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Abstract: Recent theoretical accounts of addiction have acknowledged that addiction to 

substances and behaviors share inherent similarities (eg, insensitivity to future consequences and 

self-regulatory deficits). This recognition is corroborated by inquiries into the neurobiological 

correlates of addiction, which has indicated that different manifestations of addictive pathology 

share common neural mechanisms. This review of the literature will explore the feasibility of 

the somatic marker hypothesis as a unifying explanatory framework of the decision-making 

deficits that are believed to be involved in addiction development and maintenance. The somatic 

marker hypothesis provides a neuroanatomical and cognitive framework of decision making, 

which posits that decisional processes are biased toward long-term prospects by emotional 

marker signals engendered by a neuronal architecture comprising both cortical and subcortical 

circuits. Addicts display markedly impulsive and compulsive behavioral patterns that might 

be understood as manifestations of decision-making processes that fail to take into account 

the long-term consequences of actions. Evidence demonstrates that substance dependence, 

pathological gambling, and Internet addiction are characterized by structural and functional 

abnormalities in neural regions, as outlined by the somatic marker hypothesis. Furthermore, 

both substance dependents and behavioral addicts show similar impairments on a measure of 

decision making that is sensitive to somatic marker functioning. The decision-making deficits 

that characterize addiction might exist a priori to addiction development; however, they may be 

worsened by ingestion of substances with neurotoxic properties. It is concluded that the somatic 

marker model of addiction contributes a plausible account of the underlying neurobiology of 

decision-making deficits in addictive disorders that is supported by the current neuroimaging 

and behavioral evidence. Implications for future research are outlined.

Keywords: addiction, somatic marker hypothesis, decision making, emotion, Iowa Gam-

bling Task

Introduction
Addiction is characterized as a condition in which neural systems involved in moti-

vation and behavioral control promote self-regulatory failure that persists in the face 

of increasing negative consequences.1 The component model of addiction posits that 

the addiction state involves increased salience attribution to the addictive object, 

mood modification, development of tolerance, withdrawal, internal and external 

conflict, and relapse.2 This conceptualization implies that addiction is not confined 

to chemical substances, but can also involve behaviors like excessive gambling and 

Internet use. Recognition of the behavioral similarities across addictions coincides 

with increasing evidence indicating that chemical and nonchemical addictions might 

share common neural mechanisms.3–5 Impulsive and compulsive behavior in addiction 
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have been associated with defective decision making.6 

A better understanding of the abnormal decisional processes 

observed in various kinds of addiction has therefore come 

into focus of research on development and maintenance of 

addiction. The somatic marker hypothesis (SMH) provides 

a theoretical framework for an explanation of dysfunctional 

decision-making patterns in addicts. This review provides an 

overview on the current state of research on decision making 

in addiction with a particular focus on the role of somatic 

marker theory’s contributions.

The decision-making deficits in addiction are comparable 

to those seen in patients with prefrontal cortical lesions – a 

marked obliviousness to future consequences of decisions and 

deficient experience-based learning.7 This observation and 

supporting physiological and anatomical assessments have 

led to the notion that pathophysiology in the prefrontal cortex 

could be an important neural underpinning of addiction.8–10 

Decisional outcomes following affective–cognitive integra-

tion in prefrontal areas are influenced by afferent connections 

to limbic system areas. The SMH provides a system-level 

framework describing how decision-making processes are 

influenced by emotional signals arising from bioregulatory 

changes that express themselves in both brain and body.11,12 

The theory developed from studies of the decision-making 

deficits of patients with lesions in the ventromedial pre-

frontal cortex (vmPFC).13,14 The SMH echoes and extends 

the Jamesian account of peripheral feedback, positing that 

emotional biasing signals from the periphery guide the 

decision-making process toward long-term prospects in situa-

tions characterized by complexity and uncertainty.15  Evidence 

indicates that the normal operation of somatic markers is 

dependent upon various structures involved in expressing 

emotions in the periphery, such as the vmPFC and amygdala, 

as well as structures implicated in the central representation of 

the changes taking place in the body proper (somatosensory 

cortex, insular cortex, basal ganglia, cingulate cortex).16–18

The empirical support for the SMH has largely been 

derived from an affective decision-making paradigm aimed 

at mimicking real life decision making in the way it factors 

uncertainty, reward, and punishment – the Iowa Gambling 

Task (IGT).11 Bechara et al19 suggested a correlation between 

successful performance and heightened skin conductance 

responses (SCR) anticipating unconscious disadvantageous 

decisions on this task.19–21 These anticipative SCRs have been 

interpreted as an index of somatic marker signals, and are 

absent in patients with lesions in the vmPFC. Interestingly, 

the paradigm has been used to explore decision making in 

various clinical populations and several studies indicate that 

somatic marker deficits might underlie a plethora of clini-

cal manifestations of impaired decision making, including 

those seen in drug addiction,22 psychopathy,23,24 anxiety,25 

obsessive–compulsive disorder,26 and panic disorder.27

Increasing evidence indicates that addiction is charac-

terized by a defect in the somatic marker mechanism that 

normally supports the selection of adaptive behavior, giving 

rise to inappropriate emotional markers of the anticipated 

negative consequences of future action, thus promoting self-

regulatory failure.10,28 Previous literature reviews exploring 

the relationship between somatic markers and addiction have 

implied that the SMH can explain dysfunctional decision 

making in both substance and behavioral forms of addiction, 

such as pathological gambling and Internet addiction.7,10,29,30 

While previous literature reviewed findings supporting the 

model’s ability to explain dysfunctional decision making in 

drug addiction, it does not provide conclusive evidence for 

whether its predictions hold true for behavioral addictions as 

well. Moreover, the etiology of the somatic marker defects 

has not been elaborated upon; further research is required to 

determine whether the defective somatic marker signaling 

system thought to be involved in addiction is a premorbid 

vulnerability factor or a result of addictive behavior.

