched per unit time (s =As/t).  Encounter rate with prey depends not only on 163 

search rate but on the density of prey (N) and the ability of the predator to detect the prey (δ).  If 164 

a predator spends TS searching, the number of prey encountered is sδNTs.  Beyond encountering 165 



8 

 

a prey, a predator must decide to attack the prey (selection) and be efficient at killing the prey.  166 

The time devoted to these behaviours combined with search time we call killing time (TK) or 167 

time-to-kill.  Most importantly, we distinguish TK from the conventional estimate of kill rates 168 

(PK/T).   Killing time, therefore, depends on s, probability of attack or prey selection (α), and 169 

prey vulnerability or kill success (ν), such that killing efficiency, or “attack success” now 170 

becomes a = sδαν.  Thus, the number of prey killed is PK = aNTK.  It follows that the inverse in 171 

time to find and kill one prey (PK = 1) is linearly related to the prey density and the attack 172 

success (a) as:  173 

aN
TK

=
1         Eq. 3 174 

(see McKenzie et al. 2009).  If density of the prey is known for several TK, then one can regress 175 

1/TK against density and the slope (a) is an estimate of attack efficiency over the range of 176 

conditions in which the measurements were taken (Figure 1).  177 

  FIGURE 1 SOMEWHERE HERE 178 

  With GPS movement data, if kill sites can be identified, the time along a movement path 179 

can be partitioned into times at kill sites, Th, and time along paths between kills, Tk, where T = 180 

∑Th + ∑Tk when killing and handling are exclusive.  Mutual exclusion of killing and handling 181 

times may not hold for some carnivores or for herbivores that can process (e.g., chew) small prey 182 

as they continue to search (Spalinger & Hobbs 1992), but this is a reasonable assumption for 183 

large carnivores whose primary prey are also large and their consumption requires the predator to 184 

be in one place to process at least a portion of prey (Figure 2). 185 
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FIGURE 2 SOMEWHERE HERE 186 

Prior to having GPS data, it was possible to locate kill sites by aerial or ground surveys 187 

and snow tracking and to obtain general kill rates, PK, over periods of  time (e.g. PK/T, Peterson 188 

1977,  Fuller 1989, Huggard 1993,  Dale et al. 1995), but it was difficult or impossible to 189 

partition T into TH and TK directly.  The value of partitioning movements into handling and 190 

killing behaviour using GPS data is that it (1) can indicate when a prey is killed, (2) provide an 191 

estimate of killing efficiency (1/TK), and when prey density is known an estimate of attack 192 

success (a) for developing functional responses, and (3) permit us to examine factors influencing 193 

each process separately without confounding effects of the other behaviour.  We submit that this 194 

will provide a clearer understanding of the variation in the observed relationships between kill 195 

rates and prey densities (Messier 1994; Marshall & Boutin 1999; Hayes et al. 2000), and lead to 196 

better models and predictions of the effects of predators on their prey among different areas.  In 197 

the next sections, we review the state-of-the art in approaches to identifying kill sites and present 198 

new approaches to considering what influences killing time (time-to-kill) and when prey density 199 

is known, attack success for parameterizing functional responses.   200 

4.  IDENTIFYING KILL EVENTS WITH GPS DATA: STATE-OF-THE-ART   201 

The link between GPS positions and kill-site detection is the analysis of the predator movement 202 

pattern: while the predator is handling the kill, it will stay at the same location over a longer time 203 

period than most non-foraging movements.  High sampling frequency will result in a more 204 

distinct pattern of either consecutive, single positions that indicate movement or “clusters” of 205 

positions indicating non-movement.  Several studies have shown that the majority of predation 206 

events occur during the night (Anderson & Lindzey 2003; Sand et al. 2005; Zimmermann et al. 207 
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2007), and this type of information can be extracted from GPS positions given they are sampled 208 

with adequate frequency.   209 

Several approaches have been used to identify clusters of locations along movement 210 

paths that represent the time spent handling prey at a kill site.  Anderson & Lindzey (2003) used 211 

a rule of > 2 locations within 200 m within 6 days for cougars feeding on multiple prey types.  212 

