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Abstract 

 Rodents in boreal forest are an important component of food webs. Their role as 

drivers of the boreal forest ecosystem is debated. As herbivores they affect plant 

communities and alter qualities of plants. Consequently availability of food resources for 

other herbivorous species is altered. In my thesis I studied whether rodents indirectly 

influence communities of arthropods via plant resources. It is assumed that phytophagous 

arthropods respond to changes in plant resources by different feeding behaviour that further 

affects higher trophic levels including predators and parasites. I swept the arthropods in 96 

plots at six localities in a boreal forest in Eastern Norway with different rodent densities in 

the months of June and August in 2014. I assessed abundance of arthropod orders and 

biomass of arthropod feeding guilds in relation to observed rodent populations. I found 

rodents were important for arthropod communities in the month of June, but not in August. 

All feeding guilds and orders Diptera and Collembola were correlated negatively, while 

orders Hemiptera, Thysanoptera and Opiliones were correlated positively with rodent 

density. I assume the relations I found are not necessarily the result of indirect interactions 

only, but potentially also of direct predation of rodents on arthropods, or the combination of 

both direct and indirect interactions. The influence of rodents seems to depend on vegetation 

type creating differently functioning systems. In addition, I briefly discuss the effects of 

environmental and habitat factors which were used to explain variance in the arthropods 

living in different conditions.
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1. Introduction 

 Natural systems are highly complex, formed by abiotic environments and interacting 

organisms, that determine ecosystem processes and functioning (Holt & Loreau 2001; 

Janssen & Sabelis 2004). Recent scientific work in this field sets a clear direction for further 

research on ecological communities and demands extension of the focus from bilateral and 

direct interactions to multispecies and indirect interactions (Yodzis 1988; Ritchie & Olff 

1999; Strauss & Irwin 2004; McGill et al. 2006; Ohgushi 2008). Several studies provide 

evidence on equivalent importance of indirect and direct interactions, whether it concerns the 

occurrence within a community (Menge 1995; Ohgushi 2008), intensity (Strauss 1991b; 

Miller & Travis 1996), or evolutionary formation of the interactions between species (Miller 

& Travis 1996). 

 An indirect interaction is defined broadly as a relationship between two organisms 

which do not interact directly, but which interact through mutual relationship with a third 

species or through habitat (Wootton 1994; Miller & Travis 1996). By definition, it is an 

attribute of multispecies environments (Strauss 1991b). Over several decades, an adequate 

classification system of indirect interactions has been discussed (Miller & Kerfoot 1987; 

Strauss 1991b; Wootton 1993; Billick & Case 1994; Wootton 1994; Wootton 2002). 

Nowadays, it seems ecologists have adhered best to Abrams’s classification (see eg. Werner 

& Peacor 2003; Wojdak & Luttbeg 2005), who distinguishes among density-mediated 

(DMII) and trait-mediated (TMII) indirect interactions (Abrams et al. 1996). DMII are 

transmitted through changes in population densities, whereas TMII through changes in traits 

- behavioural, morphological, physiological, and others. Abrams et al. (1996) referred to 

indirect interactions on the interface between DMII and TMII as mixed interactions. 

 This study focuses on indirect effects posed by rodents on phylum Arthropoda in the 

boreal zone. Rodents, hares and cervids represent three major groups of herbivorous 

mammals in boreal forests (Tahvanainen, Niemela & Henttonen 1991). They are known to 

be very important within food webs, as primary consumers and as prey for predators 

(Hörnfeldt et al. 1990). Their cyclic persistence has essential impact on the dynamic of 

Fennoscandian boreal forests. Rodents forage on plants that are sessile resources which are 

usually exploited by several consumers with non-lethal effects on the plant. This constitutes 

a good foundation for generating a multitude of interaction linkages (Ohgushi 2005). Indirect 

effects arising from interactions with the vegetation represent a major series within TMII and 

they are called plant-mediated indirect interactions (Ohgushi, Craig & Price 2007, p. 5). As 
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approximately half of all extant species of Hexapoda (Insecta), the largest class within 

phylum Arthropoda, is phytophagous, feeding solely on living plant tissues, effects of rodent 

grazing on vegetation are likely to affect communities of arthropods (Strong, Lawton & 

Southwood 1984). For herbivorous arthropods and their natural enemies, plants play a 

fundamental role by providing vital resources such as food, refuge and shelter. Features of 

plants and plant communities determine load of arthropods, carrying capacity for 

herbivorous species and interactions with predators and parasitoids (Schult 1992).  

 Although the indirect impact of rodents on arthropods can have many pathways, this 

study considers primarily plant-mediated interactions. Other possible indirect effects, e.g., 

through changes in ecosystem processes, are not within scope of the study. 

 Plants have developed various strategies as a response to herbivory. Depending on 

the strategy, they can affect herbivores through both - positive and negative feedbacks. 

Kaplan and Denno (2007) argued that already slight herbivory activates production of 

secondary metabolites, called induced responses, with either a defensive role – mitigating 

negative consequences of injury, or a resistant role – preventing further attack of herbivores 

(Karban & Myers 1989). These metabolites, also known as allelochemicals or secondary 

compounds, are aimed to reduce herbivory (Harborne 1991). They may accumulate rapidly 

(Green & Ryan 1972) or occur with delay the following season after damage (Tuomi, 

Niemelä & Siren 1990). However, responses among herbivores to secondary compounds are 

diverse. Several studies indicate that induction and effect of secondary compounds on 

herbivores differ from one species to another. These effects may be plant-specific (Geervliet 

et al. 1997), as well as herbivore-specific (Karban & Baldwin 1997, p.20; Agrawal 2000; 

Molis et al. 2006). Therefore, arthropods may respond positively, negatively or indifferently 

to allelochemicals activated by rodent grazing. 

 Plants can react to herbivory by compensatory growth, which is a form of tolerance 

strategy, when replacement for lost tissue is energetically more profitable than chemical 

defence (Meijden, Wijn & Verkaar 1988). There are studies which reported that 

compensatory growth was activated by rodent grazing (Elmqvist et al. 1987; Ericson & 

Oksanen 1987). The new re-growth structures may be positive for herbivores as they may 

contain less secondary compounds and increase palatability (Hjaltén, Danell & Ericson 

1996; Sullivan & Howe 2011). 

 Changes in plant primary chemistry may have implications for arthropod 

communities too (Huberty & Denno 2006; White 1993, p.13). Herbivorous arthropod 

species are limited by nitrogen and phosphorus and depend on the income on plants. Rodents 
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selectively grazing on nutritious plants and plant parts with high nitrogen content may 

decrease mass of high forage quality for arthropods (Sirotnak & Huntly 2000). However, the 

negative effect is possibly counterbalanced by enhanced availability of chemical elements 

from faeces (Bardgett, Wardle & Yeates 1998; Clark et al. 2005). 

 It is assumed that as some plant resources will become unavailable due to undesirable 

changes in chemistry after rodent grazing, herbivorous species will be forced to search for 

new resources. Movements may expose them to higher risk of mortality by predators. 

Alternatively, they can keep feeding on modified tissues of less quality, which may lower 

their potential fecundity (Schult 1992). If a resource becomes limited, competition between 

herbivores may play a role as well (Speight, Hunter & Watt 2008, p. 106). Diversity and 

interactions within the arthropod community can also be influenced by re-growth structures 

in plants (Obermaier et al. 2008; Ohgushi 2008), which may provide additional forage and 

new habitat / oviposition opportunities (Ohgushi 2008). Decline of food resources with high 

nitrogen content due to selective feeding of rodents may have negative influence on the 

development of juveniles of arthropod populations (Speight, Hunter & Watt 2008, p.61 - 62). 

This effect is assumed to be mitigated by availability of nutrients from evenly redistributed 

faeces leading to higher mineralization rate (Mattson Jr 1980; Sirotnak & Huntly 2000). In 

addition, the quality of plant resources determines the functional role of arthropod 

omnivores, which in conditions of inferior plant resources switch to non-plant food or 

predatory mode (Janssen & Sabelis 2004). 

 The full role of arthropods for ecosystem functioning is not entirely recognized yet. 

