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Abstract 

The Box-Cox transformation was evaluated with reference to a six-factor full factorial (2^6) 

data set with 64 runs. The data were used to determine the optimal operating conditions for a 

milling machine with respect to surface finish. A suitable transformation was determined by 

minimizing the mean square errors, evaluating the size of the effect significances, the normal 

probability plots of the estimated effects, Shapiro-Wilk test and the model residuals. The 

achievement of both normality with constant variance and a simple model came about as a 

result of a trade-off between several different criteria.  

 

Key words: Design of experiments, Box-Cox transformations, Normal probability plot, 

Residuals, Expectations. 

 

1. Introduction 

The traditional reasons for making a nonlinear transformation are (Box and Cox 1964): 

R1. To make a model simpler. This often means finding a scale such that the model 

parameterization has fewer interactions. 

R2. To achieve homoscedasticity, i.e. equal variances throughout the experiment. 

R3. To ensure that the data have normal distribution of errors. 

 

Box and Cox (1964) introduced the following set of transformations for Y>0: 
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Y is the geometric mean of the data concerned. The factor 
(1 )

Y
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 is optional but 

ensures that the residual sums-of-squares from different λ are comparable (i.e. on the same 

scale). The use of this well-established procedure is described herein, even though it has been 

called into question (Dagenais and Dufour 1994).  

 

The aim of this paper is to present a case study evaluating the Box-Cox transformation on a 

data set with several active factors and a large set of possible effects. It makes it possible to 

analyse the data with normal plots and residual analysis and demonstrate the trade-offs 

involved in deciding a proper model for the data. The most common violation of R2, at least 

in industrial experiments, is that variation increases with the expectation. Making plots of 

residuals against predicted values is an easy and good method of assessing this issue. Normal 

plots are a good method of assessing normality (R3), but the Shapiro-Wilk (SW) test (Shapiro 

and Wilk, 1965) is also available. 

 

In the Biological 3x4 experiment with replicates, (Box, Hunter et al. 2005) R1 and R2 appear 

to have been reached simultaneously using the same transformation. In the textile 3
3
 

experiment without replicates (Box and Cox 1964), and the 2
4
 without replicates drill example 

(Daniel 1976), revisited in Box, Hunter et al. (2005), R1 is the criterion of interest, and a log-

likelihood method is used, assuming R2 and R3.  

However, a transformation achieving R1 might be different from a transformation achieving 

R2 and R3 (Nelder 1968). A sequential search might be performed (Box and Cox 1964). R2 is 

more important than R3, because the least squares estimates are unbiased and independent of 

the error distribution. Hinkelmann and Kempthorne (1994) argue that in a completely 



randomized design, with additivity between treatments and experimental variation, analysis of 

variance (ANOVA) with replicates can be tested distribution-free by means of a permutation 

test, and that the common F test is a good approximation for this. Thus, the use of a 

transformation is irrelevant. However, additivity between treatments and experimental 

variation are crucial, and unequal variances can be an indication of non-additivity in this 

sense. Under this framework, the use of a transformation could be appropriate for finding a 

scale with R2 that supports additivity.  

 

When λ<1 large data values are decreased and right skewed data can be normalized (R3). 

When λ>1, left skewed data can be normalized. The practical range of λ values can be said to 

be from about -3 to +3. Sleeper (2005) advocates λ between -5 and +5. When   becomes 

large, the transformation tends toward a vertical and a horizontal line that have a junction at 

(1,0) in the  { }Y Y  plane leaving the data with very little variation. { }Y  can only be 

normal in the log() case (and when λ=1), else it will be a truncated normal (Freeman and 

Modarres 2006). When λ>0 then  { } 1Y     and when λ<0 then { } 1Y     . Mønness 

(2011) presents a use of the inverse Box-Cox transformation that also explores what kind of 

distributions can be approximately normalized by the Box-Cox transformation.  

 

Model parameters and λ should be estimated simultaneously by maximum likelihood. The 

likelihood is based on the distribution density 
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 and   is the standard cumulative normal distribution, (μ,σ) is the 

expectation (with the model structure) and the standard deviation of the transformed variable. 

