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Abstract

MonNNESS, E. N. 1982. Diameter distributions and height curves in even-
aged stands of Pinus sylvestris L. (Diameterfordelinger og haydekurver
for ensaldrede bestand av Pinus sylvestris L.) Medd. Nor. inst. skogforsk.
36(15): 1—43.

Functions are constructed in order to determine diameter distributions
and height curves on stands with known stand parameters. These are the
basal area mean diameter, the site index, the tree number per hectare,
Loreys height, and the top height. The diameter distribution is based upon
Johnsons System b distribution. The distributions are estimated on each
stand. The variation of the distributions between stands is regressed against
stand parameters.

The type of height curve is a two-parameter hyperbola. The top height
and Loreys height, which both are different integrals on the height, together
with the diameter distribution determine the height curve completely.

The functions are tested against an independent set of data.

Key words: diameter distribution, Johnsons System b distribution, height
curve, restrictions on height curve.
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Utdrag

MonNNESS, E. N. 1982, Diameter distributions and height curves in even-
aged stands of Pinus sylvestris L. (Diameterfordelinger 'og heydekurver
for ensaldrede bestand av Pinus sylvestris L.) Medd. Nor. inst. skogforsk.
36(15): 1—43.

Det er konstruert funksjoner for & bestemme diameterfordeling og hey-
dekurve for bestand med kjente bestandsdata. Disse er grunnflatemiddels-
tammens diameter, bonitet, treantall pr. ha, grunnflateveid middelheyde og
overhgyde. Diamcterfordelingen er basert pd Johnsons System b fordeling.
Fordelingen bestemmes pa hvert bestand. En modell for fordelingsutviklin-
gen konstrueres ved hjelp av regresjon der variasjon imellom fordelmgene
forklares med variasjon av bestandsparametrene.

Heydekurvens form er en hyperbel. Overhoyde og grunnflatemxddelvexd
hoyde er begge ulike integraler av heyde. Disse to bestandsparametre vil
sammen med diameterfordelingen bestemme hgydekurven fullstendig.

Funksjonene er testet mot et uavhengig materiale.

Nokkelord: diameterfordeling, Johnsons System b fordeling, haydekurve,
restriksjoner pd heydekurve.
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I. Introduction

The aim of this work is to develop functions on diameter distributions and
height curves on even aged stands of Pinus sylvestris. Data from the stands
are partly known. Stand parameters like Dy, Ho, Hyg, Hj, N are to be
considered known. (All symbols are defined in appendix 1.) VESTJORDET
(1972) has carried out a similar work on Picea abies. HAFLEY & SCHREU-
DER (1976) have examined diameter distributions on single stands. The re-
sult of the work is a computer program that with a given set of stand para-
meters determine the diameter distribution and the height curve. The work
was designed to adjust distribution and height curves to «Growth model com-
puter program» (BRAASTAD 1980).
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II. Material

The material is used and described earlier by BRANTSEG (1969). By one
observation is ment a description of a stand at a given time. One observation
may consist of two parts; Thinning and stand after thinning (removed and
standing trees). I will frequently talk about an observation meaning only one
of these parts. :

One observation contains the following information:

T3, Ho, Hao
N;, H3, D3, G3, Vi, m
N29 HZ’ DZ’ GZ’ VZ’ n,

The following values are recorded for both thinning and stand after thin-
ning:
Diameter distribution, number of trees within 2 cm diameter classes.

Mean (arithmetic) diameter within 2 ¢cm diameter classes.
Mean (arithmetic) height of some trees within those diameter classes.

(The volume is calculated due to BRANTSEG 1967. The site index Hyg is
calculated due to TVEITE 1976.) Observations with the following criteria
were removed:

Observations with missing data.
Observations with less than 10 trees (actual n).
Observations with less than 5 diameter classes of 2 cm.

589 observations of standing trees and 294 observatidns of thinned trees:
then remain. Some further observations were removed due to instability of
the estimation process. In order to test the theory developed the material was
divided (at random) into two subgroups, an estimation group and a testing
group. Table 1 shows the number of observations within each group. Table
2 shows summary statistics of the material. .

Table 1. Number of observations within each observation group.

estimation testing sum

thinnings 207 87 294
after thinnings 413 176 589
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Table 2. Summary statistics (per hectare).

Variable N Mean Minimum Maximum Stapdz‘ird
value value deviation
estimation group, thinnings
T3 207 56.4 year 11.0 120.0 26.9
H, 207 16.0 m 5.6 27.4 3.6
H, 207 13.1 m 438 243 3.8
Hyo 207 142 m 7.6 18.9 3.0
D, 207 13.4 cm 3.7 27.8 5.0
Vv, 207 21.2 m? 2.2 67.6 13.4
N, 207 439.8 35.0 4803.0 698.8
testing group, thinnings
T3 87 62.3 year 14.0 125.0 26.4
H, 87 16.4 m 6.9 26.3 3.6
H, 87 134 m 6.0 23.7 38
Hyg 87 13.5m 7.5 18.9 3.1
D, 87 13.4 cm 4.5 26.3 5.3
V, 87 21.4 m? 1.9 80.7 12.4
N, 87 438.1 44.0 4068.0 637.1
estimation group, stand after thinning
T3 413 66.1 year 11.0 134.0 28.6
H, 413 17.2m 5.6 27.5 37
H, 413 15.7 m 5.0 27.1 3.9
Hyo 413 13.7 m 6.6 19.1 3.0
D; 413 18.2 cm 5.1 41.0 5.9
V3 413 185.2 m? 36.7 468.5 80.1
Nj 413 1292.0 233.0 7830.0 1215.9
testing group, stand after thinning
T3 176 66.5 year 11.0 137.0 29.7
H, 176 16.7 m 5.8 27.6 3.9
H; 176 152 m 5.4 26.8 4.0
Hyo 176 134 m 7.6 18.9 2.9
D, 176 17.8 cm 6.1 39.9 6.0
Vs 176 166.9 m? 28.2 406.4 76.2
N3 176 12434 233.0 7350,0 1113.0
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HI. Methods

A diameter distribution is a function that to every real number assigns
the (relative) number of trees with a diameter less than or equal to the given
real number. A height curve is a function that to every diameter assigns a
height. The function will vary with site, age and management. Certainly the
number of trees with diameter less than, say 10 cm, will decrease both by age
and thinnings. A material with completely known stands is given. Functions
must be established that, to a given set of stand parameters, determine the
distribution and the height curve. One way of doing this is to select a specific
class of distributions described by some parameters. These parameters should
be estimated on each stand. The variation from stand to stand is supposed to
depend on stand parameters. A multiple regression model is used. The height
curve may be handled in i similar fashion. It is not obvious that regression
should be used. Stand parameters are not only «independent» variables, they
are properties of the distribution and height curve themselves. Thus the dis-
tribution should not only be explained by the D, (e.g.) but it should also
achieve the Dy on each stand.

