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Abstract 

Sustainability of wildlife resources requires effective management strategies.  Unbiased 

estimation of wildlife populations through efficient survey methodology is therefore crucial 

in formulating effective wildlife management policy.   

I expected intensive survey for low Peary caribou populations to produce good precision and 

accuracy.  Also, for moderate and low survey coverage to produce useful minimum counts 

at medium and high Peary caribou densities.   

Empirical Peary caribou data points and watershed delineations obtained from previous 

aerial survey carried out in the Island were used in creating resource selection model.  The 

significant variables used in formulating the realistic habitat scenarios of the resource 

selection model included elevations, slope, and hill-shade.  Specified low, medium and high 

densities of Peary caribou were simulated across the Island using the Resource Selection 

Function (RSF).  Systematic transects placement of varying spacing (low, moderate and 

high survey coverage) were overlaid on the different population density scenarios, and 

distance estimation method used in determining the population estimates. 

The detection probabilities (more than 50%) and the coefficient of variation (precision level 

as low as 18%) of the survey designs revealed that they were suitable for Peary caribou 

survey in Bathurst Island.  However, the accuracy levels of each survey design, measured by 

the percent difference between the simulated and the estimated Peary caribou populations 

for each density scenarios varied greatly between the intensive survey design and the 

moderate/low survey coverage.  For low density Peary caribou, 20% accuracy level was 

observed with intensive survey coverage while 75% - 96% accuracy level was observed for 

moderate and low survey coverage.       

Low density of Peary caribou have been reported in Bathurst Island in past surveys.  I would 

therefore recommend that moderate or low survey coverage which produced better accuracy 

and relatively good precision be field-tested to assess practicability. 

Keywords:  Survey designs, Peary caribou, GIS, simulation, Resource Selection Function, 

Systematic transects, distance sampling, coefficient of variation CV. 
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1. Introduction 

Wildlife managers rely on the combinations of data estimates on herd structure, calf 

recruitment, and ecology for sustainable wildlife resources management.  Setting of 

appropriate hunting quotas, monitoring of population trend and status, and the protection 

and conservation strategies for wildlife populations are dependent on accurate and precise 

population estimates or an index consistently related to population size (Kremen et al. 

1994).  Therefore, it is imperative that reliable and unbiased estimates of wildlife population 

size are obtained through efficient survey techniques in order to formulate effective 

strategies in the management of wildlife resources. 

Statistical precision of an estimate from a given survey can be determined directly from the 

survey data, and the quality of a given estimate's precision may be compared to that other 

surveys conducted on the same population in the past, or from similar populations in similar 

habitats in other areas. On the other hand, survey accuracy is rarely known, but the actual 

size of a given population is rarely if ever known. Usually, managers ignore this issue for 

more harvested populations. If the population has a substantial size, then there is some 

cushion before harvesting may put the population at risk due to inaccurate estimates. 

However,  small populations of endangered species subject to large partially density-

independent declines (Tews et al. 2007) could be at high risk due to inaccurate estimates, 

with little time or warning for adjustments in conservation strategies. When it comes to 

public input into conservation strategies, the public rarely questions the precision of 

population estimates. They mainly discuss and often disagree with the accuracy of 

population estimates, which surveys rarely assess. 

Wildlife conservation agencies often invoke the precautionary principle in developing 

strategies to manage populations at risk, but the precautionary principle can be a double-

edged sword. On one hand, to avoid extirpation the principle may suggest that harvesting of 

the population should be prohibited for many years. That conclusion however may put a 

critical element of an aboriginal community's culture at risk. In that case, the precautionary 

principle could suggest that some low level of harvesting should be allowed so that the 

community may maintain their resource-related aboriginal knowledge and culture. In such 

situations, designing surveys must emphasize high levels of accuracy. 
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1.1 Monitoring of wildlife populations 

The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) reviews the 

status of flora and fauna that may be a risk in Canada, based on sound scientific 

assessments.  Government departments are responsible for monitoring and management of 

wildlife populations.  Under the Species at Risk Act of 2002, COSEWIC’s status reviews 

are not legally binding but they guide the decision making processes of the responsible 

government agencies. COSEWIC may assign species and populations to the following 

categories: Not At Risk (NAR), Special Concern (SC), Threatened (T), Endangered (E), and 

Extinct (X).  The accuracy and precision of the population estimates used during the review 

process are therefore very important in classifying species into COSEWIC categories. 

