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 30 
Natal dispersal allows individuals to reach suitable breeding sites. The effect of present plant 31 

phenology as a cue for dispersal into areas with favourable stages of development has been 32 

well established across avian and mammalian taxa. However, the effect of past experience is 33 

less understood. We studied the effect of past and present phenology of the environment on 34 

the direction and distance of natal dispersal in a passerine bird, the pied flycatcher (Ficedula 35 

hypoleuca). We monitored spring settlement of local recruits in six nest box plots along a 10 36 

km stretch of a south-north gradient in the plant and caterpillar food development. We found 37 

that males used both past experience of caterpillar phenology from early life and actual plant 38 

phenology during the recruitment season as independent cues for breeding settlement. Males 39 

that had experienced a mismatch with the caterpillar food peak as a nestling, and/or those that 40 

arrived late in the spring in the recruitment year, moved north of their natal site, whereas 41 

males that had experienced a better match with the caterpillars as a nestling, and/or those that 42 

migrated earlier in the spring, settled at a similar site or more to the south. In females, no such 43 

effects were found, suggesting that the usage of phenological cues is sex specific. In 44 

summary, tracking environmental phenology by natal dispersal may represent an effective 45 

mechanism for settling in new favourable areas, and may thus potentially cause rapid change 46 

of a species´ geographical breeding range in response to climate change.  47 

 48 
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 55 

Introduction 56 

The recent world is characterized by rapid environmental dynamics, including unprecedented 57 

climatic change, which influences biological processes remarkably (Rosenzweig et al. 2008). 58 

Global warming associates with shifts in phenology, species interactions, ecosystem 59 

dynamics, extinction risks, and changes in geographical distributions across taxa (Walther et 60 

al. 2002; Parmesan 2006; Rosenzweig et al. 2008). In the Northern Hemisphere, northward 61 

shifts in the distributional ranges of birds typically result from milder climate allowing for 62 

improved feeding and physiological conditions (Parmesan et al. 2000; Crick 2004; Leech and 63 

Crick 2007). These effects may depend on the diet composition, with herbivorous species 64 

responding stronger than insectivores (Brommer 2008), presumably because insect 65 

development requires higher temperatures than that of plants (Schwartz 2003). Poleward 66 

range shifts in the Northern Hemisphere has been hypothesized to be primarily driven by 67 

increased survival and reproduction in the north, and/or decreased survival and reproduction 68 

in the south (Parmesan et al. 2000; Leech and Crick 2007).  69 

Understanding movement decisions of dispersing individuals is an important 70 

prerequisite for studies on complex metapopulation dynamics (Hanski 2001) and gene flow in 71 

diversification/speciation (Garant et al. 2005; Tonnis et al. 2005; see also review in Ronce 72 

2007). Traditionally, the focus has been devoted to explain why some individuals stay at their 73 

natal site while others disperse to a new place, and why some individuals settle at longer 74 

distances from their natal site than do others. Another line of research has focused on 75 

explaining habitat choice, often as a single phenomenon independent of dispersal. Decisions 76 

on whether to disperse, how far and where to settle, are however closely entangled (Benard 77 

and McCauley 2008; Studds et al. 2008; Piper 2011).  78 
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Ultimate explanations for why dispersal happens include avoidance of inbreeding, 79 

competition, parasitism and predation and bet-hedging against the environmental variability. 80 

Allee effect (i.e. reduction in settlement and habitat search costs with increased conspecific 81 

density) and habitat training/cueing have been invoked as additional explanations for adaptive 82 

habitat choice (Hildén 1965; Cody 1985; Clobert et al. 2001; Benard and McCauley 2008). 83 

Finally, parent–offspring conflict has been suggested to account for variability in dispersal 84 

distance (Starrfelt and Kokko 2010).  85 

Proximate cues are necessary for an individual to make a proper decision. Importance 86 

of a given cue likely varies with the spatial scale of the movement decision (Orians and 87 

Wittenberger 1991). Numerous studies have provided information on cues used by animals 88 

for dispersal and habitat choice at the spatial scale of a territory or habitat. These include 89 

innate preferences (Partridge 1974; Partridge 1976), habitat learning and/or body condition 90 

(Stamps and Krishnan 1999; Ims and Hjermann 2001), and availability of food, suitable 91 

breeding sites and presence of con- and heterospecific individuals (Alatalo et al. 1982; 92 

Seppänen et al. 2011), including predators  (Hildén 1965). Phenological stages of plant 93 

growth serve as a cue for large scale movements in many ungulates (Skogland 1980; van der 94 

Wal et al. 2000), and may also do so on small, local spatial scales in birds (Slagsvold et al. 95 

2013). Less evidence is available on what cues are utilized for dispersal decisions at larger 96 

spatial scales (landscape, latitude) in birds, likely because of technical limitations in tracking 97 

the individuals.  98 

By using an isotope analysis, Studds et al. (2008) indirectly demonstrated that redstarts 99 