First, a brief overview of the current understanding 

of the neurobiology of somatic marker signaling will be 

provided. Thereafter, the neurophysiological and neurocog-

nitive evidence pertinent to predictions from the somatic 

marker model of addiction will be reviewed, and the model’s 

applicability to defective decision making in addiction will 

be critically appraised. The scope will be limited to drug 

addiction, pathological gambling, and Internet addiction, 

as these represent the addictive disorders that have received 

the most research attention. Finally, the review will discuss 

the etiology of somatic marker defects and the possibility 

of a diathetic vulnerability for addiction from the defective 

decision making that results from a dysfunctional somatic 

marker signaling system.

Neurobiological correlates  
of somatic marker signaling
The SMH posits that the neural embodiment of somatic state 

information in relation to situational contingencies holds 

biasing properties capable of guiding the decision-making 

process via reactivation of somatic states previously paired 

with an option–outcome pair (overviews have been previously 

published15,16). The SMH distinguishes between two differ-

ent triggers of somatic state activation, each associated with 

distinct neural substrates.31 Primary inducers refer to innate 
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or learned stimuli that are associated with automatic somatic 

(emotional) responses, mediated by subcortical structures 

involved in emotional processing, where the amygdala is 

an essential structure. Secondary inducers refer to cognitive 

stimuli generated from thoughts and memories of an actual 

or hypothetical emotional event – eg, the memory of taking 

a drug or the thoughts about taking the drug in the future. 

While operating via the same somatic effector structures in 

the brain stem and hypothalamic area that the amygdala does 

in the case of primary induction, induction from secondary 

inducers is associated with higher-order associative areas in 

the vmPFC, which are capable of encoding and reactivating 

somatic states associated with a particular option–outcome 

pair.16 Moreover, once a dispositional representation is estab-

lished, thus allowing secondary induction, the reactivation 

may proceed as an intracerebral replay of the changes in the 

soma, via the as-if loop mechanism that bypasses the body 

proper altogether.32

Both the vmPFC and the amygdala are richly connected 

to somatic effector structures in hypothalamic and brain stem 

nuclei that are capable of playing out bioregulatory changes 

in the body proper – eg, they initiate a somatic marker. 

These emotional changes are engendered in the body via 

the spinal cord, cranial nerves, and endocrine signaling. The 

afferent projections of the ensuing changes are represented 

in somatotopically-organized regions. The somatosensory 

cortices in the parietal lobe (SI and SII) and the insular cor-

tices monitor interoceptive information continuously,33 and 

especially the anterior part of the insular cortex is believed to 

be a key neural underpinning for the conscious experience of 

the body and the emotions of which it serves as a theater.18,34 

Indeed, neuroimaging studies have shown that the strength 

of insular activity correlates with both perceived emotional 

intensity and accuracy in interoceptive judgments.18,35 

Moreover, various studies have demonstrated associations 

between insular activation and decisional outcomes. For 

example, Werner et al36 reported that insular activation is 

predictive of successful intuitive decision making. Related, 

high interoceptive accuracy is positively associated with 

higher susceptibility to emotional biases in an emotionally 

framed decision-making task37 and with detrimental effects 

of dysfunctionally processed interoceptive biases on decision 

making in patients with panic disorder.27 These findings and 

strong evidence on the neuronal correlates of interoceptive 

accuracy identified in the anterior insular cortex18 strengthen 

previous suggestions that this region is an integral structure 

for the behavioral effects of somatic markers. The role of 

the insular cortex in somatic marker biasing actions is fur-

ther corroborated by lesion studies linking damage to this 

structure to distinct decision-making deficits, especially an 

insensitivity to value differences among response options.38,39 

Thus, impaired functioning of the insular cortex may reduce 

the individual’s ability to determine the value of response 

options due to inefficient utilization of peripheral changes 

that options of emotional salience typically induce.

The biasing actions of somatic markers are not restricted 

to the immediate selection of adaptive behavioral programs. 

Somatic markers are hypothesized to assist overt reason-

ing processes where they amplify some response options 

over others, in such a way that more executive resources 

are dedicated to these options.16 This assumption is consis-

tent with the elaborate connections between regions of the 

somatic marker system, especially the vmPFC, and regions 

involved in working memory and conflict resolution, such 

as the dorsolateral prefrontal cortex (dlPFC) and the anterior 

cingulate cortex.40,41 Moreover, studies employing executive 

load paradigms combined with tasks measuring decision 

making suggest that regions involved in mediating executive 

resources, particularly working memory, are necessary, but 

not sufficient, for the overt guidance of behavior through 

somatic marker biasing actions.42,43 Furthermore, it is 

assumed that somatic markers can bias behavior implicitly – 

that is, outside conscious awareness – through connections to 

regions in the basal ganglia, especially the striatum.10 This is 

of special interest in the context of addiction, with compel-

ling evidence suggesting that increased dopamine transmis-

sion from the mesolimbic dopamine system to the ventral 

striatum drives incentive motivational processes outside 

its adaptive range in addiction, resulting in an attentional 

bias toward and increased wanting of the desired object.44,45 

Thus, there may be an interaction at the level of the striatum 

between dopamine-driven processes involved in incentive 

motivation and affective–cognitive signals from prefrontal 

cortical circuits.