Issues of low or varying accuracy and precision become especially problematic when we 

survey either rare, endangered or super-abundant populations; populations with varying 

detectability across the population's range; inadequately delineated populations; populations 

that exhibit large changes in abundance either spatially or temporally; and study areas based 

largely on management or jurisdictional boundaries instead of population movements.  With 

small, rare or endangered populations of large mammals widely scattered across their 

ranges, accurate estimates are more important for conservation, while with moderate or high 

abundance populations precision may be more important to managers focused on largely 

recreational resource use. 

1.2 Large mammal survey techniques 

Estimating the population size of large mammals spread across large area entails huge costs 

and effort, and usually the only practical survey methods involve flying aircraft over the 

population’s range and counting the animals seen.  Even though aerial surveys can 

effectively census large areas, there are still challenges affecting the accuracy and precision 

of resulting population estimates (Caughley and Goddard 1972, Caughley 1974, Caughley et 

al. 1976). 
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Large mammal aerial surveys could be carried out by either systematic or random sampling 

since it is rarely possible to find or census entire populations.  Systematic sampling method 

involves randomly placing a sampling transect or quadrat within the population range, and 

then uniformly spacing all other transects or quadrats equal distances apart such that each 

transect or quadrats in the survey has a known and equal probability of being selected. On 

the other hand, random sampling would place all transects or quadrats randomly across the 

population's range.  Systematic sampling technique in aerial surveying is the most common 

strategy because uniform spacing are usually consider more cost efficient,  and is less  prone 

to navigation problems, compared to random aerial sampling.     

The precision in systematic sampling of randomly distributed populations is greater than in 

random sampling, but is less when populations are distributed unevenly or highly clumped 

(Cochran 1963).  Coughley (1977) suggested that the choice of sampling method should 

depend on the aim of the survey.  For example, systematic sampling appeared to be the 

appropriate choice when the aim would be both to map the distribution of animals and to 

estimate their total number. Random sampling may be most appropriate when mapping 

distribution is not an important objective. 

In addition to the overall sampling design adopted for large mammal survey, the type of the 

sampling unit is also an important factor.  Transects and quadrats are the most common 

sampling units used in aerial surveys.  As pointed out by Coughley (1977), the choice of 

transect is weighed among trade-offs in safety and visibility conditions during flight time, 

sightability and short-term movements of animals, navigational problems, observer and pilot 

fatigue, and variability between unit counts.  Despite a few merits of quadrats over transect 

(Law et al. 1975), transect sampling usually is more efficient and economical when an 

estimate or index of density is sought, or sightability biases in counts can be corrected 

(Coughley 1977).  
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Distance  sampling using transects as sampling units involves counting animals or groups of 

animals  as an observer or team of observers travels along each transect, as well as recording 

the perpendicular distance of the detected animals or  groups from the transect (Buckland et 

al. 2001, Thomson 2010). From the measured distances from the transects,  detection 

probabilities, which change with distance are then computed and used to estimate the 

abundance and density of animals or groups (i.e., clusters) that were surveyed. 

An older method is strip transect sampling, and involves counting animals within a pre-

determined distance from the transect, usually called a strip (Eberhardt 1978).  This method 

assumes that the detection of animals within the strip is equal regardless of their distance 

from the transect. Animals counted within each strip are recorded and collated to obtain the 

abundance and density estimate for the whole area.  Strip width and the number of strip 

transects required can be determined and deployed for each survey.  For instance, a narrow 

strip width could require a large number of strip transects.  

Study areas in conventional large mammal survey are often stratified into areas of differing 

densities, based on either assumptions or initial reconnaissance surveys. Through 

stratification, areas with high densities are more intensively surveyed than areas with low 

animal densities, because surveying low density areas contributes less to the total population 

estimate.  Estimates from stratified surveys are usually more precise than estimates obtained 

from unstratified surveys using the same effort (Coughley 1977).  This  implies a lower 

coefficient of variation (CV, or ratio of standard deviation to the mean), and is generally 

accepted  to maximise survey efficiency in terms of time, costs, and manpower as more time 

is spent in areas where the greatest amount of data can be obtained.  