A. Diameter distribution on each observation

We have to chose a theoretical distribution function to fit the observed
diameter distribution. Attention should be drawn to the following arguments:

The distribution should be conform with observed distributions.
Estimation of the parameters.
Calculation of other properities.

The Johnson System b distribution (abbr. J-Sb) (JOHNSON 1949; JOHN-
soN & Kotz 1970) has been chosen to fit the diameter distribution. The
distribution has been used to fit diameters by HAFLEY & SCHREUDER
(1976). The bivariate J-Sb (JoHNSON & Kotz 1972) has been used on
diameter/height distributions by SCHREUDER & HAFLAY (1977).

The J-Sb density is

f(d, Es )" 6’ Y) =
d A B d-& TP (ITILLA.1)
Vir @—BoTE—d) P [Y+6 l“[mg—d]]

Esd<E+L. —wo<E<+®, A>0, —w<y<+o, §>0.



10 Erik N. Monness

The parameters £, A are location and scale parameters. 8, y determine the
«form» of the distribution. Growing 6 implies more excess. Growing absolute
value of v implies more skewness.

if D is distributed as a J-Sb then

Z = y+8 ln[xfg_; | (ILA.2)

is distributed as a standard normal variable.

The cumulative distribution

Probability of a random diameter to be less than or equal to the number
d=PMD=<d)=

ji f(x; &, A, 6, y)dx =
e o

Z \/271: (x-g)(xig_x)exp'%[‘ﬁé ln[ﬁ_‘};]]zdxz

¢ [Y+6 In xiéd] (I11.A.3)

¢ is the standard cumulative normal distribution. All moments exist but
the formulae are complicated (JOHNSON 1949).

Fractiles

A fractile is a real number (diameter) such that a certain amount of trees
have a diameter less than or equal to that number.

Compute d, such that
PD<sdy =0 O<a<l1 (I11.A.4)

(II1.A.4) together with (I11.A.3) gives

da=§+x[1+eXp[1:%l'(L)]]"' (IIL.A.S)

where ¢! is the inverse ¢; ¢p(¢p~ (@) =a.
The median is

do,5=§+)\[l+exp[%]]~l (1IL.A.6)
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A distribution iform» may be considered given by its 3rd and 4th
moment, or, equivalently, by its place in the 8; - B, space (skewness -
kurtosis).

The J-Sb is one of three transformations of a normal distributed variate
proposed by JOHNSON (1949) which together cover the skewness - kurtosis
space. The J-Sb covers all possible space «above» the lognormal curve. Some
examples of J-Sb are given in Fig. 1.

The (B3, B,) parameters are estimated on the observed diameter distrib-
utions and plotted in the 3, - 3, space in Figs. 2, 3, 4, 5. (The plots shows
the observed skewness and kurtosis of the stands. The upper border is the
limit of the possible 8, - B, space. The lower border is the possible combi-
nations of the lognormal distribution. The space in between is the possible
area of J-Sb. The point (0,3) is achieved by the normal distribution.)

The diameter distributions typically place themselves in the J-Sb region.
HAFLEY & SCHREUDER (1976) also obtained this result.

6

J-Sb density

Fig. la. Some symetric J-Sb distributions.
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J-Sb density

X
Fig. 1b. Some right-skewed J-Sb distributions.
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Fig. 2. Thinnings, estimation group. A=1 obs, B=2 obs, etc. The upper border is the limit of
B1 x B space. The lower border is the lognormal curve. The space inbetween is the J-Sb
area.
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Fig. 3. Thinnings, testing group. A==1 obs, B=2 obs, etc. The upper border is the limit of

B1 x By space. The lower border is the lognormal curve. The space inbetween is the J-Sb
area.
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Fig. 4. Standing trees, estimation group. A=1 obs, B=2 obs, etc. The upper border is the limit

of 81 x B space. The lower border is the lognormal curve. The space inbetween is the
J-Sb area.
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N=NO-HICX

SKEWNESS

Fig. 5. Standing trees, testing group. A=1 obs, B=2 obs, etc. The upper border is the limit of
B1 x B3 space. The lower border is the lognormal curve. The space inbetween is the J-Sb
area.

Estimation
The parameters (£, A, 8, v) must be estimated for each observation.

If £, A are known values then In (X:(i——_é—f——d) is distributed as a normal

observation (III.A.2). The mean and standard deviation of these numbers
then yield estimates of (v, 6). Alternatively, we could use some primitive
estimates of (£ A) based on the observed range and use them as «known».
Dpin together with 3 fractiles also yields an easy estimation procedure by
means of (II1.B.6). In this work the principle of maximum likelihood has
been used to estimate (£, A, 6, v). No explicit solution exist. Newtons method
on systems of equations has been used. (Further details are given in appendix
2.)

B. Diameter distribution from observation to observation

Each observation yields an estimate of (£, A, 6, v). (They are assympto-
tically unbiased with a multinormal distribution. They are stochastically in-
dependent from observation to observation.) They may be regarded as a
reduced «observation», carriers of the original observations information. The
variation between these new «observations» is to be explaned by variation of
stand parameters. For each observation is given a vector T of stand parame-
ters. (The elements of T are typically Dy, H,, N and possibly some trans-
formations of them. Dy and N are also excellent carriers of information on
age and management.) A linear relation between the J-Sb parameter esti-
mates and T is supposed and a regression model is considered.