Knopff et al. (2009) used the criterion of Anderson & Lindzey (2003) to define a cluster of 213 

cougar locations, but automated the process using an algorithm that is available from the authors.  214 

Sand et al. (2005) and Zimmermann et al. (2007) created circles defined by fixed radii (called 215 

“buffers”) around winter positions of wolves feeding primarily on moose (Alces alces) and 216 

defined locations with overlapping buffers as clusters, which were visited in the field.  Webb et 217 

al. (2008) used a space-time permutation scan statistic (STPSS) originally developed to detect 218 

clusters of disease cases to identify clusters of GPS locations of wolves in winter.     219 

Sampling frequency and fix rate bias are both important in identifying potential kill sites.  220 

Most approaches are based on randomly selecting a sequence of GPS positions of the predator 221 

obtained at relatively short fix intervals (e.g., ≤ 1 hr) to ensure that all or the vast majority of kills 222 

made during the study period are found.  Selection of a GPS fix interval is a trade-off between 223 

battery capacity (lifetime) of the GPS collar, and the ability to successfully identify kill sites.  A 224 

fix interval needed to identify a certain proportion of the true number of kill sites can be assessed 225 

by rarifying the data (i.e., successively removing GPS-positions from the dataset, Sand et al. 226 

2005, Webb et al. 2008; Knopff et al. 2009).  A detection of smaller-bodied prey is crucial to 227 

avoid biases in kill rate estimates towards larger prey and may require high position frequency 228 

(Sand et al. 2005; Webb et al. 2008; Knopff et al. 2009). Small prey such as rodents or neonate 229 

ungulates may, however, be consumed too quickly to be detected with a reasonable GPS-location 230 
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schedule. Further, optimal fix rate may need to be shorter for social carnivores than solitary (e.g., 231 

wolves versus cougars) because many individuals may feed on the prey.  Where fix rate bias 232 

exists (Hebblewhite et al. 2007), sampling rate should be evaluated with this error in mind (see 233 

Knopff et al. 2009).  234 

Once a potential kill cluster is identified, it can be verified by a field visit.  Coordinates of 235 

the positions or the centers of the clusters may be loaded into a hand-held GPS.  Because GPS-236 

locations are somewhat inaccurate (e.g., 5% of positions outside 114 m of true location, Webb et 237 

al. 2008; see also Frair et al. this volume), and because kill remains may be scattered around 238 

actual positions, a sufficiently large area in proximity to the selected positions should be 239 

searched thoroughly.  Webb et al. (2008) showed that the geometric centers of selected clusters 240 

associated with kill sites were found within 200 m of actual kill locations.  Investigation of single 241 

positions and tracking on snow revealed 9 out of 68 large-sized kills (13.2%) were outside 242 

clusters created by 100-m radii around hourly positions (Sand et al. 2005).  During snow-free 243 

periods, detection of prey remains is even more difficult.   244 

The time span between the kill event and researcher visit to the kill site is critical to 245 

detect a carcass, correctly verify the cause of death, and determine information like prey species, 246 

sex and age.  To date, average time spans have ranged from approximately 8 - 9 days 247 

(Zimmermann et al. 2007, Sand et al. 2008) to 200 days (Anderson & Lindzey 2003).  The latter 248 

project used ‘store-on-board’ collars on cougars that allowed access to data only upon retrieval 249 

of the collar. GPS-collars with remote data download via VHF, UHF, GSM or satellite link allow 250 

visitation of sites before decomposition and scavenging make field verification less reliable 251 