However, if low density areas are very large relative to the population's range, a significant 

proportion of the population may be inadequately surveyed. Another consequence of such 

thinking about sampling efficiencies is that when populations change by several orders of 

magnitude over time, managers may be unwilling to invest the same resources into 

estimating population size during years when it is at historical lows. It is precisely during 

historical lows when populations are most at risk of extinction and there is a need for more 

accurate and precise estimates. 
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Survey techniques have often been compared in terms of accuracy and precision of 

population estimates.  Aerial survey is one of the most frequently used methods in large 

mammal census (Norton-Griffiths, 1978).  Like any other survey method, it has inherent 

biases and errors which tend to create debates over acceptability of the resulting population 

size estimates (Hone 2008).  In the past, improvements in aerial survey methods have 

mostly emphasised maximizing precision by combining robust survey designs, high 

sampling intensity, intricate stratification and powerful methods of analysis (Caughley 

1974).  Adequate knowledge of wildlife population distribution is very crucial in 

maximizing both the efficiency of sampling designs for aerial survey and the precision of 

the resulting estimates.  However, lack of information on the exact number of animals being 

surveyed and their exact positions at the time of survey have greatly hampered the 

performance of sampling designs for aerial survey of large mammals (Caughley 1977).         

The general practice of higher survey coverage using high density strata has gone largely 

unchallenged, and has been compared only rarely with other potential alternatives for large 

mammals in terrestrial ecosystems.  This practice is not an issue when we are concerned 

about a single population in a given survey if the population is relatively abundant. 

However, with endangered species, occupied habitats may be widely spaced or scattered 

with many potentially suitable habitats having no animals, and any occupied habitats may 

have very low densities.  As a result, finding the occupied habitats among all potential 

habitats may require extensive costly surveying and then finding animals within the 

occupied habitats may require expensive intensive sampling. Even with species that occur in 

high abundance in some areas and low densities in other areas, populations may be 

composed of specific ecotypes that are adapted to certain habitat types, especially in low 

density areas. As environmental condition change with climate and human impact over time, 

loss of ecotypes that are adapted to low density habitats may reduce the overall resilience of 

the species. Because we often are interested in population trends over time, loss of sub-

populations adapted to low density habitats may in time lead to loss of entire populations 

during periods of low abundance and scattered distributions. 



 

11 

 

11 

1.3 Peary caribou survey in Bathurst Island Complex 

Peary caribou is an endemic caribou subspecies occurring in six populations across the 

Canadian High Arctic: eastern Queen Elizabeth Islands, western Queen Elizabeth Islands, 

Banks Island and North-WesternVictoria Island, Prince of Wales Island and Sommerset 

Island, and the Bathurst Island complex (COSEWIC, 2004).  It is the only member of the 

deer family Cervidae that exists as genetically homogenous inter-island populations on the 

Queen Elizabeth Islands in the Canadian High Arctic (Banfield 1961).  There is documented 

evidence suggesting genetic differentiation between the Peary caribou of the High Arctic 

and the barren-ground caribou to the south (Roed and Whitten 1986).   

Peary caribou are seasonally migratory, occurring characteristically in small groups of 3-5 

during winter and then aggregating to somewhat larger groups in the summer (Miller 

1977a).  They move between and among islands feeding on available and accessible 

vegetation, thereby reducing foraging pressures on the vegetation (Parker and Ross 1976, 

Miller et al. 1982). However, during winter (i.e., September-May) most potential forage is 

inaccessible under hard snow (Maher et al. 2012), leading to population-density effects even 

at low density (Tews et al. 2007). They are often restricted to relatively small areas of 

foraging habitats with minimal snow cover along bare wind-blown ridges with extensive 

bare ground and rocks. In some winters, autumn icing events (i.e., rain on snow) greatly 

reduces the accessibility of forage, resulting in acute malnutrition and high mortality rates 

(Parker et al. 1975, Miller et al. 1977a, Gunn et al. 1981, Tews et al. 2007). 

Many of the Canadian Arctic Islands, including the Bathurst Island Complex (16 070 km
2
), 

compose the entire range of Peary caribou (Rangifer tarandus pearyi), and are dispersed 

across them at generally low densities (Jenkins et al 2011).  In most previous aerial surveys 

of Peary caribou on the BIC, strip transects were run in north-south direction and spaced at 

