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Abstract 

1. Forage availability is a strong tool for predicting large herbivore distribution and habitat 

use throughout different spatial scales. Yet, no large scale study has been executed where 

real biomass availability of palatable tree species was used as tool to explain moose 

browsing decisions and habitat use through different spatial scales. 

2. In the boreal forest of southern Norway, I measured moose habitat use as the number of 

moose pellet groups, moose browsing as the quantity and proportion of biomass consumed 

and habitat characteristics at five spatial scales i.e. regional (N=1), landscape (N=3), large 

community (N=61), small community (N=976) and individual tree level (N=8038). I used 

quantity of biomass available, altitude, tree density, number of moose pellet groups, Feeding 

Site Attractiveness Value, intensity of old browsing, cutting classes and tree species as 

variables to explain moose browsing decisions and habitat selection through the different 

spatial scales.  

3. The data, for the two largest spatial scales, were compared. Statistical analyses were run 

for the three smallest scales. I compared the change in the estimates of the variables in the 

full models between large community and small community scale. Additionally, for the three 

smallest scales, the best models were selected based on lowest AIC values. For the two 

smallest spatial scales, the best models predicting whether browsing occurred or not were 

also selected on lowest AIC values.  

4. During the winter of 2011-2012, I found that moose selected cutting class 2 forest stands 

for foraging, which accounted for 53.35% of the available biomass. Here they consumed 

80.47% of the measured browsed biomass. Cutting class 3, which accounted for 28.09% of 

the available biomass, was mainly selected for cover but minimally for foraging. Further, 

habitat use decreased with an increase in altitude. Moose increased usage of large patches 

with an increase in quantity of biomass available and increase in tree densities. For small 

communities, previous browsing was also a significant predictor, i.e. moose selected for 

small patches with higher quantity of biomass available which had been browsed in previous 

years, within the selected large patches.  

5. Species which were rare on regional and landscape scale, suffered higher browsing 

pressure than those which were abundant. Scots pine was the main food source, accounting 

for 84.74% of the measured consumed biomass. Quantity and proportion of biomass 

browsed from small and large patches containing rare species, did not significantly differ 

from those without rare species. With an increase in previous browsing in small patches and 

on individual trees, the chance of being browsed increased. Both large and small 

communities showed an increase in quantity and proportion of biomass browsed with an 

increase in previous browsing. Yet, on individual tree level, previous browsing failed to 

explain quantity and proportion of biomass browsed.  

6. To be able to reduce moose browsing pressure on young Scots pine stands, I advise 

increasing the forage availability in cutting class 2 stands and reducing the wintering moose 

densities. Creating disturbance by increasing predation risk could be an effective tool in 

reducing browsing pressure on young forest stands, as has been proven in Yellowstone 

National Park. However, as large carnivores and their existence in Norway are the base of 

ongoing conflicts, this potential solution may not be considered at the present time. 

 

Key-words: moose, biomass, browsing, forage, spatial scale, landscape, community   
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1. Introduction  

In Fennoscandia moose is the largest herbivore, is found in great numbers, is the cause for 

severe damage on young Scots pine forest stands (Cederlung et al., 1980; Lavsund, 1987; 

Fremming, 1999) and is capable of suppressing highly favoured palatable tree species by 

browsing (Heikkilä and Härkönen, 1993, 1996; Solbraa, 2008; van Beest et al., 2010). In 

winter time the diet of a moose in Fennoscandia consists for the major part out of the woody 

shoots of Scots pine, birch species, Salix species, Willow, Aspen and Rowan (Wam and 

Hjeljord, 2010). With a daily average intake between eight and sixteen kilogram of wet 

biomass per day per moose (Sæther et al., 1992), parts of winter habitats are heavily negative 

affected (Cederlung et al., 1980; Lavsund, 1987; Fremming, 1999; Gundersen et al., 2004; 

Franzmann and Schwartz, 2007). One of the main effects is the loss of potential timber by 

browsing of the leading stem and the majority of lateral shoots of young trees (Gill, 1992; 

Fremming, 1999). This conflict has been the base of decennia of research, yet no major 

solutions have been found. Several studies pointed out that forage availability is a strong tool 

for predicting large herbivore distribution and habitat use throughout different spatial scales 

(Senft et al., 1987; Ward and Saltz, 1994; Morellet and Guibert, 1999; Månsson et al., 2007; 

Månsson, 2009; Månsson et al., 2012). Still no large scale study has been executed where 

real biomass availability of palatable tree species was used as tool to explain moose 

browsing decisions through different spatial scales. Often commercial Scots pine stands were 

the centre of these studies since they are supposedly the main source of winter food for 

moose and here the damage on commercial timber is the greatest (Fremming, 1999). 

However, moose winter home ranges, without supplementary winter feeding (van Beest et 

al., 2010), are spread over a much larger area (van Beest et al., 2011). By only sampling the 

favored feeding sites, one can hardly say anything about the rest of the habitat of large 

herbivores (Senft et al., 1987; Ward and Saltz, 1994; Månsson et al., 2007).   

 

The study of Senft et al. (1987) on large herbivore foraging, is used in many large herbivore 

studies as a foundation to explain foraging behavior and decisions. The study showed large 

herbivore foraging mechanisms to be different from the optimal foraging theory. Optimal 

foraging theory assumes that animals learn about the forage availability distribution and use 

this optimally by distributing equally or proportionally over the available food resources 

(Pyke, 1984). This theory is based on studies on species which use different strategies, 

compared to herbivores, to find and consume food such as predators which feed on prey 

distributed in discreet patches and rich of nutrients (Belovsky, 1984; Senft et al., 1987). 

Food resources for large herbivores are generally distributed less patchy, more widely 

through over the landscape and vary in nutrition richness (Westoby, 1974; Senft et al., 1987). 

In order to study foraging behavior and foraging decisions of large herbivores, the influence 

of the composition of the landscape, from small scale patches up to large scale habitat types, 

has to be taken into account, i.e. the importance of hierarchy theory. Meaning, different 

foraging decisions can be explained by taking spatial scaling into account. 
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1.1 Herbivory and spatial scaling 

Belovsky (1978), Senft et al. (1987) , Andersen and Saether (1992), Månsson et al. (2007) 

and Månsson (2009), pointed out that spatial scaling plays a key role when trying to explain 

large herbivore foraging patterns and habitat choices. Senft et al. (1987) has divided the 

different spatial scales into individual plants, plant communities (patches of plants),  

landscape systems and regional systems. This study follows these spatial scales almost 

identically, but divides communities into large communities (large patches) and small 

communities (large patches). Large communities are large patches within a landscape, such 

as forest stands. Small communities are small patches within large communities, such as a 

group of trees.  

1.1.1 Regions 

On regional scale, foraging decisions are made is a very low frequency. These decisions are 

coming from large differences in the animals habitat, such as seasonal changes which causes 

long term drought or snow coverage, decreasing forage availability, forcing animals to move 

to areas. Senft et al. (1987) described this as landscape-departure rather than landscape 

selection.  

 

Seasonal migration is observed in many wild ranging animal species (Berger, 2004). Often it 

is the movement between a distinct summer and winter home range and is induced by the 

spatiotemporal variation in resource abundance during the different seasons (Fryxell et al., 

1988; Lundberg, 1988; Hebblewhite et al., 2008; Bischof et al., 2012). Contrary to Senft et 

al. (1987), these studies  do not describe the seasonal migration as habitat departure but as a 

strategy to maximize fitness by selecting areas with high food quality and quantity. Large 

herbivores are thought to follow the available forage quantity and quality through the 

seasons. This behavior is described in the Forage Maturation hypothesis (FMH), which 

proposes that ungulate migration is driven by the tradeoff between high forage quality and 

quantity (McNaughton, 1985; Fryxell et al., 1988; Hebblewhite et al., 2008). The tradeoff is 

induced by the decline in forage quality during the growth of plants i.e. during growing 

biomass, and on the other hand forage quantity available declines at low biomass after 

maturation of plants. Therefore, ungulates select for areas with intermediate forage quantity 

and quality, considering that areas with highest forage quantity lag in quality and areas with 

highest forage quality lag in quantity. Areas with intermediate forage quality and quantity 

are found in growing plant communities. Since growth of plants has a temporal and spatial 

difference, ungulates are thought to follow the growth stage which has an adequate mixture 

of forage quantity and quality, leading to the movement within the selected home range 

(Hebblewhite et al., 2008; Bischof et al., 2012). Contrary to this, moose in Scandinavia 

select during winter young commercial Scots pine forest stands which contain extremely 

high quantities of forage (Lavsund, 1987; Andren and Angelstam, 1993; Heikkilä and 

Härkönen, 1996; Fremming, 1999; Ball and Dahlgren, 2002; Månsson et al., 2007; Solbraa, 

2008). These forests have timber production as primarily goal, which results in large stands 

with high quantities of young trees producing easy moose food (Löyttyniemi, 1985; Andren 

and Angelstam, 1993; Heikkilä and Härkönen, 1993, 1996; Ball and Dahlgren, 2002; 

Bergqvist et al., 2003). 
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Many migratory species, parallel to the seasonal migration, have to switch their diet because 

the spatial and temporal variation affects the composition of the available palatable forage 

(Belovsky, 1981; Augustine and McNaughton, 1998; Kielland, 2001). Many large ungulate 

herbivores forage on leaves, buds, parts of green shrubs, berries, grasses and other green 

plant tissue during the summer  (Peterson, 1955; Dahlberg and Guettinger, 1956; Belovsky, 

1981; Wam and Hjeljord, 2010), but switch their diet to woody shoots during winter 

(Augustine and McNaughton, 1998). Because of the seasonal migration, this means that 

there is a large difference in how herbivores affect the plant community in the two chosen 

seasonal home ranges. Especially when there is a large difference between summer and 

winter home range size, i.e. herbivore densities will differ between the different seasons. 

Due to the increase in herbivore density in the smaller home range, browsing pressure 

increases on the palatable plant species. The season where food quantity is less abundant, of 

lower quality and harder to reach, animal densities increase since smaller suitable living 

space is available (Mysterud et al., 1999; Lesage, 2000).  

1.1.2 Landscapes 

On landscape scale large herbivores match their forage selection to forage availability in the 

landscape. There is a linear relation between the food preference and the relative abundance 

of that food source. This has been found for a broad selection of herbivore species, such as 

domestic sheep and cattle, mule deer, wapiti, feral horses, North American bison, eastern 

grey kangaroos and wallaroos (Hunter, 1962; Taylor, 1982; Coppock et al., 1983; Duncan, 

1983; Hanley, 1984; Senft et al., 1987). The home range boundaries of large herbivores are 

often set by features of the landscape they live in (Senft et al., 1987). Home range size of 

large herbivores is depending on the body size of the species and the demand of an adequate 

quantity and quality of forage for the individual (McNab, 1963; Harestad and Bunnell, 1979; 

Swihart et al., 1988; van Beest et al., 2011), i.e. with an increase in body size, home range 

size increases. Additionally, latitude, habitat productivity, social organization, behavior and 

seasonal timing play important roles in determining home range size (Lindstedt et al., 1986). 

van Beest et al. (2011) pointed out that there is variation in home range size with 

spatiotemporal scale, where climate stochasticity and variation in forage availability play an 

important role.  

1.1.3 Large communities 

On large community scale (large patches in the landscape), forage selection by large 

herbivores is explained to be the consumption of maximal quantity and adequate quality of 

forage.  Selecting for quality is time consuming, leading to a decrease in quantity of food 

consumed. With a decrease in forage quality in the habitat, large herbivores can momentary 

maximize quantitative consumption (Senft et al., 1987). Meaning, they have to eat food 

items of low quality in order to maintain fitness  (Westoby, 1974). Foraging selectivity and 

the degree of biomass consumed per plant species by ungulate herbivores, is thereby 

influenced by the relative and absolute abundance of that plant species in the home range 

(Augustine and McNaughton, 1998).  