So far they are acknowledged as an important component of biodiversity and of food webs, 

they work as dispersal agents distributing seeds, fungal spores or pollen, and they influence 

net primary productivity, microbial activity, decomposition and nutrient cycling (Weisser & 

Siemann 2004). Consequences of changes in populations of arthropods are believed to be 

reflected in ecosystem processes. 

 The objective of this thesis was to study whether and to what degree boreal 

forest rodents may indirectly affect arthropod communities through changes in density. 

I investigated arthropod communities under various rodent densities at first at the 

order level, and secondly, at the functional group level. In addition, I looked at early 

and late periods of the growing season. As an indicator I used abundance and biomass 

of arthropods. I expect that increased rodent density introduces potential changes in 

resource availability, which will have negative consequences for arthropod herbivores 

due to reduced plant quality and availability. This may lead to intensified competition 
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among phytophagous arthropods, resulting in reduced biomass or abundance. 

Increased movement in search of forage may benefit predators and result in increased 

biomass or abundance of predaceous arthropods. I expect the effect will be stronger 

later in the growing season, when rodent populations are more abundant. 
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2. Methods 

2.1 BEcoDyn project 

 The work done for this thesis was part of the BEcoDyn project (the Boreal forest 

Ecosystem Dynamics) at Hedmark University College, studying effect of vole population 

cycles on ecosystem dynamics of boreal forest. The design of this project created some 

constraints that might not have been present if my field work was specifically designed for 

my study. I refer to these constraints in the discussion part of the thesis (chapter 4.3). 

2.2 Study area 

 The study area was situated in the forested area of the Glomma valley in Stor--Elvdal 

municipality, Norway (61°57´N 11°05´E, Fig. 1). It belongs to the middle boreal zone 

dominated by coniferous woodlands and mires. The boreal zone is characterized by short 

growing seasons and cold winters with snow cover persisting over a long period. In my 

study area, the growing season lasts approximately 150 days, beginning in the end of April 

and lasting until the end of September. Snow cover remains for around 175 days, from 

November to April (Moen 1999). Mean July temperature calculated for the period 2004 - 

2014 was 15.5 °C. Mean January temperature for the same period was -9.1 °C. Mean annual 

temperature was 3 °C. Mean annual precipitations for the period 2003 – 2013 were 850 mm.  

 The summer 2014 when I collected the data was very warm with a prevalence of 

sunny days. The average temperatures for this summer with deviations from normal values 

(in brackets) from period 1961 - 1990, were following: June = 12.7°C (- 0.3), July = 17.9 °C 

(+ 3.9), and August = 13.2°C (+ 0.7). Precipitations for the summer 2014 were as follow: 

June = 66.1 mm (- 12), July = 79 mm (- 11), and August = 110.3 mm (+ 30). 

 Values for temperature were obtained from the meteorological station at Evenstad, 

which is situated within the study area. For precipitations I used records from station Rena – 

Haugedalen, about 15 km southeast from the study area. This station is the closest to the 

study area to provide data on precipitation (Norwegian Meteorological Institute 2015). The 

study was carried out in forest habitats of different age classes including clear-cuts, young 

and old forest stands in six different localities of 4 km2 (Figure 1). 
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Figure 1: Position of the six sampling localities () within the study area in Stor-Elvdal 

municipality. The municipality is part of Hedmark County, Norway (inlet). 

2.3 Data collection 

2.3.1 Capturing rodents 

 Rodents were captured in June, July and September 2014 in a parallel study by David 

Carricondo Sánchez. Each locality contained four trapping grids, each consisting from 16 

Ugglan traps (multiple-capture live-traps). Arrangement of traps within a grid and position 

of grids within the localities is showed in Figures 2 and 3. The grids were distributed 

randomly in bank vole (Myodes glareolus) habitat (bilberry forest). Consequently the largest 

proportion of captures constituted of bank voles, followed by field voles (Microtus agrestis). 

Within other forest habitats which were used to sample arthropods, grey-sided voles 
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(Myodes rufocanus) and wood mice (Apodemus sylvaticus) may also occur (Ecke, Lofgren & 

Sorlin 2002; Gorini 2010; Panzacchi et al. 2010). 

 Trapping was performed once a month during four days. The first day in the morning 

traps were filled with a lure - oats and carrots, followed by first control in the afternoon. On 

the second and third day traps were controlled twice – in the morning and in the afternoon. 

The last control was done on the morning of the fourth day. Captured rodents were marked 

by fur clipping to identify recaptured individuals. The season 2014 was a peak year for vole 

populations (Kaja Johnsen, Hedmark University of Applied Sciences, personal 

communication). 

 

Figure 2:  

Placement of 16 rodent traps (●)  

within a trapping grid. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Organization of rodent trapping grids (◊) and insect sampling plots (●) within the six 

sampling localities in Stor-Elvdal municipality, Norway. 
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2.3.2 Sampling arthropods 

 Arthropods were sampled on 16 plots within each locality (Fig. 3), resulting in a total 

of 96 sampling plots. The plots were bound to vegetation sampling plots of the size 1x1 m 

used to sample vegetation in BEcoDyn project. They were evenly distributed along four 

parallel lines, which were 500 m apart covering 1.5 km2 within the core area of the sampling 

localities. Each line comprised four plots. The distance between consecutive plots on the line 

was 250 m and it varied according to terrain conditions (e.g., steep slopes were avoided). I 

collected arthropods from dwarf shrubs (e.g., graminoids, herbs, shrubs, ferns) and ground 

vegetation layer (e.g., mosses, lichens) by using a sweeping net. Placed at the center of 1 m2 

sampling plots I took six sweeps to the four perpendicular directions, in total 24 sweeps per 

plot (Figure 4). The directions were adjusted to surrounding vegetation. I gathered 

arthropods into small plastic tubes at each plot without using alcohol, and labelled them with 

plot code, date and time. The samples were taken to the lab where I proceeded to further 

identification. 

 Sampling was performed in June and August 2014 in order to survey the arthropod 

community representative for early and late growing season. In August, instead of 96 plots 

only 95 were sampled, as one plot in locality IV lost its marking from June. To reduce 

sampling error, it was important to eliminate variation in arthropod activity due to various 

weather conditions (Williams 1940; Abdullah 1961; Taylor 1963; Speight, Hunter & Watt 

2008). Therefore I collected samples only during days with homogeneous, favourable 

weather with sunshine, little wind and without rainfall.  

 

 

 

Figure 4: 

Outline of the method I used  

in sampling the arthropods.  

Four pointing arrows represent  

four perpendicular directions,  

in which I took 24 sweeps  

(6 sweeps in each direction) 

from the plot center. 
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2.3.3 Laboratory work 

 In the laboratory, I cleared the samples of the vegetation, then sorted them into the 

different orders (Triplehorn & Johnson 2005) and stored them in 95% ethanol in Ephendorf 

tubes. I counted number of individuals per order for each plot. Afterwards, I measured 

similarly biomass by weighing dry samples. Samples were dried at 60°C for 24 hours. To 

weigh them, I used a scale with an accuracy of 0.1 mg. As the process of drying can corrupt 

the samples, it was necessary to identify taxonomy before drying. 
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2.4 Statistical analyses 

2.4.1 Predictor variables 

 The predictor of main interest in this study was rodent population density. I used 

minimum number alive (MNA) calculated for months June and August in order to coincide 

in time with sampling of arthropods. I estimated MNA for each trapping grid. For MNA in 

June, I used data on captures from June. To estimate August population, I interpolated MNA 

calculated for July and September. For each arthropod sampling plot I assigned a value 

representing rodent density from the closest trapping grid. This was done in ArcGIS 10.1 

(ESRI 2011). 

 Further I included vegetation as it is a primary determinant of arthropod abundance, 

defining habitat and food resources available for herbivorous arthropods (Price 1992). I 

specified five fundamental vegetation types, two of them with two subcategories: 

1. pine forest   a) with lichens,  b) with dwarf shrubs 

2. bilberry forest 

3. ferns – shrubs forest 

4. swamp vegetation 

5. clear-cut   a) poor clear-cut,  b) rich clear-cut 

The categories are based mostly on characteristic of bottom and field layer. In the 

description I followed Fremstad (1997) and Johansen, Aarestad and Øien (2009), and the 

description is attached in Appendix A. The categories exhibit various plant species 

composition, richness and plant biomass. There are also perceptible differences in moisture 

level.  