6.4 km apart (Ferguson 1991).  Line transects were systematically placed across the study 

area starting from an initial randomly placed line transect   The caribou selected 60 – 300-m 

elevations  during  late winter (Miller et.al. 1977a) and  151 – 300 m elevations during 

summer (Miller et.al. 1977a, Ferguson 1991).  Caribou were not found below 60m and 

above 300m during August 1981(Ferguson 1991).  
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Edlund et al. (1989) conducted a comprehensive study on the vegetation and climatic 

patterns in the Queen Elizabeth Island.  Peary caribou use mesic and xeric habitats as their 

summer and winter foraging areas, respectively (Thomas and Edmunds 1983, 1984).  They 

feed in the slopes of river valleys and uplands plains with woody prostrate shrubs of sedges 

and foliose lichens, willow, grasses, and forbs (Gunn et al. 1981). 
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2. Objectives 

In response to issues that were raised by Inuit elders and hunters and with input from other 

biologists during a workshop held in 1997 and earlier, models were developed to improve 

survey methods for Arctic tundra caribou populations, based on expected potential 

population sizes, patterns of detectability and aggregation at moderate densities. This 

modelling was based on rather laborious paper-based simulations. The sampling design 

obtained from this simulation study suggested some important changes from past standard 

survey designs.  Some elements of the revised methodology were first implemented for 

caribou surveys on southern Baffin Island (Ferguson and Messier 2000). After more testing 

in Greenland, many elements of the design were implemented for long term monitoring 

beginning in 2000 by the Greenland Institute of Natural Resources (Cuyler et. al 2002). 

This methodology was designed and implemented mainly for populations at moderate 

densities, but it may not be suitable for populations at extremely low densities with widely 

scattered distributions for which accuracy of estimates of population size are critical for 

conservation purposes. To further explore and extend Ferguson and Messier’s (2000)   

caribou survey designs, several  alternative designs should be compared to determine the 

most effective and efficient methodologies for large mammal surveys in various types of 

situations in terms of spatial differences in animal abundance and distribution.   These 

comparisons should take into account level of sampling intensity and extent of coverage of 

occupied habitats, and provide precise and accurate estimates for large mammal populations 

with differing densities and distributions.  I have explored the potential to select innovative, 

robust and cost-effective survey methods for surveying caribou at different spatial densities 

using a GIS-based modelling approach. 

I hypothesized that very intensive systematic survey of the occupied habitats of a low Peary 

caribou density would be required to obtain precise and accurate population estimates or at 

least useful minimum counts, while moderate survey coverage and low survey coverage 

would produce precise and accurate population size estimates at medium and high Peary 

caribou densities respectively. 
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3. Method 

3.1 Study area  

Bathurst Island (16070 km
2
) is located between latitudes 75°N and 77°N and longitudes 

96ºW and 105ºW (Figure 1).  The Island group lies in the Arctic vegetation region (Polunin 

1951, 1960) of highly impoverished and less diverse vegetation classes (Young 1971), and it 

is referred to as “Complex” according to Bliss classification (Babbs & Bliss 1974, Bliss 

1975, 1977).  The Islands are low-lying areas with slopes, river valleys, raised beach ridges, 

upland plains, and hilltops with only a few exceeding 300m elevation.  The terrain is 

sparsely vegetated with sedges, willow, grasses and forbs covering the low-lying areas and 

the valleys, and  represented according to dominance, by three bioclimatic zones; namely: 

herbaceous, shrub-herb transition and the prostrate shrub (Gunn et al. 1981, Edlund and Alt 

1989, Walker et al. 2005). 

 

Figure 1– Bathurst Island Complex Canada           Figure 2 – Surveyed watersheds (Ferguson unpub.) 
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3.2 Data sources 

Tiles of NAD83-processed 1:250 000 National Topographic System (NTS) containing the 

Canadian Digital Elevation and Land Cover Data covering the entire study area (Bathurst 

Island Complex - BIC) were downloaded from the Geobase website of the Canadian 

Council on Geomatics (http://geobase.ca). Geobase Land Cover, circa 2000 Feature 

Catalogue was used for the attribute classification. The topographic data containing 

watersheds, river systems and contour lines were also downloaded from the Natural 

Resources Canada website (http://geogratis.gc.ca).  Empirical data for Peary caribou in the 

Bathurst Island Complex from an aerial survey carried out in April 2001 were used to model 

resource selection functions of Peary caribou within the study area.      

3.3 Habitats and Survey Design Modeling 

The habitat modelling, Peary caribou distribution and survey designs were summarised in 

the flow chart shown below (Figure 3).  Using data from the April 2001 survey on the 

Bathurst Island Complex, boundaries of watersheds occupied by caribou were delineated 

after detecting the presence of animals or recent tracks.  Seventeen occupied watershed 

areas (Figure 2) of not more than 200m elevation above sea level were all intensively 

surveyed.  Sixty two group locations of a total of one hundred and forty nine Peary caribou 

were observed.    