Neurochemical mediation  
of somatic state influence  
on behavior and cognition
Advances in neuropharmacological research have begun to 

unravel how neurochemical transmitter substances influence 

behavior and cognition. Particularly, the monoamines have 

received considerable attention and are believed to play 

important roles in various cognitive processes, including 

decision making.46 The monoamine neurotransmitters have 

also been a major focus in the study of psychopathology, 

including addiction,47 and substantial evidence favors a 
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causal role for these neurochemicals in many psycho-

pathological conditions. While the precise role of these 

neuromodulating substances in decision-making processes 

remains unknown, there is evidence to indicate that the 

biasing properties of somatic markers are due, in large part, 

to changes in the release of these transmitter substances 

in various parts of the brain implicated in cognitive and 

emotional processing – eg, the vmPFC, amygdala, insular 

cortex, and striatum.16

Accumulating evidence suggests that the serotonergic 

system is an integral part of adaptive decision making and 

might play a central role in the biasing properties of somatic 

markers.48,49 Rogers et al50 found evidence of an association 

between low levels of serotonin (5-HT), induced by dietary 

challenge, and poor performance on a paradigm sensitive to 

orbitofrontal/vmPFC functioning. Moreover, low 5-HT levels 

have been consistently associated with an increased tendency 

toward temporal discounting51,52 and impulsive behavior,53 

both of which are clearly involved in addictive behavior. The 

dopaminergic system has also been implicated in affective 

decision making, with evidence demonstrating an association 

between lowered levels of dopamine and impaired perfor-

mance on the IGT.54 Specifically, reduced levels of dopamine 

seem to interfere with performance in the first part of the 

task, when the decision-making process is guided by implicit 

knowledge of the task contingencies. In contrast, it has been 

found that manipulations of the serotonergic system affect the 

latter part of the task.55 Thus, dopamine and 5-HT might be 

linked to different modes of decision making, with dopamine 

primarily involved in decision making under ambiguity and 

5-HT in decision making under risk.

Recent evidence has indicated that the efficiency of the 

somatic marker system is influenced by genetic variations 

related to serotonergic and dopaminergic functioning. For 

example, Miu et al49 found that individuals homozygous 

for an allele associated with low efficiency of the serotonin 

transporter (5-HTT; the molecule involved in the synaptic 

reuptake of 5-HT) displayed better performance and stronger 

SCRs preceding disadvantageous selections on the IGT. This 

study indicates a facilitative effect of the allelic variation 

associated with the decreased reuptake of 5-HT. However, 

other studies of the association between 5-HTT alleles and 

IGT performance have yielded conflicting findings.56–59 With 

regards to the dopamine system, Roussos et al60 investigated 

the effects of allelic variations on the catechol-O-methyl-

transferase (COMT) gene on decision-making performance, 

and found an association between the allele conferring 

more efficient enzymatic degradation of catecholamines 

and adaptive decision making. This might seem inconsistent 

with the results from the study by Sevy et al54 mentioned 

earlier; however, enzymatic degradation of dopamine 

and dopamine reduction achieved by dietary challenge is 

not directly comparable. There is probably an optimal level 

of dopamine transmission associated with adaptive affective 

decision making.

Finally, the brain-derived neurotrophic factor (BDNF) 

gene has been linked to affective decision making. For 

example, Kang et al61 found an association between the 

Met allele on the BDNF gene and reduced performance on 

the latter trials of the IGT. BDNF has been widely impli-

cated in synaptic plasticity62 and might thus be involved 

in the encoding of option–outcome pairs. Consequently, 

the BDNF gene might influence the efficiency of which 

emotional valence – ie, a somatic marker – is coupled 

with mental representations in neural circuits involved in 

somatic marker functions.

In sum, evidence indicates that 5-HT and dopamine 

play central and distinct roles in affective decision making. 

However, their precise roles remain unclear and genetic 

association studies into allelic variations that influence 

serotonergic activity have yielded conflicting findings that 

are not easily reconciled. Complex gene–environment and 

gene-by-gene interactions are likely to be involved. Thus, 

complex interactions between transmitter systems probably 

account for the final effect of somatic markers on decisional 

processes.

Defective somatic marker  
signaling in addiction
Both addicts and patients with orbitofrontal lesions display 

insensitivity to future consequences, difficulties in behavioral 

regulation, and impulse control deficits.7,32,53,63,64 The SMH 

has the potential to contribute to an understanding of these 

dysfunctional self-regulatory mechanisms in terms of the 

notion of an affective forecasting function that interacts 

with executive functions in behavioral selection.10 While 

defective somatic marker signaling could be involved in the 

maintenance of addictive behavior, the somatic marker model 

of addiction also assumes that addicts and nonaddicts differ 

in neural systems related to decision making and somatic 

state activation even before the addiction is established.7 

Thus, in addition to biasing the individual to preserve mal-

adaptive compulsive behavior, somatic marker defects are 

hypothesized to convey increased susceptibility to impulsive 

behavior and the development of addictive disorders. This 

diathetic assumptions imply that somatic marker defects 
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are an endophenotypic biomarker for addictive behavior – eg, 

impulsion and compulsion.