This distribution is called the power-normal distribution (Freeman and Modarres 2006). The 

shape of the density function is given by λ and k (Goto and Inoue 1980). If λ≤0 or λ≥1 the 

density is unimodal. A distribution with  1k 2 1    & λ>0 has a density with a maximum 

at x=0. If 1k 2 1    & λ<1 the density has a local minimum close to x=0, but the size of 

the local minimum is negligible with most k found in practice and the shape appears to be 

unimodal. Mønness (2011) found that in most practical cases, λ<1 yields right skewed 

distributions while λ>1 yields left skewed distributions although this does not hold generally. 

Formulas for moments are complicated. Formulas for special cases are given by Freeman and 

Modarres (2006). If λ<0, moments of higher order than   do not exist (Goto and Inoue, 

1980). If the original data can be described by this distribution, the transformed data can be 

described as normal. 

 

The truncation factor  sign( )k 

 

 is often ignored in the estimation. The estimation is often 

simplified further by estimating the model expectation with several λs and finding the λ that 

maximizes the likelihood. Minimizing the mean square errors is equivalent to maximizing the 

log-likelihoods when the truncation factor

 

is ignored (Box and Cox 1964). Figure 3 below can 

thus be viewed as an approximate maximum likelihood estimation.  

 

With a specific set of data, there is no guarantee that the minimizing λ also ensures the error 

distribution to be normal (R3) and with equal variances (R2), this has to be evaluated after the 

estimation has been done. The minimizing λ can be model dependent, as will be seen. 



Transformation is a practical tool to achieve a reasonable sound analysis in real situations and 

involve several tradeoffs were graphical displays play a critical role.  

 

In econometrics, the untransformed data is sometimes modeled as having a two-parameter 

gamma distribution (Amemiya, 1981) 

 

The analysis described below was carried out using SYSTAT (Systat Software 2004). 

 

2. The Experiment 

The data were originally collected as part of an investigation to compare the techniques of full 

factorial and the Taguchi methodology (Garzon 2000). The main objective of the study was to 

optimise a milling process (a metal cutting operation) by determining the significant factors 

and interactions that affected the surface finish of the metal. Mills and Redford (1983) 

highlight the factors that influence the result of a milling process. Maekawa (1998) discusses 

the intricate nature of the relationships involved between the factors that influence the 

smoothness of the final surface. Prior to the initial investigation using the full factorial 

experiment, a brainstorming session was held in order to identify the principal factors 

involved in the milling operation. “Several factors must be considered when setting up a 

milling job, including (among many) the type of milling operation, speeds feeds, depth of cut, 

and safety. There is a very dense network of relationships among factors, which in most cases 

interact having high incidence on the process itself” (Garzon 2000). The full factorial 

experiment involved six factors, each of which had two possible values; hence, a total of 64 

runs were required. Full randomization was reported to have occurred. Table 1 shows the 

selected factors (A, B, C, D, E and F), their levels, and their coded values.  The surface 

roughness was measured using the “centre line average”(Kalpakjian 1992). The values are 

shown in Table 2, in which a small value represents a smooth surface. For a further discussion 

of the means by which the predictors and levels were selected, see Garzon (2000).  

 

Mønness, Linsley et al. (2007) made use of the same set of data in an earlier paper on the 

different fractions of a factorial design. The data used here resembles the drill example of 2
4
 

without replicates (Daniel 1976). 

 

Industrial experiments are often performed using a fractional factorial design, due to the large 

numbers of runs involved in a full factorial. The data afford us with the opportunity to test the 

use of the Box-Cox transform, in combination with a large set of estimable parameters. It 

would have been preferable also to have had replicates, but the availability of such data would 

have been even less likely. However, eight repetitions (i.e. measurements using the same 

piece of treated material) were performed of each treatment combination (run).  Of the total (8 

x 64), nine measures were missing, all from runs having large surface roughness values. 

While not actually replications, the repetitions provide some insight into the variability 

inherent in the data. 

Let run j run run run jY        where run=1,…,64 and j is the replicate index. 

run
is the expectation, run  is the inter-run variation with standard deviation  run  and 

run j is the intra-run variation with standard deviation  run  . 

There is a well-established procedure for disentangling location and dispersion using a power 

transformation of the data. Let δ be the replicate variation (within the experimental unit). If 

  (1 )

run runmean    then Y  is a transformation that is suitable for ensuring homoscedasticity 



(Box, Hunter et al. 1978). Figure 1a shows the relationship between   10 runLog    and 

 10 runLog Y   for all 64 runs. The linear regression having a slope of 1.78 is superimposed on 

the figure. The transformation using the reciprocal 1Y   yields the data shown in Figure 1b. 