 

Abundance of high quality forage and shelter from predators are rarely found on the same 

place (Hebblewhite et al., 2008), therefor ungulates move between different habitat types 

(large patches) on a daily bases (Demarchi and Bunnell, 1995; Godvik et al., 2009). The 

highest quality of forage is often found in large open patches, which do not provide cover 
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from predation or human disturbance (Hebblewhite et al., 2008; Godvik et al., 2009). In 

Norway during winter, moose forage in large young forest stands which provide high 

quantities of forage (Löyttyniemi, 1985; Andren and Angelstam, 1993; Heikkilä and 

Härkönen, 1993; Fremming, 1999; Ball and Dahlgren, 2002; Solbraa, 2008), yet these stands 

do not provide much cover from large predators and human disturbance (Demarchi and 

Bunnell, 1995; Hebblewhite et al., 2008; Godvik et al., 2009). Therefor moose also select for 

large patches which do not provide high quality or quantity of forage, but cover (Herfindal et 

al., 2009), i.e. habitat use and selection is not only explained by the distribution of forage 

quality and quantity.  

 

Additionally, selection of large patches can be due to environmental factors such as snow 

cover and plant production (Poole and Stuart-Smith, 2006; Godvik et al., 2009). Young 

forest stands are used more early in the growing season due to the temporal higher nutrient 

quality (Hjeljord et al., 1990; Boyce et al., 2003) and higher density of forage (Hjeljord et 

al., 1990; Månsson, 2009). Contrary, older forest stands are used more intensely during 

winter because of the lower snow depth.  Here animals use less energy moving and have 

better access to dwarf shrubs as food resource (Parker et al., 1984). Moose in Fennoscandia 

move during winter down to lower altitudes where snow depths are lower (Gundersen et al., 

2004; Franzmann and Schwartz, 2007) and still utilize open young forest stands for foraging 

(Löyttyniemi, 1985; Andren and Angelstam, 1993; Heikkilä and Härkönen, 1993; 

Fremming, 1999; Ball and Dahlgren, 2002; Solbraa, 2008). 

1.1.4 Small communities 

On small community scale (small patches in the landscape), large herbivores select forage 

with the goal to maximize nutrient intake(Belovsky, 1984; Senft et al., 1987). In this  case 

the forage selection is nonlinear related to the abundance of the available forage(Senft et al., 

1987), i.e. large herbivores maximize nutrient intake by selecting small patches with high 

quantity of forage available and maximize utilization of these patches. However, a study on 

moose browsing patterns in Sweden showed underutilization of small patches with high 

quantity of available forage (Månsson et al., 2007). 

 

Machida (1979), Danell et al. (1985), Löyttyniemi (1985) and Bergqvist et al. (2003) 

described feeding loops for browsing herbivores, where the animals return to the same small 

patches which were browsed in previous years and re-browse these. The browsing from the 

previous years, results in an increase in nutrient values in the affected plants in the patch 

(Löyttyniemi, 1985; Augustine and McNaughton, 1998; Ball et al., 2000; Kielland, 2001), 

making them more palatable for the resulting years.  

1.1.5 Individual trees 

On individual tree scale, large herbivores select forage in a similar way as in small patches, 

they ty to maximize nutrient intake by selecting plants with high quantities of forage and 

utilize these maximally (Belovsky, 1984; Senft et al., 1987). Trees which have been 

browsed, are exposed to an increase in chance to be re-selected for browsing in following 

years (Machida, 1979; Danell et al., 1985; Löyttyniemi, 1985; Bergqvist et al., 2003). The 

intensity of herbivory on individual plants, depends for a large part on how palatable the 

species is (Augustine and McNaughton, 1998; Ball et al., 2000; Solbraa, 2008). Trees of 
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highly palatable species can be heavily suppressed by browsing with death as possible result 

(Heikkilä and Härkönen, 1996; Augustine and McNaughton, 1998; Solbraa, 2008). So are 

moose in Fennoscandia known to be able to suppress Rowan, Aspen and Willow species 

since these species are highly preferred for forage (Heikkilä and Härkönen, 1996; Solbraa, 

2008). The relative abundance of a species within the landscape is a very important factor 

explaining foraging intensity on individual plants, since rare palatable species will suffer 

high foraging pressure (Augustine and McNaughton, 1998). This is further explained in the 

following section.  

1.2 Effects of herbivory on forage. 

Ungulate herbivores can influence plant species within the selected home range by changing 

quantity, quality and composition of the foraged plant species  (Bryant et al., 1991; Hobbs, 

1996; Augustine and McNaughton, 1998). The intensity of influence on the plant species 

within a selected home range, depends on the degree of tissue loss, resource availability, the 

growing stage of the plant when being foraged by herbivores and the species specific 

responses to tissue loss. Plants respond in two different ways; regrowth from residual tissue 

or death of residual tissue  (Crawley, 1983; Augustine and McNaughton, 1998). The 

response of the foraged plant depends on the tolerance of the specific specie’s ability to use 

stored nutrient resources for regrowth (Haukioja et al., 1990; Honkanen et al., 1999; Millard 

et al., 2001). Evergreen trees species store during winter nitrogen in needles, whereas 

deciduous tree species store it in the roots. This makes evergreen species more vulnerable to 

winter browsing by large herbivores since larger quantities of nutrition are removed from the 

individual plants (Millard et al., 2001). So shows Scots pine a decrease in growth after being 

exposed to browsing (Långström and Hellqvist, 1991; Solbraa, 2008). 

 

The composition of plant species within the home range, rather than the composition of plant 

species in small patches, affects the selectivity by limiting the options of forage available 

(Heikkilä and Härkönen, 1996). White-tailed deer for example, are capable to lower the 

abundance of palatable plant species which are found in low densities within the home 

range. However, when these same palatable plant species are existing in high abundance 

within the home range, the deer don’t decrease the plant population (Augustine and 

McNaughton, 1998). Acknowledging this, one can say that selectivity for non-abundant 

palatable plant species is higher than selectivity for abundant palatable plant species when 

looking at home range scale. When looking at unpalatable plants species, a similar pattern is 

observed. Brandner et al. (1990) and Heikkilä and Härkönen (1996), observed large 

generalist herbivores avoiding patches in the landscape with an high abundance of 

unpalatable plant species. However, in landscapes where this unpalatable plant species was 

rare, the ungulate herbivores managed to suppress these plant species by selecting these 

species for forage in order to acquire the needed nutrients.   

 

Herbivore selective foraging behavior is able to change the competitive ability between 

different plant species since different species differ in tolerance to herbivory, have different 

capabilities for regrowth and are differently affected in reproductive capability after being 

attacked by herbivores (McNaughton, 1985). This can lead to a change in plant species 

composition within plant communities. Van Hees et al. (1996) studied roe deer and red deer 

and Manseau et al. (1996) studied caribou. Both found that  foraging behavior of the species, 

altered the plant species composition within the home range. Roe deer and red deer fed on 
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Pedunculate oak (Quercus robur), Silver birch (Betula pendula) and Beech (Fagus 

sylvatica). Due to the high tolerance to browsing by beech and the lower tolerance of the oak 

and silver birch, the roe deer and red deer decreased the species with low browsing tolerance 

and increased the species with high browsing tolerance. A similar result was found with 

caribou. They managed to decrease the abundance of slow growing lichens dramatically, 

however palatable shrubs and graminoids remained more constant or even increased in 

abundance. The speed and intensity in which species composition is altered is not only 

depending on ungulate density but also on selectivity. Augustine and McNaughton (1998) 

wrote:  

 

“Understanding the effect of ungulate density on plant communities is critical from a 

management perspective because setting animal density is 1 of the main tools wildlife 

managers can use to manipulate ecosystems. Changes in ungulate numbers alone cannot 

alter the relative abundance of a plant species if foraging selectivity and plant tolerance 

remain constant. In such a situation, herbivores will continue to have the same relative effect 

on the competitive abilities of different species at all levels of herbivore abundance. The only 

exception is when a particular species is never eaten by ungulates (e.g., spruce in boreal 

forests), in which case increasing herbivore density will increasingly favor the uneaten 

species.”  

 

Selective foraging on young small individual trees determines the composition of the future 

mature stand, and is described as the strongest effect of large herbivores on tree vegetation 

(Vourc'h et al., 2002; Danell et al., 2003). 

 

Acknowledging that herbivores can change the forage availability (Bryant et al., 1991; 

Hobbs, 1996; Augustine and McNaughton, 1998) one can conclude that forage selectivity 

can be changed by herbivore density due to changes in available forage quantity and quality. 

I.e. if herbivore densities increase, selectivity will decrease because of the decrease in forage 

quantity of preferred palatable species available per animal. However, on low herbivore 

densities, selectivity for preferred palatable species is highest, yet the low animal density 

may not affect the plant species significantly negative. At intermediate herbivore densities, 

selectivity for preferred palatable species can remain high, however it is likely that total 

amount of forage quantity foraged by the animals will have a significant effect on the species 

composition by changing competition between the present plant species (Marquis, 1974; 

Tilghman, 1989; Brown and Stuth, 1993; Augustine and McNaughton, 1998). High ungulate 

herbivore densities can potentially completely change the species composition within a 

community by selective foraging if all species in a given community are edible (Marquis, 

1974; Healy, 1997; Augustine and McNaughton, 1998). 
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1.3 This study 

The aim of this study is to point out how certain habitat characteristics on different spatial 

scales affect moose browsing decisions and habitat selection, with forage biomass playing a 

key role. I measured moose habitat use in number of moose pellet groups, moose browsing 

as quantity and proportion of biomass consumed and habitat characteristics on five different 

spatial scales i.e. regional, landscape, large community, small community and individual tree 

level. I used quantity of biomass available, altitude, tree density, number of moose pellet 

groups, Feeding Site Attractiveness Value, intensity of old browsing, cutting classes and tree 

species as explainer variables to explain moose browsing decisions and habitat selection 

through the different spatial scales.  

I expect: 

1. on landscape level moose densities to be higher in landscapes with a higher quantity of 

palatable biomass available and to be lower in landscapes with low quantity of palatable 

biomass available.  

2. moose to use cutting class 2 forest stands for foraging, cutting class 3 forest stands for 

cover and foraging and to find minimum use of the other cutting class forest stands.  

3. to find with an increase in altitude a decrease in habitat use, quantity of biomass browsed 

and proportion of biomass browsed.  

4. moose to maximize nutrient intake by browsing larger quantities and proportions from 

individual trees and small patches which; a. have higher quantities of palatable biomass 

available, b. have been exposed to browsing in previous years.  

5. species which are rare on regional and landscape scale to be heavily browsed and have the 

highest proportional loss of biomass on individual tree scale.  

6. small communities, and in lesser extend large communities, containing rare tree species to 

be used more intensively and suffer higher browsing pressure compared to those without rare 

species.  
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2. Methods 

2.1 Study area 

The study was conducted during the summer of 2012 in the boreal forest of south-eastern 

Hedmark (Norway) in the surroundings of Trysil. Three study areas (Plassen, Ljørdalen and 

Gravberget) were selected, owned by separate private land owners and state-owned forest. 

All three study areas have timber and pulp production as objective and are intensively used 

by moose through the whole year. Moose is an important game species and hunted creating 

income for the land owners in issue. The forest consists mainly out coniferous tree species 

Scots Pine (Pinus sylvestris) and Norway Spruce (Picea abies) and deciduous tree species 

Silver birch (Betula pendula) and Downy birch (Betula pubescens). Additionally Aspen 

(Populous tremula), Rowan (Sorbus aucuparia), Willow (Salix spec.), Juniper (Juniperus 

communis), Alder (Alnus incana) are present, mainly in shrub form. Undergrowth is 

dominated by Bilberry (Vaccinium myrtillus), Cowberry (Vaccinium vitis-idaea), Heather 

(Calluna vulgaris) and Lichen.  

2.2 Data collection 

From the beginning of May until the end of June 2012, a group of eight persons collected the 

field data for eight consecutive weeks. In each study area, twenty quadrats of 500 x 500 

meter were placed with maximum distance between each quadrat. Lakes and infrastructure 

were avoided when selecting the placement of the quadrats. Study area Ljørdalen had more 

ground surface, which made it possible to place twenty-one quadrats. Each quadrat consisted 

out of sixteen plots, which were placed with one hundred meter distance from each other 

along the outer ribs of the quadrat.  