(Setophaga ruticila) that migrated later to their breeding grounds in North America dispersed 100 

to more northern latitudes than did early birds, presumably to synchronize breeding with food 101 

availability (van Noordwijk et al. 1995). Classical theory by Fretwell and Lucas (1969) 102 

proposes that lower quality individuals or individuals from low quality habitats should 103 
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disperse to low quality habitats, while the opposite should hold for high quality individuals or 104 

individuals from high quality habitats. Empirical evidence on the ideal free and ideal despotic 105 

distribution is ample (Garant et al. 2005; Piper 2011). Yet, it is unclear whether some of the 106 

cues involved in dispersal decisions at smaller spatial scales such as body condition apply also 107 

for decisions at large spatial and longer temporal scales. 108 

In passerine birds, nestling survival and fledgling body mass may decrease as a result 109 

of a mismatch between timing of breeding and the availability of food (van Balen 1973; Dias 110 

and Blondel 1996; Siikamäki 1998; Naef-Daenzer and Keller 1999; Verboven et al. 2001; 111 

Visser et al. 2006; Reed et al. 2013; for a review of the mismatch hypothesis see Durant et al. 112 

2007). Caterpillars are major food items for nestlings of many species. Nestling body 113 

condition is positively related to the proportion of caterpillars in the diet at least until a 114 

threshold is reached (García-Navas and Sanz 2011; Burger et al. 2012). In a Dutch population 115 

of great tits (Parus major) and pied flycatchers (Ficedula hypoleuca), seasonal peaks in the 116 

abundance of caterpillars advanced more during warmer years than the timing of breeding of 117 

these birds (Visser et al. 1998; Both et al. 2009). On the contrary, synchrony between birds 118 

and caterpillars was maintained in British and Belgian populations of the same species  119 

(Cresswell and McCleery 2003; Charmantier et al. 2008; Matthysen et al. 2011), and even 120 

improved over the years in a Finnish population of willow tits (Poecile montanus) (Vatka et 121 

al. 2011). A learning based model has attempted to explain habitat learning and selection 122 

already from the time juveniles start encountering their environment by means of positive and 123 

negative experiences (Stamps and Krishnan 1999). The critical assumption is that dispersal 124 

propensity increases with higher frequency of negative experiences. A candidate is food 125 

shortage caused by a mistimed reproduction. Contrary, the breeding habitat is chosen based 126 

on positive experiences like favourable food conditions that have resulted in good body 127 

condition (Piper 2011). Variation may often occur among individuals of a population of how 128 
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they experience the availability of food during upbringing, causing differences in the amounts 129 

of positive and negative habitat experiences, which in turn may cause variation in the 130 

dispersal decisions. 131 

In this study we build on traditional analysis of natal dispersal, i.e. whether and/or how 132 

far animals disperse, by analysing direction of natal dispersal.  As a model system, we study 133 

natal dispersal of pied flycatchers between six woodland plots. Our focus is on explaining the 134 

largest variation in dispersal movements, which comes from movements along the main 135 

ecological gradient dictated by latitude. Distance between the southern- and northernmost plot 136 

amounts to about ten kilometres while variation in movements along longitudinal and 137 

altitudinal axis is comparably smaller. We first analyse (1) whether and how much hatching 138 

dates and plant phenology in the recruitment year delay from south to north, and (2) whether 139 

and how much body mass of nestlings and recruitment rate increase from south to north.  140 

Given existence of such ecological gradients as potential foundation for behavioural 141 

decisions, we (3) test the effect of two proximate cues of tracking latitudinal ecological 142 

gradients by natal dispersal. Namely, we test the effect of past nestling experience measured 143 

as a degree of mismatching with the caterpillar food peak at the natal site, and the plant 144 

phenology at the time of settlement of the birds in the recruitment season. We test the 145 

predictions that flycatchers that had hatched late relative to the caterpillar peak will settle to 146 

breed to the north of their natal site, which would also be the case for flycatchers arriving and 147 

nesting late in the recruitment season, with opposite prediction for birds that had hatched 148 

relative early, and that arrived and settled relatively early. We hypothesized birds to disperse 149 

to the north when the plant development at the natal site was too progressed during spring 150 

arrival. We were particularly interested in determining whether the effect of past experience 151 

(hatching mismatch) serves as a cue independent of the phenological conditions (plant 152 

development upon arrival) in the recruitment year.   153 
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 154 

Material and methods 155 

Study area 156 

The study was conducted in a larger valley area composed of mixed woodlands and 157 

interspersed with farmland and settlements near Oslo, Norway, during 2009–2012. The 158 

southern study plots were located on a south facing, warmer slope, whereas the northern study 159 

plots were located in a valley with cold air coming down from the surrounding hills with 160 

altitudes up to 600 m above sea level causing much later snow melt and lower temperatures.  161 

This caused a stronger gradient in environmental phenology across the study plots (6–15 days, 162 

see below) than would otherwise be expected (Lauscher et al. 1955). Nest boxes (n = 1234) 163 

were provided in suitable breeding habitats for hole nesting passerines at six plots at an 164 

altitude of about 100–250 m a.s.l. (see Online Resource, Table A1, for details on the study 165 

plots). The boxes had similar inner depths of 13–16 cm from base of entrance hole to bottom, 166 

and had an entrance hole of 32 mm in diameter. Pied flycatchers occupied about 155–175 nest 167 

boxes annually. UTM geographic coordinates (± 5–10 m) of nest boxes were measured with a 168 

GPS (Garmin GPSmap 60CSx). Nest box plots that were located at about the same latitude 169 

were grouped and considered as three principal study locations (“SOUTH”, “CENTRAL” and 170 