This is not quite the same as the 0.8Y suggested by the regression, but it is a natural 

approximation. The linear regression having a slope of 0.18 is superimposed on the figure. 

Because  run   is the intra-unit variation, it only affords us an indication of the nature of the 

inter-unit variation. The repetitions are not replicates (Wu and Hamada 2000)p9. Some theory 

of transformations for mixed models exists (Gurka, Edwards et al. 2005), however, this is not 

made an issue herein. We herein restrict our attention to 

run run runY     , i.e. the means for each run. 

run  is the random error between runs, which now includes all the sources of variation, 

including design variation and the means of the intra-unit variation.  run  should be stable 

across runs (R2), and ideally run  should be normally distributed (R3). 

 

The data are shown in Figure 2a, and given in detail in Table 2. Most runs yield a smooth 

surface with small values while some runs produce results that are less good. The residuals 

from the model run A B C D E F       + all the two-factor and three-factor 

interactions are shown in Figure 2b. The regression is dominated by a few large observations 

and the residuals appear neither to have equal variances nor to be normally distributed. The 

data are right-skewed. In the data, the value of the maximum divided by the minimum is 

25.56/0.78 = 32.8. A transformation seems appropriate and could make a difference. 

 

3. Results 

Since the original data is right skewed, λs less than one might normalize the transformed data. 

Five sets of regressions are made for λ = -3 to +2 in steps of 0.1. Values greater than one are 

included so that the original data will not be a border case. Figure 3 shows the mean square 

errors (MSE) for different values of λ. (The λ range not shown yields higher MSEs.) The five 

regression models are:  

1. Main effects only, shown as “MSE (main effects only)”, which have the highest MSE 

values with a minimum that occurs at λ =-1.5.  

2. Main effects with the two-factor interactions. The minimum MSE value occurs  

at λ = -1.2 

3. Main effects with both the two- and three-factor interactions The minimum MSE 

value occurs at λ = -0.3 

4. A stepwise regression that allows for the main effects with the two- and three-factor 

interactions, shown as “MSE (stepwise)”. The stepwise procedure allows for factors to 

be both entered and removed (Systat Software 2004). This curve has varying degrees 

of freedom as λ vary, which makes it less smooth. The minimum MSE value occurs at 

λ = -0.3 



5. run A B C D E F DE DF EF DEF           , shown as 

“MSE (A B C D E F DE DF EF DEF)” The minimum MSE value in this case occurs 

at λ = -0.85. 

 

Regressions 1, 2, and 3 include all the factors with an increasing degree of complexity. The 

effect of the stepwise regression 4 is to simplify regression 3. Regression 5 was considered 

because the interactions between D, E, and F turned out to be the most influential.  

It may be seen that when the complexity of the model is increased, the mean square error is 

decreased (as is often the case), but in our case the proposed value of λ increases from -1.5 to 

-0.3, thus λ is model dependent . The quotient obtained between the curves (main, two-factor 

and three-factor interactions for each value of λ) represent a series of F tests in which some 

interactions are significant. 

 

Table 3 shows the full ANOVA output for regression 3 on the untransformed (λ = 1) data and 

the reciprocal transformed data (λ=-1). All these values can also be seen in Figure 4 and 5. 

Figure 4 shows t-values obtained from regression 3 for the λ values . The scale on the vertical 

axis should be noted. The horizontal dashed lines are the 5 % significance limits of a single t 

test.  

 

It may be seen that: 

 D and E are the most important factors, regardless of the choice of λ. The next most 

important factor is F. A and B are never significant. 

 The interactions between D, E, and F are highly significant. 

 C, and some other effects, seems significant when λ is close to zero. 

 The value of λ that gives the highest significances for the seemingly most important 

factors also gives high significances for several other factors, indicating a complex 

model violating R1. 

 

Testing 6 main effects, 15 two- and 20 three-factor interactions with regression model no. 3 is 

a multiple test situation. Some of the significances found in Figure 4 may be due to multiple 

testing issues. The estimated effects are orthogonal, and therefore uncorrelated. They also 

have equal estimates of variance. They may thus be judged using a normal probability plot. In 

Figure 5, in which each of the four panels depicts a normal probability plot for a different 

value of λ, the estimates are divided by their common standard deviation; thereby making the 

values on the horizontal axis equal to t-values (The division changes the scale, not the 

pattern).  