 

With the use of GPS devices, we approached each plot center as close as possible. If the plot 

would end up on a forest road, a building or into a lake or stream, the plot was moved twenty 

up to one-hundred meter into the quadrat. If the plot had to be moved more than one-hundred 

meter inside, we moved it twenty up to one hundred meter outside of the quadrat. Relocating 

of plots was done in the perpendicular direction of the rib of the quadrat where the plot was 

located on.  

 

From each plot center, one-hundred squire meter circular plots were sampled for moose 

winter pellet groups (from here after referred to as moose pellet groups). Moose pellet 

groups from the preceding winter period, consisting out of a minimum of ten pellets, were 

counted and removed from the plot to avoid recounting.  

 

From the same plot centers, fifty squire meter circular plots were sampled intensively to 

obtain forest features and details of the trees in the plot. Per plot the following data were 

collected: Cutting class of the stand where the plot was located in and counts of number of 

trees per tree species within the plot.  
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Cutting classes were:  

0 = Non- forest (bog, meadow, rocks etc.) 

1 = Cutting class 1 (clear cut; no regeneration yet) 

2 = Cutting class 2 (tree height < 10 m) 

3 = Cutting class 3 (tree height > 10 m) 

4 = Cutting class 4 ( forest mature for logging) 

5 = Cutting class 5 (old growth forest)  

 

Of each species the ten trees (with a minimum height of 0.5m) closest to the plot center the 

height was measured, accumulated browsing was estimated (see next page for accumulated 

browsing classes), number of un-browsed shoots and number of browsed shoots were 

counted and five bite diameters were measured in millimeter with one decimal accuracy. To 

avoid bias selections towards specific bite diameters by the fieldworkers, for trees with more 

than five bites the selection for measurements was done by randomly grabbing a branch of 

the tree and measuring the bites on this branch. If the branch did not count five bites, another 

branch was randomly selected and bites were measured. This was repeated until five bite 

diameters were measured.  

 

Accumulated browsing is a measure of how the growth form of the tree has been affected by 

browsing during its life time. New browsing from this year does not count in this measure, 

only old browsing. Accumulated browsing classes were: 

0 = no old browsing 

1 = old browsing visible but growth form not changed 

2 = old browsing visible and growth form of tree changed 

3 = old browsing visible and growth form strongly changed (topiary) 

 

To indicate the intensiveness of previous browsing on plot and quadrat level, I calculated the 

mean accumulated browsing for each plot and quadrat.  

 

The altitude, in meters elevation, for each plot was taken from a Digital Elevation Map in 

ArcGIS10.1, with the use of GPS locations of the plot centers.  

2.3 Spatial scales 

For this study I used five different spatial scales, following similar scale sizes described in 

(Senft et al., 1987). The scales used, ranked from largest to smallest are;  

- Region scale (N=1), consisting out of all data combined 

- Landscape scale (N=3), consisting out of the data from each study area 

- Large community / large patch scale  (N=61), consisting out of the data from each 

quadrat 

- Small community / small patch scale (N=976), consisting out of the data from each 

plot 

- Individual plant scale (N=5448), consisting out of the data from each individual tree 
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2.4 Moose density 

Moose densities for the landscape and study areas were calculated based on moose pellet 

group counts, number of moose pellet groups produced per moose per day and the length of 

the 2011-2012 winter. A moose is thought to produce a mean of 14 pellet groups per day 

during winter (Persson et al., 2000) and the winter we estimated to be 180 days. The 

densities were calculated with the following formula:  

 

Moose density (N/km²) = Mean number of moose pellet groups per plot / 14 / 180 * 10000 

2.5 Calculating biomass 

To calculate biomass weights available and browsed, a second group of students collected a 

separate data set in the same three study areas. Since Picea abies and Alnus incana are rarely 

eaten by moose in our studied areas, these species were not included in this data collection. 

Tree species Pinus sylvestris, Betula pubescens, Betula pendula, Salix, Populus tremula, 

Sorbus aucuparia and Juniperus communis were sampled. Sampling was done by driving 

along forest roads, stopping each 500 meter, going 50 meter to the left and right from the 

road, chose the closest three trees of each species to sample. At each tree, they measured 

shoots at three height classes (0,3-1m, 1.1m-1.5m, 1.51m – 2m). At each height they 

measured the diameter (mm) and length (cm) of three random twigs at the bottom of the 

yearly shoot. If the closest trees did not have twigs below 2m height, more trees were 

measured until they had three times three observations at each height. They clipped one 

shoot from each height, from each tree and cut them at different diameters (1mm up to 

12mm). Of each clipped shoot, the length and diameter was measured and collected from the 

field. For Pinus sylvestris the needles remained on the collected twigs, however for 

deciduous species leaves were removed. The twigs were dried at 105 degrees Celsius, for 48 

hours and weighed individually. With this data, dry biomass weight to twig diameter 

regression curves were made for each sampled species (see appendix). 

 

Dry biomass available in grams (from here after referred to as biomass available) was 

calculated by taking from each species from each study area 90% of the smallest bite 

diameters. The largest bite diameter of this selection was set to be the diameter of an 

available shoot of that species for that study area (Palo et al., 1992; Jia et al., 1995). Biomass 

available per tree was calculated by fitting the shoot diameters into the regression models 

and multiplying the outcome with the sum of N un-browsed shoots and N browsed shoots 

per tree.  

 

Biomass browsed per tree was calculated by using the mean of the measured bite diameters 

on that individual tree and fitting them into associating regressions. If a tree measured more 

than five bites, the mean biomass of the five bites was multiplied with the total number of 

bites counted on that tree. Biomass available per plot was calculated by taking the sum of 

available biomass of the trees in the plot. If the number of trees of a species succeeded ten, 

the mean biomass available on the ten measured trees was multiplied with the total 

abundance of that species in the plot. Biomass available per quadrat was calculated by taking 

the sum of the biomass of the total biomasses calculated for the plots within that quadrat. 
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Proportion of biomass browsed was calculated on each spatial level by dividing the quantity 

of browsed biomass by the quantity of biomass available.   

2.6 Feeding Site Attractiveness Value (FSAV) 

Since not all tree species are equally preferred by moose for forage (Heikkilä and Härkönen, 

1996; Solbraa, 2008), I calculated the Feeding Site Attractiveness Value (from here after 

referred to as FSAV) (Stokke, 1999) for each plot and quadrat. In order to calculate the 

FSAV values, a forage preference index (FPI) was calculated. To account for the difference 

in biomass composition between the three study areas, which influences the forage 

selectivity, the FPI values were calculated for each study area separately. 

           

                       Biomass browsed species X / Total biomass browsed 

FPI species X = ------------------------------------------------------------------ 

   Biomass available species X / Total biomass available 

 

The FSAV for plot and quadrat scale consisted out of the sum of the products of the FPI of 

each species with its abundance within the plot or quadrat.   

 

FSAV plot X=(FPI species 1 * N trees species 1 in plot X) + (…species 2 * ...species 2) + … 

2.7 Statistical analyses and modeling 

Since regional scale (N=1) and landscape scale (N=3) are low in sample size, data from 

these scales were compared. I run t-tests for moose density, quantity of biomass available, 

quantity of biomass browsed and proportion of biomass browsed, to control for any 

statistical differences between the three studied landscapes. Quadrat (N=61), plot (N=976) 

and tree (N=8038) scale were included for statistical modeling. To explain moose browsing 

decisions, I used number of moose pellet groups, quantity of biomass browsed and 

proportion of biomass browsed as response variables. I used mixed models, with for each 

scale the larger scales as random variables, i.g. on tree scale, plot, quadrat and study area 

were random variables. On plot and tree level, there was a large amount of zero values in the 

response variables quantity and proportion of biomass browsed. To account for this, the data 

sets were split up for two separate analyses. The first analyses explained whether a plot or 

tree was browsed or not browsed. The second analyses only include plots (N=301) and trees 

(N=798) which were selected for browsing and predicted the quantity and proportion of 

biomass which was browsed. For each response variable the full additive model was 

stepwise reduced with one variable in order to create the possible models. All models were 

run in R ‘stats’. 

2.7.1 Number of moose pellet groups 

Only on plot and quadrat scale the number of moose pellet groups was used, since there are 

no moose pellet groups per tree. In order to explain number of moose pellet groups, 
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variables; biomass available, altitude, tree density, FSAV, accumulated browsing and cutting 

class were used. I used mixed glmer models with a poisson family.  

2.7.2 Quantity of biomass browsed 

To explain quantity of biomass browsed on quadrat and plot scale, variables; altitude, tree 

density, FSAV, number of moose pellet groups, accumulated browsing and cutting class 

were used. Since not all variables could be applied on tree scale, different variables were 

included i.e. accumulated browsing, tree height (m) and tree species. On quadrat, plot and 

tree scale I used linear (lme) models to explain how much was browsed. Additionally, on 

plot and tree scale, glmer models with a binomial family and a logit link function were used 

to explain whether browsing occurred or not.  

2.7.3 Proportion of biomass browsed 

To explain proportion of biomass browsed on plot and quadrat level, the variable “quantity 

of biomass available” was added to the variables used to explain quantity of biomass 

browsed. Variables used on tree level were; accumulated browsing, tree height (m) and tree 

species. On quadrat, plot and tree scale I used linear (lme) models to explain the proportion 

of biomass which was browsed. Additionally, on plot and tree scale, glmer models with a 

binomial family and a logit link function were used to explain whether a proportion was 

browsed or not. 

2.8 Transformations 

The values for biomass available, on all spatial scales, included for the largest part lower 

values yet some large values. To account for this, I took the nature logarithm of biomass 

available to acquire a normal distribution of the data. Proportion of biomass browsed, 

showed a skewed distribution since most of the values were close to zero and therefor was 

ArcSine-square-root transformed. The presented results are back transformed, which resulted 

in non-symmetric standard-error values.  

2.9 Comparing models 

On plot and quadrat level, I used the same variables to be able to compare the change in 

slopes and significance between the two different spatial scales. For each response variable, I 

run the full models on both spatial scales and compared the estimates.  

2.10 Selecting models based on AIC 

In order to obtain the best fit models for each response variable on each spatial scale, I 

selected models based on Akaike’s information criterion (Burnham and Anderson, 2002). 

The model with the lowest AIC value was selected as best fit model. If models showed an 

∆AIC value lower than 2.0, they were additionally selected. For each response variable, I 
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compared the selected models for the different spatial scales. AIC model selection was 

applied to all of the created models.  

2.11 Matching of biomass browsed to biomass available 

To be able to test the hypothesis that moose overmatch quantity of biomass browsed on the 

smallest spatial scales (i.e. individual trees and plant communities), match quantity of 

biomass browsed on the large spatial scales (i.e. landscape and region), linear models with 

“quantity of biomass browsed” as response variable and “quantity of biomass available” as 

predictor variable were run for the three smallest spatial scales. Each model included the 

larger spatial scales as random variables.  
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3. Results 

3.1 Regional scale. 

In all 976 sampled plots combined, a total of 203 moose winter pellet groups were counted, 

with a mean of 0.21 (2SE=0.042) moose pellet groups per 100m² plot. Leading up to a mean 

moose density of 0.83 (2SE=0.166) moose per km².  

 

The study included 8038 trees within browsing height. From this selection, 3344 (41.60%) 

trees had old browsing and 3387 trees (42.14%) had visible old and / or new browsing. For 

calculating biomass availability and biomass consumption, 5448 trees were included, of 

which 4024 had biomass available between 0.5m and 3.0m. Of all trees with biomass, 798 

trees (19.83%) had fresh browsing. 3007 individual trees had old browsing and 3050 trees 

(75.80%) had visible old and / or new browsing. 43 trees (1.06%) had fresh browsing, but 

did not have any old browsing, i.e. they were browsed for the first time. Downy birch and 

Scots pine were dominant in abundance in the region and accounts for the largest numbers of 

browsed trees (table 1). Yet, the proportion of trees browsed, compared between all species, 

is the lowest for Scots pine with 42.94% . When only looking at fresh browsing, Downy 

birch and Scots pine still account for the largest number of browsed trees. However, the 

proportions of trees fresh browsing, compared between all species, is the lowest for Downy 

birch with 13.95%. Of all Scots pine trees, 24.32% had fresh browsing. 

