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Abstract.
M0NNESS, E 1997. Estimating Annual Growth Response to a Forest Treatment. (Om
d estimere drUg endring i grunnflatetilvekst ved en skogbehandUng.) Medd.
Skogforsk. 48(14): 237-254.

Several estimators of response to a forest treatment are compared. All estimators are
evaluated theoretically on a common basis. Even though they are based on different
models, they appear to have a similar structure. Based on uniformity trials, they are
also compared empirically by means of the mean square error. The unadjusted
response estimator, that is the annual basal area growth (increment) difference
between the treated and the control plots, has an annual root of mean square error of
approximately 0.1 nl Ihectare. The other estimators use preperiod increment
difference to improve the response estimate. The easily calculated difference and
ratio estimators are satisfactory, with root of mean square errors ~.04 m2 Ihectare
initially, rising to about 0.1 m2 Ihectare about 20 years after the preperiod.
Estimators using covariance, time series or regression adjustment do not improve
upon this. The data has its origin from a broad set of fertilization field trials on Pinus
Sylvestris L. and Picea Abies L. Karst. in the south east of Norway.

Key words: Long term prediction error, uniformity trials.

Utdrag.
M0NNESS, E 1997. Estimating Annual Growth Response to a Forest Treatment. (Om
d estimere drUg endring i grunnflatetilvekst ved en skogbehandUng.) Medd.
Skogforsk. 48(14): 237-254.

Flere estimatorer av respons til en skogbehandling er sammenliknet. AlIe
estimatorene er sammenliknet pa en sams teoretisk mate. Til tross for ulikt
utgangspunkt viser de Seg a ha en lik struktur. Estimatorene er ogsa sammenliknet
empirisk ved hjelp av blindfors0k. Den ujusterte estimatoren, differansen i arlig
grunnflatetilvekst mellom en behandlet rute og en kontrollrute, har en arlig
middelfeil pa ca. 0.1 m2lhektar. De 0vrige estimatorene korrigerer estimatet basert pa
tilveksten i forperioden. De enkle metodene basert pa konstant differanse eller
konstant forhold, har en middelfeil pa ca. 0.04 illlhektar de f0rste fors0ksarene,
0kende til ca. 0.1 m21hektar etter ca. 20 ar. Estimatorer som gj0f bruk av
kovariansanalyse, tidsrekkeanalyse eller regresjon reduserer ikke middelfeilen
ytterligere.

Dataene har sitt utspring i gj0dslingsfors0k pa Pinus sylvestris L. og Picea abies
L. Karst i Syd0st Norge.

Nflkkelord: Langsiktig prediksjonsfeil, blindforsflk.
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Preface.
I am very proud of being allowed to try to honour J. Eid, S. Nersten and A.
Svendsrud with this article. It is a rewritten version of M0NNESS, (1991),
incorporating ideas I developed as a referee of McWILLIAMS & BURK (1993).
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Introduction
The theory has been developed in connection with fertilization field experiments.
However, fertilization is not at all of vital importance to the theory. Any situation
where growth is to be measured, and where some treatments are to be compared on
some plots or individual trees, may profit from ideas presented here. The
presentation is therefore written in a general manner.

How to Measure a Treatment Response. Why is it a Problem?
A typical experiment is about comparing a new treatment, a new regime, with a
standard version, or with no treatment at all (a control). There are a huge amount of
standard experimental designs available to the experimenter, say analysis of variance
(ANQVA), analysis of covariance (ANCQVA), regression. Why is this not enough?

In forestry, field experiments are typically long-lasting. A certain treatment may
have an effect on only a stage in a tree's development. The experimenter is often
forced to accept an experimental playground involving trees already grown for years.
The effect on the final product may be indirect or out of reach of the experimenter.
This is of great contrast to agriculture, where the entire life span of the experimental
objects is one season only.