(Webb et al. 2008). The time span should be long enough so field personal will not interfere with 252 

the predator. Studies using GPS-based locations from wolves, for example, showed they rarely 253 
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spent more than 3-4 days on any type of kill (Sand et al. 2005; Webb et al. 2008), whereas 254 

cougars exhibited a much longer handling of prey (Knopff et al. 2009).  The cheaper and less 255 

energy consuming store-on-board collars may be used to provide estimates of kill rates 256 

retrospectively provided that models have been developed for a particular predator-prey system 257 

and their accuracy evaluated.  258 

Field efforts for visiting kill sites can be reduced or potentially even dropped if models 259 

based on movement can reliably predict the presence of a kill. A successful model should be able 260 

to distinguish kill sites from non-kill sites and preferably even distinguish between different prey 261 

sizes (e.g., Webb et al. 2008).  Model building should include a minimum of three steps: (1) 262 

inspection of GPS-data at known kill and non-kill sites to identify spatial, temporal or location 263 

features that might differentiate between such sites, (2) comparisons of alternative statistical 264 

models to predict kill locations following model selection procedures, and (3) validation of the 265 

best model by applying it to new or withheld datasets for which the true number of kill sites is 266 

known.  A full discussion of statistical models with GPS sequence data is beyond the scope of 267 

this paper.  We highlight models used for kill rate estimation to date and refer the reader to other 268 

contributions in this volume (Fieberg et al. this issue; Smouse et al. this issue).   269 

Modeling approaches have included binomial logistic regression to predict presence or 270 

absence of large kills at GPS-location clusters (Andersen & Lindzey 2003; Zimmermann et al. 271 

2007), two-step binomial and multinomial logistic regression to estimate the chances of a site to 272 

contain a large- or small-bodied kill, or no kill (Webb et al. 2008; Knopff et al. 2009), and 273 

hidden Markov models to distinguish among kill, bed, and transit locations (Franke et al. 2006).  274 

Variables included in these models ranged from cluster dimensions including the number of 275 

continuous or discontinuous locations at the cluster and geometric cluster dimensions, time of 276 
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day, individual and pack characteristics like sex, age, and number of associated animals, 277 

characteristics of movements such as distance traveled, turn angles and travel rates, and 278 

environmental variables such as metrics of terrain ruggedness, human disturbance and vegetation 279 

cover (Franke et al. 2006; Zimmermann et al. 2007; Webb et al. 2008;  Knopff et al. 2009).  280 

Random effects models also may include variation among individuals, study periods, and/or 281 

study areas (Zimmermann et al. 2007).  282 

Validation of the predictions of the models, based on either independent data sets or k-283 

fold cross validation approaches (Zimmermann et al. 2007; Webb et al. 2008; Knopff et al. 284 

2009), showed that a range of error existed depending on particulars of the clustering rules, 285 

sampling frequency, prey composition and sizes, and hunting behaviours of the species under 286 

study.  Specification of omission error (identifying a kill site as a non-kill site) and commission 287 

error (identifying a non-kill site as a kill site; Webb et al. 2008; Knopff et al. 2009) will further 288 

help to evaluate model performance.  As recommended by a number of authors, an 289 

understanding of these errors may help guide field efforts needed to obtain kill rates with a 290 

certain precision and accuracy.  For example, in the case of a multi-prey system in Alberta, the 291 

greatest effort would be required to distinguish wolf kill sites of deer (Odocoileus hemionus, O. 292 

virginianus) from non-kill sites (Webb et al. 2008), whereas in Scandinavia differentiating 293 

between sites containing wolf-killed moose and non-kill sites or sites with small prey other than 294 

moose will be important.  295 

Initial models have suggested that variability in factors influencing predator behaviour at 296 

kill sites are likely to be species and system specific because of differences in prey items, the 297 

types of other predators present, and amount of human disturbance. For example, solitary living 298 

cougars seem to express high site fidelity and relatively long handling times of prey resulting in a 299 
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high detection rate of killed prey (Anderson & Lindzey 2003; Knopff et al. 2009).  In contrast, 300 

group-living wolves tend to have shorter handling times because large packs consume prey 301 

rapidly, and show a less distinct bahaviour at kill sites ultimately resulting in lower detection 302 

rates of prey killed (Sand et al. 2005; Zimmermann et al. 2007, Webb et al. 2008).  Similarly, 303 

prey- and predator population density, habitat type/quality, and stochastic events such as 304 