 Several environmental and habitat conditions, such as temperature, humidity in the 

air or exposure to sunshine, influence arthropods performance and activity. These were 

considered in the analyses as following:  

 To take into account circadian shifts in humidity and temperature, I specified three 

categories – morning, day and evening. Humidity falls to the lowest values during day, 

increases towards sunset, and highest saturation is at sunrise. With increasing temperature, 

humidity decreases, and vice versa (Williams 1940). As day category I considered the part of 

the day from 10 to 18 o’clock (GMT + 2 hours). With lower temperature and higher 

humidity, category morning was considered until 10 o’clock. Similarly, evening was after 18 

o’clock. 
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 In ArcGIS I calculated the amount of radiant energy received by each plot. Solar 

radiation is given by topography. It is a conjunct effect of elevation, aspect, slope and 

hillshade. Values were calculated for the months June and August. 

 Although UV irradiance correlates positively with altitude because of the decreased 

amount of absorbers in higher altitude, temperature with increasing altitude decreases. 

Therefore, in addition to solar energy I decided to include single effect of altitude. 

 Exposure of bottom layer to sun is also given by shade from canopy cover. It 

influences heat and moisture level in the layer. In the field, I estimated proportion of shade 

for each sampling plot. I used three categories: < 20 % shade, 20 – 80 % and > 80 % shade. 

 The numbers of plots for the factor levels of the categorical variables (vegetation 

types, part of the day, shade) are listed in the Table 1.  

 

Table 1: Distribution of the factor levels of the categorical predictors (vegetation type, shade, part of 

the day) in the data, expressed by number of plots representative for the factor level. The table 

considers total number of plots = 96. The categories of the variable part of the day are distributed 

differently in June and in August, as the day in August is shorter than in June. The plot missing in 

August was represented by rich clear-cut with < 20 % of shade. 

Predictor Factor Nr. of plots 

Vegetation  

types 

Pine forest with lichens 10 

Pine forest with dwarf shrubs 6 

Bilberry forest 34 

Fern – shrub forest 20 

Swamp vegetation 4 

Poor clear - cut 13 

Rich clear-cut 9 

Shade 

< 20 % 40 

20 – 80 % 41 

> 80 % 15 

  June August 

Part 

of the day 

morning 4 5 

day 62 76 

evening 30 14 
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2.4.2 Multivariate analyses using Canoco 

 In order to describe patterns in insect communities and measured environmental 

variables, and to find out whether there is a relationship between rodents and distinct 

arthropod orders, I performed ordinations in Canoco 5.0 (Braak & Šmilauer 2012) separately 

for June and August. As a response I used abundances of arthropods per orders and plot. 

Orders collected in sampling are listed in Table 1. Based on the value of the longest gradient 

in detrended correspondence analysis (DCA), with downweighted rare orders (value in June 

= 2.0, in August = 2.13), I decided to use linear methods (Šmilauer & Lepš 2014, p. 27 - 28). 

Given that linear methods do not allow to downweight rare orders (Šmilauer & Lepš 2014, p. 

30), I excluded orders observed ≤ 6 plots from the further analyses. These were orders 

Dermaptera, Neuroptera and Plecoptera, which I excluded from both months, and in addition 

to that I excluded Psocoptera from June and Trichoptera from August (see Table 2). I first 

performed unconstrained partial principal component analysis (PCA) to investigate the 

patterns in arthropod community. I then used constrained partial redundancy analysis (RDA) 

with forward selection to investigate the relationship  between abundance of orders and 

environmental variables. Locality (Figure 1) was included as a covariable in both analyses. 

The decision on partial analyses (including covariables) was based on the result of RDA with 

forward selection, where locality emerged in both months as significant. Because of the high 

numbers of environmental variables, in particular categorical variables, it was necessary to 

determine a parsimonious set of significant predictors. Therefore, I also present only 

significant environmental variables in RDA diagrams, and likewise, only these significant 

environmental variables were presented as supplementary variables in PCA diagrams. The 

variables were considered significant when p < 0.05. The p-values were adjusted by false 

discovery rate (Šmilauer & Lepš 2014, p. 91). In case of a significant factor level of a 

categorical variable, I included all factor levels within that variable in the RDA. In all 

analyses, four ordination axes were calculated. Axes constrained by explanatory variables 

were tested for significance by 499 unrestricted Monte Carlo permutations, and p-values 

stated in the result section refer to this test. 

2.4.3 Analyses of biomass using linear regression models 

 I used programs R 3.1.1 (R Core Team 2014, http://www.R-project.org/) and R 

Studio to analyze biomass of arthropods. I grouped orders according to their membership to 

a particular feeding guild into herbivores and predators (Triplehorn & Johnson 2005; 
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Chinery 2007). However, several orders comprised species which differ in their feeding 

habits. These were consequently merged into mixed group. The orders with corresponding 

functional group are listed in Table 2. I did not include in the analysis orders Plecoptera and 

Trichoptera, as adults mostly do not feed and their nymphal / larval stages are aquatic 

(Chinery 2007). 

Table 2. List of arthropod orders collected during field sampling with an overview of functional 

groups, their abundance (number of individuals) and occurrence (number of plots the order was 

present) in the months June and August. Total number of plots was in June = 96, in August = 95. 

ORDER 

(Latin) 

ORDER 

(English) 

FUNCTIONAL 

GROUP 

JUNE AUGUST 

Abundance Occurrence Abundance Occurrence 

Acari mites mixed 605 70 1725 94 

Araneae spiders predators 169 75 383 78 

Coleoptera beetles mixed 60 43 45 35 

Collembola springtails mixed 1393 92 7215 95 

Dermaptera earwigs mixed 0 0 1 1 

Diptera true flies mixed 2964 94 979 92 

Hemiptera bugs herbivores 624 80 1808 90 

Hymenoptera ants, wasps, bees mixed 438 91 899 93 

larvae - herbivores 119 55 20 19 

Neuroptera ant-lions, lacewings predators 0 0 5 4 

Opiliones harvestmen predators 8 7 7 6 

Plecoptera stoneflies - 6 4 1 1 

Psocoptera psocids herbivores 3 1 98 47 

Thysanoptera thrips mixed 76 40 31 19 

Trichoptera caddisflies - 61 19 2 2 

  

 I applied linear mixed models using the “lme” function under the package nlme to 

analyze how arthropod biomass in different functional groups responded to rodent density, 

vegetation types, elevation, solar radiation, shade and different time of the day. Similarly as 

in Canoco analyses, I conducted separated analyses for June and for August, as the pairs-

function showed that the variables month and rodents were highly correlated (correlation 

coeficient = 0.89). By using simple models, I inspected whether the relation of response 

variable to the numerical predictors was linear or non-linear. Similarly, I inspected whether 

there were possible interactions between predictors and functional groups of arthropods. As 

the distribution of response variable (biomass of arthropods) was skewed, I logarithmically 
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transformed the variable (log + 1 to account for zeros) to comply with the assumption of a 

normal distribution of the response variable. In model selection I followed Zuur et al. 

(2009). I first evaluated the random component by testing the effect of locality, rodent 

trapping grid ID and nested effect of rodent trapping grid within locality as a random 

intercept. These models were compared with “gls” models under restricted maximum 

likelihood (REML). For model selection of the random component I used the Akaike’s 

information criterion (AIC). I used AIC also in determining the fixed component and in 

selecting the ultimate model. Here I applied the maximum likelihood (ML) estimation. The 

model with lowest AIC value was considered as the best model (Burnham & Anderson 

2004). To provide support for selected model I calculated ΔAIC (information loss compared 

to the best model) and AICw (weight of evidence expressed as probability). In case of 

equally good models (ΔAIC ≤ 2)(Burnham & Anderson 2004), I followed the principle of 

parsimony and selected the model with the lowest number of predictors. Overall, I tested 40 

models for each month. Goodness-of-fit of the final model I interpreted as marginal 

(variance explained by fixed factors) and conditional (variance explained by both – fixed and 

random factors) effect, which I estimated by using package MuMIn. In addition to simple 

effects of the predictors (rodents, vegetation types, elevation, solar radiation, shade, part of 

the day), I included in the models interactions between functional group and the variables: 

rodents, vegetation, elevation, part of the day and shade. To plot the results I used function 

predict. 
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3. Results 

3.1 Multivariate analyses using Canoco 

 Patterns within arthropod community in month June are displayed in the ordination 

diagram of partial PCA (Figure 5), together with supplementary variables – rodents, shade 

categories and vegetation types. The first two axes explained together 80.0 % of the variation 

(eigenvalue 1 = 0.45, eigenvalue 2 = 0.14, Table 3). However, correlation of the axes with 

environmental variables was not particularly strong (Table 3; pseudo-canonical values). 