The trees will of course grow even if not treated. What is usually of interest is
the additional growth/yield due to the treatment, often called the response. The
response to the treatment is the difference between what is gained and what would
have been gained if not treated.

m2 /hectare/year (annual growth increment)
m2

/ hektarldr (drlig tilvekst)

GTt the treated plot

G(T)t ' unobservable

when 1>0

GOt the control plot

~o ~ar

Figure I. Theoretical description of annual growth increment on a treated and a control plot.
Teoretiskfremstilling av drUg tilvekst pd en behandlet rute og en kontrollrute.
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Notation

i identifies a certain field plot, t is the time (year). In an actual setting, i
may be a multiindex, dependent of experimental design.
indicates no treatment; a control plot.

indicates treatment.
indicate a treated plot, but the value that would have been if not treated.
(This value is usually unobservable)
can be both negative and positive.
is the time of experimental establishment, when the treatment was first
applied.
is observations, or records of growth, before experimental establishment.
This period is called the preperiod.
If t= negative, then values associated with i =T and i =(T) are identical.
is first year a treatment response could occur.

t=negative

t

t=O

i = 0
i = T
i =(T)

e

observed basal area growth (increment) on plot i in year t (m2

/hectare/year). If t is explicit equal to 5, Gi5 is the total growth in the

entire 5 year period.
observed basal area (yield) on plot i in year t (m2 /hectare).

is the effect, or the response of the treatment, either on yield or growth.

The growth response is Tn = Gn - G(T)t

Ft =G(T)t -GOt Thus F; is the difference in growth between two plots in year t, if no

treatment had been applied in any of the two plots. F; may be seen as the

random variation in growth between any two plots. We suppose these two
plots are comparable, they are supposed to be in some common block or

in some common field. The effect of varying climate is small on Ft since

it is a difference.
Mean values have a bar above the symbol. Typically,
_ 1 t

Git = - L Giv ' with w equal to 5 or 10.
w \'=t-w+1

Estimated or predicted values have a " above the symbol.
random error
expectation.EO

lit
1ft

t=J

Main Symbols
Git

Indexes
it

MSE mean square error. MSE includes both variance and bias. On uniformity
trials the true value to be evaluated is 0, thus the MSE is calculated as

1 k- L X \~ where Xv is the statistic in question. k is the number of
k 1'=1

observations available to the calculations.
RMSE square root of MSE

Un' D n ' Rn ' COVn ,REGn and ARn are different estimators of treatment response

introduced in the next chapter.
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Treatment Response Estimators

Introduction
Consider an ordinary analysis of variance (ANOVA) of yield at year t=5:
lis = J1 + /lis + ei5 • (i can have more structure, depending on the experimental

design.) The response to the treatment is estimated as the contrast YTS - Yos : The

simple difference between a treated plot and a control plot, (or means if there are
replicates).

Consider instead analyzing the growth with an ANOVA scheme.
GiS = J1+ /lis + eiS ' The treatment contrast is as above GTS - Gos . But the yield at

t=5 is the sum of the yield at t=O plus the growth in time 0-5. Let TTS be the

additional yield which is also equal to the additional growth. We then have

GTS -GOS=TTS+(G(T)S-Gos ) , and

YTS -Yos =TTS + (Y(T)S -YOS)=TTS + (G(T)S - GOS)+(YTO -Yoo ) .

Thus: Analyzing the growth with an ordinary ANOVA gives an estimate of the
treatment effect biased with the difference in growth between the treated and
untreated plot that will occur in the trial period independent of any treatment.
Analyzing the yield will bias the estimate with still another term; the difference in
yield at the establishment of the experiment. I consider this as a strong argument not
to analyze yield, but the growth. The dependence of the yield difference by
pretreatment yield difference was also experienced by LIPAS (1979), and confirmed
by MCWILLIAMS & BURK (1994). Their simulation work shows a strong linear
correlation between bias and pretreatment yield, and with the same actual size as
documented theoretically here.

The Unadjusted Estimator
We call the growth difference introduced above the unadjusted estimator:

UTt = GTt -GOt =TTt + (G(T)t -GOt) = TTt +Ft

Thus bias and MSE of U Tt are associated with FTt :

E(UTt -TTt)2 = E(Ft )2.