Figure 5 shows that: 

 For λ = 1, the effects hardly constitute a set of normal variates with expectations equal 

to zero, with a few non-zero expectations (thereby providing further support for a 

transformation). 

 Figure 4 depicts a large number of significances when λ = 0. However, the probability 

plot in Figure 5b indicates that this may be due to a normal variation among several 

values that have an expectation of zero (i.e. not significant). 

 The significance of C when λ = 0 is dubious. Its significant value is close to being just 

a maximum among several values with an expectation of zero. At λ = -1, C is within 

the set of normal variates judged to have an expectation of zero. This is also the case 

when λ = -0.5 (not shown). 

 The extreme value λ = -3 presents a picture where only D and DE (maybe E) are 

significant. 



The residuals that pertain after the fit has been applied should be normally distributed (R2), 

and should have a random pattern with equal variation (R3) against the fitted value. This is 

shown for λ = 0, -1 and -3 in Figure 6. The frames e and f for λ=-3 seems to best fit normal 

distribution properties: no extreme residuals and very little variation structure against the 

fitted value. However, the transformation may have taken to much variation out of the data 

and λ=-3 is certainly not advised by the minimizing MSE as shown in Figure 3. The 

discrimination between λ = 0 and λ = -1 is not very strong, but may be judged in favour of λ = 

-1, in that the residuals appear slightly more normal (R3) and the variation depends slightly 

less on the predicted values (R2).  

Normality can be examined formally by the Shapiro-Wilk (SW) test. The more significant, the 

less normal is the data. The significances of Shapiro-Wilk tests for every λ are shown in 

Figure 7for both regression model 3 and 5. With model 3 SW points to λ=0 as the best option, 

while with model 5 SW points to λ=-1.  

 

We judge that the combination (D=+1, E=-1, F=+1) represents the best treatment, 

alternatively (D=+1, E=-1, F=-1) (See Table 4). A, B, and C can be set according to external 

experimental preferences. Maybe C should be scrutinised in a follow-up experiment.  

 

4. The Expected Values 

Table 4 shows the estimated expected values, on their original scale, for experimental settings 

in which E, D, and F are varied (A, B, and C are artificially set to zero), for λ =  -1, 0 and +1. 

For λ = -3 also F is removed. The error degrees of freedom for the confidence interval are 64-

(1+6+15+20) = 22, even if only D, E, and F and their interactions (eight model degrees of 

freedom, four when λ = -3) are in action. (The number of estimated factors will only affect the 

error and the error degrees of freedom because the effects are orthogonal. I.e. the interval is 

conservative). 

The composite estimates are nearly equal, regardless of the value of λ, except for λ=-3. The 

precision of the estimates at small values are improved by a transformation. Due to the non-

linearity, the confidence intervals on the original scale are asymmetric and vary in size.  

Some basic statistical theory is required to highlight the issue of expectation. Consider the 

general regression model in matrix notation (Searle 1971) 

eXby   with  E y Xb . 

y  is a n*1 vector of observations, X is a n*p known design matrix of full row rank, b is a p*1 

vector of the effects to be estimated and e  is a n*1 vector of uncorrelated random errors. 

The estimated expectations at the design points are 

  yXXXXbXy
1





ˆ  

If the fit is good, yy ˆ . Now, consider y as a nonlinear monotone 

transformation )(Yy f where Y represents the original observations, )(Yf is the Box-Cox 

transformation for some λ, and  1f  is the inverse transformation. Then the estimated 

expected values on the original scale are 

  YYY 












 
 )(ff)(ff 11

. 

λ = -3 is an exception for higher estimated values. As mentioned in the introduction the 

transformation becomes very flat for high   values. Thus the inverse transformation 

becomes inaccurate and might even be impossible due to the truncation issue. 

 



In industrial experiments, the fit is often good, both because the value of the “error” term is 

actually small, and because the number of runs (observations) is minimized. If p is close to n, 

the fit is typically good due to pure linear algebra. In any case, a reasonable nonlinear 

transformation will not alter the estimated expected values that much. Its aim is to assist in the 

selection of columns that constitute the final matrix X .  