The model (The M’s are column vectors)
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E(T) = My~ T
MT) = M,~ T
8(T) = My~ T
WT) = My~ T (IIL.B.1)

gave a very poor fit except for E(T) = Mp™ T.

(Different stand parameters may «explain» different distribution para-
meters. (I11.B.1) do handle this, elements of the M’s may of cause be zero.)

This result could have been foreseen. It is difficult to imagine how the
J-Sb parameters should vary with stand parameters. The following trans-
formation of the parameters was then considered. We use (II1.A.5) to com-
pute 4 fractiles and try regression on them instead. It is more likely that
fractiles should fit into a regression model with stand parameters. Fractiles
have a direct physical interpretation in the stand. The median and the Dy are
of same kind of data and they will a priori be highly correlated. We choose
(to ease calculations) the four fractiles «=0, «=0.3085, a=0.5, «=0.6914
(inverse normals are then — co, — 0.5, 0.0, 0.5, respectively).

We have

d0 = E (Dmin)

r r -1
d0_3| - E‘*‘)\, 1+exp lﬂ]]

L . 3
- oyt
dps = E+A] I+exp %]] (the median)
i [v—0.5 -1
dos = E+1] 1+exp 16—]] , (IIL.B.2)

We now fit the model

d(T) = M;~ T i=0, 0.31, 0.5, 0.69 (I11.B.3)

The M vectors are estimated independent of each other. This model has
an acceptable fit. (111.B.3) will be used. The M’s and their goodness of fit are
given in table 3.

For a given T (I11.B.3) gives rise to 4 real numbers. For these numbers
the equations (I11.B.2) must be inverted to obtain the J-Sb parameters. This
is not always possible. Any four numbers may not be considered as four
fractiles of some J-Sb.
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We have the following lemma:
A necessary and sufficient condition on four real numbers (z, z; z; z3, €.g.)
to be considered as four fractiles

(d(), d()_5ﬁp, d0.5, d0_5+p) (0<p<05) of some J-Sb

is that

CZ9<2y<2,<23 (I11.B.4)
and
(22— 20) ~ (23— 20)(21—20) >0 (II1.B.5)

The J-Sb corresponding to these four numbers when p=0.19 (our choice)
is given by
E=12
A = Z2=20)(2p = 20)(21— %) + (2p— 2)(Z3— 7)) — 2(z4— Z)(Z3— 20))
(z,— Zo) — (21— )23~ 20)

_ (23— Z)(A+E—2) ™!
e L e

—15-8 1 [ﬂ] 1.B.
Y 3 n - (I11.B.6)

Proof: Verified by direct calculations.

Fractiles of the form (111.B.2) fulfill (ITI.B.4) and (I11.B.5). On the other
hand A of (111.B.6) has to be greater than z; — zy. This will only hapan when
(111.B.5) holds.

(The choice of p=0.19 is in (I11.B.6) seen from the number 0.5 in the
formulaes of & any v). (111.B.3) gives raise to a J-Sb only when (111.B.5) is
fulfilled. This defines a subspace of T which is acceptable. In this material
some observations did not give estimates fulfilling (I11.B.5). For these a J-Sb
may not be found with the functions. This was typical of the cases where tree
density and D, were simultaneously high. (I11.B.3) imposes restrictions on
the J-Sb foumf The freedom of J-Sb to fit different forms will be limited.
This depends on the complexity of T. If T is one-dimensional (e.g. T= age)
the J-Sb’s raising from (I11.B.3) will differ only in scale and location. How-
ever, as soon as T becomes two-dimensional, we obtain some freedom of
form. The distribution of thinnings will be seen to depend only on Dy and a
constant term. The distribution changes from righthand to lefthand skewness
as Dy grows.
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D, is used as an independent variable to predict a distribution. This
distrigution of cause has a «Dg». The two Dg’s should be equal. Ideally this
should be a restriction on the regression. This has not been done here. The
discrepancy will be shown to be negligible.

C. Height

In this work J-Sb is used on diameters. The outlined theory on height
does not depend on this, it will succeed on all types of diameter distributions.
The actual formulae will, in any case, depend on J-Sb.

The data presented may not be used to establish a height distribution. We
must restrict ourselves in finding a function that determine a height for each
diameter. VESTIJORDET (1972) used the function

d 7 1 -3
h:[ ]+.=[—+B] +1.3 .C.
T Bd 1.3 Ad 1 (1.C. 1

in his work on Norway spruce. He also considered it as «best» among some
others. On each observation we have tried this and also

d T 1 -2
h = [ ] +1.3 = [ 1, ] .
B 3=|Ag+B| +13 (11.C.2)

and that implicitly given by

ln[—l-n——h'“"-“—] = 1n[§i;§d]A +B (I1.C.3)

max"‘h

The last curve is the median regression of the bivariate J-Sb distribution.
Even without a bivariate distribution its conditional properties may be used.
The main difficulty will be to estimate hpy;, and hay.

(ITII.C.1) has a transformation to a linear form:

(h—1.3)% = A—cll +B (11.C.4)

A and B were estimated on each observation and the fit was measured.
The transformation may bias the estimation. As the estimates will not be
used later, we will abandon that discussion here.

We did not discover any interesting differences in the three curves. We
decided to use (I11.C.1).

Some stand parameters are related to the height curve. In this data H;
and H, are given. H; and H,, are of cause depdendent of the height curve. On
the reverse, we will now prove that the height curve (I11.C.1) is completely
determined by H;, H, and the diameter distribution.
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H; is the weighted mean height, the area (squared diameter) being the
weights. H, is the mean height among the 100 thickest trees (pr. hectare).
That is the mean height among trees thicker than the (1 - 100/N) fractile
diameter. This may be approximated by the following:

H, is the height of the (1 — 50/N) fractile diameter.
That is, H is the height of the diameter (D, e.g.).