Imbalanced dual processing:  
the impulsive versus the  
reflective system
The somatic marker model of addiction envisions addiction as 

a state characterized by an imbalance between an impulsive 

system that mediates the incentive motivational properties 

of emotionally competent stimuli, and a reflective system 

responsible for the control of impulses and the pursuit of long-

term goals.65 This notion is compatible with the influential 

dual-process conceptualization of decision making.66–70

The impulsive system corresponds to neural circuits 

involved in appetitive approach behaviors. The amygdala 

and ventral striatum are believed to be integral structures 

in this system. For example, neurons in the ventral striatum 

are highly responsive to natural rewards, and in the case of 

addiction, they fire vigorously in response to the addictive 

object.71 Moreover, it has been shown that excitatory input 

from the basolateral amygdala to the nucleus accumbens 

determines the ensuing reward-seeking behavior in animal 

models.72,73 The impulsive system responds to emotionally 

competent stimuli with bioregulatory changes through 

its extensive connections with the subcortical effector 

structures.74 The ensuing changes bias the organism toward 

the rewarding stimulus – eg, a positive somatic marker is 

engaged for the stimulus – which may take on secondary 

inducer properties through the reflective system. The somatic 

marker model of addiction posits that the impulsive system 

may be dominant in addiction, a condition characterized 

by excessive emotional reactivity toward the addictive 

object.

The reflective system is associated with deliberate and 

goal-directed behavior, and is thought to correspond to 

regions of the prefrontal cortex and cingulate cortex. The 

system is dependent upon the functioning of neural circuits 

associated with cool executive functions like working mem-

ory and response inhibition, functions mediated primarily 

by the dorsolateral and ventrolateral sectors of the PFC, as 

well as hot executive functions like the secondary induction 

of somatic states and conflict resolution mediated by the 

medial PFC and anterior cingulate cortex.16,75 The operations 

of the reflective system are critical for decision making that 

is consistent with long-term prospects, and it is thought to be 

dysfunctional in disorders of addiction, rendering the system 

incapable of regulating the basic impulses associated with 

the addictive object.10

A neural structure gaining increased interest in recent 

years and considered to influence the efficiency of the two 

systems is the insular cortex.76,77 The insular cortex has 

been outlined as a structure capable of holding representa-

tions of somatic markers online to influence behavior and 

cognition, thus providing the basis for subjective feelings 

of interoceptive signals.18,36 The insular cortex may be 

involved in translating the homeostatic signals related 

to the condition of the body in withdrawal states into the 

subjective experience of craving. Indeed, a recent study 

of patients having suffered strokes in the insular region 

indicates that damage to this structure literally wipes out 

addiction to nicotine, a finding that implicates the insular 

cortex in the maintenance of addiction.78 The reduction in 

nicotine consumption is hypothesized to result from a fail-

ure in translating interoceptive information into conscious 

feelings, thus eliminating craving. Evidence indicates that 

the reduction of smoking behavior is even more pronounced 

when lesions include parts of the basal ganglia, thus damag-

ing both homeostatic and impulsive circuitry.79 The insular 

cortex may serve a catalytic function for the impulsive 

system, amplifying the capacity of the addictive objects to 

trigger the system in withdrawal states. Moreover, insular 

projections may subvert or functionally hijack the reflec-

tive system in pursuit of the addictive object.80 This idea is 

compatible with the neuroanatomical evidence of the insular 

cortex’s bidirectional connections to both the orbitofron-

tal cortex (OFC)81 and the amygdala.82 Thus, a primarily 

insular-based homeostatic system could influence the dual 

systems in such a way that emotional signals initiated by 

these reward-driven circuits bias the addict toward the 

desired object.

Neurophysiological abnormalities  
in addiction
Neurophysiological irregularities found in addicts comprise 

areas involved in the somatic marker system, and which have 

been associated with dysfunctional decision making. Several 

abnormalities have been uncovered in regions correspond-

ing to the reflective system in drug addiction. A consistent 

finding is reduced gray83 and white84 matter integrity and 

abnormal activation85 of the OFC. Decreased gray matter in 

the OFC has been found in various samples of drug addicts, 

including alcohol,86 heroin,87 cocaine,88 methamphetamine,89 

nicotine,90 and cannabinoid addiction.91 Furthermore, lower 

gray matter density has been reported in the dlPFC87 and the 

anterior cingulate cortex88,92,93 in various drug addictions, as 

compared to healthy controls.
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Similar findings have been uncovered in samples of 