 The first principal component was negatively correlated with rodents, and factor 

levels >80 % shade, swamp vegetation and pine forest with lichens, and positively with 

ferns-shrubs forest type (Figure 5). The second axis was primarily correlated positively with 

bilberry forest and negatively with poor clear-cut. Positions of the vegetation types pine 

forest with dwarf shrubs and rich clear-cut, which were further from the origin and 

asymmetrical compared to other factor levels, indicating the unbalance in the data and their 

lower frequency. Several arthropod orders within the diagram fell close to the origin, what 

means they are not well characterized by the two displayed axes. These were orders 

Thysanoptera, Opiliones, Trichoptera, Hymenoptera, Araneae and larvae. On the other hand, 

the orders that show a relationship with the axes were Diptera, Collembola, Acari, 

Coleoptera and Hemiptera. Rodents were represented only by short arrow, what suggested 

that they did not have very strong effect on the arthropod community. Hemiptera showed a 

positive association with rodents, while Diptera showed strong negative association with 

rodents, followed by Collembola. Coleoptera and Acari were not related to rodents. 

Regarding the mutual relationships between arthropods, Acari showed a positive correlation 

with Coleoptera, which were also in weaker positive correlation with Collembola. Diptera 

showed a strong negative correlation with Hemiptera, which stand in opposition in the 

diagram (Figure 5). The same relationship applies to associated factor levels – shaded areas 

(>80 %) and several vegetation types (rich clear-cut, swamp vegetation, pine forest with 

lichens) positively associated with Hemiptera, were negatively associated with Diptera, and 

the other way around. Diptera was clearly the only order with a positive relation to ferns-

shrubs forest and pine forest with dwarf shrubs. Group of orders Coleoptera, Acari and 

Collembola was positively associated with bilberry forest. These orders, together with 

Diptera, were in positive association with intermediate shade (20 – 80 %).  



 20 

 

Table 3. Results of partial PCA performed for June, summarizing eigenvalues, explained variation 

and additional statistics for each of the four computed ordination axes. 

Statistic Axis 1 Axis 2 Axis 3 Axis 4 

Eigenvalues 0.4540 0.1480 0.0873 0.0512 

Explained variation (cumulative) 60.36 80.03 91.63 98.44 

Pseudo-canonical correlation (suppl.) 0.5200 0.2495 0.3617 0.6303 

  

 

 

 

 

 

 

 

 
Figure 5. Partial PCA biplot with axes 1 and 2, displaying arthropod orders and supplementary 

variables (shade, rodents and vegetation types) in June. 
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 In the month of June shade, rodents and vegetation types were determined by partial 

RDA with forward selection as significant explanatory variables explaining best the variance 

in arthropod abundance (Table 4). The first two axes explained 19.5% of the variation (p = 

0.004; Table 5). However, the first axis alone explained more than 16 % (eigenvalue = 0.12), 

and all higher axes explained much less (see eigenvalues; Table 5). These results are 

reasonable, given that all measured explanatory variables together explained 25.4 % of the 

variation (p = 0.01). The low percentage of variance explained by the first axis in this 

analysis (16.6 %) compared to 60.4 % explained by the first axis in unconstrained analysis 

(Table 3) suggests there is a lot of variability in arthropod data which cannot be attributed to 

the used explanatory variables.  

 

Table 4: Significant environmental variables determined by forward selection using Monte Carlo 

permutations in RDA in June – shade categories, rodents and factors of vegetation types, with 

percentages of explained variation and contribution, and with values of pseudo-F statistics and p-

values. 

 

 

Table 5: Results of partial RDA performed for June, summarizing eigenvalues, explained variation 

and additional statistics for each of the four computed ordination axes. 

Statistic Axis 1 Axis 2 Axis 3 Axis 4 

Eigenvalues 0.1250 0.0216 0.0118 0.0060 

Explained variation (cumulative) 16.61 19.48 21.05 21.85 

Pseudo-canonical correlation 0.5293 0.5293 0.3773 0.2141 

Explained fitted variation (cumulative) 75.72 88.80 95.95 99.58 

  

Variable Explains % Contribution % pseudo-F P 

20 – 80 % shade 5.9 23.2 5.6 0.002 

< 20 % shade 0.4 1.5 0.3 - 

> 80 % shade 0.4 1.5 0.3 - 

Rodents 5.1 20.2 5.0 0.014 

Ferns – shrubs forest type 4.5 17.5 4.6 0.014 

Pine f. - dwarf shrubs 2.3 9.2 2.4 - 

Swamp vegetation 1.7 6.5 1.7 - 

Pine f. - lichens 1.1 4.3 1.1 - 

Bilberry forest 0.5 1.9 0.5 - 

Rich clear-cut 0.5 2.2 0.6 - 

Poor clear-cut 0.5 2.2 0.6 - 
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 The ordination diagram of partial RDA with axes constrained by significant 

environmental variables from Table 4 displays how were arthropods related to these 

variables (Figure 6). Axis 1 was negatively correlated with rodents, factor levels >80 % 

shade, poor clear-cut and pine forest with lichens, and positively with ferns-shrubs forest 

vegetation type, similarly as in unconstrained analysis. Axis 2 was mainly correlated 

negatively with bilberry forest, and positively with swamp vegetation and rich clear-cut. In 

this case, because the analysis was constrained, the effect of rodents seemed to be stronger. 

Associations with shade categories and vegetation types were slightly different too. None of 

the orders showed in immediate, strong positive association with rodents. Hemiptera, and 

also Thysanoptera and Opiliones were only weakly related. The negative correlation of 

Diptera and Collembola (with rodents) corresponded to the unconstrained analysis (Figure 

5). Hemiptera was positively correlated with unshaded areas (<20 %) and mainly with 

swamp vegetation and rich clear-cut. In positive association with these factor levels were 

also Trichoptera and Thysanoptera. According this analysis, not only Diptera, but also 

Collembola was associated with ferns-shrubs forest type and pine forest with dwarf shrubs. 

Most of the orders were associated with intermediate shade 20 – 80 % (Diptera, Collembola, 

larvae, Acari, Opiliones). Larvae, Acari and Opiliones were primarily related to bilberry 

forest (Figure 6).  
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Figure 6: Partial RDA ordination biplot with axes 1 and 2, displaying arthropod orders and 

significant explanatory variables (shade, rodents and vegetation types) in June. 
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 The ordination diagram of partial PCA on Figure 7 displays patterns within arthropod 

community in August, together with supplementary variables - vegetation types, part of the 

day and elevation. The first axis explained 80.5 % of the variation (eigenvalue 1 = 0.68), 

what is far more than explained by the other three axes (Table 6). 

 Axis 1 was primarily correlated with vegetation types – positively with bilberry 

forest, and negatively with poor clear-cut and swamp vegetation. Axis 2 was mainly 

positively correlated with ferns-shrubs forest, and negatively with evening. Positively 

correlated with second axis was also elevation, which however showed very weak effect. 

Majority of the orders was in mutual positive association – particularly Collembola with 

Araneae, which arrows overlap, followed in descending trend by Opiliones, Psocoptera, 

Diptera, Hymenoptera and Acari. All these orders adhered to bilberry forest and avoided 

pine forests. Collembola and Araneae were negatively correlated with Thysanoptera, which 

was in positive relationship with Hemiptera and Coleoptera. Thysanoptera related to clear-

cuts and pine forests, while Hemiptera and Coleoptera to rich clear-cut. Hemiptera and 

Coleoptera were in positive association also with some of the orders from the earlier 

mentioned cluster, specifically with Acari, Hymenoptera, Diptera. They were all associated 

with evening. Morning category was placed in the outskirts of the ordination space what 

means it is less frequent in the data. With morning was positively associated couple 

Collembola and Araneae, and negatively Hemiptera and Coleoptera (Figure 7). 