disturbance by humans or other predator species may influence variance in the behaviour of 305 

predators at kill sites.  Very high local prey densities may result in excessive killing of 306 

individuals that may not be completely consumed (i.e., partial prey consumption).  Zimmermann 307 

et al. (2007) observed large variation in the time wolves spent handling moose carcasses and 308 

discussed human disturbance, scavenging, and social organization of the re-colonizing wolf 309 

population as possible reasons.  At the same time, emerging patterns suggest it may be too 310 

difficult to identify some smaller prey (e.g., deer) because of the short handling duration.   For 311 

example, Webb et al. (2008) could identify 100% of the large-bodied prey, but only 40% of the 312 

smaller prey, and the  same pattern emerged from the hidden Markov modeling technique 313 

(Franke et al. 2006).  In contrast, other studies on wolves did not find any differences in the time 314 

for handling large and mid-sized/small prey as exemplified by adult and juvenile moose during 315 

both winter (Sand et al. 2005) and summer (Sand et al. 2008).    316 

 317 
5.  TIME-TO-KILL: NEW APPROACHES FOR GPS MOVEMENTS  318 
 319 
Once clusters of GPS-based locations has been identified as kill sites along a movement path, the 320 

time between kills (Tk) can be determined (Figure 2).  Delineating Tk depends on a decision rule 321 

for when Tk is initiated and when it ends.  One approach is to define Tk as beginning at the time 322 

of the first recorded GPS location away from the kill site and ending at the first location at the 323 
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next kill site.  Different approaches for allocating GPS fixes near a kill site to handling or killing 324 

behaviours may be developed, and frequency of sampling fixes is an important consideration in 325 

refining these rules, but no evaluations have been made to date.  Once delineated, hypothesized 326 

mechanisms for what influences killing efficiency, Tk, such as age, sex, or social group size, prey 327 

density, or environmental characteristics along paths leading up to the kill, can be evaluated 328 

using several modeling approaches that provide somewhat different information and require 329 

meeting different assumptions.  Further, where density of prey is known, an estimate of attack 330 

success (a) is obtainable for the conditions under study.   331 

We illustrate the modeling approaches using data from one GPS-collared wolf whose 332 

movements have been monitored for 19 kills in west-central Alberta, Canada in the winter of 333 

2005-2006.  The wolf inhabited mountainous areas that were heavily forested (~60%) with 334 

clearcuts and open areas (~20%) dispersed through the area (see Webb et al. 2008 for details).  335 

Major ungulate prey included deer, elk (Cervus elaphus), moose, and wild horse (Equus 336 

caballus).  Kill sites of the wolf were identified using 2-hr locations as described by Webb et al. 337 

(2008) with 60% of the potential clusters identified statistically visited in the field to verify the 338 

presence of a kill.  Time between kills (TK) was defined as in Figure 2 based on the decision rule 339 

described above and averaged 7.0 + 4.9 (mean + SD) days (range 10 hrs to 15 days).  Kill paths 340 

(the path between kill sites) were delineated using straight-lines that connected sequential 2-hr 341 

GPS fixes between kill sites.  Along each of the 19 kill paths the following environmental 342 

covariates were estimated within a 500-m buffer around each 2-hr path segment (and averaged 343 

across segments for the entire kill path): density of ungulate prey, mean proportion of area that 344 

was forest, open meadow, or clearcut, mean elevation (m), terrain ruggedness (standard deviation 345 

of elevation), distance to forest edge (km), density of roads (km/km2), and density of other linear 346 
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features (km/km2) such as seismic lines and pipelines (McPhee 2009).  Density of ungulate prey 347 

was derived from interpolated pellet group densities (based on counts along 372, 1-km transects) 348 

that we converted to animal numbers first based on the ratio of aerial moose counts to pellet 349 

counts, and for other prey based on the body weight ratios of moose to other prey assuming 350 

similar defecation rates in winter (Webb 2009).  Because prey encounter rates also may be 351 

altered by prey aggregation (Fryxell et al. 2007; McLellan et al. 2010), a spatial index of prey 352 

patchiness based on the coefficient of variation in prey density across a 2-hr path segment was 353 

also derived.  Finally, the average distance travelled between 2-hr GPS locations was recorded to 354 

indicate rate of search. We related the inverse of Tk to the above covariates using backward 355 

stepwise linear regression, and adjusted standard errors for autocorrelation using a Huber-White-356 