‘Y—q)‘][l—@] .
. -1
D, = d,_g = §+x[y+61n——T-—N ] (I11.C.6)

Note that D, only depenis on the diameter distribution.

Inserting (I11.C.6) in (III.C.1) gives

H, = h(D,) = (ADI + B+ 13

[¢]
Which is equivalent to

A

o

B = (H,—1.3) 31—

This B reinserted in (II1.C.1) gives

h(d) = (A(c—]i - ]; )+ (Ho—1.3) D+ 1.3 (11.C.7)

o

Now consider the H; measure and substitute (I11.C.7) for height:

H, = ZbF) =

saiad — 1y 4 H-1.37H+1.3)
d D, 7 (I1L.C.8)

(IT11.C.8) is an equation in the single parameter A which is easily solved
by Newtons method. In this context A is unique because (II1.C.1) is mono-
tone in A. The procedure will not converge if Hy=H,. (A=0 is then a
solution, giving a constant height to every diameter.) (When using theoreti-
cal distributions, (IT1.C.8) should realy be an integral. We use 1 cm diameter
classes in our algorithm.)
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The outlined theory is used as follows:

For a given set of stand parameters, we use (I11.B.3) and (II1.B.6) to
determine its diameter distribution. Together with H; and H,, this diameter
distribution determine the height curve (II1.C.7) by solving (I111.C.8). There
is one problem left with the thinnings: Usually no «H, trees» are thinned.
These trees are predominant in the stand after thinning. To fix the height
curve at Hy we have to use D, from the stand after thinning. Thus both the
distribution of the thinning and that after thinning has to be known.

It is to be emphasised that the height curve does not depend on any kind
of estimation involving heights. The curve is a mathematical consequence of
(IIL.C.1), Hy, H, and the estimated diameter distribution.

D. Controlling results

The calculations evolve through different stages. Selection of a distrib-
ution function (and a height curve), estimation of distribution parametres,
regression of distribution on stand parametres. At each stage of calculation
a discrepancy between real world and model is introduced. Tests at each
stage are dependent upon the previous stage. With these tests we have no
control on the overall significance. On the test group, however, we may per-
form overall tests of significance.

I do not wish any of the hypothesis tested to be rejected. On the other
hand discrepancy between model and real world will always be the case. If
the tests are powerful enough, this discrepancy will be detected by the tests.
One should not therefore relay on these tests alone. Some judgement should
be made from the forestry point of view. One has to ask if the model meets
the needs of a forester. All observations have been plotted together with the
estimated distributions to visualise the fit.

Testing on diameters

Diameters are supposed to be realisations of some kind of continous dis-
tribution. Diameters are not observed directly here due to grouping. They
constitute a multinomial distribution, generated from a continous distrib-
ution. (We also know the arithmetic mean within each group.) Introducing
J-Sb to each observation may be tested by

«The observation is generated from some J-Sb»
against (111.D.1)
«The observation is arbitrary»

«Arbitrary» means that we make no assumptions on the underlying dis-
tribution. The hypothesis is that some J-Sb, with some unknown parameters,
is an adequate description of the observed distribution. Using the multino-
mial distribution, (II1.D.1) may be tested by both the Karl-Pearson test and
the likelihood test. In both tests we have used the estimates from chapter
ITI.A. In the regression (111.B.3) stepwise regression have been used to select
independent variables. (II1.B.3) yields a J-Sb to each observation, based on
its stand parametres. The test may be performed against different alternati-
ves: ‘
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«The observation is generated from the J-Sb determined by the functions
(ITL.B.3)»

against (I1L.D.2)
«The observation is generated from some (arbitrary) J-Sb»

or

«The observation is generated from the J-Sb determined by (111.B.3)»
against (HLD.3)

«The observation is arbitrary»

(IT1.D.2) may be tested using the likelihoods from the continious distrib-
utions. (II1.D.3) and (II1.D.1) can only be tested using the multinominal
distributions. (I11.D.3) is the test which is of interest to a forester. The diam-
eter functions are tested against real observations. To a statistican it may be
of interest to divide the test into two parts: one concerning the use of J-Sb
and the other concerning the further use of the diameter functions (I11.B.3).
Using likelihood (discrete) test, the test from (II1.D.1) and (II1.D.2) are
asymptotially independent and their Chi-square sums add up to the Chi-
square sum of (II1.D.3). (This is only true if the number of diameter classes
are unaltered under the estimation of the functions (II1.B.3.)

The actual number of trees (n,, n3) on each stand is varying, some times
being rather high. The test power is therefore high. Small discrepancies will
be detected and give high Chi-square sums. Also, the estimated interval of
diameters (from (I11.B.3)) may not coincide with the actual interval of ob-
served trees. This gives a high Chi-square sum even if the major part of the
distribution fits well. One way of bypassing this is to omit the Chi-square test
on each stand. Instead, we add the frequencies within each 2 cm class, giving
the distribution throughout the whole «forest». The three tests (II1.D.1),
(IT11.D.2), (I11.D.3) may be performed on these multinomial distributions.
Histograms concerning these tests are given in figs. 6, 7, 8, 9.

Testing of heights
The type of height curve is selected by calculating the regressions
(IT1.C.4), (II1.C.2) (transformed) and (II1.C.3) on each observation. As the
further work on heights does not involve any estimation, there is nothing
more to test. However, we may test the theoretical heights (h) against the
observed heights (H) on the testing material. As we should have

H=h
over all diameter classes and all observations, we consider the model
H=c+b.h+ error.

(The error structure is taken to be independant and identically normal.)
The hypothesis of interest is

c¢=0, b=1 against ¢, b arbitrary. (IIL.D.4)

We have also compared the heights within each diameter class (Fig. 10
and 11).



Diameter distributions and height curves 21
in even-aged stands of Pinus Sylvestris L.

Other tests

The distribution raised from (III.B.3) yields a theoretical Dy. This dis-
tribution together with the theoretical height curve yields a theoretical vol-
ume. The (I11.D.4) kind of test may be applied on Dy and volume as well.