 

5. Discussion and conclusion. 

The search for an appropriate transformation involves meeting criteria R1, R2, and R3 

simultaneously. In the case study described herein, R2 and R3 were reasonable satisfied using 

the Box-Cox transformation. These two criteria were obtained together, as seen in Figure 5 

and Figure 6. In the case of R1, however, the author sees no special reason that simplicity of 

expectation (R1) should appear together with R2 and R3, or the opposite. R2 and R3 must be 

obtained before standard normal theory tests can be applied in search of a simple model (R1). 

The selection of λ by minimizing MSE in this case was dependent on the model in question. 

The most complex model obtained pointed to λ ≈ 0. R2 and R3 are reasonably clearly 

satisfied for λ = 0 (Figure 6). However, this transformation gives rise to a large set of 

significant factors (see Figure 4 and 5). The use of λ = -1 still yielded R2 and R3, however 

simplified the model. Effect C was significant on the original scale, but not when λ = -1. This 

shows that achieving R1, R2 and R3 together may well be a considerable challenge when the 

model itself is complicated. Using a formal test for normality does not rule out the need of 

assessing the practical situation. With regression model 3, the Shapiro-Wilk test points to λ = 

0 as giving the the most normal data. (Figure 7), while model 5 is rejected. When λ = 0 there 

is a large set of significant effects that will be embraced in the residuals when using model 5, 

explaining the SW rejection of normality in this case. With regression model 5, the SW test 

points to λ =-1. Note that both Figure 6 and the SW points to λ =-3 as good candidate (while 

the minimizing of MSE does not!). The residuals from λ =-3 might be normal, but too much 

structure are removed from the data in this case. 

A combination of transformation, normal probability plots, formal tests and residual plots can 

assist in the trade-off decision for the use of a particular model. 

 

The transformation is crucial to the establishment of R2 and R3 used in selecting the design 

matrix  X . The criterion R1 involves finding the smallest set of X columns that can 

“recreate” the data with some restrictions such as the heredity principle (Wu and Hamada 

2000, p112): “In order for an interaction to be significant, at least one of its parent factors 

should be significant”. Furthermore, the precision of the estimates obtained with small values 

was improved by carrying out the transformation. This is beneficial in itself. When an X is 

decided, the estimated response surface, if with reasonable fit, will be found to be stable 

independent of the transformation.  
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   Coded 