behavioral addicts, although the evidence is mixed. For 

example, behavioral paradigms sensitive to orbitofrontal 

functioning (eg, the IGT) have indicated that the pathophysio-

logy in the orbitofrontal/vmPFC region is related to patho-

logical gambling.94 However, few studies have explored the 

structural correlates of pathological gambling, and those 

studies that have examined the morphological correlates of 

this disorder have failed to identify gross structural abnor-

malities in the OFC or associated regions of the frontal 

lobe.95 However, one study, in fact, found that a sample of 

pathological gamblers had increased gray matter density in 

the right OFC and the right ventral striatal area.96 Notably, 

it has also been found that pathological gamblers display 

increased functional connectivity between the right PFC 

and right ventral striatum.97 Studies of white matter integ-

rity in pathological gambling have identified abnormalities 

that may affect frontal lobe functioning.98,99 These studies 

have demonstrated white matter microstructural abnormali-

ties in the anterior corpus callosum, which contains tracts 

that are critical for signal transmission between the frontal 

hemispheres. These findings corroborate an early finding 

by Goldstein et al,100 suggesting that pathological gamblers 

displayed electroencephalographic activity indicating diffi-

culties in shifting hemispheric activity in accordance with the 

shifts between tasks typically associated with either right or 

left hemispheric activation. Thus, abnormal communication 

between the different components of the reflective system 

(eg, the vmPFC, dlPFC, and anterior cingulate cortex) may 

be associated with dysfunction in this system in pathological 

gambling, which may result in a reduced ability to initiate 

prospective somatic markers to guide decisional processes 

toward long-term outcomes.

Unlike pathological gambling, studies into the mor-

phological correlates of Internet addiction have uncovered 

widespread structural anomalies in the brain regions impli-

cated in the reflective system. For example, various studies 

report volume reductions in the OFC, particularly in the right 

hemisphere.101–104 This hemispheric asymmetry is notable, 

as Bechara and Damasio16 indicated that somatic marker 

functions are somewhat lateralized to the right hemisphere. 

Furthermore, volume reductions have been reported in the 

bilateral dlPFC,104 left anterior cingulate cortex,104,105 and 

left posterior cingulate cortex105 in samples of Internet 

addicts. Moreover, studies employing structural imaging 

techniques have identified white matter abnormalities similar 

to those seen in drug addiction and pathological gambling. 

For example, a study by Lin et al106 revealed widespread 

white matter abnormalities in the OFC, anterior corpus cal-

losum, cingulum, and the corona radiata. Similar findings 

were reported by Weng et al,103 who found extensive white 

matter reductions in the frontal lobe and the anterior corpus 

callosum. A recent study by Lin et al107 also found frontal lobe 

white matter deficits in a larger sample of Internet addicts, 

primarily located to the inferior frontal gyrus and the anterior 

cingulate cortex. These studies indicate that similar deficits in 

prefrontal cortical control systems may be shared by various 

addictions, and that these deficits may result in a pathological 

state characterized by increasing addiction-related behavior 

in the face of negative personal and social consequences 

due to a dysfunction in the system responsible for weighing 

the consequences of actions against their immediate benefit, 

and they may generate somatic states on the basis of these 

prospects.

In the sense of dual-process models on health behavior,108 

a defective reflective system may leave the addict at the mercy 

of basic impulses generated by the impulsive system. These 

basic impulses may be triggered either by external (eg, drug 

cue, gambling cue, Internet cue) or internal (eg, thoughts 

or memories of the addictive object) stimuli. According to 

the somatic marker model of addiction, the trigger stimulus 

will cause a cascade of neural responses, some of which are 

involved in generating a somatic state that is relayed to struc-

tures involved in body mapping and homeostatic regulation 

(eg, insular cortex); these structures will then translate the 

somatic state information into a feeling (eg, urge or desire), 

which biases the addict toward the addictive object.10

Particularly, the ventral striatum and amygdala have 

emerged as important structures for the mediation of moti-

vational properties of addiction-related stimuli.109,110 Indeed, 

neuroimaging studies have identified that these structures 

are consistently activated by cue-induction paradigms in 

addiction samples.111–113 In addition, it seems that addiction 

is characterized by a blunted reward circuitry response to 

nonaddiction cues pertaining to natural rewards like food 

and sex.114–116 The dominant view of this imbalanced process-

ing of addiction versus nonaddiction cues is Robinson and 

Berridges’ incentive sensitization theory,44,45 which posits 

that addiction is a result of abnormal salience attribution to 

addiction-related objects at the level of dopamine-innervated 

regions involved in the processing of reward (eg, the ventral 

striatum). Although the evidence for this position in the 

case of drug addiction seems to be convincing, it remains 

controversial whether it applies to nonchemical addictions. 

For example, recent studies have found that pathological 

gamblers do not display increased levels of dopamine release 
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during the IGT.117,118 However, it was found that dopamine 

release was associated with decision-making deficits among 

pathological gamblers, in contrast to normal controls, for 

whom it was correlated with increased performance.118 

This is notable, because it indicates that different neural 

processes are at play in the two groups, despite similar levels 

of dopamine release. It can be speculated that the addicted 

population displays poor performance because of a deficit in 

reflective system modulation of the impulsive system, which 

biases them against larger short-term rewards; even though 

these short-term rewards are associated with larger long-term 

losses. A recent neuroimaging study, however, identified 

that pathological gamblers had increased functional con-

nectivity between the amygdala and ventral striatum during 

a value-based decision-making task.119 Increased functional 

connectivity between reward-related circuitry coupled with 

decreased functional connectivity between reflective circuits 

has been observed in samples of drug addicts.120 These 

findings support the notion of addiction as a state where 

addiction-related stimuli have an increased potential to elicit 

approach behavior through an impulsive system that is both 

overactive and unregulated.

The impulsive system is richly connected to effector 

structures at the level of the hypothalamus and brain stem. 