 

Table 6: Results of partial PCA performed for month August, summarizing eigenvalues, explained 

variation and additional statistics for each of the four computed ordination axes. 

Statistic Axis 1 Axis 2 Axis 3 Axis 4 

Eigenvalues 0.6810 0.0823 0.0650 0.0122 

Explained variation (cumulative) 80.50 90.24 97.92 99.36 

Pseudo-canonical correlation (suppl.) 0.6878 0.5106 0.5600 0.5022 
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Figure 7: Partial PCA biplot with axes 1 and 2, displaying arthropod orders and supplementary 

variables (vegetation types, part of the day and elevation) in August. 

 

 Significant predictors determined by forward selection of partial RDA in month 

August are summarized in Table 7. However, now rodents and shade were not included as in 

June. Variables that explained best the variation in the arthropods were vegetation, part of 

the day and elevation. In particular, a lot of variance explained factor level bilberry forest 

(22.5 %, p = 0.002, Table 6). 

 In this analysis, the first axis explained 38.2 % of the variation (eigenvalue 1 = 0.32, 

Table 8), and as it is showed in Table 8, the eigenvalues and the variation explained by other 

three axes lowered dramatically. The result is good compared to 46.4 % explained when all 

measured explanatory variables were used (p = 0.002). Still, there was a big difference in 
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variation explained by axis 1 in constrained analysis (38.2 %, Table 8) and axis 1 in 

unconstrained analysis (80.5 %, Table 6). Therefore, similarly as in June, a lot of variability 

in response data cannot be attributed to the used explanatory variables.  

 

Table 7: Significant environmental variables determined by forward selection using Monte Carlo 

permutations in RDA in August – factors of vegetation types, part of the day and elevation. 

Displayed are percentages of explained variation and contribution, and with values of pseudo-F 

statistics and p-values. 

Variable Explains % Contribution % pseudo-F P 

Bilberry forest 22.5 48.4 25.5 0.002 

Pine f. – lichens 5.7 12.3 6.9 unknown 

Ferns – shrubs forest type 3.2 6.8 4.0 unknown 

Rich clear-cut 0.4 0.9 0.5 unknown 

Pine f. – dwarf shrubs 0.9 1.9 1.1 unknown 

Swamp vegetation 0.3 0.6 0.3 unknown 

Poor clear-cut 0.3 0.6 0.3 unknown 

Part of the day – morning 6.4 13.8 8.6 0.004 

Part of the day – day 1.6 3.5 2.2 unknown 

Part of the day – evening 1.6 3.5 2.2 unknown 

Elevation 2.6 5.6 3.7 0.04 

 

Table 8: Results of partial RDA performed for August, summarizing eigenvalues, explained 

variation and additional statistics for each of the four computed ordination axes. 

Statistic Axis 1 Axis 2 Axis 3 Axis 4 

Eigenvalues 0.3233 0.0220 0.0189 0.0031 

Explained variation (cumulative) 38.22 40.82 43.05 43.42 

Pseudo-canonical correlation 0.6902 0.5282 0.5189 0.5063 

Explained fitted variation (cumulative) 87.91 93.89 99.03 99.88 

  

 Figure 8 displays the ordination diagram of partial RDA, with axes constrained by 

significant environmental variables (vegetation types, part of the day, elevation; Table 7). 

The correlation of the variables with the axes was almost identical to the unconstrained 

analysis (Figure 3). The only exception was factor level evening, which in this analysis lies 

in the origin. It means that the arthropod orders occurred in average abundances. Constrained 

analysis intensified the effect of elevation, which was demonstrated by longer arrow. 

Responses of the arthropods showed pattern similar to the unconstrained analysis too. The 

diagram revealed there was a correlation between elevation and rich clear-cut, what 
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probably influenced also the positive association of Hemiptera with elevation. The other 

orders seemed to be only weekly related or unrelated to elevation. Associations with 

vegetation types and with morning category coincided with unconstrained analysis, except 

for Coleoptera which was not well performed in this analysis (too short arrow). 

 

 

 

 

 

 

 

 
Figure 8: Partial RDA ordination biplot with axes 1 and 2, displaying arthropod orders and 

significant explanatory variables (vegetation types, part of the day and elevation) in August. 
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3.2 Analyses of biomass using linear regression models 

 Locality was used as a random component in the mixed linear regression models in 

both months, in order to be consistent and to compare the outputs of the models. According 

to AIC, it was the best model in August. In June the model had similar AIC value to the 

model without random component. 

 In June, the model with the lowest AIC value included  rodents, vegetation, and two 

interactions - functional group*elevation and functional group*part of the day (Table 9). 

Marginal effect of the model was r2 = 0.30, and conditional effect was r2 = 0.33. 

 

Table 9: Model selection according to AIC (ΔAIC and AIC weight) in June. The response variable is 

biomass of arthropods per sampling plot and functional groups. Table contains 10 terminal models 

out of 40 tested models with degrees of freedom (df) and corresponding AIC values. Models are 

displayed in descending order, starting with the best model on top. Interactions between predictor 

variable and  functional group are denoted by symbol (*) in model formula. 

Model df AIC Δ AIC AIC weight 

Rodents, Vegetation, Elevation*Func., Part.of.day*Func. 21 651.99 0 0.39 

Solar rad., Rodents, Vegetation, Elevation*Func., Part.of.day*Func. 22 653.11 1.13 0.22 

Shade, Rodents, Vegetation, Elevation*Func., Part.of.day*Func. 23 653.61 1.63 0.17 

Rodents, Elevation*Func., Part.of.day*Func. 15 655.23 3.24 0.08 

Rodents, Vegetation, Elevation*Func. 15 655.76 3.78 0.06 

Vegetation, Elevation*Func., Part.of.day*Func. 20 657.17 5.18 0.03 

Solar rad., Vegetation, Elevation*Func., Part.of.day*Func. 21 657.57 5.58 0.02 

Shade, Vegetation, Elevation*Func., Part.of.day*Func. 22 658.37 6.38 0.02 

Vegetation, Rodents*Func., Elevation*Func. 17 658.92 6.94 0.01 

Elevation*Func., Part.of.day*Func. 14 660.42 8.43 0.006 

 

 

 Biomass of arthropods in June was negatively related to rodents (Table 10), however, 

the interaction between rodents and the functional group did not increase model fit (Table 9). 

As it is displayed on Figure 9, all arthropod functional groups (herbivores, predators, mixed 

group) responded in the same way to increasing rodent density by a decline in biomass. 

 Vegetation was important in determining biomass of arthropods (Table 10). 

Compared to pine forest with lichens, biomass sampled in vegetation types swamp 

vegetation and rich clear-cut was considerably higher. Biomass of herbivores and mixed 

group increased with elevation, while predators decreased (Figure 9). It also seems the 
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functional groups varied in activity according to the time of the day. The result indicates that 

the activity of herbivores and predators subsided during the evening hours (Table 10). 

 

Table 10: Summary table from the selected final model in June which was used to explain variation 

in biomass of arthropods. Table displays log-transformed estimates with standard errors (SE), 

degrees of freedom (df), and t- and p-values for numerical predictors and for each factor level within 

a categorical variable, meaning general effect on the biomass of arthropods. In case of interactions, 

values are specified for the functional group. Part of the intercept are following factor levels – pine 

forest with lichens (vegetation type), mixed group (functional group) and day (part of the day). The 

estimates of other factors are relative to the intercept. 