“NORTH”; Fig. 1, Online Resource Table A1).   171 

The forest vegetation in the SOUTH is dominated by deciduous trees (most commonly 172 

ash Fraxinus excelsior, hazel Corylus avellana, maple Acer platanoides, elm Ulmus glabra, 173 

birch Betula spp., grey alder Alnus incana, and willow Salix caprea). Vegetation in the 174 

CENTRAL and NORTH is characterized by a mixture of spruce (Picea abies) and deciduous 175 

trees (birch, willow and grey alder) with a scattered admixture of pine (Pinus silvestris), 176 
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maple, elm, ash, hazel, oak (Quercus rubur), beech (Fagus sylvatica) and bird cherry (Prunus 177 

padus). Dominance of coniferous trees increases with altitude at all locations. 178 

 179 

Environmental phenology 180 

We monitored seasonal variation in caterpillar biomass from the time of flycatchers’ arrival 181 

(end of April) until the end of the breeding season (middle of July) at three plots during 2009–182 

2011 (See red crosses in Fig. 1 for locations). Faecal pellets were collected using traps placed 183 

beneath a tree (frass nets hereafter) (Fischbacher 1998, Visser et al. 2006). Frass nets 184 

consisted of a piece of cloth fixed to a 0.25 m2 metal frame. Nets were placed about 0.5–2 m 185 

from the trunk of a tree and at least 10 m apart. Five frass nets were placed at each two frass 186 

fall sampling sites in 2009, and three sampling sites in 2010 and 2011 at SOUTH, 8 nets at 187 

one sampling site at CENTRAL, and 8 nets at one sampling site at NORTH (see Online 188 

Resource, Table A1, for tree species sampled). Composition of trees under which the nets 189 

were placed was chosen to be approximately proportional to the abundance of tree species at 190 

the respective study sites. Nets were emptied every 4th day (or later when raining heavily) and 191 

were covered during heavy rains to prevent frass disintegration. After collection, frass was 192 

dried at 60°C for 1 hour, separated from litter using Retsch test sieves (1200 µm and 600 µm) 193 

and weighed (to nearest 0.1 mg). We calculated a proxy for the relative caterpillar biomass by 194 

correcting mass of frass for the effect of ambient temperature during the sampling period, 195 

following Tinbergen and Dietz (1994), and for the number of collection hours. Mean daily 196 

temperatures for the closest meteorological station (Blindern, see black cross in Fig. 1) were 197 

obtained from the Norwegian Meteorological Institute.  198 

Every 5 (4–6) days from the beginning of May until beginning of June we measured 199 

length of the same three stretched leaves per tree (same individual trees were measured over 200 
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the years) across five plots. Grey alders, birches and hazels were considered as the 201 

representative species across locations. Sample trees were scattered evenly across the nest box 202 

plots and were marked with a piece of waterproof tape for identification (see Online Resource 203 

Table A1 for details). We calculated average daily values for each tree individual, from which 204 

we calculated site-specific average values for each species. Species specific daily growth rates 205 

were expressed as percentages of the lengths on the last day of measurement. 206 

A generalized additive model (GAM) was fitted to smooth the effect of seasonal date 207 

on caterpillar biomass and leaf growth following guidelines provided by Wood (2006). GAM 208 

is a generalized linear model where the linear predictor of explanatory variables of the form ∑ 209 

βj(Xj) is replaced by a sum of smooth functions with estimated degrees of freedom (“edf” 210 

hereafter) of explanatory variables ∑ sj(Xj) (Wood 2006). The basis of the smooth functions is 211 

represented by thin plate regression splines (or similar) and is estimated as a part of fitting 212 

process. Effect of date (i.e. mid-date of the respective sampling period) on caterpillar biomass 213 

was analysed separately for deciduous and coniferous trees because biomass showed a peak 214 

for the deciduous trees but not for the coniferous trees (Online Resource, Figure A1). Peak 215 

date of caterpillar mass was defined as the date of estimated maximum caterpillar biomass.   216 

 217 

Bird observations 218 

After arrival pied flycatcher males choose a nesting hole, inspect it and engage in 219 

courtship displays while protecting a very small territory around the nest box (von Haartman 220 

1956). From the beginning of the breeding season we checked each nest box every five days 221 

at all plots, except one where they were checked more frequently (a centrally located plot in 222 

the gradient, Z in Fig. 1), in order to verify identity of males, check signs of nest building and 223 

determine egg laying dates. Male identity was assigned based on a unique combination of 224 
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colour rings. If necessary we used supplemental characteristics such as feather colour and 225 

shape and size of head front patch to distinguish males banded with only metal ring. We 226 

assigned the date of the first observation of a male as his arrival date. Arrival dates were 227 

mostly unknown for females, except in study plot Z (Fig. 1). In four cases when no direct 228 

observation was available before the nest building took place we assumed that a male arrived 229 

shortly before first signs of nesting material; we assumed arrival on the previous day if little 230 

material was present, and two days before if the nest box floor was covered by nesting 231 

material. In the pied flycatcher, only females build nests, and they start very soon upon 232 

arrival, often only after a few hours (Dale and Slagsvold 1995, 1996). We assumed one egg 233 

laid per day in back calculations of first egg laying date if more than one egg was found in a 234 

nest (Lundberg and Alatalo 1992). In study plot Z, with daily observations, a strong positive 235 

correlation (r = 0.8–0.9 for each year of study) existed between arrival date of a female and 236 

the date of her first egg laid. Hence, we used the latter measure as a proxy for female arrival 237 

time in all sites. The correlation between arrival date of a male and the date of onset of laying 238 

by his mate was much weaker (r = 0.5–0.6).  239 

Plant phenology upon arrival date of males, and egg laying date of females, in the 240 

recruitment year was characterized as a percentage of leaf growth at the respective natal 241 

location on a given day. High values indicate late arrival and egg laying relative to the plant 242 

development at the respective natal site if birds choose to settle there. Low values indicate 243 

early arrival and egg laying at the respective natal site if birds choose to settle there. 244 