In order to be a good estimator, G(T)t and GOt on figure 1 should nearly

coincide.

The Difference Estimator 1

Assume the difference in increment between two plots in the same block to be
nonzero, but constant in time t, at least for the preperiod and the experimental
period. This means that the curves G(T)t and GOt on figure 1 should be nearly

IIn my earlier work I called this estimator «the constant estimator».
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equidistant. The preperiod then gives a prediction of F" leading to the following

estimate of response:

DTt = GTt -Go, - (G TO - Goo ) =TTt +F, - Fa
and

2 - 2E(DTt -TTt) =E(F, -Fa)

Fa should be a good predictor of F, . This is reasonable for short time periods

but perhaps not for long time periods.

The Ratio Estimator
Define

GTO
RTt = GTt - Go, .-=- = TTt

Goo
and after some algebra

_ Go,
R Tt =TTt +F, -Fa '-=-.Goo
We also have

G
2 - A' 2

E(RTt -TTt) =E(F, -Fa .-=-)
Goo

The idea is that changes in annual increment between plots have a constant ratio
rather than a constant difference. This means that the curves v(T)' and Go, on
figure 1 should have a proportional course. This estimator have been in use in
several Swedish works (CARBONNIER (1962), ROSVALL (1979». Both LIPAS
(1979) and MCWILLIAMS & BURK (1993), report that the ratio estimator
overcompensates for the initial differences.

The Covariance Estimator
A possible improvement of D Tt is to annually estimate the influence of the

adjustment:
Let

COVTt = GTt -Go, - Pt .(GTO - Goo ) =TTt + F, - Pt .Fa
and

2 ~ - 2
E(COVTt -TTt) =E(F, -f3, ·Fo)
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This model could give a smooth path from DTt (with f3t = 1) to UTt (with

Pt = 0), depending on t. This would allow for correction when there is a correlation

and no correction otherwise.
COVTt is based upon the covariance model (for each t and each site):

- 2
Git = J1r + J1;t + {J, .Gio + eit .

COVTt is the ordinary treatment contrast.

The AR Estimator
Assume that Ft = G(T)t - GOt is an autoregressive time series of first order, AR(1),

with an non-zero mean (Box & Jenkins, 1976). Thus Ft -S= P·(Ft-1 -S)+et . The

parameters sand f3 must be estimated in the preperiod, and the series is then

predicted ( F, )for t>O.

We have

ARTt =GTt -GOt -Ft =Tr +Ft -(13 t .(Fo -~)+~)

and after some calculations

2 ( - -t _)2E(ARTt-Tr) =E Ft -Fo -f3 .(Fo-Fo)

(Fo is the growth difference in year 0, ~ is the mean growth difference in the

preperiod.) ARTt will converge to DTt as t in-creases3, and could only be expected

to be superior when t is less than, say, 5 years. In a separate unpublished
investigation, I have selected the AR(1) model among AR() models with lags ranging
from one to five years.

The Regression Estimator
Consider the following ordinary regression between the increment on a treated plot
and a control plot:

2 Instead of picking up f3t from each individual experiment, f3t could be cafculated based

on several experiments. Also, MCWILLIAMS & BURK (1994), consider a covariance
estimator based on yield, called R5. But
R5T5 = YTS - Y05 - f3 (YTO - Y(0) = GT5 - G05 +(1- f3 )(YTO - Yoo ) . Thus, this is the same as an

ANCOVA model on growth using yield at establishment as a covariate instead of using

growth. A model with yield will appear to have a very high correlation- squared since 1';0 is

a common term both in the dependent and independent variable.

3Since 0 < f3 < I, fj t will converge to zero as t increases. Any AR() model will converge to
its mean when predicting over several time periods.
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G(T)t = /l+{3.G Ot +et

On the preperiod this regression is observable and the parameters are estimated
independently for each pair of treated/control plot.