 Estimate SE df t-value p-value 

Intercept 0.33690 0.37829 264 0.89 0.37 

Pine forest (dwarf shrubs) 0.12591 0.22054 264 0.57 0.57 

Bilberry forest 0.20526 0.15246 264 1.35 0.18 

Ferns – shrubs forest 0.20749 0.16617 264 1.25 0.21 

Swamp vegetation 0.51847 0.25460 264 2.04 0.04 

Poor clear-cut 0.04577 0.18671 264 0.25 0.81 

Rich clear-cut 0.63477 0.20051 264 3.17 0.002 

Rodents -0.03976 0.01523 264 -2.61 0.009 

Elevation 0.00149 0.00064 264 2.34 0.02 

Herbivores -0.05232 0.43783 264 -0.12 0.91 

Predators 0.41045 0.43783 264 0.94 0.35 

Morning 0.52364 0.16665 264 3.14 0.002 

Evening 0.32795 0.39404 264 0.83 0.41 

Elevation : Herbivores 0.00022 0.00074 264 0.30 0.77 

Elevation : Predators -0.00180 0.00074 264 -2.44 0.02 

Herbivores :Evening -0.79275 0.22500 264 -3.52 0.0005 

Predators : Evening -0.70301 0.22500 264 -3.12 0.002 

Herbivores : Morning -0.48557 0.53563 264 -0.91 0.37 

Predators : Morning -0.45166 0.53563 264 -0.84 0.40 
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Figure 9: Responses of herbivores, mixed group and predators (measured as mg of biomass per plot) 

to changing rodent population density (predictor of main interest in the study) and to elevation 

(important in both months) in June and in August. Predictions in month June are made for bilberry 

forest vegetation type and activity during the day (part of the day). In August, predictions apply to 

bilberry forest and intermediate shade (20 – 80 %). To predict response for rodent density I used in 

addition mean elevation in both months. Average rodent population was used in June to predict 

response to elevation in June. Since there was no effect of rodents in August they were not used to 

calculate the response to elevation in August. Dots represent observations of different arthropod 

groups corresponding to mentioned environmental and habitat conditions. Notice that rodent 

densities for two months differ. 
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 In August, the effect of rodents on biomass of arthropods was not included in the 

model with the lowest AIC (Table 11). The best model comprised shade and two interactions 

- functional group*vegetation type and functional group*elevation (Table 11). Marginal 

effect of the model was r2 = 0.45, and conditional effect r2 = 0.48. 

 

Table 11: Model selection according to AIC (ΔAIC and AIC weight) in August, where as the 

response variable was used biomass of arthropods per sampling plot and functional group. Table 

contains 10 terminal models out of 40 tested models with degrees of freedom (df) and corresponding 

AIC values. Models are displayed in descending order, starting with the best model on top. 

Interactions between predictor variable and  functional group are denoted by symbol (*) in model 

formula. 

Model df AIC ΔAIC AIC weight 

Shade, Vegetation*Func., Elevation*Func. 28 591.40 0 0.26 

Shade, Rodents, Vegetation*Func., Elevation*Func. 29 591.51 0.10 0.24 

Shade, Part of day, Rodents*Func., Vegetation*Func., Elevation*Func. 33 592.19 0.79 0.17 

Shade, Solar rad., Vegetation*Func., Elevation*Func. 29 592.46 1.06 0.15 

Part of day, Vegetation*Func., Elevation*Func. 28 594.03 2.62 0.07 

Vegetation*Func., Elevation*Func. 26 594.83 3.42 0.05 

Solar rad., Vegetation*Func., Elevation*Func. 27 595.96 4.55 0.03 

Rodents, Vegetation*Func., Elevation*Func. 27 595.98 4.57 0.03 

Shade*Func., Vegetation*Func., Elevation*Func. 32 599.13 7.72 0.005 

Part.of.day*Func., Vegetation*Func., Elevation*Func. 32 600.24 8.84 0.003 

 

 

 There was interaction between functional group and elevation (Figure 9), just as in 

June (Table 9, 10). However, now the most significant was the increase in herbivores 

compared to other two groups (Table 12). The results also show that the arthropods varied in 

functional composition according to the vegetation type. Swamp vegetation and rich clear-

cut had a higher biomass of herbivores compared to pine forest with lichens. There was no 

interaction between functional group and vegetation types in June, and three feeding guilds 

were spread equally (Table 9, 10). In August, shaded areas (> 80 %) yielded higher biomass 

of arthropods than did more open areas with intermediate shade ( 20 – 80 %), whilst shade 

was not included in the model in June. On the other hand, I did not find any variation in 

activity of arthropods throughout the day (part of the day) in August, as I found in June 

(Table 11, 12). 
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Table 12: Summary table from the selected final model in August. The model explains variation in 

biomass of arthropods. The table displays log-transformed estimates with standard errors (SE), 

degrees of freedom (df), and t- and p-values for numerical predictors and for each factor level. The 

intercept includes the categories pine forest with lichens (vegetation type), shade 20 – 80 % (shade) 

and mixed group (functional group). The estimates of the other factor levels are relative to the 

intercept. 

 Estimate SE df t-value p-value 

Intercept 0.89878 0.38428 254 2.34 0.02 

Pine forest (dwarf shrubs) 0.23369 0.33691 254 0.69 0.49 

Bilberry forest 0.74692 0.23233 254 3.21 0.002 

Ferns – shrubs forest 0.46086 0.26073 254 1.77 0.08 

Swamp vegetation 0.38993 0.38413 254 1.02 0.31 

Poor clear-cut 0.19085 0.28416 254 0.67 0.50 

Rich clear-cut 0.43703 0.30449 254 1.44 0.15 

Shade < 20 % 0.11703 0.10697 254 1.09 0.28 

Shade > 80 % 0.35936 0.13513 254 2.66 0.008 

Herbivores -1.74979 0.43021 254 -4.07 < 0.001 

Predators -0.68433 0.43021 254 -1.59 0.11 

Elevation -0.00024 0.00062 254 -0.40 0.69 

Pine (dwarf shrubs) : Herbivores 0.15619 0.47503 254 0.33 0.74 

Bilberry : Herbivores -0.15293 0.32262 254 -0.47 0.64 

Ferns - shrubs : Herbivores -0.49961 0.34730 254 -1.44 0.15 

Swamp : Herbivores 1.40714 0.53615 254 2.62 0.009 

Poor clear-cut : Herbivores 0.66836 0.39522 254 1.69 0.09 

Rich clear-cut : Herbivores 1.26378 0.42221 254 2.99 0.003 

Pine (dwarf shrubs) : Predators 0.37151 0.47503 254 0.78 0.43 

Bilberry : Predators -0.01872 0.32262 254 -0.06 0.95 

Ferns - shrubs : Predators 0.25836 0.34730 254 0.74 0.46 

Swamp : Predators 0.66019 0.53615 254 1.23 0.22 

Poor clear-cut : Predators 0.11321 0.39522 254 0.29 0.77 

Rich clear-cut : Predators 0.17132 0.42221 254 0.41 0.69 

Herbivores : Elevation 0.00297 0.00070 254 4.24 < 0.001 

Predators: Elevation -0.00030 0.00070 254 -0.43 0.67 
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4. Discussion 

4.1 Interactions with rodents 

 My data suggests a potential impact of rodents on the arthropods in the month of 

June, but not so in August. The orders Diptera and Collembola had the strongest negative 

relationship between abundance and rodent density in June. The orders Hemiptera, 

Thysanoptera and Opiliones were slightly positively related to rodent density. All functional 

groups of arthropods (herbivores, predators and mixed group) showed a decline in biomass 

with increasing rodent density in June.  