Predictor Low High Low High 

A - Tool speed (rev/min) 2700 3200 -1 +1 

B - Workpiece speed (mm/min) 203 330 -1 +1 

C - Depth of cut (mm) 0.5 1.0 -1 +1 

D - Coolant Off On -1 +1 

E - Direction of cut Conventional Climbing -1 +1 

F - Number of cuts 1 2 -1 +1 

Table 1. The 6 experimental factors 



A B C D E F r1 r2 r3 r4 r5 r6 r7 r8

1 -1 1 -1 1 -1 1.080 1.063 0.907 0.930 1.017 1.020 0.947 0.940

1 1 1 1 1 1 0.913 0.883 0.890 0.890 1.023 1.023 1.003 0.987

-1 1 1 -1 -1 1 32.500 15.200 16.200 36.700 27.200

1 -1 -1 -1 -1 1 22.000 15.200 11.700 15.000 12.500 16.500 8.200

1 1 -1 1 -1 -1 1.117 0.847 0.897 0.797 0.767 0.773 0.783 0.840

-1 1 -1 -1 1 -1 1.090 1.020 0.970 1.050 1.050 1.070 1.020 1.050

-1 -1 -1 1 1 1 1.240 1.140 1.090 1.150 1.120 1.110 1.060 1.110

-1 -1 1 1 -1 -1 1.090 1.050 0.950 0.940 1.100 1.120 1.060 1.120

-1 1 -1 1 -1 1 0.930 0.930 0.970 0.940 0.980 0.967 1.013 0.923

-1 -1 -1 -1 -1 -1 1.207 1.547 1.410 2.013 1.490 2.150 1.367 1.637

1 -1 -1 1 1 -1 1.113 1.063 0.973 0.983 1.057 0.987 0.973 0.963

1 -1 1 1 -1 1 0.803 0.780 0.757 0.750 0.767 0.743 0.830 0.803

1 1 -1 -1 1 1 1.217 1.130 1.147 1.155 1.300 1.183 1.247 1.130

1 1 1 -1 -1 -1 1.690 1.597 1.680 2.230 4.407 2.657 3.600 5.033

-1 -1 1 -1 1 1 0.890 0.820 0.910 0.970 0.920 0.860 1.160 1.050

-1 1 1 1 1 -1 0.890 0.850 0.800 0.880 0.900 0.890 0.860 0.880

1 -1 1 -1 1 1 1.223 1.190 1.180 1.177 1.140 1.173 1.180 1.123

-1 1 -1 -1 1 1 1.203 1.118 1.190 1.257 1.173 1.123 1.120 1.140

-1 -1 1 1 -1 1 0.990 0.947 0.967 0.980 0.967 0.953 0.947 1.017

1 -1 -1 -1 -1 -1 1.470 1.407 1.330 1.147 2.690 2.363 2.323 2.147

-1 -1 -1 1 1 -1 1.063 0.990 0.973 0.940 1.090 0.957 0.940 0.917

1 1 1 1 1 -1 0.940 1.040 1.023 1.030 0.897 0.873 0.913 0.980

1 1 -1 1 -1 1 0.990 1.110 1.100 1.130 0.950 0.940 1.010 0.960

-1 1 1 -1 -1 -1 3.080 3.530 4.030 4.400 3.970 4.000 3.670 5.830

-1 -1 1 -1 1 -1 1.037 0.963 1.003 0.990 0.930 0.973 1.013 0.940

-1 -1 -1 -1 -1 1 7.533 6.400 7.900 5.300 1.670 6.233 7.000 11.167

-1 1 1 1 1 1 1.100 1.110 0.963 1.040 1.023 1.017 0.983 1.003

1 1 1 -1 -1 1 30.700 33.000 15.500 15.200

1 1 -1 -1 1 -1 1.020 1.007 1.007 0.953 0.997 0.990 1.013 1.003

1 -1 1 1 -1 -1 1.040 1.157 1.097 1.030 0.913 0.940 0.940 0.987

1 -1 -1 1 1 1 0.973 0.957 0.930 0.950 0.957 0.923 1.023 1.107

-1 1 -1 1 -1 -1 1.013 1.090 1.117 1.140 1.130 1.217 1.130 1.070