From theory we know that the least square estimates from any regression are

functionally dependent by ji == GTO - f3 .Goo
Then

REGTt = GTt - G(T)t =GTt - ji- P.GOt =T, + G(T)t - (GTO - p. Goo ) - p. GOt

and after some calculations

REGTt = T, + Ft - Fa + (1- /3). (GOt - Goo )

giving

E(REGTt _T,)2 = E(Ft -Fa +(1-P)·(GOt -Goo)r

The regression estimator is the logical estimator combining ideas from the

difference and the ratio estimators. If f3 = 1 then REGn == D Tt and if ji = 0 it can

be shown that REGTt == Rn .

In hindsight we see that all the proposed growth estimators have the same
structure:

- -
TTt = Gn - G(T)t: Try to predict the growth of the treated plot if not treated

( G(T)t ), then subtract this value from the observed growth on the treated plot ( Gn ).

UTt was the ANOVA estimator. All other estimators try to compensate for different

initial growth between the plots. COVTt is the ANCOVA estimator with

pretreatment growth as a covariate. Dn and RTt try to compensate in a straight

forward and easy manner. All these estimators need only one preperiod growth
observation (say, mean of the last 5 or 10 years). REGTt and ARTt operate

independently for each treated plot but dependent on time t. In order to estimate
parameters they need annual growth observations in the preperiod. I would
recommend at least 10 years, but 5 years may be acceptable. DTt is a special case of

COVTt ' REGn and ARn . Rn is a special case of REGTt .

There are several other ways regression can be applied. Both LIPAS \1979) and
MCWILLIAMS & BURK, (1994), explore this.

4 Lipas' regression is actually an analysis of covariance.
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Estimators: Summary
All error tenus are fonuulated in the same manner, with

Ft - ~ = (G(T)t - GOt) - (GTO - Goo )as the «standard correction».

Estimator Error term Comment

Un Ft -Fo +Fo
Actually no correction.

Dn Ft -Fo
«Standard correction»

Rn
( Go. J

If the growth in the control plot

Ft-FO + 1- G
oo

.Fo
has a small variation, we have

Rn "" Dn
COVn Ft-Fa + (1- Pr ).Fo

Same structure as in RTt

REGn Ft -Fo + (1 -/3) .(GOt - G00 )
f3 depends only on the preperiod.

ARn Ft -Fo -/3 t . (Fo - Fo) The entire extra correction
depends only on the preperiod.

The three f3 s have different fonuulas that may be found in a standard textbook.
As indicated above, the estimators Un' Dn ,Rn' COVn ' REGn and ARn are

all of the structure Tn = Gn - G(T)t . More specific, their difference is how G(T)t is

calculated. G(T)t is based on the control plot, and on the treated plot in the

preperiod5
• Also, the observation involving the treatment, Gn , enters into the

estimators in the same manner. Thus the difference between the estimators is
independent of the data that might have been treated, and the difference is
independent of the actual size of the treatment response. But in order to calculate the
MSE of one estimator we must know the actual value, which is usually unknown.
However, the level might be zero.

Empirical Evaluation: Uniformity Trials
A uniformity trial consists of two neighboring plots, one of which is designated the
control plot and the other the treated plot. However, no treatment is actually applied,
so the true response to the hypothetical treatment is zero. Zero is the only value of a
response that actually can be thought of as known. The efficiency (in tenus of mean
square error) of each estimator can be compared at this zero level response.

5 COVn is an exception. The estimate of the covariance parameter f3t also involves Gn ,

and may be dependent of treated observations if the covariate is not orthogonal on the
experimental design.
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However, the ranking of the estimators must be valid also in real treated
experiments.

The method of uniformity trials is a technique which explores the influence of
natural variation on estimators rather than the actual estimates themselves.
Uniformity trials were often used early in this century to study the validity of
agricultural field trials. TIPPETT (1931), and FISHER (1925) use empirical results
from uniformity trials in their argumentation for randomization and experimental
design. AASTVEIT (1982), gives several references to uniformity trials in
agricultural experiments.