 

Table 1. Trees browsed on region level. The left section of the table represents all trees which were sampled, 

also including trees without biomass available within browsing height (0.5m – 3.0m). The number of browsed 

trees are trees which showed old and –or new browsing, these same trees are represented in the percentage of 

trees browsed. The right section of the table represents all trees with biomass available within browsing height. 

The number of trees with fresh browsing are the trees which were browsed during the 2011-2012 winter period. 

These same trees are represented in the percentage of trees with fresh browsing. Species are: Bpe = Silver 

birch, Bpu = Downy birch, Jco = Juniper, Psy = Scots Pine, Ptr = Aspen, Sal = Willow species, Sau = Rowan. 

Species N trees 

measured 

N trees 

browsed 

 

% trees 

browsed 

N trees with 

biomass 

available 

N trees 

freshly 

browsed 

% trees 

freshly 

browsed 

Bpe 122 95 77.87 107 41 38.32 

Bpu 2379 1693 71.16 2057 287 13.95 

Jco 135 109 80.74 135 39 28.89 

Psy 2520 1082 42.94 1480 360 24.32 

Ptr 42 32 76.19 28 8 28.57 

Sal 116 110 94.83 99 41 41.41 

Sau 134 123 91.79 118 22 18.64 

  

The available biomass in the region is composed for the largest part out of Juniper and Scots 

pine, with 49.60% and 39.65% of all biomass available respectively (table 2). Downy birch 

comes on the third place with 10.03%. Comparing Scots pine with downy birch, the mean 

quantity of biomass available from Scots pine is much higher (4152.00 kg/km² 2SE=1124.79 

compared to 1050.38 2SE=251.65, N=976). Most of the measured browsed biomass has 

been consumed from pine (a total 7.55kg, with 154.81 kg/km², SE=60.73 ), making up 
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3.73% of the available pine biomass and contributing up to 84.74% of the browse diet of 

moose in the region. Juniper is the second largest part of the browse diet with 7.97% of the 

consumed biomass, with a mean consumption of 15.05kg/km² (2SE=18.35). Downy birch 

comes on the third place with 4.51% of the moose browse diet, with a mean consumption of 

8.23kg/km² (2SE=2.78). Moose browsed a total mean of 182.69kg/km² (2SE=68.32), from 

the 10472.81kg/km² (2SE=4928.82) biomass available in the region, which is 1.74%. 

 

Table 2. Biomass available and browsed per species in the region. Biomass available is described with; 

biomass composition in %, total measured quantity of biomass available in grams and the calculated mean 

biomass available in kilograms per square kilometer. Biomass browsed is described with;  total measured 

biomass browsed in grams, the calculated mean biomass browsed in kilograms per square kilometer, the 

proportion of the available biomass browsed and the composition of the browsed biomass in %. Means are with 

2SE in parentheses. Species as in table 1.  

Species Biomass 

composition 

in % 

Biomass 

available 

(g) 

Biomass 

available 

(kg/km²) 

Biomass 

browsed 

(g) 

Biomass 

browsed 

(kg/km²) 

% of 

biomass 

browsed 

Browsed 

biomass 

composition  

in % 

Bpe 0.48 2454.50 51.13 

(29.94) 

104.46 2.18 (2.08) 4.26 1.17 

Bpu 10.03 51258.47 1050.38 

(251.65) 

401.68 8.23 (2.78) 0.78 4.51 

Jco 49.60 253498.11 5370.72 

(4761.82) 

710.28 15.05 

(18.38) 

0.28 7.97 

Psy 39.65 202617.37 4152.00 

(1124.79) 

7554.79 154.81 

(60.73) 

3.73 84.74 

Ptr 0.06 293.17 6.32 (5.38) 24.69 0.53 (0.79) 8.42 0.28 

Sal 0.11 544.66 11.54 

(8.02) 

71.49 1.51 (1.44) 13.13 0.80 

Sau 0.08 406.89 8.48 (4.62) 48.04 1.00 (1.43) 11.81 0.54 

Total 100 511073.16 10472.81 

(4928.82) 

8915.43 182.69 

(68.32) 

1.74 100 

Note: Means and standard errors were calculated from plot level, giving a sample size of 976 for each species.  

 

The largest proportion of biomass in the region was found in cutting class two stands 

(N=299), accounting for 53.50% of the measured biomass with 182.88kg/ha (2SE=99.82) 

(table 3). Secondly, cutting class three (N=347) holds 28.09% of the available biomass, with 

82.75 kg/ha (2SE=35.91).  Quantity of biomass browsed was the highest in cutting class 2 

and contributed to 80.47% of the measured browsed biomass with 4.80 kg/ha (2SE=1.67) 

browsed. From cutting class 3, 7.85% of the browsed biomass was taken, with 0.40 kg/ha 

(2SE=0.23) browsed. Fifty percent of the registered moose pellet groups were found in 

cutting class 2 stands and 24.78% in cutting class 3 stands. Furthermore, the highest density 

of moose pellet groups (34.45 per hectare (2SE=9.70)) was found in cutting class 2. 
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Table 3. Quantity of biomass available and browsed (in kilograms), percentage of total measured biomass 

available and browsed, mean quantity (kilograms) of biomass available and browsed per hectare, number of 

moose pellet groups counted, percentage of total counted moose pellet groups and moose pellet group density 

in counts per hectare, for each cutting class, on region scale. 2SE between parenthesis. Cut class = cutting class 

Cut 

class 

N Biomass 

available 

(kg) 

% of 

available 

biomass 

Biomass 

available 

(kg/ha) 

Biomass 

browsed 

(kg) 

% of 

browsed 

biomass 

Biomass 

browsed 

(kg/ha) 

N 

moose 

pellet 

groups 

% of 

moose 

pellet 

groups 

Moose 

pellet 

groups 

(N/ha) 

0 51 23.02 4.50 90.28 

(100.16) 

0.09 1.00 0.35 

(0.46) 

0 0 0 

1 75 2.71 0.53 7.24 

(10.26) 

0.39 4.40 1.05 

(3.75) 

15 7.39 20.00 

(13.69) 

2 299 273.40 53.50 182.88 

(99.82) 

7.17 80.47 4.80 

(1.67) 

103 50.74 34.45 

(9.70) 

3 347 143.57 28.09 82.75 

(35.91) 

0.70 7.85 0.40 

(0.23) 

49 24.14 14.12 

(4.69) 

4 157 49.36 9.66 62.88 

(44.19) 

0.52 5.80 0.66 

(0.80) 

30 14.78 19.11 

(12.41) 

5 47 19.00 3.72 80.86 

(72.15) 

0.04 0.48 0.18 

(0.36) 

6 2.96 12.77 

(13.07) 

Note: N is the number of plots sampled within each cutting class type, not number of forest stands.  

3.2 Landscape scale 

In Gravberget the highest total number of moose pellet groups was counted (N=91), 

compared to 57 in Plassen and 55 in Ljørdalen. Gravberget had a significant higher moose 

density than Ljørdalen (t= 2.18, DF=556, p=0.014) and Plassen (t=1,93, DF=546, p=0.027), 

yet the standard errors do overlap (figure 1). Ljørdalen and Plassen did not significantly 

differ from each other in moose density (t= -0.34 , DF=654, p=0.367).  

 

  
Figure 1. Mean moose winter densities (N moose per km²) in the three study areas with 2SE.  

 

1.13 
2SE=0.37 

0.65  
2SE=0.24 

0.71  
2SE=0.24 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Study areas

Gravberget

Ljørdalen

Plassen

N moose per km² 



 22 

Gravberget had a significant lower quantity of biomass available (t=-2.55, DF=27, p=0,008) 

than Ljørdalen and the lowest measured quantity of biomass available of all three study 

areas, yet the highest quantity of browsed biomass was recorded here, resulting in a 3.92% 

loss of biomass (table 4). However, the standard errors from Plassen, overlap with the two 

other study areas. Ljørdalen had more Scots pine biomass available as Plassen with 6502.74 

kg/km² (2SE=2641.98) compared to 2597.92 (2SE=1084.10) and Gravberget with 

3237.79kg/km² (2SE=1178.74), however the standard errors of Gravberget and Ljørdalen do 

overlap. Total quantity and proportion of biomass browsed was the highest in Gravberget, 

but there was no significant difference (p values 0.21, 0.27 and 0.38) in quantities of biomass 

browsed between the three areas and also here the standard errors overlaped. The proportion 

of biomass browsed in Gravberget was significantly higher than Ljørdalen (t=2.04, DF=26, 

p=0.025) but there was no significant difference between the other areas (p=0.100 and 

p=0.230). 

 

Table 4. Mean quantity of biomass available and browsed in kilograms per square kilometer, with 2SE. 

Species as in table 1.   

Site Species Biomass 

available 

(kg/km²) 

2SE Biomass 

browsed 

(kg/km²) 

2SE % 

browsed 

(%/km²) 

2SE 

Gravberget Bpe 116.54 80.13 5.17 5.70 12.03 10.30 

Ljørdalen Bpe 28.94 23.49 1.21 2.13 2.92 2.81 

Plassen Bpe 3.58 5.31 0.07 0.14 1.36 2.50 

Gravberget Bpu 949.06 365.99 11.28 6.14 3.11 1.54 

Ljørdalen Bpu 1102.36 434.25 6.98 4.57 1.58 0.74 

Plassen Bpu 1012.77 521.40 5.87 3.29 1.93 1.49 

Gravberget Jco 1612.44 1561.71 2.04 2.81 10.83 13.74 

Ljørdalen Jco 5128.25 4701.13 12.70 21.85 2.32 2.90 

Plassen Jco 8846.53 13391.29 29.02 50.35 5.57 9.97 

Gravberget Psy 3237.79 1178.74 201.14 135.62 11.43 4.69 

Ljørdalen Psy 6502.74 2641.98 150.14 95.60 5.96 4.74 

Plassen Psy 2597.92 1084.10 113.38 78.81 7.68 3.51 

Gravberget Ptr 2.12 2.03 0.08 0.11 5.50 6.88 

Ljørdalen Ptr 8.21 8.33 0.30 0.61 1.23 2.46 

Plassen Ptr 7.58 13.43 1.14 2.27 2.81 3.97 

Gravberget Sal 14.15 16.03 2.66 3.89 10.51 9.21 

Ljørdalen Sal 6.69 10.41 0.96 1.32 7.59 9.98 

Plassen Sal 12.87 14.74 0.80 1.32 21.58 15.74 

Gravberget Sau 7.60 7.13 0.30 0.58 5.52 10.00 

Ljørdalen Sau 5.55 4.01 2.42 4.06 10.53 7.04 

Plassen Sau 12.00 11.38 0.16 0.19 3.78 4.05 

Gravberget Total 6026.95 2085.69 223.32 140.12 3.92 2.07 

Ljørdalen Total 12782.74 4863.29 174.72 99.91 1.60 0.93 

Plassen Total 12493.24 14046.03 150.45 117.09 2.25 1.47 

 Note: Means and standard errors were calculated using data from quadrat level, giving a sample size of 20 for 

Gravberget and Plassen and a sample size of 21 for Ljørdalen.  
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In all three study areas cutting class two and three stands were dominant in abundance in the 

terrain (table 5). Cutting class two contained the highest mean quantities of biomass 

available, biomass browsed and the highest mean number of moose pellet groups per ha. In 

Ljørdalen and Plassen, about 70% of the browsed biomass came from cutting class two. In 

Gravberget this was 92.86%, were moose browsed 6.26kg/ha (2SE=3.08) compared to 4.13 

kg/ha (2SE=2.61) and 3.84 kg/ha (2SE=2.98) in Ljørdalen and Gravberget respectively. 

Accordingly, the moose pellet group density in cutting class two in Gravberget, was higher 

than those in the same cutting class in the other two study areas. In none of the study areas 

moose pellet groups were found in cutting class 0.  

