# Hedmark University 

Hamar Campus
Faculty of Education and Natural Sciences
Department of Natural Science and Technology

Joseph Innocent Massawe

## Master thesis

# Genetic analyses of functionally conserved residues in the Defective-kernel1 laminin G3-like domain of the moss Physcomitrella patens 

## Master's Degree in Applied and Commercial Biotechnology

## Acknowledgement

Firstly, I would like to thank my supervisors Associate Prof. Wenche Johansen and Dr. Viktor Demko for giving me opportunity to work on this project. I sincerely appreciate Associate Prof. Wenche Johansen for her support, guidance, encouragement and motivation. Thank you for every piece of your input, you make me someone else.

My gratitude also goes to PhD . student Ako Eugene Ako, for all his support and guidance especially during the lab work.

My sincere thanks also to Lånekassen for financing my master's studies in Norway.

I would also like to express my gratitude to the biotech staff members for their support during my study. Thank you all.

To all my family members and friends, thank you for all your support and encouragement during the whole duration of my master's studies.

## Abbreviations

| 3D | Three dimensional |
| :--- | :--- |
| cDNA | Complimentary deoxyribonucleic acid |
| ddNTP | Dideoxynucleotide triphosphates |
| DDT | 1,4 dithiothretiol |
| DEK1 | Defective Kernel1 |
| DNA | Deoxyribonucleic acid |
| dNTP | Deoxynucleotide triphosphate |
| EDTA | Ethylenediaminetetraacetic acid |
| EtOH | Ethanol |
| HF | High fidelity |
| HR | Homologous recombination |
| LG3 | Laminin-like globular domain 3 |
| MSA | Multiple sequence alignment |
| NaOAc | Sodium Acetate |
| PCR | Polymerase chain reaction |
| PEG | Polyethylene glycol |
| RNA | Ribonucleic acid |
| RPM | Revolution per minute |
| RT | Room temperature |
| RT-PCR | Reverse transcriptase Polymerase chain reaction |
| TGS | Targeting sequence |
| WT | Wild type |
| D |  |

Table of Contents
ACKNOWLEDGEMENT ..... 3
ABBREVIATIONS ..... 4
ABSTRACT ..... 7

1. INTRODUCTION ..... 8
1.1 CALPAINS .....  8
1.2 DEK1, THE SINGLE CALPAIN OF LAND PLANTS ..... 10
1.3 DEK1 STRUCTURE ..... 11
1.4 DEK1 FUNCTION ..... 13
1.5 PhYSCOMITRELLA PATENS AS A MODEL ORGANISM ..... 17
1.5.1 Life cycle of Physcomitrella patens ..... 18
1.5.2 Leaf development ..... 19
1.5.3 Homologous recombination ..... 20
1.6 AIM OF THE STUDY ..... 22
2. MATERIAL AND METHODS ..... 23
2.1 BIOINFORMATIC ANALYSES OF THE DEK1-LG3 DOMAIN ..... 23
2.2 CONSTRUCTION OF VECTORS FOR GENE TARGETING ..... 23
2.2.1 Generation of 5'_TGS, cloning and Mutagenesis reaction ..... 24
2.2.2 Generation of 3'_TGS and cloning ..... 25
2.3 Plasmid isolation and Construct verification ..... 28
2.3.1 Colony PCR ..... 28
2.3.2 Plasmid isolation ..... 28
2.3.3 Restriction Digestion Analysis ..... 28
2.3.4 Cycle sequencing and capillary electrophoresis ..... 28
2.4 PEG-MEDIATED PHYSCOMITRELLA PATENS TRANSFORMATION ..... 29
2.5 MOLECULAR CHARACTERIZATION OF MUTANTS ..... 30
2.5.1 Genotyping of transformants ..... 30
2.5.2 Southern Blot ..... 31
2.5.3 RT-PCR ..... 31
2.6 Microscopy. ..... 32
3. RESULTS ..... 33
3.1 IN SILICO ANALYSES OF DEK1-LG3 ..... 33
3.1.1 The N-terminal end and middle part of the DEK1-LG3 domain is conserved in land plants. ..... 33
3.1.2 Predicted functional and structural residues in $P$. patens DEK1-LG3 sequence 35
3.1.3 The predicted $P$. patens DEK1-LG3 3D structure adopts a fold similar to the lectin fold ..... 35
3.2 MOLECULAR CHARACTERIZATION OF P. PATENS MUTANTS ..... 37
3.2.1 Analysis of $P$. patens transformants show targeted on-locus events. ..... 37
3.2.2 Southern-blot analyses ..... 40
3.2.3 RT-PCR and cDNA sequencing ..... 42
3.3 Phenotypic characterization ..... 45
3.3.1 Mutant plants dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$, and dekllg3: $S^{1497}$ display WT gametophore development and phyllid morphology ..... 45
3.3.2 Protonemata growth and spreading is not affected in mutants dekllg3: $E^{1477} Q^{1478}$, dek1lg3: $E^{1481}$ and dekllg3: $S^{1497}$ ..... 48
3.3.3 Mutant dekllg3: $R^{1514}$ has arrested bud development ..... 49
3.3.4 Sporophyte development ..... 50
4. DISCUSSION ..... 51
5. CONCLUSION ..... 57
6. FURTHER WORK. ..... 58
7. REFERENCES ..... 59
APPENDICES ..... 64