Sandwich estimator in STATA (StataCorp LP, College Station, Texas, USA).  357 

We found 1/Tk was related only to prey density (β = 0.0055 + 0.0820, P = 0.003) and the 358 

extent of forest along the paths leading to the kill (β = -0.1427 + 0.0086, P <0.001), indicating 359 

that it took longer to find prey in areas of low prey density and high forest cover (r2
model = 0.92, P 360 

< 0.001).  Forest extent and prey density were not closely related (r = 0.35, P > 0.15), and a 361 

log(time) model did not improve model fit (r2
model = 0.70, P = 0.01).  These are reasonable results 362 

because it is has been reported that prey detection is low in forested habitats (Mech et al. 1998; 363 

MacNulty et al. 2007).  In fact, only after accounting for prey detectability (i.e., forest extent) we 364 

found a relationship between 1/TK and prey density.  The relatively weak effect of prey density 365 

on 1/Tk compared with landscape condition (i.e., forest cover) may result from the generally high 366 

deer density in this area or selection by wolves to hunt primarily in areas of high prey density 367 

(McPhee 2009).  Further, we found no evidence for an interaction between prey density and 368 

forest extent revealing that detecting prey in forest cover did not depend on prey density.  Recall 369 
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that the value of a is the slope of the line between N and 1/Tk.  Here, we estimated a = 0.0165 + 370 

0.0078, but the value varied with extent of forest cover along the path, which we have interpreted 371 

to be primarily an effect of prey detection. 372 

Although a simple linear regression illustrates the relationship between 1/Tk and prey 373 

density or landscape conditions, other approaches may offer more appropriate means of 374 

analyzing events in time because ordinary least squares regression assumes normally distributed 375 

errors (Cleves et al. 2002).  Semi-parametric and parametric time to event models provide 376 

improved approaches.  The Cox proportional hazard model (CPH), and to a lesser extent 377 

parametric proportional hazard (PPH) or accelerated failure time models (AFT), are familiar to 378 

users of telemetry data for survival analyses (DelGiudice et al. 2002, Murray 2006; Fieberg & 379 

DelGiudice 2009).  We refer readers to more extensive treatises on these methods (Hosmer & 380 

Lemeshow 1999; Therneau & Grambsch 2000; Cleves et al. 2002; Kalbfleisch & Prentice 2002), 381 

and briefly illustrate here how they might be applied to analyzing Tk.  382 

 Both semi-parametric and parametric models can be used to explore the influence of 383 

covariates on times to events (i.e., kills).  However, they make different assumptions about the 384 

baseline hazard functions, which may suit different predator-prey systems differently, and 385 

provide different information to a particular question.  CPH model provides a relative assessment 386 

of covariate effects on the hazard of a failure (kill) at time t.  Using this approach assumes the 387 

hazard ratio is constant across subjects (but see “frailty” options below), without making any 388 

assumption about the shape of the baseline hazard —it can be constant, increasing or decreasing.  389 

With CPH, the cumulative hazard curve can be visually inspected to reveal temporal patterns in 390 

Tk as we illustrate below.  Further, it has the flexibility of including single or multiple segments 391 
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(e.g., corresponding to 2-hr segments) along one kill path, and a shared frailty term, which is 392 

similar to including a random-effect that accounts for variation among individuals (Cleves et al. 393 