  Nest boxes were inspected every 1–2(3) days around hatching time. Hatching dates 245 

(day 0) were based on nestling growth (Lundberg & Alatalo 1992; Thingstad 2001). Hatching 246 

mismatch of each bird was measured as the difference (in days) between the respective 247 

hatching date and the peak date of caterpillar biomass on deciduous trees. Peak on coniferous 248 

trees was not considered because for such trees there is often a gradual increase in caterpillar 249 
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biomass over the whole breeding season without a clear maximum (Veen et al. 2010; see also 250 

Online Resource, Figure A1). On day 13 (or 12 in a few cases) we weighed nestlings to 251 

nearest 0.25 g using a spring balance (Pesola) and ringed them with a uniquely coded metal 252 

band. In 2010–2012 we also measured length of the left tarsus of all nestlings (from the bent 253 

digits and including tibia) to nearest 0.1 mm using callipers at all sites. If some of the hatched 254 

nestlings were not found in the nest at the time of weighing (i.e. before earliest possible 255 

fledging date), we considered those as depredated or starved to death shortly after hatching.  256 

In subsequent years, all adult birds with metal bands were caught for identification. 257 

Females were caught during incubation and males when entering a nest box by means of a 258 

trap door preventing them from leaving once they had entered. Two birds (one male and one 259 

female) that were found breeding in natural holes just outside the study plots were caught 260 

using mistnet. Males were further provided with 1–3 plastic bands of different colours for 261 

ease of identification and length of the left tarsus was taken in the same way as in nestlings. 262 

Length of the left tarsus measured in the first year of life correlated strongly with measures 263 

taken at age 13 days (r = 0.86, p < 0.001, n = 69). Body condition of birds when 13 days old 264 

was calculated as residuals from a linear regression of log transformed body mass when 13 265 

days old on log transformed length of left tarsus. Euclidean distance between the nest box of 266 

first breeding and the natal nest box was used to characterize direction of natal dispersal 267 

(“change in latitude” hereafter). Positive and negative values indicate natal dispersal to the 268 

north and south, respectively. During 2010–2012 we recovered 99 natal dispersers (47 269 

females, 52 males), i.e. individuals that had fledged from one of our nest boxes and that had 270 

settled at one of our study plots during the first year of life. Seven local recruit males that 271 

were repeatedly observed at their dispersal site trying to attract a female to a nest box but 272 

were unsuccessful were also included in the analysis. We did not include birds that we first 273 

found breeding during their second (n = 10) or third (n = 4) year of life because we focus on 274 



 

. 
 
 

12 

natal dispersal and the latter birds may have tried breeding somewhere else in their first year 275 

(applies to one third of local recruits; Lundberg & Alatalo 1992).  276 

Every year, a portion of complete clutches (ca. 20 %) was subjected to experimental 277 

cross-fostering as a part of another study (see Online Resource, Appendix 1). However, 278 

experimental treatment included as explanatory covariate in our analysis on change in latitude 279 

was not significant (p > 0.05) and is therefore not considered further. 280 

 281 

Statistical analysis 282 

The differences in mean hatching date and nestling body mass between locations was 283 

tested by ANOVA. Post hoc Tukey’s HSD test was used for pairwise comparisons. Results 284 

were similar for index of body condition and we therefore do not present them.  285 

Local natal recruitment rate was defined as the proportion of yearling birds arriving at 286 

their respective natal location (SOUTH, CENTRAL, or NORTH) in year x+1 from all 287 

nestlings ringed at the respective location in year x. Chi square test was used to test for 288 

differences in natal recruitment rate between locations (Sokal and Rohlf 1995). We used Box-289 

Cox transformation to remedy violations from normality. 290 

A linear mixed model implemented in nlme library (Pinheiroet al. 2013) was fitted by 291 

restricted maximum likelihood (REML) to test the effect of ecological factors on change in 292 

latitude separately for males and females. Explanatory variables included were hatching 293 

mismatch and length of the left tarsus as a proxy for body size. Julian hatching date and 294 

hatching date centred by annual local mean were included as alternative explanatory variables 295 

to hatching mismatch. Plant phenology upon arrival date at the respective natal site in the 296 

recruitment year was used as third explanatory variable in the model on males, while plant 297 

phenology at egg laying at the respective natal site in the recruitment year was used in the 298 
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model on females. Explanatory variables were not correlated (r = -0.002– -0.18, all p > 0.2). 299 