#### Abstract

DEFECTIVE KERNEL1 (DEK1), the single calpain of land plants, is highly conserved over the past 450 million years and it has been shown that the protein is essential for determining cell wall orientation in 3D growth. A recent study reveals that the DEK1-Arm segment harbour a conserved LG3 domain belonging to the Laminin-like globular domain family (LG3). In the current study, assessment of conserved residues in DEK1-LG3 for DEK1 function in Physcomitrella patens was investigated. This was achieved by substituting residues predicted to be functionally important in the DEK1-LG3 domain with alanine (Ala). Five (5) plasmid vectors for targeted insertion of mutagenized version of DEK1-LG3 were constructed and then re-targeted to the $D E K 1 \Delta L G 3$ locus in the dekl $\operatorname{Dlg} 3$ mutant background. The resulting mutant plants were subsequently characterized both molecularly and phenotypically to assess the importance of the conserved amino acids for DEK1 function. Results suggest that the amino acids E1477, Q1478, E1481 and S1497 have no important function for protonemata growth or gametophore development as the mutant plants displayed the WT phenotype. However, the mutations introduced into the dekllg3: $R^{1514}$ mutant affected post-transcriptional processing of the DEK1 transcript, resulting in a $\Delta$ dekl mutant phenotype. Targeting of the pBHRF_JI_LG3: $\mathrm{G}^{1574} \mathrm{R}^{1575} \mathrm{~S}^{1576} \mathrm{D}^{1577} \mathrm{~S}^{1578} \mathrm{E}^{1579}$ vector into the $D E K 1 \Delta L G 3$ locus in the dekl $\Delta \lg 3$ mutant did not result in any re-generating plants, suggesting that the introduced mutations are lethal to $P$. patens.