Other ways can be used to compare methods: A theoretical comparison can be
done by introducing a common statistical growth model, and then actually calculate
the E(.)s. This is straightforward but tedious. However, the results can still be hard
to compare. Even worse is that a statement like «A is better than B» does not tell
«how much better» or «how big is the actual error to worry about»?

A comparison can be done with simulation. This has been done by
MCWILLIAMS & BURK (1994). The problem with simulation is that all trees have
to be «grown» with some functions. One can never tell to which degree the results
reflect characteristics of the functions themselves. LIPAS (1979), presents
comparisons of methods based on actually fertilized plots. If estimation methods are
to be compared on actually treated plots, there is a need to both estimate the
treatment effect and to compare methods. Estimating treatment effect can result in
underestimation of the bias; the bias will become a part of the treatment estimate. A
method having a high MSE, due to bias, may be seen with a low standard deviation
and therefore misjudged to be a good method.

Data
The data for this study were selected from Norwegian experiments with N -, NPK 
fertilization on old stands of Pinus Sylvestris, (L) and Picea Abies, (L) Karst, mainly
located in the southeast of Norway. There are about 70 sites each with randomized
block design experiments. Even though experiments are blocked, each site is
selected to minimize within site variation. Each experiment typically consists of 4
blocks with a certain number of plots (e.g. treatments) in each block, giving typically
4 replicates.

There is at least one untreated control plot in each block. The plots were mainly
0.02 or 0.04 hectare excluding a buffer zone. Cores were taken on each tree to
measure annual basal area increment. The increments cover 10 years before first
fertilization and up to 20 years after. A portion of these data has been reported in
BRANTSEG ET. AL (1970). A data base has been established consisting of about
42000 trees on 2200 plots. General information describing the control plots is given
in Table 1.
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Table I. Mean values (per hectare) and quantiles of the control plot data.
Middelverdier per hektar og kvantiler av datafra kontrollrutene.

Quantiles
Variable # Mean Min 25% median 75% Max

obs
Year of establishment 243 1962 1958 1960 1961 1963 1971
Duration of experiment 243 14.6 years 6.0 12 16.0 18.0 20.0
Height above sea level 243 241m 10 130 180 320 750
Longitude 243 61.9 0 59.0 60.3 60.8 64.0 66.4
Latitude 243 11.5 0 7.8 10.9 11.6 12.0 14.8
Site Index (top height at 243 11.3 m 2.8 9.0 11.0 14.0 21.0
age 40)
Age at breast height, t=O 243 87 years 19 70 88 109 220
Basal area per hectare, t=O 243 19.3 m2 5.3 14.3 18.6 23.9 43.9
Volume per hectare, t=O 243 157 m3 33 101 148 199 528
Number of trees/ha 243 669 150 450 625 850 1650

GiO (per hectare) 243 0.29 m2 0.05 0.19 0.25 0.34 0.76

G;5 (per hectare) 243 0.30m2 0.06 0.17 0.28 0.39 0.89

GilO (per hectare) 243 0.34m2 0.06 0.22 0.29 0.45 0.81

As the data were not designed to fit uniformity trials, a careful study to select
appropriate subsets was done. Assuming a preperiod of 5 years, the development of
the control plots in the following 25 years is shown in figure 2. The annual variation
of increment in a single trial is larger than the one appearing in figure 2, because
figure 2 has years after treatment as time scale and not actual year. The following
data sets were extracted:
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Figure 2. The number of control plots available to the calculations, the R2 (squared correlation)

between preperiod growth (mean of 5 years) G00 and annual increment GOt' mean
annual increment (m2 Ihectare) and their annual standard deviation. Unit on lower vertical
axis is m2/hectare/year.

Antall kontrollruter som er tilgjengeUg jor beregningene, R2 mellom gjennomsnittlig
tilvekst i jorperioden og ilrlig tilvekst, gjennomsnil1lig ilrUg tilvekst og deres standard
avvik. Akseenhet pil nedre vertikale akse er m2/hektar/ilr.