Through these connections, motivational objects have the 

capacity to change the somatic landscape. These changes 

are perceived by structures involved in body mapping and 

homeostatic regulation that give rise to conscious feelings of 

desire. Evidence indicates that the insular cortex is the main 

substrate in this process of somatic information translation. 

Recent interest in this structure in addiction research has 

resulted in evidence indicating maladaptive functioning of 

this system in addiction.77,121

Reduced gray matter volume has been reported in the 

insular cortex in both drug and behavioral addiction. For 

example, Franklin et al88 found decreased gray matter volume 

in the anterior insular cortex in a sample of cocaine addicts. 

Interestingly, these volume abnormalities did not correlate 

with the severity of the addiction, indicating that insula abnor-

malities may represent a premorbid vulnerability to addiction. 

Decreased gray matter volume in the insular cortex has also 

been reported for alcohol addicts.122 However, these volume 

reductions seem to be positively correlated with alcohol 

consumption, and preliminary evidence indicates that they 

reverse with abstinence.123 Although the few studies that have 

explored the structural correlates of pathological gambling 

have not reported morphological abnormalities in the insula, 

Internet addicts have been reported to display significant gray 

matter reductions in the insular region.103–105 One of these 

studies found that the reduction of volume correlated with 

scores on a measure of Internet addiction severity.103

Functional neuroimaging has shown that insular cortex 

activation to drug cues is increased in drug addicts relative 

to controls.124 Increased activity in the insular cortex has also 

been reported in pathological gamblers during exposure to 

gambling-related cues.112 Although increased insular activa-

tion would be predicted to occur among Internet addicts as 

well, studies of cue reactivity in this population have not 

observed increased insular activation to Internet stimuli. 

However, one study reported increased insular cortex activa-

tion at rest in Internet addiction.125 Some studies show that 

cue reactivity in the insular cortex is related to significant 

differences in clinical outcome variables in addiction. For 

example, Janes et al126 demonstrated that increased anterior 

insular cortex activation to smoking cues predicted slips 

among abstinent nicotine addicts, while Claus et al127 showed 

that increased insular activation was associated with addic-

tion severity in alcohol addiction. Furthermore, Tsurumi 

et al128 found that insular activation in a reward anticipation 

task was inversely related to the duration of illness among 

abstinent pathological gamblers. While this finding seems 

somewhat at odds with the finding reported earlier,112 we 

suggest that this discrepancy may be due to the nature of 

the task. Tsurumi et al128 used points instead of money as the 

incentive and, thus, the decrease in activation may due to the 

specificity in the reward responses mentioned earlier.116

In sum, the findings summarized here indicate that 

addictions, both drug and behavioral, are characterized by 

neural abnormalities in various regions of the brain involved 

in somatic marker functioning. Both structural and func-

tional abnormalities have been uncovered in the reflective, 

impulsive, and homeostatic system in addiction samples. 

Furthermore, there seems to be a substantial degree of 

overlap in neural abnormalities between various forms of 

addiction. This is in line with the diathetic assumption held 

by the somatic marker model, which states that addiction is 

characterized by neurocognitive deficits that exist a priori 

to the addiction as a vulnerability marker, and that these 

neurocognitive deficits are caused by abnormal functioning 

in the circuits that constitute the somatic marker system. 

However, the studies summarized here are cross-sectional; 

thus, causal conclusions are premature.

Decision making in addiction
As stated earlier, addiction is characterized by structural and 

functional abnormalities in regions implicated in cognitive 
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and emotional processing. These abnormalities may manifest 

themselves behaviorally in domains involving both rational 

and emotional decision making. The somatic marker model 

of addiction holds that addiction is a state where the reflective 

system is compromised, which can result in a failure to utilize 

emotional marker signals pertaining to long-term outcomes in 

decisional processes, and thus the impulsive system, operat-

ing without the restraints of the reflective system, may bias 

the addict to immediate rewards.10 This section will review 

behavioral evidence pertinent to this account. The scope will 

be limited to studies involving the IGT, as this paradigm 

is believed to be sensitive to the cognitive defects arising 

from somatic marker failure. Indeed, neuroimaging studies 

have demonstrated that successful performance of the IGT 

is correlated with activation of neural architecture outlined 

by the SMH.129

Studies employing the IGT in samples of drug addicts 

unequivocally demonstrate impaired affective decision-

making performance.22,130–133 This finding has emerged consis-

tently across samples comprising various drug addict groups. 

Notably, Bechara and Damasio22 found that the maladaptive 

decision-making performance was associated with attenuated 

SCRs preceding disadvantageous card selections relative to 

controls, supporting the notion of somatic marker failure. 

However, it was also observed that a significant number of 

the addicts in the sample performed the task successfully. 