GPS coordinates of the observed Peary caribou groups were imported into ArcMap to 

determine the Resource Selection Function (RSF) of the Peary caribou within the surveyed 

watersheds.  The parameters used to determine the RSF included: elevation, land cover, 

ruggedness index, hillshade, slope, and aspect. I determined the elevation, slope, aspect, and 

hillshade from the downloaded digital elevation data using the appropriate functional tools 

in ArcMap.  I used the QGIS software to determine the ruggedness index from the digital 

elevation data.   

 

 

http://geobase.ca/
http://geogratis.gc.ca/
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The Bathurst Island land cover types were reclassified into 8 categories in ArcMap (Table 

1). All the parameters were extracted for each Peary caribou presence point (i.e. Caribou 

group locations from the 2001 survey and randomly generated caribou points) within the 

watersheds using the ‘Extract to Multi-value’ tool in ArcMap.  I ran R-Statistics on the 

output from the extraction process to determine the most parsimonious model by selecting 

the model with the least AIC value (Table 2).  I used the estimates of this model in 

determining the resource selection function for Peary caribou within the watersheds and 

then extrapolated them over the entire Bathurst Island Complex (Figure 6). 

I allocated random Peary caribou presence points of 50, 100, 200, 400, 800 and 1000 in 

accordance with the probability profile of the Peary caribou occurrence from the Resource 

Selection Model (RSM) using the ‘generate random points’ tool in the Geospatial Modelling 

Environment (GME) software.  I  placed systematic transect lines running from north to 

south across the entire Bathurst Island Complex at 10km, 5km, 1km and 0.5km apart using 

the ‘Create Fishnet’ tool in ArcMap (Figures 4a – d). 

 

Table 1 – Land Cover classes of the vegetation in Bathurst Island 

Classes Land Cover Types Composition(%) 

1 No data 0.02 

2 Water 0.30 

3 Barren/Non vegetated 0.50 

 Bare Soil with Cryptogam crust-frost boil 6.80 

4 Snow/ice 1.40 

5 Sparsely Vegetated bedrock 3.30 

 Sparsely vegetated till-colluvium 5.10 

6 Prostrate dwarf shrub 7.70 

 Moist-dry non tussock graminoid/dwarf shrub 
tundra 

20.50 

 Dry graminoid prostrate dwarf shrub tundra 23.90 

7 Wetland 8.70 

8 Tussock graminoid tundra  10.10 

 Wet sedge 11.70 
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3.4 Distance Estimation  

Using the Spatial Analyst of the ArcGIS 10.1 software, perpendicular distances of the Peary 

caribou presence points to each transect line were determined.  Total transect length for each 

survey design was also determined. For each survey design, I used distance estimation 

method with the Distance software (Thomas et. al 2010) software to determine the Peary 

caribou population estimate.  I filtered the data by truncating all distances at 500m except 

for the 0.5-km transect lines which were truncated at 250m (see Appendix).  These were 

suggested as realistic strip widths for animals in aerial survey (Ferguson 2014, pers. comm.).  

I also analysed the data using detection function model with appropriate key functions/series 

expansion (Buckland et al. 2001).  I considered half normal, uniform and hazard rates 

detection functions adjusted with their respective cosine, simple polynomial and hermite 

polynomial expansion series before selecting the best fit model using the AIC value.  From 

the model summary of each survey design, I obtained the detection probability of seeing 

Peary caribou points within the specified strip, the population density estimate and the 

coefficient of variation.  
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Figure 3:  Flow Chart of the Habitat, Species and Survey Design Modelling 
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Figure 4a: 10-km Transect Spacing (T10)                                Figure 4b:  5-km Transect Spacing (T5)          

 

Figure 4c: 1-km Transect Spacing (T1)                          Figure 4d:  0.5-km Transect Spacing (T0_5) 
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4. Results and Discussion 

4.1 Resource Selection Model 

Table 2 shows the lists of candidate models and their corresponding AIC values.  I 

selected the first model in the list because of its least AIC value.  As obtained from 

the outcome from the R-statistic and in relation to the effect plots in Figure 5, the 

estimates of the selected model were as follow:  Elevation (-0.0087), Slope
2
 (-

0.0462), Slope (0.4325), Hillshade (-0.0167) and Intercept (1.0555).    