The effects of fixed explanatory factors were evaluated against the null hypothesis by means 300 

of t-values. Corresponding degrees of freedom were calculated as a minimum number of 301 

random effects that affected the tested terms (Pinheiro et al. 2013). We first built models 302 

including main effects of hatching mismatch, length of the left tarsus and plant phenology in 303 

the recruitment year and their interactions. Non-significant terms were then eliminated. Study 304 

location and year nested within study location were used as random effects to account for 305 

non-independence of observations in all models. From five nests and different years, two 306 

nests of males and three nests of females, we recovered two natal recruits of the same sex. 307 

From another five nests and different years we recovered two natal recruits of different sex. 308 

We did however not include a random effect for nest because of low sample size.  309 

Finally, we used a randomization test to analyse whether the observed effect of 310 

hatching mismatch and plant phenology in the recruitment year on change in latitude in males 311 

could have been caused by the study design (i.e. males hatched in the SOUTH and hence 312 

experiencing pronounced hatching mismatch could only be observed further north). We did 313 

the randomization tests for males only because for females there was no effect of the 314 

explanatory variables (see below).To test whether our observation of the slope of the effect of 315 

hatching mismatch on change in latitude yielded by the final fixed effect model could have 316 

been obtained by chance (and was thus without biological foundation) we compared it with 317 

the distribution of 5000 simulations. We simulated the final fixed effect model of hatching 318 

mismatch and plant phenology in the recruitment year on change in latitude by for each male 319 

randomly drawing a potential dispersal site based on the set of all potential breeding sites 320 

occupied by flycatchers in a given breeding season (See Online Resource, Appendix 2 for R 321 

code of the simulation).  322 

All statistical analyses were performed in R 2.15.2 (R Core Team 2012). 323 
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 324 

Results 325 

Latitudinal gradients 326 

From SOUTH to NORTH, the peak date of caterpillar biomass on deciduous trees was 327 

delayed with a magnitude of 6–15 days (Online Resource, Figure A1) and the day when the 328 

leaf length reached 50 % of the total length was delayed with a similar magnitude of 6–9 days 329 

(Online Resource, Figure A2). The difference in mean egg laying date of all established nests 330 

between SOUTH and NORTH amounted to 2–3 days during 2009–2011. Similarly, mean 331 

hatching dates of broods surviving until ringing differed among locations and years with the 332 

difference between at least two locations differing among at least two years (ANOVA; 333 

location: F2,508 = 15.32, p < 0.001; year: F2,508 = 39.98, p < 0.001; location*year interaction: 334 

F4,508 = 2.51,  p = 0.04). Generally, hatching dates were earlier in the SOUTH than in the 335 

CENTRAL location (post-hoc Tukey’s HSD tests, p < 0.001) and NORTH (p < 0.001), but 336 

did not differ between CENTRAL and NORTH (p = 0.99; Table 1, Online Resource, Figure 337 

A1). Temporal match between hatching dates and caterpillar peak dates improved from the 338 

SOUTH to the NORTH (Table 1, Online Resource, Figure A1). Body mass of ringed 339 

nestlings differed among locations when accounting for the effect of year (ANOVA; location: 340 

F2,512 = 14.69, p < 0.001, year: F2,512 = 12.55, p < 0.001) being lower in the SOUTH than in the 341 

CENTRAL (post-hoc Tukey’s HSD tests, p < 0.001) and NORTH (p < 0.001), but not 342 

differing between CENTRAL and NORTH (p = 0.99). From SOUTH to NORTH mean body 343 

mass increased by 0.45–1.09 g during 2009–2011. Local recruitment rate averaged across all 344 

years depended on location (χ2
2 = 27.9, N = 2665, p < 0.001) and increased from the SOUTH 345 

to the NORTH (see Table 1 for year specific local recruitment rates). 346 

 347 
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Phenology and natal dispersal in males 348 

There was a tendency for the negative effect of hatching mismatch on body weight when 13 349 

days old, and also a negative effect of body weight at age 13 days on subsequent arrival date 350 

as a recruit (Online Resource, Appendix 3).  The final linear mixed model on males showed 351 

that direction of natal dispersal was positively affected both by hatching mismatch and plant 352 

phenology in the recruitment year (fixed effects: bhatching mismatch ± SE = 195 ± 90, t = 2.17, p = 353 

0.04; brecruitment year phenology± SE = 6055 ± 2271, t = 2.66, p = 0.01; df = 41; random effects: 354 

SDlocation = 1446.8, SDyear = 0.3, SDresidual = 3390.8; n = 52, Fig. 2a). The interaction between 355 

the explanatory factors was not significant (t = -1.23, p = 0.23). Change in latitude predicted 356 

by this model for the lowest and highest hatching mismatch at mean value of the plant 357 

phenology in the recruitment year were -2310 m and 3790 m, respectively. Similarly 358 

predicted values of change in latitude for the earliest and latest plant phenology in the 359 

recruitment year at mean value of hatching mismatch were -1830 m and 3980 m, respectively 360 

(Fig. 2a, b). Neither Julian hatching date (bdate = -130.5 ± 135.4, t = -0.96, p = 0.34, brecruitment 361 

year phenology ± SE = 5553 ± 2418, t = 2.30, p = 0.03; df = 41; random effects: SDlocation = 362 

1982.2, SDyear = 1473.2, SDresidual = 3292.8), nor relative hatching date (bdate_centr = -55.9 ± 363 

138.7, t = -0.40, p = 0.69, brecruitment year phenology ± SE = 5404 ± 2443, t = 2.21, p = 0.03; df = 41; 364 

random effects: SDlocation = 2144.1, SDyear = 1524.8, SDresidual = 3304.6), turned significant 365 

predictors when used in the finale linear mixed model instead of hatching mismatch.   366 

Slope estimates for the effect of hatching mismatch (bhatching mismatch) on change in 367 

latitude in males derived from simulations were greater than the observed value of  195 only 368 

in 13 out of 5000 cases, yielding a two tailed p–value of 0.005 (Fig. 3).  Similarly, slope 369 

estimates for the effect of plant phenology in the recruitment year (brecruitment year phenology) were 370 

greater than the observation in only 3 out of 5000 simulations, yielding a two tailed p–value 371 

of 0.001. Effect of hatching mismatch and plant phenology in the recruitment year on the 372 



 

. 
 