Data Set One
Every plot has a preperiod of 10 years. If a hypothetical "fertilization" is imposed at
year 5, then each pair of plots is a uniformity trial with a 5-year trial and a 5 year
preperiod. In each block one plot is considered to be the control; the others are
considered "fertilized". This makes 1817 uniformity trials of 214 blocks on 69 sites.
The mean responses after 5 years on each plot were analyzed. The responses within a
block are correlated due to their common control plot. This data set maintains the
pattern of the original fertilization experiments. Thus, both within-block and
between-block variation can be explored.

Data Set Two
In 28 blocks there are 2 control plots. If we consider one of them to be "fertilized"
after a preperiod of 10 years this gives us 28 independent uniformity trials.
Responses were estimated annually for up to 20 years. Data set 2 is the most obvious
set of uniformity trials contained in the material.
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Data Set Three
Due to the experimental layout, the between-block variation may not be of any
significance. Thus the variation between adjacent blocks may be neglected when
compared to within-block variation. (This assumption will be seen to be acceptable
based on results from data set no. I). Thus the control plot from one block can serve
as "fertilized" while the control plot of the adjacent block remains a control plot.
This set consists of 107 independent uniformity trials. The preperiod is taken to be 5
years and the responses were estimated annually for up to 25 years. The reason that
this data set is selected is the high number of independent trials and the time span
available.

In each trial one plot must be decided to serve as control and the other as
fertilized. This has been done in an automatic, noninspected manner based on plot
number. Thus the original randomization of the experiments is in action.

Results

The increment GT5 ,and the responses UT5' DTS and RT5 were calculated using

the data set no 1. Variance components for the model Variable=site+block(site)

+plot error are given in Table 2. The main variation in the increment GTS is due to

site variation which is of no interest here. The site variance of the unadjusted
estimator U T5 is totally removed. Instead there is a new block variance of the same

size as the plot variance. This is due to the common control plot in each block. The
estimator DTS and RTS also have a block variance but the total variance is

severely reduced (RMSE ""J.04).

Table 2. Variance component analysis.

Varians komponent analyse.

Source d.f. GT5 U T5 D T5 RTS

Total a, RMSE 0.127 0.091 0.045 0.041

Total cl 1816 0.016 0.008 0.002 0.002

Site cl 68 O.oI1 0.000 0.000 0.000

Block(site) cl 145 0.001 0.004 0.001 0.001

Error cl 1603 0.004 0.004 0.001 0.001

To find COVTS the Gi5 s are analyzed by the model

Gi5 = J.L + J.Lsile + {3 .0;0 + {3site . GiO + e .
Calculating the covariance responses

COVTS = GTS - G05 - Aile . (GTO - Goo ) gives RMSE = 0.041.
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Adjusting the 0TS with a common covariance (f3 equal on all sites) also gives

RMSE=O.041 on the response 0TS - G05 - f3. (OTO - (leX!). Thus COYTS has the
- -

same RMSE as DTS and RTS (from table 2).

It appears that the assumption made to establish the data set no. 3 of uniformity
trials is justified since the Block(site) variance of 0TS is small.

Estimated annual RMSEs of U Tt ,DTt ,RTt ,RE0Tt and ARTt based upon data

set no. 2 are given in Figure 3. The unadjusted estimator UTt has stable RMSEs

independent of t which is to be expected. All the other methods have a common
development: The RMSEs are low at t=1, but increase with t and reach RMSE( UTt )

when t is about 13. On data set no 3 the preperiod is 5 years, giving 25 years of
prediction. The methods UTt' DTt , COVTt and RTt are compared (Figure 4). The

conclusions to be drawn from figure 4 are similar to those drawn from figure 3.