 

 

  



 24 

Table 5.  Percentage of total measured biomass available and browsed, mean quantity (in kilograms) of 

biomass available and browsed per hectare, number of moose pellet groups counted, percentage of total 

counted moose pellet groups and moose pellet group density in counts per hectare, per cutting class for each 

study area. 2SE between parenthesis. Area: Gr = Gravberget, Lj = Ljørdalen and Pl = Plassen. Cut class = 

cutting class 

Area Cut 

class 

N 

* 

% of 

available 

biomass 

Biomass 

available 

(kg/ha) 

% of 

browsed 

biomass 

Biomass 

browsed 

(kg/ha) 

N 

moose 

pellet 

groups 

% of 

moose 

pellet 

groups 

Moose 

pellet 

groups 

(N/ha) 

Gr 0 24 20.99 168.65 

(195.44) 

1.99 0.59 

(0.88) 

0 0.00 0 

Gr 1 43 0.22 0.97 

(1.05) 

0.53 0.09 

(0.12) 

11 12.09 25.58 

(21.14) 

Gr 2 106 59.91 109.01 

(29.45) 

92.86 6.26 

(3.08) 

44 48.35 41.51 

(19.12) 

Gr 3 105 18.09 33.22 

(14.39) 

4.50 0.31 

(0.29) 

22 24.18 20.95 

(10.72) 

Gr 4 39 0.80 3.94 

(2.20) 

0.12 0.02 

(0.04) 

14 15.38 35.90 

(39.90) 

Gr 5 3 0.00 0 0.00 0 0 0.00 0 

Lj 0 14 0.62 19.10 

(15.98) 

0.61 0.25 

(0.38) 

0 0.00 0 

Lj 1 12 0.44 15.60 

(16.36) 

0.00 0 0 0.00 0 

Lj 2 104 44.46 183.60 

(56.78) 

73.13 4.13 

(2.61) 

31 56.36 29.81 

(14.17) 

Lj 3 125 29.02 99.72 

(40.37) 

12.17 0.57 

(0.50) 

11 20.00 8.80 

(6.02) 

Lj 4 41 16.67 174.65 

(154.81) 

12.71 1.82 

(2.55) 

9 16.36 21.95 

(25.67) 

Lj 5 40 8.79 94.38 

(84.53) 

1.38 0.20 

(0.41) 

4 7.27 10.00 

(11.98) 

Pl 0 13 0.72 22.26 

(24.92) 

0.00 0 0 0.00 0 

Pl 1 20 0.79 15.71 

(40.51) 

15.51 3.73 

(14.93) 

4 7.02 20.00 

(23.40) 

Pl 2 89 60.11 270.01 

(328.06) 

71.02 3.84 

(2.98) 

28 49.12 31.46 

(16.48) 

Pl 3 117 31.92 109.06 

(95.92) 

7.56 0.31 

(0.27) 

16 28.07 13.68 

(7.64) 

Pl 4 77 6.40 33.22 

(28.23) 

5.83 0.36 

(0.47) 

7 12.28 9.09 

(6.60) 

Pl 5 4 0.06 6.33 

(11.96) 

0.09 0.11 

(0.30) 

2 3.51 50.00 

(100.00) 

* N is the number of plots sampled within each cutting class type, not number of forest stands.  
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3.3 Quadrat, plot and tree scale 

3.3.1 Moose pellet groups 

On plot scale, number of moose pellet groups increased with an increase in available 

biomass and an increase in accumulated browsing. Additionally, cutting class was a 

significant predictor yet there was no significant difference between the different cutting 

classes (p values varied between 0.98 and 0.99). The number of moose pellet groups had a 

tendency to decrease with an increase in altitude, however tree density and Feeding Site 

Attractiveness Value (FSAV) were not significant predictors in the full model. On quadrat 

scale, number of moose pellet groups increased with an increase in available biomass and an 

increase in tree density, but decreased with an increase in altitude. FSAV, accumulated 

browsing and cutting class were not significant (table 6). 

 

Table 6. Estimates, standard errors and p-values for the full models predicting number of moose pellet groups 

on plot and quadrat scale. Bold values are significant and the italic values have a tendency towards 

significance.  

  Plot   Quadrat   

  Estimate SE p-value Estimate SE p-value 

Intercept  -17.05 900.40 0.985 -0.35 0.63 0.572 

logBiomass 

available (g) 

 

 

0.09 0.05 0.045 0.22 0.08 0.006 

Altitude (m)  -0.002 0.001 0.085 -0.003 0.001 0.009 

Tree density  -0.001 0.10 0.989 0.003 0.0007 <0.001 

FSAV  -0.29 0.31 0.353 0.50 0.40 0.209 

Accumulated 

browsing 

 

 

0.34 0.14 0.013 -0.29 0.39 0.456 

Cutting class  - - <0.001 - - 0.841 

 

Based on AIC selection, three best fit models were selected for both plot and quadrat scale. 

On both scales, number of moose pellet groups increased with an increase of biomass. On 

plot scale mean accumulated browsing and cutting class were included in all of the three 

selected models. On quadrat scale tree density was included in all of the three selected 

models (table 7). 
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Table 7. AIC selected models for predicting number of moose pellet groups on plot and quadrat level. The title 

row shows the variables which were included in the full model. For each variable which was selected for each 

model, the estimates are given with SE between parenthesis. Bold values are significant italic values have a 

tendency towards significance. Mean Acc = Mean accumulated browsing. 

Spatial 

scale and 

model 

Biomass 

available 

(g) 

Altitude 

(m) 

Tree 

density 

FSAV Mean 

Acc 

Cut 

Class 

∆ 

AIC 

∆ AIC 

next best 

model 

Plot m1 0.09 

(0.04) 

-0.003 

(0.001) 

- - 0.30 

(0.13) 

p< 

0.001 

0 1 

Plot m2 0.09 

(0.04) 

-0.002 

(0.001) 

- -0.31 

(0.30) 
0.33 

(0.14) 

P< 

0.001 

1 1.2 

Plot m3 0.08 

(0.04) 

- - - 0.32 

(0.13) 

P< 

0.001 

1.2 2 

Quadrat 

m1 

0.15 

(0.06) 

- 0.003 

(0.0006) 

- - - 0 0.8 

Quadrat 

m2 

0.18 

(0.07) 

- 0.003 

(0.0007) 

- -0.24 

(0.35) 

- 1.5 1.9 

Quadrat 

m3 

0.15 

(0.06) 

- 0.003 

(0.0006) 

0.15 

(0.36) 

- - 1.9 3.1 

 

3.3.2 Quantity of biomass browsed 

On plot scale, the full model for predicting quantity of biomass browsed, altitude, log sum of 

trees, number of moose pellet groups, mean accumulated browsing and cutting class came 

out as significant predictors (table 8). On quadrat scale, the number of moose pellet groups, 

mean accumulated browsing and cutting class come out as significant predictors. Moose 

pellet groups is a stronger predictor on plot scale, although mean accumulated browsing is a 

stronger predictor on quadrat scale. On quadrat scale there was no significant difference 

between the different cutting classes. On plot scale, cutting class two is predicted to have 

larger quantities of biomass browsed as cutting class three  (Figure 2). 

 

Table 8. Estimates, standard errors and p-values for the full models predicting quantity of biomass browsed on 

plot and quadrat scale. Bold values are significant. 

Quantity of biomass 

browsed 

Plot   Quadrat   

 Estimate -SE, +SE p-value Estimate -SE, +SE p-value 

Intercept -0.71 0.04, 0.32 0.099 -0.48 0.37, 0.28 0.5949 

Altitude (m) 0.002 0.001, 0.001 0.0339 0.002 0.002, 0.003 0.3872 

Log tree density 0.46 0.15, 0.17 0.0005 0.003 0.002, 0.002 0.1294 

Log FSAV -0.10 0.05, 0.06 0.1014 -0.58 0.27, 0.40 0.4058 

N moose pellet groups 0.59 0.14, 0.16 <.0001 0.20 0.07, 0.07 0.0034 

Mean Acc 1.18 0.30, 0.36 <.0001 11.46 6.83, 15.10 0.0026 

Cutting Class - - 0.0002 - - 0.0151 
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3.3.3 Browsing occurrence (quantity of biomass browsed) 

The binomial models, for predicting if any quantity of biomass was browsed or not on tree 

and plot scale, are shown in table 9. On the smallest scale, the full model was selected, 

which includes the variables tree species, accumulated browsing and tree height. On plot 

scale, two models were selected. The top model included the variables tree density, number 

of moose pellet groups, FSAV and mean accumulated browsing. The second best model (∆ 

AIC 1.9) also included the variable altitude.  

 

Table 9. AIC selected binomial models, predicting if any quantity of biomass was browsed or not. The title 

row shows the variables which were included in the model selection. For each variable which was selected for 

each model, the estimates are given with SE within parenthesis. Bold values are significant. NAs were placed 

for the variables which were not included on that specific spatial scale.  

Spatial 

scale 

Alti-

tude 

(m) 

Tree 

density 

N moose 

pellet 

groups 

FSAV Cut 

Class 

Mean 

Acc / 

Acc 

Height 

(m) 

Species ∆ 

AIC 

∆ AIC 

next best 

model 

Tree NA NA NA NA NA p< 

0.001 

0.45 

(0.20) 

p< 

0.001 

0 3 

Plot 

m1 

 - 0.93 

(0.12) 

0.56 

(0.17) 

0.07 

(0.07) 

 - 1.43 

(0.17) 

NA NA 0 1.9 

Plot 

m2 

0.0003 

(0.001) 

0.94 

(0.13) 

0.56 

(0.17) 

0.07 

(0.07) 

 - 1.44 

(0.17) 

NA NA 1.9 4.6 

 

On tree scale, Downy birch had a significantly lower chance of being browsed than Scots 

pine, Juniper, Silver birch and Salix species (Figure 3). Salix species had a significant higher 

chance of being browsed than rowan.  

      

           

           . 

Figure 2. Effect of cutting class in the full model 

explaining quantity of biomass browsed on plot 

level 

Figure 3. Effect of species in the AIC selected 

model, predicting if a tree would be browsed or 

not. Species as in table 1. 
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3.3.4 AIC model selection for quantity of biomass browsed 

The AIC based selected models, explaining the quantity of biomass is browsed on tree, plot 

and quadrat scale, are shown in table 10. On the tree scale, the full model was selected, 

which includes variables tree species, accumulated browsing and height. On plot scale, the 

variables tree density, number of moose pellet groups, FSAV, mean accumulated browsing 

and cutting class were selected, with a ∆ AIC 5.15 of the next best model. On quadrat scale 

two models were selected. The first model includes variables number of moose pellet 

groups, mean accumulated browsing and cutting class. The second best model, with a ∆ AIC 

of 0.04, adds FSAV as explainer variable to the model.  

 

Table 10. Best fit models for explaining quantity of biomass browsed on tree, plot and quadrat scale, based on 

AIC selection. The title row shows the variables which were included in the model selection. For each variable 

which was selected for each model, the estimates are given with SE between parenthesis. Bold values are 

significant and italic values have a tendency towards significance. 

Spatial 
scale 

Alti
tud
e 
(m) 

Tree 
density 

N 
moose 
pellet 
groups 

FSAV Cut 
Class 

Mean 
Acc / Acc 

Height 
(m) 

Speci
es 

∆ AIC ∆ AIC next 
best 
model 

Tree NA NA NA NA NA P<0.001 0.58 
(0.26-
0.93) 

P< 
0.001 

0 2.19 

Plot  - 0.41 
(0.27-
0.56) 

0.58  
(0.44- 
0.74) 

-0.09        
(-0.14-          
-0.03) 

p< 
0.001 

1.15 
(0.85-
1.50) 

NA NA 0 5.15 

Quadr
at m1 

 -  - 0.22  
(0.15- 
0.28) 

 - p= 
0.050 

15.15 
(6.62-
33.22) 

NA NA 0 0.04 

Quadr
at m2 

 - -  0.22  
(0.16- 
0.29) 

-0.37        
(-0.76-
0.61) 

p= 
0.074 

16.31 
(7.02-
36.34) 

NA NA 0.04 5.7 

 

3.3.5 Proportion of biomass browsed 

On plot scale, the full model for predicting proportion of biomass browsed, the intercept, log 

biomass available, number of moose pellet groups, mean accumulated browsing and cutting 

class came out as significant predictors (table 11). There was no significant difference 

between the different cutting classes. On quadrat scale only the intercept was significant in 

the full model and number of moose pellet groups had a tendency towards significance.  
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Table 11. Estimates, standard errors and p-values for the full models predicting proportion of biomass browsed 

on plot and quadrat scale. Bold values are significant and italic values have a tendency towards significance. 