IV. Results

The result of this work is a computer program that for each set of stand
parameters determines the diameter distribution and the height curve. In the
program the volume is adjusted so that it will always equal the given volume.
The output of the program is designed to fit NISK’s usual distribution tables.

The text below is concerned with the validity of the functions. The re-
gression coefficients of (II1.B.3) are given in Table 3. These are the functions
to be used in determining the distribution of some stand. The fit in the
central part of the distribution is very satisfactory. (11 thinned observations

- have been removed from the regression. The estimation process (of appendix

2) did not converge properly.)

Table 3. Regression coefficients, diameter distribution.

thinnings stand after thinning

'Variable

do do.3 dg.s do.69 dy dg.3 do.s do. 69
Dg 0.543 0.927 1.013 1.088 1.470 1.278 1.168 1.074
Hyo : 0 0 o 0 0.158 0.079 0.041 O
Dy-In (N)| 0 0 0 0 |—0174 — 0066 —0030 0
constant —2.143 —1.357 —0.888 —0.105 —0.592 — 0.997 —0.675 0.168
R-square 0.58 0.97 0.99 0.99 0.62 0.97 099 0.99
obs 198 413

thinnings | (ILC.1) 209 092 100 023 010

Selection of height curve was based on Table 4. None of the curves was
exceptional. The height curve (IIL.C.1) was used.

Table 4. R-square, height curve on each stand (linear fdrm).

R-squares

formulae obs mean max min sd

after thinning (IIL.C.1) - 413 0.93 1.00 0.35 0.08
(I11.C.2) 413 0.93 1.00 0.35 0.08
(I1I1.C.3) 413 090 1.00 0.32 0.09

(IM.C.2) 209 092 1.00 023 010
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All diameter tests, performed on each observation, are given in Table 5.
As all of them end up with Chi-square, only the Chi-square sums are given.
(A sum of independent Chi-squares is also a Chi-square.)

(I11.D.3) test the functions against observed stands.
(I11.D.1) test use of J-Sb against observed stands.
(ITLD.2) test the functions against use of J-Sb.

In Table 5, «<"» denotes that cells have been added together to obtain cell
expectations greater than 5. This must be done to ensure Chi-square approxi-
mation. This reduction of cell number will sometimes give zero degrees of
freedom. These observations are removed from the test. (The uncorrected
Karl-Pearson test may have a poor Chi-square approximation.) The likeli-
hood test (discrete) is, based upon the multinomial.distribution (as the Karl-
Pearson test). The llkehhood test (contmous) is based upon the likelihoods
from the J-Sb distribution. The « —2 In» rule is used to achieve Chi-square
statistics in the likelihood tests.

Table 5. Results from individual tests on diameter disribution on each obsérvation.

no. obs ' no. trees df Chi-square |.
estimation group, thinnings ,
(I11.D.1) Karl-Pearson test? ‘ 31 4558 50 168
» » : 207 13827 647 3730
» , likelihood (discrete) test » » » 1623
estimation group, stand after thinning =
(II1.D.1) Karl-Pearson test? 394 78646 1264 3040°
» » 413 84600 2427 . 8403
» , likelihood (discrete) test » » » 5437
testing group, thinnings
(I11.D.3) Karl-Pearson test? 82 6221 250 972
» » 86 6264 604 6779
» , likelihood (discrete) test » Co» » 2132
(IIL.D.1) » : 79 5851 225 589
(I11.D.2) » » » 4.79 1041
» , likelihood (continuous) test 75 5735 4.75 1815
testing group, stand after thinning
(I11.D.3) Karl-Pearson test? 175 34860 1192 4705
» » » » 1646 19820
» , likelihood (discrete) test » » » 8186 -
(I1L.D.1) » o137 27350 676 1384
(I111.D.2) » » » 4.137 2440
» , likelihood, (continuous) test 127 25058 4.127 2726
U denotes that cells have been added to give expectation of cell = 5.
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Summary Chi-square tests, where each 2 cm class frequency has been
added up over all observations to give the distribution in the whole_«forest»
are given in Table 6. (In this test observations with 10000/ (H, - VN) <12
has been removed.) Histograms of the «distributions» are given in Figs. 6, 7,
8, 9.

Table 6. Summary Chi-square test.

. no. no . '
‘ trees classes df Chi-square
testing group, thinnings ' : :
(INL.D.1) 58716 17 ? 14.68
(I111.D.3) (overall test) » » 16 82.21
testing group, after thinning (
(I11L.D.1) 32942 26 ? 94.86
(ITL.D.3) (overall test) : » . » 25 119.71
estimation group, thinnings- 2
(IN1L.D.1) 13347 18 ? 478.47
estimation group, after thinning
(INL.D.1) 73648 26 ? 76.38
«?» in place of df indicate that this is not really a Karl Person test
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Fig. 6. Thinnings, testing group. Distribution:of all trees within. each dlameter class White
coloumn: predicted by the functions. Shaded coloumn: observed.
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Fig. 7. Standing, testing group. Distribution of all trees within each diameter class. White
coloumn: predicted by the functions. Shaded coloumn: observed.
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Fig. 8. Thinnings, estimation group. Distribution of all trees within each diameter class. White
coloumn: Predicted by J-Sb on each observation. Shaded coloumn: observed.
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Fig. 9. Standing, estimating group. Distribution of all trees within each diameter class. White
coloumn: Predicted by J-Sb on each observation. Shaded coloumn: observed.

Summary statistics on height, D, and volume are given in Table 7. The
height given by the height curve is compared with the observed height within
each diameter class in every observation. The D, and the volume given by the
diameter function and height curve is compaired with the observed on each
observation. The hypothesis tested is (I11.D.4), equallity against linearity.
The linearity is highly significant.