2002).  Continuing with our example, we modeled Tk using CPH and found similar support for 394 

models including forest cover both with and without total prey density (ΔAICc < 2.1), although 395 

prey density was no longer statistically significant (Table 1a).  Data fit the proportional hazard 396 

model based on a test of the Schoenfeld residuals (X2 = 0.53, P = 0.76).   Plotting the cumulative 397 

baseline hazard indicated that the risk of killing increased slowly 3-5 days post-kill, increased 398 

moderately from 5-12 days post-kill, and increased dramatically thereafter (Figure 3).  Figure 3 399 

does not depict the effects of covariates; however, the probability of a kill at time t was lower as 400 

forest cover in the animal’s kill path increased and higher as the density of prey increased (Table 401 

1a).  402 

Unlike the CPH, parametric time to event models specify a priori a distribution for the 403 

baseline hazard. The most common distributions include exponential, Weibull, log-normal, log-404 

logistic, and gamma failure rates, all of which are log(time) parameterizations (Hosmer & 405 

Lemeshow 1999; Cleves et al. 2002).  PPH and AFT models provide estimates of baseline 406 

hazard rates and coefficient effects that have different interpretations.  AFT models directly 407 

describe the expected change in the time to event for every unit change in xi, rather than 408 

describing the change in the likelihood or relative likelihood of an event occurring at time t, as is 409 

the case with the PPH and CPH models (Therneau & Grambsch 2000; Cleves et al. 2002).       410 

Based on the shape of the cumulative hazard curve in Figure 3, we fit parametric models 411 

assuming a Weibull distribution to our data.  Because regressions based on the Weibull 412 
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distribution have both a proportional hazard (Table c) and AFT (Table d) formulation, it is also 413 

useful for our illustration.  The Weibull baseline hazard is given as: 414 

)exp()( 0
1

0 β−= pptth       Eq. 4 415 

and it has two parameters, p and β0, where p is the shape parameter and β0 is the intercept. When 416 

p = 1, the hazard rate is constant over time.  Adding the effects of covariates, PPH takes the 417 

form: 418 

   )exp()|( 22110
1 xxptxth p

i βββ ++= −    Eq. 5 419 

For our example, p = 2.094, which was significantly different than 1 (Wald test, z = 4.02, P < 420 

0.001; coefficient estimates given in Table 1c).  Thus, our visual interpretation  421 

FIGURE 3 ABOUT HERE 422 

based on the CPH was supported.  We also found that hazard ratios of the CPH (Table 1a) and 423 

PPH (Table 1b) were similar, indicating a good fit to the assumed underlying baseline hazard 424 

(Cleves et al. 2002).  Under a Weibull distribution, the AFT formulation provided different 425 

coefficients because of their interpretation, but they are related to the hazard ratio of the PPH by 426 

exp(-pβAFT).  In our example, Tk increased rapidly as forest cover exceeded 40% over the path 427 

and low prey density augmented the delay in time-to-kill a prey (Figure 4).  428 

FIGURE 4 ABOUT HERE 429 

Time to event models offer both opportunities and challenges to exploring predation 430 

processes.  The CPH models are flexible in that the shape of the curve and the effect of 431 

covariates can be explored without making restrictive assumptions about the distributions of 432 

failure times.  When enough is known to make reasonable assumptions about the baseline 433 
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hazard, quantifiable estimates of time-to-kill under different combinations of covariates can be 434 

estimated along with measures of uncertainty.  This may permit comparisons in the efficiencies 435 

of killing among different wolves or in different landscapes. When movement data from more 436 

than one individual is available, frailty models, which accommodate heterogeneity among 437 

individual responses similar to random effects, can be employed for population-level 438 

assessments.   Further, in multi-prey systems, when more than one prey type is killed, and type 439 

of prey at each kill is known, a competing-risk analysis (Lunn & McNeil 1995) might be used to 440 

determine whether Tk varies across prey species and is influenced similarly by covariates.     441 