 This result contradicts my expectancy of a negative effect of rodents on biomass of 

herbivorous arthropods in the period of high rodent density (August) when potentially many 

plants have accumulated high level of secondary metabolites as induced defence caused by 

rodent grazing. This finding can be explained by the plant-age hypothesis considering plant 

ontogeny (Bryant et al. 1992). The hypothesis assumes high level of defensive traits in 

intensively growing tissues of seedlings and juvenile stages as damage of these tissues may 

have serious consequences for plant fitness. My results are in accordance with this 

hypothesis and with findings of Barton and Koricheva (2010), who attempted to identify a 

pattern in plant defence in relation to plant ontogeny by using meta-analysis. They described 

a steep increase in constitutive defence during seedling and juvenile stages, higher level of 

induced defence in juveniles compared to mature plants, and decrease in defence through 

mature stages. The process supports the occurrence of indirect interactions between rodents 

and arthropods early in the season. In comparison with induced defence which is activated 

by herbivore damage, constitutive defence incorporates toxins permanently present in a 

plant, presumed to prevail in those tissues which are under high risk of herbivore attack 

(Wittstock & Gershenzon 2002). I did not mention constitutive defence previously as it is 

regulated by the plant itself and not by herbivores, but I assume it might also play a role in 

my study system. In the study of Barton and Koricheva (2010) small mammals have been 

found to favour mature plants over juveniles. Although most rodent species in boreal forest 

are considered to be herbivorous, diet analyses revealed certain proportion of insects in their 

diet (Hansson 1970; Stenseth, Hansson & Myllymäki 1977; Hansson 1979; Bostrom & 

Hansson 1981). I assume that in times of well-defended plants, larvae and imagines of 
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arthropods might serve as an important alternative food source for rodents, indicating a 

direct interaction of rodents on arthropods. 

 The different responses of the arthropod orders to rodents might be related to the 

vegetation type creating differently functioning systems in a boreal forest limited by 

nutrients (Bryant, Chapin III & Klein 1983). Hemiptera and Thysanoptera which were 

positively related to rodent densities occurred mainly in clear-cuts which had high proportion 

of graminoids, while Diptera and Collembola which were negatively related to rodents, were 

associated with ferns-shrubs forest. According to Bryant, Chapin III and Klein (1983) 

graminoids accumulate carbon in below ground reserves and respond to herbivory by 

compensatory growth. This would mean there was additional food resource available for the 

arthropods. On the contrary, slowly growing evergreen and woody plants are well defended 

as the replacement of lost tissues due to herbivory is costly. Populations of arthropods in 

such a system might suffer from both, direct and indirect effects of rodents. Lastly Opiliones 

which also showed a weak positive response to rodents were associated with bilberry forest. 

The order represents the predatory guild and therefore the response corresponds with my 

hypothesis, stating that herbivorous arthropods become easy prey due to altered feeding 

behaviour activated by decreased food availability.  

 Based on the above mentioned studies, the outcome of the analyses regarding rodents 

might be either result of direct interaction (predation of rodents on arthropods), plant - 

mediated indirect interaction (induced defence, compensatory growth, or other plant 

responses triggered by rodents), or a combination of both interactions.  

 In general, herbivory is one of the factors perceived to impose stress on the plants 

(Speight, Hunter & Watt 2008, p.79). Two hypotheses are commonly discussed in context of 

insect herbivore performance. The plant stress hypothesis, sometimes also called increased 

vulnerability hypothesis (Mysterud et al. 2005), predicts that insect herbivores will prefer 

plants under stress and will benefit from increased grazing intensity (White 1969), whereas 

the plant vigor hypothesis, similar to increased defence hypothesis (Mysterud et al. 2005), 

suggests that herbivores prefer to feed on plants and plant modules which grow vigorously, 

in terms of size and growth rate (Price 1991). My study does not support any of these very 

general hypotheses, but showed the effect of grazing intensity is subordinated to vegetation 

type and plant ontogenetic stage, possibly in combination with behaviour of the arthropods.  

 At present more complex studies investigating indirect interactions between 

mammalian herbivore and arthropods / insect community are on the rise. However, existing 

studies mostly consider large herbivores due to their prominent effects on the environment 
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and plant community, e.g., moose (Danell & Huss-Danell 1985; Mathisen 2011), deer 

(Allombert, Stockton & Martin 2005), reindeer (Suominen et al. 2003) or beaver (Martinsen, 

Driebe & Whitham 1998), and sometimes focus only on one specific group of invertebrates 

or few particular species (Neuvonen & Danell 1987; Strauss 1991a). I did not find any study 

investigating indirect effects of rodents on the arthropod community in the boreal forest 

zone. Differences in methodological approaches, ecosystem productivity and specific 

arthropod adaptations make comparisons across a wide range of ecosystems difficult. The 

effects of vertebrate herbivores on arthropods found in other studies are of all kinds - 

positive, indifferent or negative. 

 Allombert, Stockton and Martin (2005) found a significant decline in abundance of 

distinct insect orders (all except Coleoptera) and overall insect abundance with increasing 

length of deer browsing. Similar to my study, the habitat type was important type in shaping 

the relationship between browsing and arthropod abundance. They reported the herbivore 

guild, in particular orders Heteroptera and Homoptera (in this study corresponding to 

Hemiptera), to be more negatively affected by browsing than predators and parasites. 

However, the study took place on islands and may therefore be difficult to compare with my 

study due to isolation, restricted colonization and different evolutionary formation of the 

species and interactions compared to mainland (Case & Cody 1987). Danell and Huss-

Danell (1985) found a positive effect of moose winter browsing on leaf area and quality, 

reflected in higher occurrence of herbivorous insects and ants. They concluded that the 

outcome depended on the period when browsing occurred (browsing during winter versus 

during growing season). Varying moose density in the study of Mathisen (2011) affected 

richness of flower-visiting insects (Hymenoptera, Diptera), but not the overall abundance. 

Usually studies focus on arthropod species richness and abundance to test the intermediate 

disturbance hypothesis (Fox & Connel 1979), while most of them also track the response of 

plants to herbivory (Bailey & Whitham 2002; Suominen et al. 2003). However, I did not 

investigate species richness and diversity, and higher richness in arthropods is not inevitably 

correlated with abundance (Mathisen 2011).  

4.2 Habitat and environmental predictors 

 Responses of arthropod abundance and biomass to the other predictors, which were 

used to explain variation due to changing environmental and habitat conditions, differed. 

Some of these effects are difficult to explain as they may be related to the biology of 
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arthropods which is still fairly unknown. The results showed a relatively high proportion of 

unexplained variance. It means there were either other factors driving the arthropod 

populations which I did not account for, or it may be a sign of fluctuations in arthropod 

populations which make their communities to a great extent unpredictable (Strong, Lawton 

& Southwood 1984). Alternatively it might be due to sampling errors. The environmental 

predictors I used explained more variance in arthropods, both in biomass and abundance, in 

August than in June. 

 None of the analyses indicated variation in arthropods due to solar radiation. I 

suspect this does not mean that solar radiation is unimportant, but rather its effect is masked 

by other interrelated predictors – specifically by vegetation type, part of the day and shade. 

For example, dark, humid forest with ferns and shrubs will most likely grow on a surface 

facing north. Similarly time of day (morning, day, evening) might track changes in radiant 

energy due to the motion of the sun. Shade from canopy cover directly determines how much 

sunlight is received by the ground. I assume that these predictors simply outbalanced the 

effect of solar radiation as they include additional information. 

 The analyses clearly confirmed importance of the vegetation type for the arthropod 

communities. Differences among vegetation types in plant biomass and plant diversity were 

reflected in yield of the arthropod biomass. The lowest biomass of the arthropods was 

sampled in pine forest with lichens, which is characterized by poor plant species diversity, 

low plant biomass and monotony. On the other hand the highest biomass of the arthropods 

was sampled in rich clear-cuts where the plant community is rich and diverse. This is in 

accordance with Price (1992) who assumes dependence of arthropod herbivores followed by 

their natural enemies on carrying capacity determined by available plant biomass, depending 

on stage of succession and specialization of arthropods. 

 Abundance of distinct orders varied according to the vegetation type. The order 

Hemiptera was the most abundant in rich clear-cuts and in habitats with swamp vegetation, 

together with Trichoptera and Thysanoptera. Collembola and Diptera were abundant above 

the average in ferns – shrubs forest. In August most orders with the exception of Hemiptera 

and Thysanoptera had the highest abundances in bilberry forest. These associations are 

predictable though. Rich clear-cuts receiving a lot of sunlight and being diverse in plant 

composition presumably provided herbivorous arthropods (Hemiptera) with sufficient 

amount of food and with suitable conditions for the development of thermophilous species. 

As the larval stage of Trichoptera is aquatic, they usually occur close to water, what would 

explain their association with swamp vegetation in this study (Chinery 2007, p. 183). 
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However, I highlight the low sample size for swamp vegetation (4). Although Diptera is a 

very diverse order, dependence of some groups on humid conditions has been documented 

(Dahl 1969). Similarly Collembola typically lives in humid habitats (Southwood 1973). 