Table 2:  Candidate model parameters and their corresponding AIC values 

Model Parameters AIC values 

Elevation + Hillshade + Slope + Slope ^2 370.54 

Elevation  + Hillshade + Slope + Slope^2 + Hillshade^2 372.54 

Elevation + Hillshade + Slope + Ruggedness Index 374.47 

Elevation + Hillshade + Slope^2  374.63 

Elevation + Hillshade 374.77 

Elevation + Hillshade + Ruggedness Index 375.15 

Elevation + Hillshade + Slope + Slope^2 + Elevation^2 + CoverType * Hillshade 375.63 

Elevation + Hillshade + Slope + Ruggedness Index + CoverType 375.96 

Elevation + Hillshade + Slope 376.42 

Hillshade + Slope + Slope^2 378.92 

Elevation + Hillshade + Slope + CoverType + Aspect 380.62 

Elevation + Slope + Ruggedness Index + CoverType + Aspect 387.30 
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After running the R-Statistics of the resource use of Peary caribou within the watersheds and 

extrapolating the estimates to the entire Island, elevation, hill-shade, and slope were 

observed to be the most suitable resources for creating the scenarios for ideal Peary caribou 

population distribution within the study area – slope (p = 0.03), slope^2 (p = 0.04), hill-

shade (p < 0.001), elevation (p < 0.001).   

 

Figure 5: The effect plots of the relevant variables for the resource selection model 
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Equation 1:  Resource Selection Function (RSF)  

RSF = Exp (-0.0167*Hillshade + 0.4325*Slope + 0.0462*Slope^2 – 0.0087*Elevation)  

 

Figure 6: The Resource Selection Map of the Bathurst Island Complex 

I discovered that Peary caribou resource use in the Bathurst Island was mostly influenced by 

elevation, slope, the gentleness of the slope and the hillshade direction.  It seemed that the 

Peary caribou of the Bathurst Island Complex tended to show preferences for areas within 

the Island which were of low elevations (Ferguson, 1991), gently rising slopes and hillshade 

areas.   
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Though, Peary caribou occurred in areas of gently rising slopes but they seemed to avoid 

steep slopes.  It would appear that most resources available to them were at low elevations, 

the hillshade areas and along the areas of the gently rising slopes.   

Windblown ridges could create sites for shallow snow deposition thus making such areas 

available for Peary caribou to forage (Nellemann and Fry 1995).   Hillshade may relate to 

the effects of wind on snow deposition. The elevation data used for the hillshade were 

collected in autumn when the sun was at low angle (http://geobase.ca).  With the sun being 

at low angle, the prevailing winds from north-west dominates the stormy winds from the 

south-west thus creating hillshade areas which could be regarded as surrogates for 

windblown ridges.  Windblown ridges or hillshade areas of the Island, being an indication of 

the direction of the prevailing wind and shallow snow deposition, would not in any way 

hamper the free movement or calving activities (Miller et al. 1977a, Fergusson 1991) of 

Peary caribou within the Island. 

4.2 Population density estimates and the survey designs 

Table 3 below shows the Population density estimates of specified randomly simulated 

Peary caribou population scenarios of High density - 1000, 800; Medium densities - 400, 

200; and Low densities – 100, 50 represented by R1000, R800, R400, R200, R100, R50 

with their respective transect spacing – 10km, 5km, 1km and 0.5km (T10 – Low Coverage, 

T5 & T1 – Moderate Coverage, T0.5 – High Coverage or Intensive survey coverage) as 

measured using distance estimation method. 

I considered 0.5 km transect spacing (T0.5) to be an intensive survey design which covered 

at least 75% of the entire study area.  This coverage extent meant that more transects lines 

were needed which obviously translated to more survey cost. Based on knowledge of past 

surveys from literatures, I assumed that 10km transect spacing (T10) would cover about 

25% of the study area which would mean fewer transect lines and less survey cost.  5km 

(T5) and 1km (T1) transect spacing were regarded as moderate coverage of between 25% 

and 50% of the study area thus requiring moderate transect lines. 