However, as with studying most ecological processes, issues of selecting scale of 442 

observation influences our view of the process.  For our illustration we measured covariates at 443 

the scale of the entire path leading to a kill, but alternatively we could have used 2-hr segments 444 

along the path.  Our interpretation that forest cover influenced time to encountering a prey by 445 

altering prey detection is reasonable at this scale, but characteristics of a 2-hr segment might be 446 

more informative on what specifically influenced the act of killing.  For example, where a kill is 447 

located may differ from the characteristics where the predator encounters the prey because 448 

certain characteristics influence the act of killing more than encountering a prey (Hebblewhite et 449 

al. 2005).  Time to event models developed on multiple records per path (e.g., each hr-segment 450 

along the path leading to a kill) may allow a better assessment of short-term processes.  For 451 

example, using CPH models McPhee (2009) measured path features along each 2-hr segment of 452 

the path leading to a kill and found that hunting near oil and gas well sites influenced Tk, which 453 

was corroborated by kill site locations tending to occur further from well sites.  Although 454 

sampling segments of movement paths can improve our understanding, sampling at too fine a 455 

movement scale also may degrade the signal.  Multi-scale approaches to measuring covariates 456 
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back in time along movement paths may be necessary when the processes of predation (sensu 457 

Hebblewhite et al. 2005) work at different time scales.  Further, if covariates are measured as 458 

varying in time along the path, prediction of the mean time-to-kill as illustrated in Figure 3 459 

becomes problematic because the expected Tk most commonly assumes fixed covariates in time.  460 

While obtaining estimates of time-to-kill is still possible, it remains mathematically difficult 461 

(Therneau & Grambsch 2000; Cleves et al. 2002) and methods of obtaining these estimates are 462 

not readily available in most statistical software packages.  463 

6.  SUMMARY AND CONCLUSIONS  464 

Carnivore biologists that address how predators influence prey populations have focused 465 

predominately on understanding whether kill rates are most related to prey density alone (prey 466 

dependent) or to the ratio of the number of prey to the number of predators (ratio dependent) 467 

using statistical-curve fitting approaches to develop functional responses.  Yet, empirical 468 

observations show high variation around both these relationships with little advancement gained 469 

in understanding the true nature of the interactions (Boutin 1992).  Because of the size and 470 

weights of the first generation of GPS collars, large carnivore biologists are among the first to 471 

apply this technology to study movement behaviour of carnivores, which has led to a greater 472 

understanding of what movements reflect and for quantifying the processes of predation.  For 473 

these far-ranging animals in particular, GPS technology has opened the door to obtaining 474 

sequences of animal locations at temporal extents and resolutions that previously were 475 

impossible or extremely difficult even with intensive field efforts.   This has lead to improved 476 

precision in estimating kill rates.   477 
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At the same time, movement behaviour of large carnivores lend themselves to 478 

encapsulating basic predation processes.  When predominance of biomass consumed by 479 

carnivores comes in relatively large, discrete packages it result in clustered movements patterns 480 

due to lengthy handling of prey.  The large prey typically are dispersed and nonapparent (sensu 481 

Spalinger & Hobbs 1992) such that carnivores move relatively far in search of the next prey.  482 

This typically results in handling time at a kill site being exclusive of periods of search and 483 

killing.  As a result, movement patterns particularly of large carnivores lend themselves to a 484 

dichotomy of simplified movement modes that can be distinguished with GPS locations and have 485 

relevance to key processes in the functional responses of predators -- handling time and killing 486 

time.    487 

To date, analyses of GPS-based movement patterns of large carnivores have focused on 488 

identifying periods of handling time that identify kill sites, and the factors influencing handling 489 

time.  Methods for identifying kill sites based on spatiotemporal patterns in the sequence of 490 

movement positions are evolving.  As the approach is applied in more studies with a variety of 491 

species we will gain a better appreciation of how data sampling protocols and animal behaviour 492 

influence our ability to correctly distinguish a GPS-based kill site.  At present, modeling the 493 

probability of a cluster being a kill site is no substitute for field visits but can guide our field 494 

efforts (Sand et al. 2005; Webb et al. 2008; Knopff et al. 2009).  In the process, however, we 495 

have found we can identify factors related to handling time such as prey size, size of predator 496 

social groups, environmental site factors (e.g., snow), and disturbance by humans (Zimmermann 497 