1 1 1 1 -1 1 0.947 0.923 0.967 0.887 0.870 0.907 0.930 0.897

-1 -1 -1 1 -1 1 0.957 0.913 0.897 0.930 0.897 0.887 0.903 0.920

-1 -1 1 1 1 -1 0.953 0.957 1.030 1.020 0.980 0.973 0.983 0.933

-1 1 1 -1 1 1 1.050 1.033 1.073 1.010 0.980 1.073 1.030 1.060

1 -1 1 -1 -1 -1 2.507 2.230 2.080 3.933 2.080 3.013 5.100 5.100

-1 1 -1 -1 -1 -1 1.447 1.340 1.523 1.290 1.440 1.503 1.423 1.420

1 1 -1 1 1 -1 0.960 1.000 1.010 1.000 1.010 0.940 0.910 0.950

1 -1 -1 -1 1 1 1.390 1.570 1.600 1.120 1.030 1.240 1.550 1.240

-1 -1 -1 -1 1 -1 1.053 1.030 1.057 1.063 1.030 1.037 1.013 1.050

-1 1 1 1 -1 -1 0.933 0.907 0.913 0.913 0.880 0.923 0.890 0.897

1 -1 1 1 1 1 1.023 1.030 1.030 1.130 0.973 1.000 1.013 0.997

-1 1 -1 1 1 1 1.290 1.220 1.270 1.157 1.280 1.223 1.170 1.207

1 1 1 -1 1 -1 1.100 1.033 1.017 1.007 1.017 1.053 1.000 1.090

1 -1 -1 1 -1 -1 0.890 0.850 0.850 0.850 0.860 0.930 0.870 0.810

-1 -1 1 -1 -1 1 11.730 7.560 10.400 12.070 24.870 12.870 18.750

1 1 -1 -1 -1 1 16.870 8.730 11.070 14.830 16.400 19.630 13.470 14.970

-1 1 1 -1 1 -1 1.273 1.230 1.263 1.247 1.263 1.250 1.217 1.167

-1 -1 1 1 1 1 1.003 0.970 0.973 0.967 0.970 0.923 0.907 0.867

-1 -1 -1 1 -1 -1 0.907 0.907 0.883 0.823 0.837 0.873 0.890 0.867

-1 1 -1 -1 -1 1 4.000 6.700 8.000 2.700 8.200 4.000 8.200 4.200

1 1 -1 1 1 1 1.140 1.117 1.090 1.073 1.117 1.097 1.157 1.057

1 -1 -1 -1 1 -1 0.937 0.960 0.953 0.873 1.017 0.927 0.937 0.910

1 1 1 1 -1 -1 0.840 0.853 0.863 0.863 0.823 0.783 0.790 0.817

1 -1 1 -1 -1 1 26.070 18.970 19.600 18.700 25.300 16.500 18.630 26.530

-1 -1 1 -1 -1 -1 2.003 2.030 2.490 4.457 3.440 3.007 2.473 4.517

-1 -1 -1 -1 1 1 1.073 1.003 1.073 1.087 1.090 1.090 1.073 1.047

1 -1 -1 1 -1 1 0.780 0.780 0.863 0.897 0.823 0.763 0.830 0.807

-1 1 1 1 -1 1 0.907 0.893 0.840 0.970 0.863 0.823 0.823 0.850

1 -1 1 1 1 -1 0.977 1.087 1.077 1.140 1.060 1.083 1.087 1.140

1 1 -1 -1 -1 -1 1.430 1.553 1.050 1.197 1.450 1.303 1.173 1.707

1 1 1 -1 1 1 1.067 1.147 1.107 1.123 1.097 1.040 1.050 0.963

-1 1 -1 1 1 -1 1.090 1.000 1.030 1.060 1.050 1.030 1.040 1.050  

Table 2. The raw data matrix. r1 - r8 are the repetitions. 



Dependent 

variable

original 

response λ=1 St.d/mean: 0.106

transformed 

response λ=-1 St.d/mean : 0.050

Effect

Coefficien

t t P(2 Tail)

Coefficien

t t P(2 Tail)