Table 7. Height, Dg and volume (testing group) (calculated parameters with lower case signs).

estimated function sigma df F(2,df) R2
thinnings

D= —-0.11+1.01 .d, 0.05 84 67.8 .99
Vo= 0544+0.94 .v, 1.77 84 139 .98
H, = 0.17+0.98 .h, 0.92 633 6.0 .96

after thinning
D; = 0.02+1.001-d;4 0.18 173 3.5 .99
V3= —6.76+1.037.v; 8.57 173 9.0 .99
Hy; = 0.20+0.98 .h; 0.84 1849 449 .97

The mean residual heights are plotted against diameter class in Figs. 10
and 11. Plots of some single stands, including observed and predicted diam-
eter distributions and height curves, are given in appendix 3.
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Fig. 10. Thinnings, testing group. Residual mean height. 1=1—9 measures, 2=10—19
measurs, etc.
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Fig. 11. Standing, testing group. Residual mean height. 1=1—9 measures, 2=10—19
measurs, . ..., A=90-—99, B=100—109, etc.
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V. Discussion

The tests of chapter IV. give poor support to my functlons We shall
study Table 5 in some detail, taking the figures on testing group, 'stand after
thinning. It should be noted that a reduction of stand area and thereby the
number of trees (without altering the distribution) would reduce the Chi-
square sum accordingly.

The likelihood test (II1.D.3) rejects the functions. To study the origin of
this deviance we must study the observations where the predicted number of
diameter classes equals the observed. This is the case in 137 observations.
The test (II1.D.1) tests the use of J-Sb. (II1.D.2) (with 4.137 df) tests the
difference between the functions and the use of J-Sb. The overall test (that
is (IIL.D.3)) on these 137 observations is the sum of these tests. From this we
conclude that the functions give rise to greater deviance than J-Sb. Also the
difference between this sum and the test (II.D.3) of Table 5 tests the 38
observations in between. The Chi-square sum of them is very high. Common
to these observations is that the locations of observed and predicted diam-
eters is displaced.

The Figs. 6, 7, 8, 9 give the sum distribution of the whole material. Even
if Chi-square tests rejects the functions they may be acceptable to a forester.
On stands after thinning there are only 5 classes with a discrepancy of more
than 100 (0.3 %) trees between calculated and observed distribution. The
classes 7.5—9.5 cm and 9.5—11.5 cm have altogether 310 trees less than
observed, while the classes 11.5—13.5, 15.5—17.5 and 17.5—19.5 cm have
altogether 474 trees too many. (All from a total of 32 942 trees.)

Table 7 rejects equality between observed and calculated height, volume
and Dg. The discrepancy is not very high. The calculated height curves seem
to overestlmate helght when height is higher than about 10 m. (0.2+0.98.h
is smaller than h if h is larger than 10 m.) It should be noted that observed
parameters are calculated from 2 cm diameter classes whlle the calculated
are based on 1 cm classes.

In Fig. 10 and Fig. 11 the mean differences between observed and cal-
culated heights are plotted against diameter class. The heights are too high
for the higher diameter classes. The calculated heights are restricted to meet
the given H, and H;. As these measures depend on the diameter distribution
different observations may have equal H, and H,; even if the height curve
differ. The deviance here may be explained by an underestimation of the
diameter of the H, tree (D,). This may be caused either by the fractile
approximation to D, or by a tail of the:estimated diameter distribution that
is too light. The functions to determine the distribution are based upon D,
and 3 central fractiles. The right tail has then to adjust itself. A poor right
tail may be the result. If larger diameters are more important than smaller
D nax should substitute Dy, in the calculations (I11.B.3).

Plots of single stands have been studied. Some of these are given in
appendix 3. From these we may also see how the form of the dlstnbutlon
changes with stand parameters.

The diaméter distribution should show cons1stency when a stand is wat-
ched during its lifetime. Typically a tree should always be growing. A thin-
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ned tree should exist in the foregoing standing distribution. There should
therefore be a consistency between distribution of thinnings and stand after
thinning. Functions of thinnings and stand after thinning have been devel-
oped independent of each other. No restrictions were laid down in order to
assure consistency. BRAASTAD (1980) used the same functions during obser-
vation of stand during several thinnings. No inconsistency between thinnings
and stand after thinnings are shown there. Thus, with consistent development
of stand parameters, the distribution calculated shows consistency. The same
kind of arguments may be used on the height curve. No height should ever
decrease. As this curve is a mathematical construction from given H;, H,
and a calculated distribution, consistency in diameter distribution assures a
consistency in the height curve. No attempt was made to restrict the distrib-
ution so that it will always achieve the given D,. Table 7 shows that the
discrepancy is small. This is the case because there is observed a very strong
linear relation between the percentiles of the J-Sb distribution and Dy (Table
3). if the Dy of the J-Sb had been easier to calculate from parameters, we
should have used that relation to restrict the distribution in order to achieve
the given Dy. In the normal distribution (when it is not truncated) there is an
easy relatlon between Dy and distribution parameters and the restriction is
easily laid. This is not easily transferred to J-Sb fractiles because the prob-
ability integral up to Dg in normal distribution is not location invariant.

If I was previously aware that fractiles of J-Sb were to be used to develop
the diameter functions this would have been a strong argument favouring an
easier estimation method of J-Sb on each stand. In chapter III.A. we outlined
three different estimation methods. If we used the fractile method these
fractiles could be used in the regression (111.B.3) thus we would save a lot of
computation Anyway the method used is «best» in the sense that it theoreti-
cally gives estimates with smallcf variances.

Many distribution functions have been used on diameters during time. A
work that should also be done in Norway is to compare them. Also if a height
measure on each tree was available it would be of interest to analyse the
multidimensional distribution of diameter and height.

Summary

The aim of this work is to construct mathematical functions that describe
the diameter distribution and height curve of stands of even aged Pinus
sylvestris. Stand parameters are considered known. Thus the functions are to
give distribution and height curve with known properties like D,, H{, H, on
each stand. A material with completely known stands is given. 'f"he mater1a1
is divided into two groups called estimation and testing group, respectively.

The Johnson System b (J-Sb) distribution is used to fit distributions. J-Sb
((11IL.A.1), (IT1.A.3)) is a four parameter distribution which changes in lo-
cation, scale and «form». The region of skewness and curtosis that J-Sb
covers is seen to coincide with the region in which the diameter distributions
are mainly located. (Figs. 2, 3, 4, 5). The J-Sb parameters have been esti-
mated by the maximum likelihood method on each stand.