et al. 2007; Webb et al. 2008).   498 
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Once kill sites are identified, the time-to-kill one prey (Tk) can be determined as the time 499 

between kills.  Similarly, we can identify animal characteristics and landscape factors along the 500 

movement path that influence Tk using time to event models.  The most appropriate type of 501 

model is limited by the model’s assumptions, but also depends on whether a probability of the 502 

event occurring at a specific time is of interest or the interest lies in how much the factor changes 503 

the actual time to event.  Plotting the relative hazards due to variables that influence TK on a map 504 

has the potential to be used as a metric of predation risk.  Tk also is equivalent to 1/aN from the 505 

typical Type II functional response (Holling 1959) and where prey densities are known an 506 

estimate of a is possible to derive. In this context a reflects not only searching for prey, but 507 

detecting, attacking, and killing the prey, which together reflects killing efficiency.  Most 508 

functional response models have assumed a to be constant and unaffected by landscape factors, 509 

and these assumptions can now be tested.  However, incorporating changes in social groupings 510 

that influence a and obtaining prey densities at relevant scales in both space and time are 511 

problematic. While we are not yet at the point of being able to incorporate the complexity 512 

derived from GPS movement paths into functional response models, particularly in multi-prey 513 

systems, exploring the details of GPS-movement data has put us on the right path.  514 
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Figure captions 664 

Figure 1.   The relationship between time-to-kill (Tk), defined as the time between the first GPS 665 

location after leaving a kill site and the first GPS location at the next kill site.  Note the units of 666 

y-axis have been inverted to reflect inverse of time-to-kill: 1/Tk = aN in this simple form. 667 

Figure.  2.  Illustration of the time-to-kill (Tk) derived from GPS-based location data where 668 

clusters of locations indicate time spent at a kill site (the handling time, Th) and the dashed line is 669 

the path of the animal between kills (the kill path).  Tk is defined as the time between the last 670 

GPS location at a kill site or first location after leaving a kill site and the first location at the kill 671 

site.   672 

Figure 3. Cumulative baseline hazard for time-to-kill prey along a wolf hunting path based on  a 673 

Cox proportional hazard model using data from 19 wolf kill events during winter 2005-2006 in 674 

west central Alberta, Canada.   675 

Figure 4.  Predicted mean time-to-kill of a wolf in areas of various forest extent at high (4/km2) 676 

and low (2/km2) total prey densities in central west Alberta.  Estimates are based on accelerated 677 

failure time models assuming a baseline hazard following a Weibull distribution.   678 
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 684 

Table 1.  Hazard ratio and β coefficients of time to event models for the extent of  forest  

cover (proportion of area) and total ungulate prey (#/km2) along 2-hr GPS-paths of  a wolf   

(n = 19) that were related to time-to-kill (TK).  Time-to-kill was defined as the time  

between the first GPS location after leaving a kill site and the first GPS location at a kill  

site.  Total prey include only ungulate prey. 

                                                                                      
   Model                                                                                        

 
β or HR 

 
SE 

 
P 

 

(a)  Cox proportional hazard

 

: hazard ratio  

 

      Forest extent (ha/km2)      0.000022 0.000092      0.008 

      Total prey (#/km2)       1.3500 0.4530 0.37 

(b)  Parametric proportional hazard, Weibull  : hazard ratio  

      Forest extent (ha/km2)                      0.000023 0.000058 < 0.001 

      Total prey (#/km2)                    1.3260 0.4038 0.35 

(c)  Parametric proportional hazard, Weibull  : β coefficients  

      Forest extent (ha/km2)                                               -10.6730 2.5110 < 0.001 

      Total prey (#/km2)                                                      0.2826 0.3043 0.30 

      Intercept                                                                    -5.4480 1.6713 0.001 

(d)  Accelerated failure time, Weibull  : β coefficients  

      Forest extent (ha/km2)                      5.0960 0.6678 < 0.001 

      Total prey (#/km2)                    -0.1349 0.1444 0.35 

      Intercept                    2.6016 0.6530 < 0.001 
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Figure 3. 739 
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Figure 4 764 
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