 

16 

change in latitude in males observed in our study is therefore very unlikely to be caused by 373 

chance.  374 

Phenology and natal dispersal in females 375 

In females, there was no effect of hatching mismatch, or  plant phenology in the recruitment 376 

year, on change in latitude during natal dispersal (fixed factors: bhatching mismatch ± SE = -28.8 ± 377 

76, t = -0.38, p = 0.71; brecruitment year phenology± SE = -597 ± 2523, t = -0.23, p = 0.81; df = 36; 378 

random effects: SDlocation = 1541.3, SDyear = 1917.7.8, SDresidual = 2175.5; n = 47, Fig. 2c-d).  379 

 380 

Discussion 381 

Decision theory predicts that breeding dispersal and habitat choice are primarily based on the 382 

breeding experience (Schmidt and Whelan 2010; Piper 2011). Here we show that natal 383 

dispersal in pied flycatcher males was driven by both the experience from the nestling period 384 

(Fig. 2a), and by phenological conditions prevailing during territory settlement in the breeding 385 

season of the recruitment year (Fig. 2b). The interaction between the two factors was not 386 

significant so these effects turned out to be independent of each other. Effect size indicated 387 

similar importance of hatching mismatch and plant phenology in the recruitment year for the 388 

direction of natal dispersal in males (Fig. 2). Our data support the hypothesis that experience 389 

gained already during the nestling stage drives natal dispersal behaviour in the subsequent 390 

season. Ultimately, this may be because temporal matching of breeding with caterpillar 391 

phenology can improve when previously mismatched males disperse to the north where the 392 

caterpillars develop later. In females, however, none of the factors were significant (Fig. 393 

2c,d). 394 

 395 

Time perspective in cues of natal dispersal direction 396 
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When natal dispersal takes place, individuals do not yet have their own breeding experience. 397 

To make a settlement decision, they have to count on the past experience from the periods 398 

preceding first breeding, such as from the nestling or fledgling stage in birds, and from the 399 

prevailing phenology during the recruitment season.  400 

Mammals and birds seem able to track current plant phenology to reach favourable 401 

feeding and breeding conditions (Skogland 1980; van der Wal et al. 2000; Studds et al. 2008; 402 

Slagsvold et al. 2013). Such movements might, at least partly, be caused by body condition or 403 

past experience, although this has rarely been explored (Potti and Montalvo 1991; Verhulst et 404 

al. 1997; Studds et al. 2008; Tilgar et al. 2010).  405 

We could not entirely disentangle whether the effects from the nestling period on 406 

dispersal behaviour were due to just being early or late in the season, or due to experience. 407 

However, neither calendar date, nor date centred by mean local hatching date turned 408 

significant when included in the model on change in latitude instead of hatching mismatch. 409 

An ecologically relevant yardstick has to be found in order to define what is early or late in 410 

the season. In our study, caterpillar peak date on deciduous trees turned out to be much more 411 

informative than calendar date. Our data therefore support the notion that the natal dispersal 412 

decisions are affected by the experience associated with being early or late relative to the 413 

caterpillar peak date, rather than calendar date per se.  414 

 415 

Mechanisms behind directional dispersal 416 

There are at least three adaptive and one non-adaptive mechanism for choosing a 417 

breeding site based on ecological conditions experienced early in life. 418 
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(1) The juveniles may be sensitive to the quality of food provided by the parents. Pied 419 

flycatchers prefer to bring caterpillars to the offspring. These may occur plentiful early in the 420 

breeding season, but be less abundant later on, forcing parents to bring more flies, ants, 421 

beetles etc. (Burger et al. 2012). The juveniles may judge the phenological matching from 422 

whether the abundance of caterpillars is increasing, stable, or decreasing during the nestling 423 

and post-fledging periods. A decreasing abundance of caterpillars already early in the life of 424 

the juvenile may be used as reflecting an unsuitable location for future breeding. A simple 425 

rule of thumb is that moving to higher altitudes and latitudes than the natal site would usually 426 

mean finding a place with later phenological development of vegetation and insects. 427 

(2) Juvenile birds may learn specific locations suitable for future breeding. The 428 

learning of such sites may occur already during the post-fledging period (Berndt and Winkel 429 

1979; Vallin and Qvarnström 2011). Little is known about the post-fledging behaviour in 430 

passerines in general (Slagsvold et al. 2013), and in flycatchers in particular. However, 431 

families of blue tits (Cyanistes caeruleus) and great tits seem able to track environmental 432 

phenology and move post-fledging to areas with later development (Slagsvold et al. 2013). 433 