The decomposition of task performance into blocks reveals 

differences in learning curves, and has thus been the focus 

of research on addiction and decision making. Drug addicts 

display a shallower learning curve in comparison to controls; 

however, this also indicates that the drug addicts do not suffer 

from a general myopia of the future, as is the case for vmPFC-

lesioned patients.22 Rather, this block-by-block analysis 

suggests that drug addicts are more driven by immediate 

outcomes, with a disproportional weighing of large rewards 

that could hamper learning of the task contingencies. In a 

follow-up study of the same sample, a reversed variant of the 

IGT was administered to test whether decreased performance 

was due to hyper-reactivity to reward or a general insensitiv-

ity to future consequences of actions. It was found that drug 

addicts could be subdivided into three groups according to 

their performance on the variant IGT131: 1) hyper-reactive to 

reward; 2) general insensitivity to future consequences; and 

3) no impairment. This finding indicates an equifinality in the 

sense that addiction can develop from the failure of different 

components of the somatic system in unison or independently 

of each other. Reflective system deficits can hamper the abil-

ity to utilize prospective somatic markers pertinent to nega-

tive future outcomes, while impulsive system hyper-reactivity 

can engender such a powerful approach-related signal that 

reflective processes are functionally overthrown. In line with 

this argument, Xiao et al134 demonstrated that suboptimal IGT 

performance in a sample of adolescent binge drinkers was 

associated with increased activation in the left amygdala and 

bilateral insular cortex, as well as decreased OFC activation 

relative to controls.

The IGT has also been used to investigate decision mak-

ing in pathological gambling, and the results are consistent 

with those obtained in substance addiction.135,136 However, 

few of these studies have included psychophysiological 

measurements. One exception is a study by Goudriaan et al,137 

which found that affective decision-making defects were 

associated with attenuated SCRs preceding disadvantageous 

card selection on the IGT. This psychophysiological profile 

during IGT performance is consistent with that observed 

in the study by Bechara and Damasio,22 and lends further 

support to the notion of abnormal somatic marker function-

ing in pathological gambling. Moreover, a recent functional 

magnetic resonance imaging study by Power et al138 showed 

that impaired IGT performance in pathological gambling is 

associated with increased activation of the impulsive circuitry 

(amygdala and striatum), but also of the OFC.

Few studies have explored affective decision making 

in Internet addiction with the IGT. We identified four stud-

ies,139–142 and the results are mixed. While some studies have 

indicated that Internet addicts display decision-making defi-

cits comparable to those reported in samples of drug addicts 

and pathological gamblers,139,140 others have indicated no 

impairment.141,142 However, the discrepancy in results may be, 

in part, due to the operational definitions of Internet addiction 

utilized. The study by Ko et al141 defined Internet addiction as 

Internet usage that surpasses 2 hours per day, while Metcalf 

and Pammer142 defined excessive Internet gaming (a form 

of Internet addiction) as 5 hours or more per week. Thus, it 

is likely that a substantial portion of the Internet addiction 

samples in these studies included participants that were not 

functionally impaired by their Internet use. It might be specu-

lated that more rigorous inclusion criteria would yield results 

that are more representative of the affective decision-making 

capabilities that characterize Internet addicts.

The studies reviewed here have all relied on the IGT 

as a measure of affective decision making. However, it is 

notable that the task has received criticism. Foremost, the 

task’s ability to capture affective decision-making capa-

bilities has been challenged. Specifically, it has been argued 

that the task’s reward/punishment schedule is cognitively 
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penetrable, and thus task performance can be driven by 

conscious knowledge.143 In light of recent evidence, this 

criticism seems partially justified, as Guillaume et al144 

demonstrated that differences in performance were related 

to conscious knowledge. However, task performance was 

also positively correlated with SCRs preceding disadvanta-

geous card selections, and these were not associated with 

conscious knowledge. This suggests that both explicit 

knowledge and somatic markers contribute independently 

to task performance. However, it has been suggested that 

the interpretation of the SCRs as reflecting somatic marker 

biasing actions are incorrect, and there is some evidence 

supporting this suggestion.145 This represents a challenge for 

the SMH and epitomizes that it still is an evolving theoretical 

framework requiring empirical validation.

The diathetic assumption: 
neurocognitive deficits as  
a predisposing factor
A major tenet of the somatic marker model of addiction 

is that neurocognitive deficits related to abnormal somatic 

marker functioning is premorbid and acts as a predisposing 

factor to addiction. However, the study of this hypothesis is 

complicated by the fact that drugs of abuse have neurotoxic 

properties.146,147 Assuming that different forms of addiction 

have a similar pathophysiological and neurocognitive funda-

ment, comparative studies of drug and behavioral addicts 

may dissociate the consequences of drug abuse from the 

neurocognitive deficits that are predisposing to addiction.

To dissociate the predisposing neurocognitive factors 

from drug-induced decrements in cognitive performance, 

Yan et al148 did a comparative study of heroin addicts and 

pathological gamblers where affective decision-making and 

working memory performance were tested. Their results 

indicated that affective decision-making defects are present 

in both disorders and are linked to years of abuse in heroin 

addiction, but not in pathological gambling. Working memory 

deficits were present only in heroin addiction. These results 

are similar to the ones obtained by Goudriaan et al149 in a 

comparison of alcohol addicts and pathological gambling. 

These studies suggest that affective decision-making capaci-

ties may represent a predisposing factor for addiction, and can 

be worsened and extended to other neurocognitive functions 

(eg, working memory) by the ingestion of substances with 

neurotoxic effects.