Proportion of biomass 

browsed 

Plot   Quadrat   

 Estimate -SE, +SE p-value Estimate -SE, +SE p-value 

Intercept 0.04 0.03, 0.07 0.003 0.04 0.01, 0.004 0.038 

Log Biomass available 

(g) 

0.64 0.05, 0.05 <0.001 0.0003 0.00003, 0.0003 0.161 

Altitude (m) 1.00 0.001, 0.002 0.745 9.26E-09 4.03E-09, 3.63E-08 0.550 

Log tree density 1.17 0.18, 0.21 0.339 1.61E-08 0.01E-08, 3.25E-08 0.325 

Log FSAV 0.98 0.08, 0.10 0.868 4.38E-05 4.39E-05, 4.38E-05 0.917 

N moose pellet groups 1.47 0.19, 0.22 0.007 3.9E-05 0.72E-05, 1.82E-05 0.086 

Mean Acc 1.97 0.41, 0.52 0.004 0.006 0.0004, 0.004 0.183 

Cutting class - - <0.001 - - 0.223 

 

3.3.6 Browsing occurrence (proportion of biomass browsed) 

The binomial models, for predicting if any proportion of biomass was browsed on tree and 

plot scale, are shown in table 12. On tree scale, the full model was selected, which includes 

variables quantity of biomass available, tree species, accumulated browsing and height. On 

plot scale three models had a ∆ AIC smaller than two. The top model includes variables 

quantity of biomass available, tree density, number of moose pellet groups, FSAV and mean 

accumulated browsing. Biomass available, number of trees, number of moose pellet groups 

and mean accumulated browsing were selected in all three of the models.  

 

Table 12. AIC selected binomial models, predicting if any proportion of biomass was browsed or not. The title 

row shows the variables which were included in the model selection. For each variable which was selected for 

each model, the estimates are given with SE between parenthesis. Bold values are significant 

Spatial 

scale 

Alti-

tude 

(m) 

Tree 

densit

y 

N 

moose 

pellet 

groups 

FSAV Cut 

Class 

Log 

Biomass 

availabl

e (g) 

Mea

n Acc 

/ Acc 

Height 

(m) 

Species ∆ 

AIC 
∆ AIC 

next 

best 

model 

Tree NA NA NA NA NA 1.20 

(0.14) 

p< 

0.001 

-0,89 

(0.28) 

P< 

0.001 

0 9 

Plot 

m1 

 - 0.79 

(0.13) 

0.54 

(0.18) 

0.10 

(0.07) 

 - 0.22 

(0.05) 

1.25 

(0.18) 

NA NA 0 1.8 

Plot 

m2 

-0.0005 

(0.001) 

0.77 

(0.14) 

0.54 

(0.18) 

0.10 

(0.07) 

 - 0.22 

(0.06) 

1.24 

(0.18) 

NA NA 1.8 1.9 

Plot 

m3 

-0.0004 

(0.001) 

0.80 

(0.13) 

0.52 

(0.17) 

 -  - 0.21 

(0.06) 

1.33 

(0.18) 

NA NA 1.9 4.6 

 

The effect of species and accumulated browsing showed significant difference between the 

different classes. Juniper had significant lower probability of being browsed as both birch 

species, Scots pine, Salix species and Rowan (Figure 4). Salix species had a significant 

higher chance of being browsed than Downy birch, Juniper and Scots pine. Downy birch and 

Scots pine had approximately similar chances of being browsed. Trees with accumulated 

browsing of zero, had a significant lower probability of being browsed compared to trees 
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with higher accumulated browsing (Figure 5). Trees with accumulated browsing of three, 

had significant highest probability of being browsed. 

 

Figure 4. Effect of species within the AIC based selected model (x axis), predicting the probability of a 

proportion of biomass being browsed or not (y-axis). Species as in table 1. 

Figure 5. Effect of accumulated browsing within the AIC based selected model, predicting the probability of a 

proportion of biomass being browsed or not (y-axis). 

 

The AIC based selected models, which predict the proportion of biomass is browsed on tree, 

plot and quadrat scale, are shown in table 13. On tree scale, the best model consists out of 

variables quantity biomass available and species.  

 

Table 13. Best fit models for explaining proportion of biomass browsed on tree, plot and quadrat scale, based 

on AIC selection. The title row shows the variables which were included in the model selection. For each 

variable which was selected for each model, the estimates are given with SE between parenthesis. Bold values 

are significant. 

Spatial 

Scale 

Alti-

tude 

(m) 

Tree 

density 

N moose 

pellet 

groups 

FSA

V 

Cut 

Class 

Biomass 

availabl

e (g) 

Mean 

Acc / 

Acc 

Hei

ght 

(m) 

Specie

s 

∆ 

AIC 

∆ AIC 

next 

best 

model 

Tree NA NA NA NA NA 0.05 

(0.04-

0.06) 

-  -  p< 

0.001 

0 4.2 

Plot 

m1 

 - -  1.46 

(1.27-

1.68) 

-  p<0.0

01 

0.65 

(0.61-

0.70) 

1.91 

(1.53-

2.39) 

NA NA 0 1.5 

Plot 

m2 

 -  - -   - p<0.0

01 

0.05 

(0.02-

0.10) 

2.02 

(1.62-

2.53) 

NA NA 1.5 4.75 

Quadr

at 

 - -   -  - -  -  0.01 

(0.004-

0.025) 

NA NA 0 4.3 

 

Species Accumulated browsing 
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Within the variable species, Juniper and Scots pine had significant higher proportions 

browsed than the two birch species (table 14). On plot scale two best models were selected, 

with both including biomass available, mean accumulated browsing and cutting class 

predictors with number of moose pellet groups added in the first model. With the effect of 

cutting class, only cutting class two and three significantly differed from each other (figure 

6). On quadrat scale only the variable mean accumulated browsing was selected as best 

model for explaining proportion of biomass browsed.  

 

Table 14. Effect of species within AIC based selected model 

on proportion of biomass browsed on tree scale. Species as in 

table 1. 

Species Estimate Lower  

limit 

Upper  

limit 

p-value 

Bpe 0.26 0.22 0.31 <0.001 

Bpu 0.26 0.26 0.27 0.233 

Jco 0.32 0.29 0.36 <0.001 

Psy 0.38 0.36 0.40 <0.001 

Ptr 0.39 0.38 0.42 0.245 

Sal 0.39 0.39 0.40 0.906 

Sau 0.40 0.39 0.41 0.228 
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Figure 6. Effect of cutting class within 

the AIC based selected model, 

predicting the proportion of biomass 

browsed on plot scale 
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3.4 Matching of biomass browsed to biomass available. 

Because of the low sample size of the two largest spatial scales, i.e. region scale (N=1) and 

local scale (N=3), these two scales were excluded for testing the hypothesis that moose 

overmatch quantity of biomass browsed on the smallest scales, match quantity of biomass 

browsed on the intermediate scale and under-match the quantity of biomass browsed on the 

largest scales. The intermediate scale is represented by the quadrats (N=61), the second 

smallest scale is represented by the plots (N=976) and the smallest scale is represented by 

the individual trees which have been browsed (N=798).  Figure 7 clearly shows that on all 

three tested spatial scales, moose under-match their biomass consumption in relation to 

biomass availability(i.e. slope < 1). The tree scale shows this the strongest (slope =0.3997, 

SE=0,0209, p<0,001), secondly the plot scale (slope=0.5014, SE=0.04610, p=0.0014) and 

the quadrat scale the weakest (slope= 0.8395, SE=0.1802, p<0.001) with a tendency towards 

matching.  

 

 
Figure 7. The blue dotted line indicates how the linear regression would look like if moose would match their 

biomass consumption to biomass availability, i.e. slope = 1.00.  

Tree scale: logBiomass browsed = -0.1463+0.3997*logBiomass available (SE slope =0.0209, p<0.001) 

Plot scale: logBiomass browsed =-0.8938+0.5014*logBiomass available (SE slope =0.0461, p<0.001)  

Quadrat scale: logBiomass browsed =-3.2800+0.8395*logBiomass available (SE slope =0.1802, p<0.001) 
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4. Discussion 

4.1 Moose pellet groups 

4.1.1 Regional scale 

Based on the pellet group counts on regional level, our study area had a moose density of 

0.83 (2SE=0.1660) moose per km² during the winter of 2011-2012. The method used for 

estimating the moose density is inaccurate, since moose can also produce pellets before and 

after the winter period and some moose pellet groups could have been determined fresh, 

even though they were old. However, since the same method was used through the whole 

study, the counts of moose pellet groups can be used as an index for indicating usage of the 

terrain or time spent per terrain unit. Half of the moose pellet groups counted, were located 

in cutting class 2 stands, i.e. moose spent about 50% of the time in these stands. 

Additionally, moose spent 24.14%  of their time in cutting class 3. The quantities of biomass 

consumed in these two cutting classes explains for what they were selected. Cutting class 

two provided 80.47% of the consumed forage biomass and cutting class 3 just 7.85%. This 

means that cutting class 2 stands were selected for foraging and cutting class 3 most likely 

for avoidance of disturbance since this forest stage provides most cover (Demarchi and 

Bunnell, 1995; Hebblewhite et al., 2008). 

4.1.2 Landscape scale 

Our estimated moose densities for the three studied landscapes, based on moose pellet group 

counts, did not significantly differ between Ljørdalen and Plassen. Gravberget did 

experience a significant higher moose density than Ljørdalen and Plassen.  

4.1.3 Large and small community scale 

On large community and small community scale, both the AIC based selected models and 

the full models for explaining number of moose pellet groups, pointed towards the same 

explainer variables, e.g. quantity of biomass available, tree density, altitude, accumulated 

browsing and cutting class (tables 7 and 8). When comparing the full models between the 

two spatial scales, biomass available is on both scales a significant predictor. Yet, much 

stronger for large communities (slope =0.22, SE=0.08, p<0.0001) than for small 

communities (slope =0.09, SE=0.05, p=0.045). Additionally, tree density was a significant 

predictor (slope=0.003, SE=0.0007, p<0.0001) on the large community scale in the full 

model and was selected with the AIC selection. This means, moose selected for large patches 

with high quantity of biomass available and high tree densities. For small communities, 

accumulated browsing was also a significant predictor, i.e. moose selected for small patches 

with higher quantity of biomass available which had been browsed before, within the 

selected large patches.  

 

Cutting class did not come out as a significant predictor for large communities. This can be 

due to the fact that each quadrat covered multiple forest stands of different cutting classes. 

This made this predictor not accurate on this spatial scale. Acknowledging that cutting class 
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two stands contained most of the available biomass, provided more than 80% of the browsed 

biomass, were selected on both regional and landscape scale and is known to be selected by 

moose for winter browsing (Cederlung et al., 1980; Lavsund, 1987; Fremming, 1999), one 

can assume that the selection for high quantity of biomass on large community level is in 

fact the selection for cutting class two stands. Additionally, the number of moose pellet 

groups was estimated to decrease with 0.3 (SE=0.07, p<0.0001) per quadrat, with an 

increase of 100 meter in altitude, i.e. lower areas were more used than higher areas. This 

behavior can be due to the increase of snow cover with an increase in altitude. Moose are 

known to descent in altitude to avoid deep snow (Gundersen et al., 2004; Franzmann and 

Schwartz, 2007; Månsson et al., 2012). This behavior follows the landscape departure theory 

from Senft et al. (1987). 

 

If the increase in selectivity for quantity of biomass available from large- to small 

community scale would persist to larger spatial scales, as shown in Månsson et al. (2007), 

one can assume that landscapes with higher quantity of biomass available have higher 

probability to be selected by moose as winter habitat, i.e. moose selected their winter habitat 

based on favoring properties of the landscape, as described for other large ungulates by 

Fryxell et al. (1988), Lundberg (1988), Hebblewhite et al. (2008) and Bischof et al. (2012). 