After fledging, pied flycatcher families may stay a few days in the vicinity of their natal nest 434 

site but then move quickly away (pers. obs.; van Balen 1979). We suggest that the families 435 

may move to areas with later occurrence of caterpillars at higher latitudes or altitudes. Next 436 

year the latter sites may become destinations for breeding. 437 

(3) The birds may not learn specific locations but general features of a suitable habitat 438 

and let such features guide later choice of nest site. One such cue may be the caterpillar 439 

phenology of the rearing site, as mentioned above, and of sites visited together with the 440 

parents post-fledging, and after independence. It has been hypothesized that in order to match 441 

the phenology of caterpillars with nestling dietary demands, previously mismatched 442 

flycatchers may disperse to coniferous habitats. This is because the proportion of caterpillars 443 
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in the diet generally decreases in deciduous but not in coniferous habitats over the season 444 

(Burger et al. 2012). Ultimately, preference for coniferous habitat may result from habitat 445 

cueing and habitat training (Stamps 2001) on the caterpillar food primarily available on 446 

coniferous trees later in the season (Online Resource, Figure A1). In our study area, 447 

mismatched birds that disperse to the north disperse at the same time to more coniferous 448 

habitats. 449 

(4) At the time of late arrival, prime territories may already be occupied by earlier 450 

arriving, superior males, thereby forcing later arriving, inferior males to disperse elsewhere. 451 

Indeed, mismatched males tended to be on average in poorer condition (Online Resource, 452 

Appendix 3), which may explain their later arrival to the breeding grounds from their 453 

wintering areas in Africa (Online Resource, Appendix 3).  Two arguments exist against this 454 

mechanism. First, there is no expectation of directionality in dispersal movements of inferior 455 

males, although their behaviour may have been constrained by habitat configuration in our 456 

study. Second, more empty nest boxes were available in the south than in the north in each 457 

year of study, which does not support the idea that the flycatchers were forced to move north 458 

simply from competition for a nest site. Presence of empty nest boxes may not necessarily 459 

reflect availability of suitable nesting opportunities. However, it is difficult to estimate the 460 

popularity of a specific nest box by the flycatchers because a number of confounding factors 461 

are involved, like the use of nest boxes for nesting and roosting by other species, species that 462 

usually occupy a nest box before the spring arrival of the flycatchers.  463 

The fact that there were more empty nest boxes in the south than the north may have 464 

biased the results from the randomization test. A way to deal with this may be to exclude from 465 

the test all nest boxes that were never occupied. This is however problematic from the reasons 466 

mentioned above. Even if the occupation rate did cause a bias, it may still be argued that the 467 

reason why so many next boxes were empty in the southern plots could be that mismatched 468 
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individuals dispersed to the north.  Clearly, experimental manipulation of availability of 469 

suitable territories along the environmental gradient, and close tracking of individuals, are 470 

necessary to test whether males are using the delayed phenological development of the 471 

arthropods and of the vegetation, against the alternative that the males are forced to disperse 472 

by intra- and interspecific competition for good breeding sites and habitats.  473 

 474 

Sex differences in the environmental drivers of natal dispersal 475 

Contrary to males, we did not find any effect of environmental phenology on dispersal 476 

behaviour in females. Despite a strong positive correlation between arrival date and first egg 477 

laying date, the latter may not have been as good measure for timing of migration in females. 478 

Female pied flycatchers usually chose a mate and start nest building very soon after spring 479 

arrival (Dale and Slagsvold 1995). However, the time elapsing from start of nest building to 480 

egg laying may sometimes range from 5–6 days to 2(3) weeks, depending on prevailing 481 

environmental conditions (per. obs.). Hence, we cannot exclude the possibility that weather 482 

and phenological conditions upon arrival also affect settlement decisions in females, as 483 

reported for other bird species (Studds et al. 2008). Apparently, the earlier breeding time in 484 

the south (on average 2–3 days) was not enough to compensate for a gradient of 6–15 days in 485 

the environmental phenology, nor a phenological mismatch experienced as a juvenile seemed 486 

to affect dispersal direction in females. The latter result can hardly be explained by 487 

methodological differences between the sexes.  488 

We suggest that the lack of response in females was related to a general difference 489 

between the sexes in the focal species in how they locate nest sites and mates. Males may use 490 

experience gained already in the first summer of life to locate potential nest sites (Doligez et 491 

al. 2002). Females can only choose territories that are already occupied and advertised by 492 
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males (Alatalo et al. 1986; Slagsvold 1986; Lampe and Espmark 2003). Competition for 493 

males and territories is strong among flycatcher females, and many may not breed at all. Most 494 

females arrive during a short period in spring and settle very quickly, only after a few hours or 495 

days (Dale et al. 1992, Dale and Slagsvold 1996). Females with more extensive prospecting 496 

may risk that a suitable nest site and mate is occupied by another female on return; the new 497 

female will be dominant already after a few hours of settlement as shown by removal 498 

experiments in the study area (Dale and Slagsvold 1995),  499 

 500 

Changes in geographical range 501 

Many factors may affect dispersal distance or dispersal propensity, such as personality (Fraser 502 

et al. 2001; Duckworth and Badyaev 2007), social status (Dhondt 1979; Arcese 1989), 503 

territory isolation (Pasinelli et al. 2004), and population density (Nilsson 1989), and maternal 504 