CONSTANT 2.025 9.432 0.000 0.415 19.823 0.000

A 0.321 1.497 0.149 -0.015 -0.732 0.472

B 0.210 0.978 0.339 0.011 0.526 0.604

C 0.768 3.577 0.002 0.028 1.314 0.202

D -2.055 -9.570 0.000 -0.513 -24.400 0.000

E -1.976 -9.205 0.000 -0.325 -15.500 0.000

F 1.677 7.809 0.000 0.146 6.970 0.000

AB -0.167 -0.779 0.445 -0.026 -1.257 0.222

AC -0.187 -0.872 0.393 0.008 0.358 0.724

AD -0.343 -1.596 0.125 -0.040 -1.894 0.071

AE -0.318 -1.481 0.153 0.022 1.067 0.297

AF 0.364 1.697 0.104 0.028 1.329 0.198

BC 0.235 1.095 0.286 -0.024 -1.166 0.256

BD -0.203 -0.947 0.354 0.004 0.186 0.855

BE -0.200 -0.930 0.362 0.011 0.512 0.614

BF 0.210 0.979 0.338 0.032 1.525 0.142

CD -0.789 -3.676 0.001 -0.076 -3.635 0.001

CE -0.796 -3.709 0.001 -0.087 -4.162 0.000

CF 0.543 2.530 0.019 -0.086 -4.123 0.000

DE 2.025 9.429 0.000 0.451 21.529 0.000

DF -1.669 -7.775 0.000 -0.133 -6.371 0.000

EF -1.639 -7.631 0.000 -0.068 -3.262 0.004

ABC -0.176 -0.819 0.421 -0.002 -0.103 0.919

ABD 0.163 0.760 0.455 0.025 1.186 0.248

ABE 0.141 0.659 0.517 -0.021 -1.012 0.322

ABF -0.096 -0.448 0.659 0.030 1.409 0.173

ACD 0.204 0.951 0.352 0.028 1.339 0.194

ACE 0.200 0.933 0.361 0.029 1.395 0.177

ACF -0.161 -0.748 0.462 -0.011 -0.545 0.591

ADE 0.332 1.546 0.136 0.024 1.154 0.261

ADF -0.371 -1.728 0.098 -0.044 -2.112 0.046

AEF -0.350 -1.629 0.118 -0.003 -0.123 0.903

BCD -0.274 -1.275 0.216 -0.069 -3.317 0.003

BCE -0.240 -1.119 0.275 0.009 0.424 0.676

BCF 0.212 0.987 0.335 0.001 0.063 0.950

BDE 0.195 0.907 0.374 -0.030 -1.417 0.171

BDF -0.184 -0.858 0.400 0.038 1.793 0.087

BEF -0.210 -0.977 0.339 -0.024 -1.169 0.255

CDE 0.780 3.631 0.001 0.051 2.435 0.023

CDF -0.563 -2.622 0.016 0.041 1.938 0.066

CEF -0.578 -2.692 0.013 0.021 1.000 0.328

DEF 1.662 7.740 0.000 0.121 5.801 0.000

Std Error 0.215 0.021

Analysis of 

Variance

original 

response λ=1

Squared 

multiple R: 0.965

transformed 

response λ=-1 

Squared 

multiple R: 0.986

Source Sum-of-

Squares F-ratio P

Sum-of-

Squares F-ratio P

Regression 

df=41 1809.594 14.958 0.000 43.294 37.617 0.000

Residual 

df=22

64.915 0.618

Model: 

CONSTANT+A+B+C+D+E+F+AB+AC+AD+AE+AF+BC+BD+BE+BF+CD+CE+CF+DE+DF+EF+ABC+ABD

+ABE+ABF+ACD+ACE+ACF+ADE+ADF+AEF+BCD+BCE+BCF+BDE+BDF+BEF+CDE+CDF+CEF+DEF

 

Table 3. ANOVA output original data and inverse data. Bold typing indicate significance (p<0.05)  



D E F λ=-3 λ=-1 λ=0 λ=1

-1 -1 -1 2.088 2.254 2.435

-1 -1 1 2.323 12.081 13.961 15.728

-1 1 -1 1.027 1.030 1.033

-1 1 1 1.059 1.114 1.119 1.125

1 -1 -1 0.928 0.933 0.938

1 -1 1 0.906 0.900 0.903 0.906

1 1 -1 0.984 0.986 0.988

1 1 1 1.006 1.041 1.045 1.049

95% interval at

-1 -1 1 Upper Not Available 44.168 15.333 17.189

Lower 1.666 6.997 12.711 14.267

1 -1 1 Upper 0.939 0.951 0.992 2.367

Lower 0.877 0.853 0.822 -0.555  

Table 4. Estimated expectations and 95 % confidence intervals. For λ=-3 only D, E and DE are significant 

and are included in the model. The upper confidence limit for λ=-3 when D=-1 and E=-1 is not available 

because the value is out of range on the original scale. 

 



 

 

 

-1 0 1 2

Log10(Mean of  8 repetitions)

-2

-1

0

1

L
o

g
1

0
(S

T
D

 o
f 

8
 r

e
p

e
ti
ti
o

n
s
)

 
a 

 

-1.5 -1.0 -0.5 0.0 0.5

Log10(Mean of  8  reciprocal repetitions)

-3

-2

-1

0

L
o

g
1

0
(S

T
D

 o
f 

8
 r

e
c
ip

ro
c
a

l 
re

p
e

ti
ti
o

n
s
)

 
b 

Figure 1. Log(Mean) against log(STD) of repetitions at the 64 design points. Frame a: the original data, 

frame b: the reciprocal transformed data. 

 

5 10 15 20 2530

Original 64 observations log10 scale

0

10

20

30

40

50

C
o

u
n

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o

rtio
n

 p
e

r B
a

r

 
a 

-10 0 10 20 30

Predicted value, original scale

-3

-2

-1

0

1

2

3

4

R
e

s
id

u
a

l

 
b 

Figure 2. Frame a:The original 64 observations. Frame b: Residuals after fitting the model 
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The mean square errors (MSE) are shown on the vertical axis (using a Log10 scale in order to include 

several curves) from the five different regression models, and with a range of values of λ on the 
horizontal axis. 
 ◦ indicate sites of minimum MSE values 

Figure 3. Mean squares errors from five models.  
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Figure 4. t-values of effects against lambda. Regression model no 3. Frame a: the main effects. Frame b: 

the D, E, and F interactions. Frame c: the interactions between C and D, E and F. Frame d: some other 

interactions. . The dashed lines indicate 5% significance. 
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Figure 5. Normal probability plots of estimated effects. Regression model no 3. Frame a-d are for selected 

λ values. 
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Figure 6. Residuals after fitting a model with up to 3-factor interactions. Regression model no 3. Frame a, 

c and d: Residuals, λ = 0, -1 and -3. Frame b, d and f: Predicted values, λ = 0, -1 and -3. 
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Figure 7. Shapiro-Wilk test for normality. The p-value for different λ and the regression models no 3 and 

5. 