This is contradictory to the habitat departure theory from Senft et al. (1987).  

4.1.4 Why did Gravberget experience an higher moose density? 

Gravberget had the lowest quantity of biomass available, yet still experienced the highest 

moose density. Machida (1979), Danell et al. (1985), Löyttyniemi (1985) and Bergqvist et al. 

(2003) described feeding loops for browsing herbivores, where the animals returned to the 

same patches to re-browse. Our data shows that this translates to the larger spatial scales. 

When it scales up to the level of winter habitat selection, it means that moose return to the 

same winter areas after they have selected a winter area. This reselection repeats itself year 

after year, by which the browsing pressure on the selected area results in loss in growth rate 

and starts to produce less biomass (Långström and Hellqvist, 1991; Persson et al., 2007; 

Solbraa, 2008). When the selection for previous browsed sites is stronger than the selection 

for biomass availability, it could explain why Gravberget was selected above the other two 

areas and has a lower quantity of biomass available. That means that Gravberget must have 

had a period when it was more likely to be selected in the first place.  

 

When looking at the tree densities of the three sampled landscapes, Gravberget has the 

highest tree density, also in cutting class two (Gravberget: 29.61 trees per plot (2SE=4.82, 

N=106), Ljørdalen: 18.41 trees per plot (2SE=3.60, N=104) and Plassen: 20.15 trees per plot 

(2SE=4.77, N=89). Following the findings of Ball and Dahlgren (2002) and Heikkilä and 

Härkönen (1996), our data showed an increase in usage of large communities with an 

increase in stem density.  Additionally, based on the higher stem density in cutting class 2 

stands, I assume that there was a period where Gravberget had a superior quantity of biomass 

available compared to the other two areas (Fremming, 1999). This made Gravberget a more 

attractive wintering area. As a result of the yearly reselection and re-browsing, biomass 

availability lowered over the years ((Långström and Hellqvist, 1991; Persson et al., 2007; 

Solbraa, 2008). Regardless of the lower forage availability, the available quantity was more 

than sufficient (only 3.9% of the available biomass was browsed) to maintain the current 

wintering moose density. Moose densities in our studied landscapes are relatively low 

compared to other areas (Lavsund, 1987; Andren and Angelstam, 1993; Heikkilä and 
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Härkönen, 1993, 1996; van Beest et al., 2010), i.e. the populations were below maximum 

social caring capacity. Because of these factors there was no need for the moose to select a 

different wintering area 

4.2 Quantity and proportion of biomass browsed 

4.2.1 Regional scale 

Large ungulates are assumed to consume only a small proportion from the net primary 

production in forest systems (Hobbs, 1996). The moose in our studied region followed this 

assumption and consumed 182.69 kg/km² (2SE=68.32) accounting for 1.74% of the 

available biomass.  

 

Juniper, Scots pine and Downy birch were most abundant in biomass in the region, with 

49.60%, 39.65% and 10.03% of the total biomass available respectively. When comparing 

this with the composition of the by moose browsed biomass (7.97% Juniper, 84.74% pine 

and 4.51% Downy birch), it gets clear that moose selected for pine as main food source. 

Further, moose selected for Rowan, Aspen and Salix species which are favored by moose 

(Heikkilä and Härkönen, 1996). Biomass consumption, from these species, was 

disproportional (factor seven higher) to their abundance in the region. However, there 

combined biomass summed up to only 0.25% of the available biomass in the region. Even 

though the largest quantity and proportion of biomass was consumed from pine, only 3.70% 

of the measured available pine biomass was consumed. This might not seem as much, but 

looking from the forestry point of view, 24.32% of all pine had fresh browsing and 42.94% 

had old and or fresh browsing. The relative low annual loss of biomass in the region, has a 

large effect on forestry, especially since the damage is inflected on young trees (Heikkilä and 

Härkönen, 1993, 1996). 

 

The quantity of Juniper biomass available is most likely overestimated. The data which was 

used to make the regression curve for number of shoots per m³ of crown, included Junipers 

with a maximum crown content of 1.6m³. It did not include extremely large Juniper bushes, 

which have large openings between the different branches. However, in the sampled plots 

we encountered and measured extremely large Juniper bushes with crowns up to 7.15m³, 

which had large openings between the separate branches. This led to an overall 

overestimation of the available biomass.  

 

4.2.2 Landscape scale 

Comparing the three landscapes, Gravberget had the lowest quantity of biomass available, 

about half as much of the other study areas. Still moose browsed here the largest quantity of 

biomass, 223.32kg/km² (2SE=22.32) compared to 174.72kg/km² (2SE=99.91) and 

150.45kg/km² (2SE=117.09). This resulted in a higher proportion of biomass browsed in 

Gravberget, 3,71% compared to 1,37% and 1,20%. The difference in quantity of available 

biomass between the study areas was due to the relative low abundance of Juniper in 

Gravberget but its high abundance in Plassen and the high abundance of Scots pine in 

Ljørdalen (table 5).  
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4.2.3 Large community and small community scale 

Predicting quantity of biomass browsed on large community and small community scale, 

accumulated browsing was significant in the full models and was selected on base of lowest 

AICs, for both spatial scales. On quadrat level accumulated browsing was the strongest 

predictor with a slope of 11.46 compared to a slope of 1.18 on plot level. Moose pellet 

groups was a stronger explainer variable on plot scale with a slope of 0.59 compared to a 

slope of 0.20 (table 10). There was no significant difference between cutting classes on large 

community scale. However, similar to the results from predicting the number of moose pellet 

groups, I expect that this due to the fact that quadrats covered multiple cutting classes. From 

our measured browsed biomass, 80% came from cutting class 2 stands additionally, previous 

studies showed that moose select young forest stands for browsing  (Lavsund, 1987; 

Heikkilä and Härkönen, 1993, 1996; Solbraa, 1998; Fremming, 1999). On small community 

level, plots located in cutting class two were predicted to have about 2.46 times higher 

quantities browsed as plots in cutting class three.  

 

Feeding Site Attractiveness Value (FSAV), did not come out significant in any of the full 

models. Yet, it was selected based on lowest AIC value for the binomial model predicting 

whether browsing occurred or not at small community level. Small communities with highly 

palatable tree species, were more likely to be browsed than those without highly palatable 

species. But it failed to explain quantities and proportions of biomass browsed. Danell et al. 

(1991) showed that moose more heavily used stands where Scots pine was mixed with 

highly palatable species, such as Aspen. However, the browsing intensity on Scots pine did 

not differ to Scots pine stands without palatable species. The highly palatable species in our 

studied region summed up to just 0.25% of the available biomass. Considering the strong 

selection by moose for these species for forage, plots and stands containing these species, 

were ranked with an high FSAV. Since moose did not significantly increase browsing 

pressure on Scots pine, which accounted for the majority of the available biomass in the 

region, FSAV was neither capable to predict quantities nor proportion of biomass browsed.  

Because the increase of browsing on the rare palatable species was masked by the sheer 

quantity of browsed Scots pine biomass. These results are contrary to findings from 

Fremming (1999) and Heikkilä and Härkönen (1993), who found higher browsing intensities 

in stands which were mixed with broadleaved species compared to monoculture Scots pine 

stands. Yet, the difference was described as minimum.  

4.2.4 Tree scale 

On tree scale, the full model was selected based on lowest AIC. For trees which were 

browsed, the quantity of biomass browsed increased with an increase in height of the tree. 

Even though accumulated browsing and species were selected, there was no significant 

difference within these classes. From these results, I conclude that moose select foraging 

areas on intermediate scale, which were selected too in previous years for foraging. The 

higher quantity of biomass browsed from cutting class two stands above cutting class three 

stands, indicate that the selectivity for cutting class two stands is higher. Within the selected 

stands, there is a preference for patches which have been browsed before in previous years. 

Trees within the selected patches, experience an increase in biomass loss with an increase in 

height. 
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Salix species had the highest and Juniper the lowest probability of being browsed (plot 2). 

Downy birch and Scots pine had similar probability of being browsed and had a higher 

probability of being browsed than Juniper, but lower than Silver birch. Taking the abundance 

of the species into account, species which were rare on regional level, had the highest 

probabilities of being browsed on tree level (Heikkilä and Härkönen, 1993, 1996; Augustine 

and McNaughton, 1998; Solbraa, 2008). Biomass of Juniper was abundant over the region 

and, following the expectations, found a low probability of being browsed (Augustine and 

McNaughton, 1998). Scots pine however, was selected stronger than Juniper, even though 

the abundance of Scots pine biomass in the region was similar to Juniper. This clearly shows 

that Scots pine is a more valuable part of the moose’s diet.  

 

Downy birch, which was also abundant in the region, had a similar probability to be browsed 

as pine. Yet, the quantity of biomass browsed of Downy birch was much lower than Scots 

pine, 4.51% and 84.74% respectively. The similar probability to be browsed for the two 

species is explained by the biomass composition on regional scale and the quantity of 

biomass available per tree per species. In the region, the quantity of biomass available of 

Downy birch was much lower as Scots pine, 10% and 40% of the total available biomass 

respectively. Additionally, in average Downy birch produced less forage biomass per tree 

than Scots pine. In order to acquire the needed biomass of Downy birch forage, moose had to 

browse from a high number of trees. This increased the probability of this species to be 

browsed (Heikkilä and Härkönen, 1993, 1996; Augustine and McNaughton, 1998).  

 

The selection between trees, regardless of species, was partly explained by the extend of  

previous browsing, i.e. accumulated browsing (plot 4) and Bergqvist et al. (2003),  

Löyttyniemi (1985) and Bergstrom (1984). During the winter of 2011-2012, only 1% of the 

trees which did not show any old browsing, were selected for browsing. One should take into 

account that 74.80% of the trees which we registered, had old browsing. This means, by 

chance, trees with old browsing had a higher probability of being selected. Still, the 

probability of being selected significantly increased over the different scales of accumulated 

browsing, indicating the selectivity of moose on trees with old browsing. Individual trees 

which were heavily browsed in previous years (accumulated browsing 3), experienced a ten 

time higher chance of being browsed than trees which did not have any old browsing. Yet, in 

contradiction to quadrat and plot scale, on tree level there was no significant difference in 

quantity of biomass browsed neither proportion of biomass browsed, in the different 

accumulated browsing classes. 

 

Including biomass availability per tree into the full model, the probability of being browsed 

increased with an increase of biomass (slope=1.20, SE=0.14, p<0.001), i.e. moose selected 

for trees with higher quantities of biomass. Yet, after they selected these trees with more 

biomass, they did not increase their biomass consumption proportionally. Moose only ate 

between four to six percent of the biomass increase between individual trees, e.g. if one tree 

would have 100 grams more biomass than the other, moose ate between 4 to 6 grams more 

of the tree with more biomass. Contrary to the predictions of Senft et al. (1987) but 

following the finding of Månsson et al. (2007). This might indicate that moose do not 

actively select for the feature of high quantity biomass on tree level. It can be assumed that 

the chance of encountering easy reachable shoots increases with an increase in biomass 

availability on a tree. By chance, trees with more biomass available will be selected above 

those with less. Since food was overabundant in the region, landscapes and selected large 

communities, moose mainly browsed easy reachable shoots and moved on to the next tree. 
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This does not count for the rare species, where moose browsed more than just easy reachable 

shoots (Heikkilä and Härkönen, 1996; Augustine and McNaughton, 1998; Solbraa, 2008).  

4.3 Matching of biomass consumption to biomass 
availability.  

Senft et al. (1987) hypothesized  that on the smallest spatial scales, large ungulate herbivores 

overmatch biomass consumption to biomass availability, i.e. with a doubling of biomass 

available a browsing response with more than doubling of biomass consumption is to be 

expected. Resulting in high proportions of biomass consumption on trees with large quantity 

of biomass available and low proportions of biomass consumed from trees with low quantity 

of biomass available. This overmatching of biomass consumption should gradually change 

to matching with an increase of spatial scale to region and landscape level.  However, our 

data shows undermatching of biomass consumption on the two smallest scales (slope=0.40 

(SE=0.02) on tree scale and slope=0.50 (SE=0.05) on plot scale) and a tendency towards 

matching on an intermediate scale (slope=0.84 (SE=0.18) on quadrat scale), contradicting 

my hypothesis. Månsson et al. (2007), found the same results, however could not explain 

this with their data. Our data takes more variables into account, which could be used to 

explain this behavior.  