In support of the notion of affective decision-making 

capacity as a predisposing factor, Xiao et al150 showed that 

IGT score was a significant predictor of drinking behavior 

at a 1 year follow-up in a longitudinal study of Chinese 

adolescents. Similarly, IGT scores have been shown to be 

predictive of the development of smoking behaviors in an 

adolescent sample.151 These findings are corroborated by 

studies linking volumetric abnormalities in reflective circuits 

to future drug behavior. In one longitudinal study, it was found 

that smaller OFC volume at the age of 12 years predicted the 

initiation of cannabis use 4 years later.152 In a later publica-

tion, the same group reported that volumetric differences in 

the anterior cingulate cortex at the age of 12 years predicted 

problem drinking 4 years later.153 Moreover, Weiland et al154 

found an inverse association between scores on an assessment 

of early risk for substance abuse and frontal cortex volume 

in young adults. Thus, while there is strong evidence for 

neurotoxic effects on neural circuitry associated with drug 

use, subtle neural abnormalities in regions involved in the 

somatic marker system may already be present prior to drug 

use. These abnormalities may be linked to distinct decision-

making defects predisposing one toward the development of 

addictive behavior.

Conclusion and future directions
The goal of this paper has been to explore whether the 

SMH is applicable as a unifying explanatory framework of 

decision-making defects observed across different addic-

tions, and whether the evidence supports somatic marker 

functioning as a predisposing factor for the development of 

addiction. The SMH is a neuroanatomical and neurocogni-

tive decision-making framework that developed from studies 

of the decision-making defects that follow damage to the 

vmPFC. The impetus for the application of this framework 

in addiction research was the observation of comparable 

self-regulatory deficits between addicts and vmPFC patients, 

suggesting a common underlying mechanism.7

The SMH outlines a distinct neural architecture for its 

predictions, comprising a reflective system involved in self-

regulatory functions permitting the pursuit of long-term 

goals and the weighing of consequences, an impulsive system 

that engenders motivational states in relation to emotionally 

salient stimuli, and a homeostatic system involved in adapting 

behavior to the condition of somatic systems. A predisposi-

tion to addiction could result from dysfunction in either one 

or a combination of these three systems.65 Indeed, there is 

substantial evidence that addiction to both substances and 

behaviors are characterized by morphological anomalies and 

abnormal activation patterns in the neural regions outlined by 

the SMH.83,85,88,93,98,102,111,112,119 Furthermore,  preliminary evi-

dence suggests that subtle abnormalities might predate the 
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addiction as a diathesis for addiction development,152 and that 

these deficits can be accelerated by the use of psychoactive 

agents.148

The SMH states that the various neural components 

involved in the somatic marker system achieve adaptive 

decision making through an affective forecasting func-

tion that engenders somatic state activation in relation to 

option–outcome pairs.12 Studies of decision making in 

addiction have implied that addiction is characterized by 

a failure to engender appropriate somatic markers, which 

may represent a causal factor for the self-regulatory failures 

that characterize addiction. However, while dysfunctional 

decision making has consistently been observed in samples 

of drug and gambling addicts,22,135 the evidence regarding 

affective decision-making functions in Internet addiction 

is mixed.139–142 However, it is notable that the studies which 

did not find defective decision-making performance used 

inclusion criteria that are likely to result in a large number of 

participants that may not be regarded as true addicts. Future 

studies should aim to capture samples that are character-

ized by the core aspect of addiction – namely, persistent 

use despite increasing negative consequences. Moreover, 

previous studies have not investigated somatic state activa-

tion during task performance in Internet addiction. Thus, 

future studies could employ psychophysiological measures 

to investigate the notion of somatic marker failure in Internet 

addiction.

Both neuroanatomical abnormalities and decision-making 

defects have been shown to be predictive of substance use 

in adolescent samples.150,153 This implicates variations in 

somatic marker functioning as a predisposing factor, possibly 

implying that somatic marker defects could be an addiction 

endophenotype, promoting decision making that is both 

impulsive and compulsive. It follows from this suggestion 

that functional variations in the somatic marker system have 

a substantial genetic component, possibly related to genes 

encoding the efficiency of several interacting neurotransmit-

ter systems. The serotonin system has been widely implicated 

in affective decision making,46,49,56 as well as in addiction 

development and maintenance.47,155 This suggests that genetic 

variations affecting the efficiency of the serotonergic sys-

tem could be a central component in addiction risk through 

somatic marker failure. Longitudinal studies into the effects 

of polymorphisms implicated in serotonergic efficiency on 

decision-making capabilities and addiction proneness could 

be valuable in establishing the validity of this suggestion. 

Moreover, longitudinal studies could be instrumental in 

uncovering whether variations in somatic marker efficiency, 

operationalized as affective decision-making performance 

and somatic state activation, are related to different prog-

nostic features in addiction populations.

In sum, the somatic marker model of addiction pro-

vides a plausible account of how emotion-related signals 

generated by immediate and future prospects can bias 

addicts toward addiction development and maintenance. 

Both neuroanatomical and behavioral predictions derived 

from the framework have the potential to further advance 

the current knowledge of how deficient decision making 

contributes to addiction. However, the model has some 

limitations. Foremost is an uncertainty of how to best test 

its predictions regarding decision-making performance. 

While the IGT has been the paradigm most associated with 

the framework, it has been criticized for being cognitively 

penetrable143 and possibly driven by other psychological 

mechanisms (eg, reversal learning156). Thus, it remains 

uncertain whether the IGT actually measures affective 

decision-making performance or some other construct. 

Furthermore, the interpretation of the psychophysiologi-

cal changes (eg, SCR) preceding disadvantageous card 

selections on the task as reflecting somatic markers has 

been challenged.15 Therefore, an avenue for future research 

into the SMH in general and the somatic marker model 

of addiction would be to generate other paradigms that 

eliminate these uncertainties.
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