 

http://geobase.ca/
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Table 3:  Population Density Estimates (caribou/km
2
)  

  High Density Medium Density Low Density 

  R1000 R800 R400 R200 R100 R50 

Low 

Coverage 

 

Moderate 

Coverage 

T10 0.043 0.041 0.022 0.013 0.005 0.003 

       

T5 0.048 0.041 0.019 0.012 0.007 0.004 

 

 

High 

Coverage 

T1 0.049 0.043 0.022 0.016 0.012 0.014 

       

T0.5 0.059 0.051 0.035 0.023 0.020 0.024 

 

4.3 Detection Probability and Coefficient of Variation 

The detection probabilities for all the survey designs irrespective of the density scenarios 

appeared to be at least 0.5 (Figure 7).  As transect spacing increased, I would expect the 

probability of seeing more animals to decrease due to a number of reasons expressed by 

Caughley (1974) in relation to strip width.  The decrease in detection probability was not 

particularly evident between low and moderate survey coverage. However, intensive survey 

coverage for all density scenarios produced lower detection probabilities when compared to 

moderate and low survey coverage.  This was probably due to the imposition 500m strip 

width for the survey.   At least about 50% of the simulated Peary caribou populations within 

the specified 500m truncated distance were still observed by the Distance software.  Based 

on the result shown in the detection probability (Figure 7), I would suggest that all the 

survey designs used for this modeling project were potentially capable of producing realistic 

estimates of Peary caribou population in the Bathurst Island.  However, following the lower 

detection in intensive survey coverage, there should be cautious deployment of intensive 
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coverage for Peary caribou survey in Bathurst Island irrespective of the prior knowledge of 

its population density. 

 

Figure 7:  Detection probabilities of the survey designs 

According to Figure 8, coefficients of variation (14-18%) were observed in all the survey 

designs for the low density Peary caribou scenario. In all the survey designs, there appeared 

to be a general decline from (13-14%) for medium density to about (7-10%) for high density 

Peary caribou populations.  From this modelling project, the survey designs assessed for all 

the density scenarios of Peary caribou population produced relatively reasonable estimates 

of Peary caribou populations (Beasom 1979) but precision varied greatly.  The survey 

designs for high density Peary caribou scenario produced better estimates than for medium 

and low densities. This is evident in their relatively good precision – low coefficient of 

variation of about 7-10% (Figure 8).  I could possibly infer from this study that all the 

survey designs assessed in this project would be appropriate for the survey of Peary caribou 

if preliminary survey could establish that they were in high density.  If cost of survey would 

be an issue, then low survey coverage would produce as much precision as moderate or 

intensive survey coverage for Peary caribou occurring in high density.  



 

26 

 

26 

 

Figure 8:  Coefficient of variation (%) of the survey designs 

Figure 9 shows the difference (%) between the known or simulated populations of Peary 

caribou across the Bathurst Island and the estimated populations as obtained from the 

distance estimation method for each survey design.  I used this approach to determine the 

level of accuracy of the each survey design, i.e., Accuracy (%) = (Known Population 

Density – Estimated Population Density)/Known Population Density. 

 

Figure 9:   Difference (%) between the P. caribou simulated and estimated densities  

The difference between the known and estimated Peary caribou populations appeared to 

increase progressively for low through moderate to high survey coverage survey for each 

density scenario.  For low density Peary caribou, 0.5km transect spacing produced about 
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80% difference between the known and the estimated population densities.  70%, 35% and 

20% difference in population densities were observed in 1km, 5km and 10km transect 

spacing respectively.  50%, 25%, 20% and 15% difference were observed in 0.5km, 1km, 

5km and 10km transect spacing respectively for medium density scenario. High density 

scenario produced 20%, 9%, 7%, and 4% difference between the simulated and estimated 

Peary caribou populations for respective 0.5km, 1km, 5km and 10km transect spacing.  Low 

difference (%) between the known and estimated Peary caribou population implies high 

accuracy level and vice versa.  For instance, 80% difference between simulated and 

estimated population density means 20% accuracy level.  

The effectiveness of the survey designs was evaluated on the basis of the accuracy measured 

as the percent difference between the known and estimated Peary caribou population 

densities for each survey designs validated by the detection probabilities.  Precision level 

was assessed using the coefficients of variation.  For low density Peary caribou simulation, 

almost 50% of Peary caribou were detected and the coefficient of variation was about 14% 

and at about 20% accuracy level at intensive survey coverage.  Not less than 75% accuracy 

level and as low as 14% coefficient of variation (CV) was observed under moderate and low 

intensity survey coverage.  This implied that low or moderate survey coverage would be 

more suitable to obtain useful minimum counts of high density Peary caribou populations in 