RMSE M2/HECTARE/YEAR
0.15

0.10

0.05

0.00
o 5 10 15 20

YEARS AFTER PREPERIOD
RMSE<Ul -- RMSE<Dl --- RMSE(Rl .••••••••. RMSE(REGl--oO---RMSE(AR(1) l - ....-

Figure 3. Data set no 2. RMSE of 5 estimators of treatment response. The preperiod is 10
years. (The curves are based upon 28 trials when year <11, 19 when year = 12,

II when year = 16, 6 when year = 18). RMSE( ARTt ) is plotted only when t<8

because ARTt = DTt when t>8, due to the mentioned convergence of AR

series.)Data sett nr. 2. RMSEfor 5 respons estimatorer.

Forrperioden er pa 10 ar (Kurvene er basert pa 28forsf/Jk nar ar<11, 19 nar

ar=12, 11 nar dr=16, 6 nar ar=18). RMSE( ARTt ) er tegnet bare for t<8

fordi ARTt =DTt nar t>8, pa grunn av konvergensen av AR tidsrekkerr.
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RMSE M2/HECTARE/VEAR

0.15

0.10

0.05

0.00
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o 5 10 15 20 25
YEARS AFTER PREPERIOD

RMSEW) -- RMSE(D) --- RMSE(R) ··········RMSE(COV)--.....--

Figure 4. Data set no 3. RMSE of 4 estimators of treatment response. The preperiod is 5
years. (The curves are based upon 107 trials when year <10,90 when year = 15,61
when year = 20, 21 when year = 24). Data sett nr. 3. RMSE for 4 respons
estimatorer.

Forrperioden er pa 5 ar. (Kurvene er basert pa 107 forspk nar ar<lO, 61 nar
ar=20, 21 nar ar=24)

M0LLER & RYTTERSTEDT (1974), introduced the idea of "high" and "low"
quality of fertilization experiments based on difference in annual pretreatment
increment between the control and the fertilized plot. If a "high" quality experiment
is said to have a difference less than 30%, then the data set no. 3 contains 65 of these
and 42 "low" quality trials. The RMSEs of UTt ' DTt and RTt have been calculated

independently on those two groups. The RMSE of UTt from low quality experiments

is higher than above, about 0.15. DTt and RTt do not seem to be influenced by this

distinction. UTt seems to be as good as DTt and RTt when the pretreatment

difference is less than 30%.
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Discussion and Conclusion
There is a significant advantage in using the simple adjusted estimators Dn or Rn

compared to the unadjusted Un' at least during the first 15 years of the trial. There

was no further benefit in using complicated estimators like COVTt , REGTt or

ARTt • As there was no difference between Dn or Rn' the distinction between

absolute and relative increment changes is not reflected by these data. The increasing
RMSEs of the adjusted estimators from t=O to t=15 indicates the decreasing
influence of preperiod conditions6

•

Based on RMSE, it is concluded that adjusted estimators are better than
unadjusted estimators at least during the first 15 years of a trial. The adjusted
estimators show very little difference as measured by mean square error. Thus the
recommendation is to use the easily calculated Dn in comparable trials. This

estimator also enables a short preperiod.
The conclusions based on uniformity trial data must (as shown above) be valid

also in a real setting. However, the ranking given here is itself an estimate, thus
another investigation with another natural variation may come up with another
ranking of the estimators.

When fitting a treatment response function (using any of these response
estimators) to treated data the error must exceed the one found here, which is due to
environment, plot size etc. In addition there will be variation due to treatment,
treatment*site interaction and "lack of fit" of the function. My experience with
fertilization data indicates that a "first five year response function" typically has a
variance of about 0.004 using the ratio estimator. The figures given here indicate a
variance of about 0.002 (table 2). Thus about 50% of the variation of a typical
function is due to natural variation on the increment and the rest is due to sources
connected with the treatment, including "lack of fit".

The ranking between UTt' Rn and COVn does not agree with the one

presented by LIPAS (1979), or E3, E8 and E5 in his notation. However LIPAS
himself qualified his conclusions since true responses to fertilization were not
known. This is a critical point and uniformity trials are the only way of overcoming
this.

6 Figure 3 and 4 show an odd behavior when t>=18. The results here are uncertain due to the
low number of plots available for the calculations
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