 

It should be expected that moose overmatch biomass consumption to biomass availability to 

maximize nutrient intake, by eating larger proportions of biomass from trees and patches of 

trees with high quantity of biomass available. To be able to explain this contradiction, we 

have to look to the largest spatial scale. On regional level, we found a standard deviation of 

19247,66 kg/km² in biomass available, with a mean of 10472,81 kg/km² (2SE=4928.82), i.e. 

food availability is unequal distributed over the region. While, he hierarchy theory assumes 

that food is distributed equally over the region (Senft et al., 1987). Intense forestry in our 

study area creates this large variation in biomass availability, by dividing the forested 

landscape into large monoculture patches of forest, i.e. forest stands (Wam et al., 2005; Wam 

and Hjeljord, 2010). Within each stand, the variance in biomass available and species 

composition is low. However, the variance between stands is high. Forest stands of cutting 

class two contain the highest quantity of forage available. These stands function as feeding 

sites for moose during winter. My results showed that during the winter of 2011-2012, 

moose spent half of their time in cutting class two stands and our models suggest that moose 

selected for these stands. These stands are packed with food. More than 80% of the 

measured consumed biomass came from these stands. This can explain why moose under-

match their biomass consumption to biomass availability on the smallest spatial scales. In a 

cutting class two stand, the moose have a high quantity of trees with browse available. The 

trade-off between energy spent acquiring food and amount of food consumed seems to be 

more profitable by moving from tree to tree, only browsing the biomass which is easy 

reachable and which is favored (i.e. selecting for preferred species and trees with intense old 

browsing), than eating as much as possible from trees with a high quantity of biomass 

available.  
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4.4 Applications 

This research project focused on biomass availability and biomass consumption. Something 

which is important from the moose’s point of view. However, persons who are familiar with 

how young Scots pine stands in moose wintering areas, might be confused when reading that 

moose only consumed 1.74% of the total measured biomass and 3.73% of the available 

Scots pine biomass. The damage inflicted by the moose is hard to miss and seems to be 

much more intense as described in this thesis (Danell et al., 1985; Danell et al., 1991; 

Heikkilä and Härkönen, 1993, 1996; Solbraa, 1998; Fremming, 1999; Solbraa, 2008; van 

Beest et al., 2010). If I would have focused on shoots, instead of biomass, the numbers 

would have looked quite different. From all species together, on regional level, moose 

browsed 4.78% of the available shoots and for Scots pine 6.11% of all available shoots. 

When focusing on cutting class two stands, this increases up to 7.87%. This means that in 

our studied area moose did not take 100% of the available biomass of the selected shoots. 

They took roughly 50% of what was available per shoot, except the highly palatable species 

which were maximally browsed, as was expected (Hobbs, 1996; Augustine and 

McNaughton, 1998). Additionally for all species, 9.94% of all fresh bites measured, were 

leading shoots and for Scots pine this was10.30%. This selectivity affects the growth form of 

the trees severely (Solbraa, 1998). We showed with our study that moose select many trees 

to browse from. The 3.73% of the available Scots pine biomass which was browsed, affected 

24.32% of all pine in our studied region. Adding to that, browsing damage accumulates over 

the years (Bergstrom, 1984; Löyttyniemi, 1985; Bergqvist et al., 2003). So had 42.94% of all 

Scots pine some kind of browsing damage. All these factors combined make the damage, 

inflicted by the moose in young Scots pine stands, prominent.   

4.4.1 Change forage availability  

When thinking about which measures to take to decrease moose browsing intensity on young 

Scots pine stands, increasing biomass availability might seem a solution. By doubling 

biomass availability, one can expect to reduce the proportion of biomass browsed by half, 

assuming the moose density does not change, which is contrary to our and other previous 

findings (Heikkilä and Härkönen, 1996; Ball and Dahlgren, 2002). In our studied area this 

would mean that measures have to be taken to increase the biomass with 10472,81 kg/km² 

(2SE=4928.82), which probably would be impossible. It is to be questioned if the proportion 

of undamaged young trees will increase by this measure. During winter, moose selected 

cutting class 2 forest stands for foraging, even though cutting class 3 also contained a high 

quantity of available forage. Acknowledging this and taking into account the low 

proportional consumption of biomass in the region (1.74% of the measured available 

biomass was browsed), I highly doubt it that measures to increase biomass availability on 

regional or landscape level in areas with high abundance of moose forage, will be able to 

reduce damage on young commercial forest stands effectively. 

 

Currently it is being discussed if moose browsing damage on young Scots pine can be 

reduced by increasing the biomass availability of the highly palatable tree species, such as 

Rowan, Aspen and Willow species. van Beest et al. (2010) pointed out that these highly 

palatable species are eaten first and afterwards moose switch to Scots Pine. By increasing the 

availability of these species, it could be possible to postpone when moose start browsing on 

Scots pine, which will shorten the browsing intensity on this species. As in previous studies 

(Heikkilä and Härkönen, 1993, 1996; Solbraa, 2008), Rowan Aspen and Willow species 
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were heavily browsed in our studied region, because of their relative rarity (Bryant et al., 

1991; Heikkilä and Härkönen, 1996; Hobbs, 1996; Augustine and McNaughton, 1998). If 

measures will be taken to increase numbers of these species in areas with high moose winter 

densities, it will be a difficult task to maintain the forage availability of these species, 

considering that moose will inflict severe browsing pressure on these species. As Augustine 

and McNaughton (1998), Bryant et al. (1991) and Hobbs (1996) showed, moose are capable 

to suppress these highly favored species. Perhaps large plantations, consisting out of highly 

palatable species will be able to maintain a sustainable supply of forage. Although I doubt it 

that this can bring financial benefits to the landowners.  

 

Actions to increase forage availability should be taken in cutting class two stands, since 

these stands are selected for foraging (Fremming, 1999; Ball and Dahlgren, 2002; Bergqvist 

et al., 2003). Foresters can increase the available biomass by increasing number of seedlings 

and maintaining high densities of trees (Fremming, 1999). Browsed trees should not be 

removed during pre-commercial thinnings, since moose prefer to re-browse these trees. 

When removing all badly damaged trees, moose are forced to eat from the remaining good 

trees. Instead of removing unwanted trees, trees can be topped in order to create more light 

and space for the undamaged trees and on the same time keep provide forage (Bergström and 

Bergqvist, 2009). Additionally, increasing the stem density will increase the quantity of 

undamaged and slightly damaged trees in the young stand (Heikkilä and Härkönen, 1993, 

1996; Fremming, 1999). Stem densities can be increased by increasing the intensity of the 

soil scarification (Beland et al., 2000). 

 

Based on my findings, I suggest to maintain low moose densities to be able to minimalize  

damage on young Scots pine stands (Lavsund et al., 2003). Since moose migrate from 

different areas to winter habitats (Ball and Dahlgren, 2002; van Beest et al., 2011), additional 

harvesting of moose during winter should be applied to reduce the wintering population 

effectively. Considering the large proportion of trees affected even with low proportions of 

biomass loss, these suggested measures will be most effective when combined.  

4.4.2 Changing moose behavior and habitat selection 

Moose select you Scots pine stands for browsing during winter (Belovsky, 1981; Bergstrom, 

1984; Heikkilä and Härkönen, 1993, 1996; Fremming, 1999; Ball and Dahlgren, 2002; 

Bergqvist et al., 2003). These stands do not provide much cover for moose from predators 

and human disturbance (Demarchi and Bunnell, 1995; Godvik et al., 2009). Considering the 

low abundance of large predators in the studied area, moose could afford spending 50% of 

their time in cutting class 2 stands during the winter period of 2011-2012, acquiring 80% of 

the total browsed biomass. Cutting class 3 stands provide better cover from large predators 

and human disturbance. Adding to that, there 28% of the available biomass was found in this 

cutting class. Yet, moose in our studied region, spent 25% of their time here and acquired 

barely 8% of the browsed biomass. This indicates that moose selected cutting class 2 stands 

for foraging and cutting class 3 stands for resting, digesting, cover and to minimum extend 

foraging. If actions could be taken to force moose to select cutting class 3 stands more 

intensively for foraging, this could reduce the browsing damage on young Scots pine.  

 

In Yellowstone national park, large numbers of elk were able to suppress the growth of 

woody plants (Ripple and Beschta, 2003), until the reintroduction of wolf (Ripple et al., 
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2001; Ripple and Beschta, 2003; Mao et al., 2005). By the presence of the wolf, elk were 

forced to change their habitat choice and especially time spent per habitat type. The change 

in the behavior of the elk, had great favorable consequences for the woody plant species in 

the area. The risk of predation effectively reduces browsing pressure and number of trees 

browsed (Ripple et al., 2001). It would be interesting to see how moose browsing patterns 

would change when the wolf density would be increased in our studied region. However, 

large carnivores and their existence in Norway are the base of ongoing conflicts (Vitterso et 

al., 1998; Kaltenborn et al., 1999; Linnell et al., 1999; Linnell et al., 2000; Skogen, 2001; 

Røskaft et al., 2003; Swenson and Andrén, 2005; May et al., 2008), which makes this 

probable solution not considerable for this time, but hopefully in the near future.  

 

This study was conducted in a boreal forest system where timber production is a primary 

goal. This resulted in a patchy distribution of foraging sites through the landscape. Forage 

for moose was highly abundant and mainly consisted out of Scots pine. Salix species, Rowan 

and Aspen were rare species, accounting for only 0.25% of the available biomass, but were 

strongly selected as forage. The findings presented in this thesis might not apply for other 

areas with wild moose populations. Especially not for areas with different forage 

composition and forage distribution.  

4.5 Future research 

My assumption, that moose mainly browsed easy reachable shoots, cannot be statistically 

confirmed with our data set, since we did not include any variables which account for 

reachability of the browsed shoots. Future research projects can include observational data 

from observing moose browsing behavior in cutting class two Scots pine stands. Simply 

measuring the location of bites which have been taken, would not be sufficient. Since 

multiple moose can have browsed from the same tree during one winter. Shoots which are 

easy reachable for one moose, might not be easy reachable for another moose, if they 

approach the tree from a different direction or at different times during the winter.  

 

We did not have any accurate data for estimating real moose densities. It would be 

interesting to include genetic analyses of the droppings to get a better indication of moose 

density in the areas. It would be interesting to look at the distribution and habitat use of 

individual moose to see if all individuals select for similar habitat types for foraging.  

 

To get a broader perspective of moose browsing decisions on spatial scales, I would suggest 

a  different study design. With the study design we used, the two largest spatial scales are too 

low of sample size and cover quite a lot more area than the next smallest scale. It would be 

of great value to have a spatial scale between quadrat and study area scale, to see how the 

different predictor variables change with an increase in scale. Additionally, it would be 

interesting to repeat the study in a different area where biomass availability, composition and 

distribution are different from our study area.  
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Appendix  

Regression curves of dry biomass weights to shoot diameters and number of shoots to 

crowns content for Juniper.  

 

 

y = 0,0314x2,6273 
R² = 0,896 

0

1

2

3

4

5

6

0,0 1,0 2,0 3,0 4,0 5,0 6,0

d
ry

  w
e

ig
h

t 
(g

) 

diameter (mm) 

Silver birch, weight to shoot regression 

y = 0,0185x2,7598 
R² = 0,8369 

0

1

2

3

4

5

6

7

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

d
ry

 w
e

ig
h

t 
(g

) 

diameter (mm) 

Downy birch, weight to shoot regression  



 49 

 

 

 

  

y = 0,1276x2 + 0,1077x - 0,2653 
R² = 0,9306 

0

2

4

6

8

10

12

14

16

18

20

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0

d
ry

  w
e

ig
h

t 
(g

) 

daimeter (mm) 

Scots Pine, weight to shoot regression 
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