Diameter distributions and height curves 29
in even-aged stands of Pinus Sylvestris L.

The variation in distribution from observation (stand) to observation is
handled with a multiple regression model. The J-Sb parameter is not used
directly; we transform them into four fractiles (I11.B.2) which are regressed
(II1.B.3). No effort is made to restrict the distribution to achieve the given
D, on each stand. The D, found is nearly equal to the given (Table 7). The
regression functions are given in Table 3. The J-Sb parameters are then
found from the transformation (II1.B.6). Calculation of the distribution is
done by (I11.A.3).

The curve (I111.C.1) is used to fit heights. As H, and Hj are given the
curve should reach these measures on each stand. A mathematical algorithm
is developed to ensure this. As a matter of fact H,, H; and the diameter
distribution determine the height curve completely.

The functions are tested against the independent testing material. Resuits
are given in chapter IV. These tests reject my functions. Judgement should
not depend solely on these tests. The Chi-square test will reject any hypot-
hesis if the number of observations is high enough. A judgement must be
made from a forestry point of view. To do this several plots are studied. Figs.
6, 7, 8, 9 show the diameter distribution accumulated over all stands. Figs.
10, 11 show the mean residual between observed and calculated heights. In
appendix 3 plots of single stands are given. From these plots we have conclu-
ded that the functions have an acceptable fit.

Diameterfordelinger og heydekurver for ensaldrede bestand av
Pinus sylvestris L.

Hensikten med dette arbeidet er & lage funskjoner som beskriver diame-
terfordelingen og heydekurven til bestand av ensaldret furu. Bestandspara-
metre er & betrakte som kjente og funksjonene kan basere seg pa disse. Et
antall kjente bestand er grunnlag for beregningene. Materialet er beskrevet
i kapittel II. Materialet omfatter badde tynninger og stdende bestand. Mate-
rialet er blitt delt (tilfeldig) i to grupper, beregningsmateriale og testmate-
riale, henholdsvis. Funksjonene utvikles pd beregningsmaterialet. Disse testes
sd mot det uavhengige. testmaterialet.

Johnsons system b fordeling (J-Sb) er brukt for & tilpasse diameterfor-
delingen. J-Sb er en fire-parameterfordeling ((II1.A.1), (IIL.A.3)) som kan
variere skala, lokasjon og form. J-Sb er en transformasjon av en normalfor-
delt variabel. Det omrade av «former», mdlt i skjevhet og kurtosis som J-Sb
kan oppné dekker det omrdde som diameterfordelingene hovedsakelig befin-
ner seg i (Fig. 2, 3, 4 og 5).

Vi har brukt sannsynlighetsmaksimeringsprinsippet ved estimering av
parametrene pd hvert bestand. Variasjonene fra bestand til bestand er hand-
tert i en multippel regresjon, der bestandsdata er uavhengige variable. J-Sb
parametrene er ikke brukt direkte, de er transformert til faste fraktiler
(IT1.B.2) som brukes som avhengige variable i (II1.B.3). Regresjonskoeffi-
sienter er gitt i tabell 3. For 4 finne fordelingen p& en bestemt bestand, ma
vi forst beregne fraktilene (111.B.3) (tabell 3) sa transformere tilbake til J-Sb
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parametrene ved (II1.B.6). (En slik «tilbake transformasjon» kan ikke alltid
utfares. (I11.B.4) og (I1L.B.5) gir betingelser for & kunne gjere det.) Forde-
lingen beregnes sd ved (I11.A.3).

D, inngdr som uavhengig variabel i regresjonsberegningene. D, er ogsi
en egenskap ved fordelingen. Dette er det ikke tatt hensyn til under bereg-
ningene. Det har vist seg at den beregnede D, ikke avviker mye ifra den
oppgitte.

Kurven gitt ved (III.C.1) er brukt som heydekurve. Da H, og H; skal
betraktes som kjente, burde kurven oppnd disse méal pd hvert bestand. En
algoritme er utviklet slik at det vil skje. Faktisk vil Hy, H; sammen med den
funne diameterfordelingen bestemme haydekurven fullstendig. Kurven av-
henger derfor ikke av noc observert hgydemateriale.

Testresultater mot det uavhengige testmaterialet er gitt i kapittel IV.
Testene er stort sett signifikante, dvs. materialet motsetter seg funskjonene.
Kji-kvadrat test er darlig egnet i slike situasjoner da den vil forkaste enhver
hypotese bare vi har mange nok observasjoner. Det er nedvendig & foreta en
«skoglig» vurdering av resultatene. Selvom det er «signifikant» forskjell imel-
lom teori og virkelighet, hvor stor, hvor viktig er denne forskjellen? Ut fra
slike betraktninger er metoden funnet tilstrekkelig god. I fig. 6, 7, 8 og 9 har
vi summert diameterfordelingene for hele materialet. Dette vil vise hvor godt
funksjonene treffer midlet over en hel «skog» med den sammensetning vart
materiale har. I fig. 10 og 11 er gjennomsnittlig avvik imellom observerte og
beregnede hayder skrevet ut for hver diameterklasse. De beregnede heyder
synes «for store» for de hayde diameterklasser. Dette kan henge sammen med
at diameterfordelingen (og dermed plasseringen av H,) er darlig bestemt i
denne enden. I appendiks 3 finnes plot over en del enkeltfelter.
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Appendix 1

Age at breast height (years)

Alder ved brysthayde (ir)

Top Height, aritmetric mean height of 100 largest (according to dia-
meter) trees per hectare (m)

Overhpyde. Aritmetisk middel av de 100 grovste treer per hektar (m)
Number of standing trees after thinning (per hectare)

Antall treer etter tynning pr. ha

H (Lorey) after thinning (m)

Grunnflateveid middelhgyde (m) etter tynning

Basal area mean diameter after thinning (cm)
Grunnflatemiddelstammens diameter etter tynning (cm)