Bathurst Island.  The accuracy level of each survey design appeared to deteriorate under low 

density Peary caribou populations.  This position seemed to run contrary with my 

expectation that intensive survey coverage would produce useful minimum count of low 

density Peary caribou in Bathurst Island.  Despite the relatively good precision (CV of 

between 7 – 18%) and seemingly suitable detection probabilities for all the survey designs, 

there appeared to be significant difference between the estimated and simulated Peary 

caribou densities for intensive survey coverage in all density scenarios.  This therefore 

showed that the accuracy levels of intensive survey coverage was relatively poor and 

spending huge cost on such an intensive survey appeared to be economically unjustifiable 

(Beasom et al. 1979).  Past surveys seemed to reveal low abundance level of Peary caribou 

in Bathurst Island (Miller 1997a, Gunn and Dragon, 2002).  It might be appropriate to field-

test moderate or low survey coverage design which produced better accuracy levels and 

relatively good precision for Peary caribou survey in Bathurst Island. 
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5. Conclusion 

The outcome of this modelling project showed that survey coverage in Peary caribou survey 

within the Bathurst Island Complex would have a significant impact on the accuracy and 

precision level of the estimates obtained.  The detection probability of the survey coverage 

appeared to be suitable for Peary caribou survey in Bathurst Island as at least 50% of all 

simulated Peary caribou points were detected despite the imposition of the 500m strip width.  

The coefficient of variation for all the survey designs, which was a measure of the precision, 

was between 7-18%.  This was accepted to be relatively low for all the survey coverage to 

be adjudged as suitable for Peary caribou survey.  Contrary to my expectation, the percent 

difference between population estimates obtained from the distance estimation method and 

the simulated values for intensive survey coverage appeared to vary greatly.  I observed 

20% accuracy level for intensive survey coverage and at least 75% for both moderate and 

low survey coverage.  This appeared to be imply relatively poor accuracy level for intensive 

survey design for the low density Peary caribou densities.    

I would recommend that sample survey of the variables used in creating the Peary caribou 

habitat model be stratified along similar resource availability and use in order to fully 

establish their effects on Peary caribou resource selection function and to improve survey 

efficiency.  Moderate or low survey coverage which produced better accuracy and precision 

could be field-tested to determine its practicability. 
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8. Appendix 

Detection Probability graphs and the summary of the candidate models for the simulated P. caribou population density and the survey designs   

A(i) R1000T10 – 1000 Simulated Peary caribou points and 10km Transect spacing 

 

NameR1000T10 Par Delta AIC AIC ESW (m) Density(Caribou/km2) D LCL D UCL D CV 

Uniform Cosine 0 0.00 1118.63 500.00 0.043 0.035 0.035 0.105 

Half-normal Simple  Poly 1 2.00 1120.63 500.00 0.043 0.032 0.032 0.156 
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A(ii) R1000T5 – 1000 Simulated Peary caribou points and 5km Transect spacing 

 

NameR1000T5 Par Delta AIC AIC ESW (m) Density(Caribou/km2) D LCL D UCL D CV 

Uniform Cosine 0 0.00 2473.41 500.00 0.048 0.041 0.056 0.077 

Half-normal Simple Poly 1 2.00 2475.42 499.95 0.048 0.039 0.059 0.108 

Half-normal Hermite Poly 1 2.00 2475.42 499.5 0.048 0.039 0.059 0.108 
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A(iii) R1000T1 – 1000 Simulated Peary caribou points and 1km Transect spacing 

 

NameR1000T1 Par Delta AIC AIC ESW (m) Density(Caribou/km2) D LCL D UCL D CV 

Uniform Cosine 0 0.00 12242.78 500.00 0.049 0.046 0.052 0.031 

Half-normal Hermite Poly 1 2.01 12244.79 499.95 0.049 0.044 0.053 0.046 
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A(iv) R1000T0.5 – 1000 Simulated Peary caribou points and 0.5km Transect spacing 

 

NameR1000T0.5 Par Delta AIC AIC ESW (m) Density(Caribou/km2) D LCL D UCL D CV 

Uniform Cosine 1 0.00 10887.35 232.08 0.056 0.051 0.062 0.051 

Uniform Hermite Poly 0 0.97 10888.32 250.00 0.052 0.049 0.055 0.029 

Half-normal Hermite Poly 1 1.01 10888.36 237.96 0.055 0.050 0.060 0.045 

Half-normal Cosine 1 1.01 10888.36 237.96 0.055 0.050 0.060 0.045 

 

 



 

 

 

 