effects (Bitume et al. 2011). Whether these factors act in concert or opposition with the effect 505 

of present and past environmental phenology in determining direction of natal dispersal 506 

remains to be tested. The main question also remains whether overall distribution of animals 507 

might be random (e.g. Campbell et al.2010), despite the determinism of dispersal and habitat 508 

choice demonstrated here and in other studies (Pärt 1990; Orians and Wittenberger 1991; Potti 509 

and Montalvo 1991; Garant et al. 2005).  510 

We show that birds may be able to track environmental phenology at scales much 511 

finer than continent-wide geographical gradients and longer than one or two seasons (Studds 512 

et al. 2008). This provides some insights on how quickly bird populations may respond to 513 

environmental change. Geographical range of breeding populations may not only move 514 

towards the north because of reduced reproductive success and increased mortality in 515 

southern parts of the range, but because of dispersal of juveniles being able to track 516 
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immediate environmental phenology induced by climate change. The effect of such a natal 517 

dispersal – phenology driven mechanism may cause a species to alter its breeding range 518 

faster, and thus adapt more quickly to environmental change, given that there exist suitable 519 

breeding habitats at higher latitudes and altitudes. Analyses of spring phenology of plants in 520 

Norway have shown a general delay of 2–3 days per degree of increasing latitude, with a 521 

similar delay for each 100 m increase in altitude above sea level (Lauscher et al. 1955). Thus, 522 

a natal dispersal – phenology driven mechanism may be quite significant because the birds 523 

would have to move rather long distances to benefit from delays in seasonal peaks in the 524 

abundances of food resources. 525 

 Our finding on the significance of environmental phenology at the time of rearing, 526 

may also be important to resident species, because even in such species the natal dispersal 527 

may be quite extensive (Paradis et al. 1998). In migratory pied flycatchers, instances of natal 528 

dispersal over even hundreds of kilometres have been reported (Both et al. 2012). Response to 529 

environmental change by range shift may further be facilitated by breeding dispersal, but this 530 

is generally a less important source of movement in birds. Determining the ability of females 531 

in tracking environmental phenology when not constrained by male settlement behaviour (e.g. 532 

during migration, or on the wintering grounds) remains to be studied.  533 
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Tables 729 

Table 1. Mismatch between mean hatching dates of the local populations of pied flycatchers 730 

and peak dates of the caterpillar biomass on deciduous trees, and natal recruitment rates 731 

(number of arrived yearlings from ringed nestlings the previous year) across three locations.  732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

location year 
Hatching mismatch 

in days 

number of 

hatched broods 

Local 

recruitment in 

year+1 

NORTH 2009 9  50 4.9% 

 2010 1  56 4.9% 

 2011 8  78 3.7% 

 mean 5.7 - 4.5% 

CENTRAL 2009 13  39 0.9% 

 2010 6  48 1.4% 

 2011 8  53 0.7% 

 mean 9.0 - 1.0% 

SOUTH 2009 20  67 2.6% 

 2010 5  70 1.1% 

 2011 13  72 0.0% 

 mean 12.7 - 1.2% 
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Figure legends 748 

Figure 1. Map of three study locations (“SOUTH”, “CENTRAL”, “NORTH”) near Oslo, 749 

Norway. Black dots denote all provided nest boxes in the six plots. Letters denote plot names 750 

(D = Dæli, H = Haga, Z = Zinober, T = Tangen, B = Brenna, S = Skolen, see Online 751 

Resource, Table A1). Thin and thick brown lines denote contour lines of 200 and 400 m a.s.l., 752 

respectively, blue line denotes sea coast at the northern tip of the Oslo fjord, red crosses 753 

denote caterpillar frass fall sampling sites and the black cross denotes position of Blindern 754 

meteorological station. Complete UTM coordinates are: grid zone 32 V, north grid position 755 

6643000–6655000, east grid position 0584000–0596000. 756 

  757 

Figure 2.  The effect of hatching mismatch, and plant phenology in the recruitment year, on 758 

change in latitude during natal dispersal in male (a, b; open circles) and female (c, d; full 759 

circles) pied flycatchers. Hatching mismatch in year x is the difference in days between 760 

hatching date and peak date of caterpillar biomass on deciduous trees. Plant phenology in 761 

recruitment year x+1, when natal dispersal happens, is a percentage of leaf length referring to 762 
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natal site at arrival date in males, and first egg laying date in females. The lines and their 95% 763 

confidence intervals are fits of the two generalized linear mixed models on the effects of 764 

nestling mismatch and phenology in the recruitment year on change in latitude in males and 765 

females. Shown are the partial residuals of change in latitude for smooth functions of the two 766 

explanatory factors with estimated degrees of freedom edf = 1. These are obtained by varying 767 

the factor of interest while keeping the other factor fixed at mean value. Site and year nested 768 

within site were included as random effects. 769 

 770 

Figure 3. Distribution of slopes of the effect of hatching mismatch on change in latitude in 771 

male pied flycatchers from 5000 simulated linear mixed effect models. Mixed effect models 772 

were fitted to randomized change in latitude and included hatching mismatch and phenology 773 

in the recruitment year as fixed effects. Year nested within site were included as random 774 

effects. Estimate from the mixed effect model with the same structure fitted to original 775 

observations is denoted by arrow. 776 
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