  The effect of elevation was also important for the biomass of arthropods. The 

functional groups did not correlate uniformly though, but their responses varied. During both 

months, herbivore biomass increased and predator abundance decreased with increasing 

elevation. Biomass of mixed group increased with elevation in June and decreased in 

August. Interestingly, the finding is in partial agreement with Hodkinson (2005) who 

investigated arthropod communities along an altitudinal gradient and disapproved the idea of 

distribution around the optimum. With increasing elevation, the communities undergo 

various changes in environmental conditions (e.g., temperature lapse rate, decrease in 

oxygen, wind speed) and changes in host plants (e.g., phenology, morphology, chemicals, 

responses to stress). He gathered evidence for a general decrease of parasitoids and predators 

with increasing altitude caused by lower searching efficiency in temperatures below 

optimum, although with weaker evidence for predators. Response of herbivores is given by 

tritrophic interactions including host plants and predators / parasitoids.  

 Shade affected abundance of different arthropod orders in the month of June, and 

biomass of the functional groups in the month of August. Naturally, the orders associated 

with clear-cuts (Hemiptera, Thysanoptera, Trichoptera) were associated with unshaded areas 

(< 20 %).  The rest of the orders occurred in above average abundances in habitats with 

intermediate shade (20 – 80 %). In August shady habitats (> 80 %) yielded higher biomass 

of arthropods than places with more sun shining through the canopy (20 – 80 % shade). 

 In June functional groups showed variation in biomass according to part of the day. 

Groups of herbivores and predators were less active in the evening when mixed group 

predominated. In the ordination analysis, part of the day explained some variance in August. 

Particularly important was the category morning, which was however represented by only 

few observations (5). Collembola and Araneae were more active in the morning, while 

Hemiptera and Coleoptera were less active.  

 Both findings, higher arthropod biomass in shaded areas and variation in arthropods 

catch during the day, might be related to time-specific moisture and temperature levels of a 

habitat and to the biology of arthropods (e.g., regulation of body water content). There are 

studies documenting higher biomass in moist habitats (Remmert 1981), as well as studies 

documenting flight activity (e.g., swarming) varying with changes in temperature and 

humidity (Dahl 1969). 



 38 

4.3 Study design 

 The original plan of the BEcoDyn project was to manipulate rodent density in the six 

localities (localities with high rodent densities provided by supplementary feeding, localities 

with reduced density using trapping, and control localities without manipulation). However, 

the project failed to reach these purposed states. As an alternative solution, I used 

observations from trapping grids instead, representing natural variation in rodent density. 

Study design in this performance however showed up as suboptimal for observing the 

indirect interactions carried from rodents on the arthropods due to several shortcomings. 

 The most serious drawback was unequal distance among rodent trapping grids and 

arthropod sampling plots, causing a loose link between rodents and arthropods. The ideal 

solution would be to monitor rodent density specifically in the plots where I sampled 

arthropods, or to sample arthropods only in locations of the trapping grids. 

 Regarding the categorical predictor variables, vegetation type and part of the day 

were unbalanced in the data. Categories of these variables were represented unevenly in the 

samples. A solution might be to collect samples at a given time of the day, or to apply 

numerical measurements of environmental conditions like temperature, humidity and 

barometric pressure, which profoundly influence activity of arthropods (White 1973). 

Avoiding categorization and rather using accurate numerical measurements would bring 

more precision into the data and would facilitate the analyses. The same principle applies to 

vegetation type which is an essential determinant of habitat conditions for arthropods, but 

quite coarsely registered in this study. 

 Using sweeping to sample the arthropods for quantitative assessment may have 

consequences for the outcome of the study as the technique is subjective and prone to error. 

In addition, arthropod data used for biomass analysis of functional groups could be utilized 

more efficiently if the arthropods would be identified to family instead of the order. That 

would allow reducing the mixed group and possibly including more feeding guilds. 
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Appendix A 

Description of vegetation types used in classification of sampling plots: 

1. Lichen Pine forest 

Open, very dry forest on poor, barren soils, dominated by Scots pine (Pinus sylvestris), 

possibly with a mixture of downy birch (Betula pubescens). Dwarf shrubs dries quickly 

and is developed only sparsely. It is characterized by crowberry (Empetrum nigrum), 

lingonberry (Vaccinium vitis-idaea), bilberry (Vaccinium myrtillus), and heather 

(Calluna vulgaris). In addition, drought tolerant grasses make up the dwarf shrubs - eg. 

wavy hairgrass (Avenella flexuosa), sheep fescue (Festuca ovina). Cup lichens 

(Cladonia sp.) creates continuous mats over a large areas, typically C. stellaris, C. 

arbuscula, C. rangiferina. Moss cover is generally very low, but some acrocarp species 

may be present. 

 

A: poorly developed understory, mostly Cladonia sp. only 

B: dwarf shrubs species are more abundant 

 

2. Bilberry forest 

Relatively old, highly productive Norway spruce (Picea abies) or mixed Norway spruce/ 

Scots pine forest with dominance of bilberry in the dwarf shrubs. Grasses and some 

herbs may be present - eg. wavy hairgrass, cowwheat (Melampyrum spp.), May lily 

(Maianthemum bifolium), arctic starflower (Trientalis europaea). The two pleurocarp 

moss species which can grow in all specified vegetation types - Hylocomium splendens 

and Pleurozium schreberi, are the most abundant in this forest type. 

 

3. Ferns - shrubs forest 

Coniferous forest on mesic to moist soils with a dense tree layer. Characteristic are 

small fern species, oak fern (Gymnocarpium dryopteris) and long beech fern 

(Phegopteris connectilis). Bilberry occurs in substantially smaller proportion compared 

to category 2) Bilberry forest. In more rich formations may be present herbs and grasses 

mentioned in previous category. Wood sorrel (Oxalis acetosella) is a characteristic herb 

species. Pleurocarp mosses typical for humid sites create field layer – Brachythecium 

sp., Hylocomiastrum umbratum, Mnium sp. 



 48 

 

4. Swamp vegetation 

Swamp vegetation in this study merges all formations with typical moisture demanding 

species. Peat moss (Sphagnum spp.) is particularly typical species building up well 

developed field layer. From other moss species are characteristic eg. Campilium 

stellatum and Scorpidium revolvens. Tussocks of sedge (Carex sp.) and rushes (Juncus 

sp.) indicate waterlogging habitat. Grasses like purple moor-grass (Molinia caerulea) 

and cottongrass (Eriophorum sp.), as well as some herbs may occur, eg. cloudberry 

(Rubus chamaemorus). Crowberry and heather in bottom layer are developed only 

sparsely.  

 

5. Forest with open tree layer after logging (clear cut) 

Norway spruce and Scots pine forest with open tree layer after logging, with a mixture 

of deciduous tree species - downy birch, European aspen (Populus tremula). 

Heliophilous species are highly abundant and in favour due to the profusion of light 

reaching the field layer. 

 

A: poor, dry type 

Typical dwarf shrubs species are heather, crowberry and lingonberry, accompanied with 

grasses like wavy hairgrass, nard grass (Nardus stricta) and purple moor grass (Molinia 

caerulea). Lichens (mainly Cladonia sp.) and drought tolerant moss species are part of 

the field layer - Dicranum sp.: D. drummondii, D. fuscescens, D. polysetum, D. spurium; 

Polytrichum juniperinum, Racomitrium lanuginosum. 

 

B: rich type 

Heliophilous and nitrogen demanding / tolerating species constitute a substantial amount 

of the vegetation. Compared to the dry type, species richness is much higher. Typical is 

occurrence of multiple grass species (eg. hairy wood-rush (Luzula pilosa), common bent 

grass (Agrostis capillaries), wavy hairgrass, finger sedge (Carex digitata), purple 

reedgrass (Calamagrostis arundinacea). Other characteristic species are fireweed 

(Chamerion angustifolium), May lily, common nettle (Urtica dioica), ragworts / 

groundsels (Senecio spp.), bracken fern (Pteridium aquilinum), raspberry (Rubus idaeus) 

and red-berried elder (Sambucus racemosa). 