Basal area after thinning (m? per hectare)

Grunnflatesum etter tynning (m? pr. ha)

Volume after thinning (m?* per hectare)

Volum etter tynning (m° pr. ha)

Number of removed trees (thinnings) (per hectare)

_Antall uttatte treer (tynning) pr. ha

H (Lorey) of removed trees (thinnings) (m)
Grunnflateveid middelhpyde, tynning (m)

Basal area mean diameter of removed trees (thinnings) (cm)
Grunnflatemiddelstammens diameter, tynningsuttak (cm)
Basal area of removed trees (thinnings) (m? per hectare)
Grunnflatesum, tynningsuttak (m? pr. ha)

Volume of removed trees (thinnings) (m? per hectare)
Volum, tynningsuttak (w’ pr. ha)

H -Lorey, either H, or Hj

enten Hyeller Hy

either D, or Dy

enten D; eller D

Site index. Hy at Ty 3 = 40 years (m)

Bonitet. Hyved T4 = 40 ar (m)

Actual number of thinned trees

- _Faktiskt antall tynnede treer

Actual number of standing trees

Faktiskt antall stdende treer

Either N5 or Ny

Enten Ny eller N,

Either n, or nj

Enten ny eller ny

This symbol above any parameter denotes «estimate of»

. Skrevet over et tegn betyr «estimat»

A diameter where «- 100 % of the trees have smaller diameters
En diameter slik at o100 % treer er tynnere

Cumulative standard normal distribution

Kumulative standard normalfordeling
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J-Sb Johnson System b distribution

P(.)

Johnson System b fordeling

Location parameter in J-Sb (¢ equals D)
Lokasjonsparameter i J-Sb (£ lik Dyin)
Scale parameter in J-Sb (¢ + X equals Dpax)
Skalaparameter i J-Sb (¢ + A lik Dp,,)
These parameters in J-Sb determines the «form» of the distribution.
Formparametre i J-Sb

Skewness

Skjevhet

Kurtosis

Kurtosis

Diameter of a single tree

Diameter pa et enkelt tre

Height of a single tree

Hoyde pa et enkelt tre

Basal area of a single tree

Grunnflate pa et enkelt tre

Vector of some stand parameters

Vektor av bestandsparametrene
Probability

Sannsynlighet
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Appendix 2

Maximum likelihood estimation of J-Sb parameters

Consider observations dy, . . ., d,, stochastically independent realisations
from a J-Sb.

In this material the m diameters are grouped into 2 cm classes. We know
the class frequencies and also the class means. This involve somewhat more
information than pure grouped data. LAMBERT (1970) has estimated J-Sb
parameters with maximum likelihood of grouped and ungrouped data (as if
they were ungrouped). He concluded that the grouping did not affect the
estimates much. Here the data are used as if they were original diameters.
(Each class mean is weighted with the class frequensy.)

The log likelihood is

m
In(fd,, . . ., dn) = —%ln(Zn) + mind + mink—2 In(d;~§)

m m 2
= —d) = 16X 4 di_ ]
2 Ino+g—d) — vz [y zsln—LHE_di

to ease notation set

In; = ln—g—d"—
)\.‘FE —d;

Differentiation of log likelihood yields equations

8 = —rn——_
/ Sin2— (0 iniz)
' m

) Zin,@

m

’?:

where estimates of £, A have been inserted in In;. This is as usual with normal
distribution. (1n; then being the observations.) To solve for £ and A the fol-
lowing equations must be solved:

dln(f(d; , . . ., dw) _
o

dln(fd,, . . ., dw) _
oA
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where v, 8 are inserted after differensiation. These equations may be solved
by Newtons method.

Starting values of € and A Was
Eo = dmin—A

M = dpax—EotA

were

dmax—dmi
A = Smax min
v m

My motivation is as follows:

T
R

Define fi= (1+exp[

Now

E(dmin) = E + A f|
E(dmax) = E + )\- : fm

(The inverse image (J-Sb) of expectiation of ordered observations from
uniform distribution.)
Solving the above equation with expectation removed gives

- Amax—dmin)
= dmin—( max min
E fm—'fl

fi

— (dmax_dmin) - dmaxndmin
- (—E+tmax— Smin] — Zmax _—min
& dma E fm_'fl fm_fl
1 _fm
f, is dependent of &, y. Setting =1, y=0 then
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and the f,’s are independent of parameters.

f"‘T“fl is fairly approximated by Vm as the table shows:
1

Table appendix 2.

m Vm fmgfl
10 3.16 2.76
20 4.47 4.17
30 5.18 5.12
40 6.32 6.1
50 7.07 6.8
75 8.66 7.8

100 10.00 9.2

500 22.6 16.7

1000 31.6 20.9

Better «fit> may be achieved by other exponents, if of interest.

In some observations the process (Newton) did not converge. This may be
due to the exictence of a path of the likelihood on which it is unbounded
(LAMBERT, 1970). For these observations the starting values of £ \ were
used. The stopping criterion used was to stop at stage k if

=M )® + E—Ei 0 < 0001
Mt + Ek—lz '

k was also limited to 50. Usually the prosess stopped after about 3—4 iter-
ations.
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Appendix 3

Plots of diameter distributions and height curves
on some spesific stands at spesific ages

The plots are computer made. The plot consist of both the diameter
distribution and the height curve. The histogram is the observed diameter
distribution (2 cm classes). The «*» curve is the distribution calculated from
the functions. (The abcissa is the diameter, the ordinate is the fraction of
trees. The «<DMIN>» indicate the diameter at the «origo» of the plot.) The
right part of the plot concernes the height curve. The «X» indicate observed
height, the «*» is the calculated height curve. if the deviance between obser-
ved and calculated height is less than 1 m no «X» is plotted. (The abcissa is
the diameter, the ordinate is the height in meters.) Also the no. of observed
trees, the Chi-square test, the H;, the observed and the calculated Dy is
given.

These plots show how the functions fit to an independent set of observed
stands. One might get an idea on how the functions work without the need
to know all the mathematical background.
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