## 1. Introduction

### 1.1 Calpains

The calpain family (EC 3.4.22.17, Clan CA, family C02) is a group of complex intracellular enzymes that share a $\mathrm{Ca}^{2+}$-dependent cysteine protease activity (Margis and Margis-Pinheiro 2003; Campbell and Davies 2012; Ono and Sorimachi 2012). Calpains show a large variation in domain architecture, however, common to all calpains is the catalytic core domain, CysPc. Calpain was first reported in the 1960s when calciumdependent proteolytic activity in soluble extracts of rat brain was observed (Guroff 1964). Members of the calpain family are broadly present in different organisms ranging from mammals to plants, and some are constitutively expressed, while others show temporal and spatial expression pattern (Branca 2004). While the human genome contains 15 genes encoding calpains (Ono and Sorimachi 2012), plants encode only a single calpain variant, the DEFECTIVE KERNEL1 (DEK1) protein (Lid et al. 2002; Wang et al. 2003). Based on phylogenetic inferences, four calpain architectures named CysPc, CysPc-C2L, MIT-CysPcC2L and MEM-CysPc-C2L are believed to have formed in the early evolution of eukaryotes through assembly of ancient domains (Zhao et al. 2012). Calpains are grouped into the classical and non-classical calpain variants (Figure 1). Classical calpains are composed of two subunits, the large catalytic subunit and the small regulatory subunit (Figure 1). The catalytic subunit of classical calpains harbour four (4) conserved domains; an N-terminal anchor helix domain (Nter), a catalytic protease core domain (CysPc) composed of the subdomains PC1and PC2, a C2-like domain (C2L) and a penta-EF-hand domain (PEF). The regulatory subunit contains an N-terminal Gly-rich domain (GR) and penta-EF-hand domains (PEF) (Figure 1). Non-classical calpain variants, which lack the regulatory subunit, are composed of the CysPc domain but lacks the Nter and PEF domains, and may in addition harbour additional domains (Ono and Sorimachi 2012). The catalytic protease core domain (CysPc) contains the active sites catalytic triad formed by a cysteine residue (located in subdomain PC1) and the histidine and asparagine residues (located in sub-domain PC2). Classical calpain are dependent on $\mathrm{Ca}^{2+}$ for activation; upon binding of two $\mathrm{Ca}^{2+}$ atoms, coordinated by several amino acids in the CysPc domain, the catalytic cleft of the CysPc domain is re-aligned into an active conformation (Moldoveanu et al. 2002). Calpains are mainly located in the cytosol of the cell as an inactive enzyme, their activation is highly
regulated, and activity is often associated with membranes (Suzuki et al. 2004). As opposed to conventional proteases, calpains are regulatory enzymes; they do not degrade their target substrate, instead they modulate the activity of a restricted set of protein substrates by cleavage at one or a few specific positions using complex substrate-recognition mechanisms. Proteins known to be substrates for calpains includes membrane-bound or membraneassociated proteins, such as calcium-ATPase, the epidermal growth factor (EGF) receptor, the ryanodine receptor, the calcium receptor, the N-methyl-D-aspartate (NMDA) receptor (a glutamic acid receptor), $\beta$-integrins and transcription factors (Croall and Ersfeld 2007). Calpains have been described to play important roles in various cellular processes in animals including cell proliferation, exocytosis, apoptosis, differentiation, signal transduction and endocytosis (Sato et al. 1995; Tompa et al. 2001). Dis-regulation of calpain activity is implicated in various human diseases (Huang and Wang 2001). For example, over-activation of calpain 1 has long been tied to acute neurological disorders like stroke and traumatic brain injury and in addition to Alzheimer's disease (Grynspan et al. 1997; Huang and Wang 2001).


Figure 1. Structures of the calpain superfamily members. Calpains are composed of a large catalytic and a small regulatory subunit. Classical calpain contains the N-terminal anchor helix domain (Nter), a catalytic protease core domain (CysPc) composed of the sub-domain PC1and PC2, a C2-like domain (C2L) and a penta-EF-hand domain (PEF). Non-classical calpains contain the catalytic protease core domain (CysPc) and the C2-like domain (C2L) (Ono and Sorimachi 2012).

### 1.2 DEK1, the single calpain of land plants

Land plants evolved from a small group of freshwater green algae, the Charophyceae (Becker and Marin 2009; Kenrick et al. 2012). The evolution of land plants was one of the most important events in evolution, in which the origin and diversification of plants is placed at a minimum of 450 million years ago (Waters 2003; Rensing et al. 2008), with the mosses and seed plants sharing their last common ancestor at least 400 million years ago (Theißen et al. 2001). The ability to determine cell wall placement orientation in predictable planes was a novel feature that evolved in the transition from charophyte algae to the first land (Graham et al. 2000). Functional analysis in the moss Physcomitrella patens has shown that the DEK1 gene, encoding a transmembrane (TML) calpain proteases, is necessary for determining cell wall placement and that the gene is required for three dimensional growth in this organism (Perroud et al. 2014) thus supporting a central role for DEK1 in land plant evolution. All land plants examined today, for which full genome sequence are available, harbour a highly conserved DEK1 gene (Zhao et al. 2012; Liang et al. 2013). The common ancestor of chlorophyte and charophyta algae possessed both TML-calpains and cytosolic calpains, however TML calpains were subsequently lost from the chlorophyte alga, while both cytosolic and TML-calpains were retained in the charophyte alga (Demko et al. 2014). Cytosolic calpains were subsequently lost in land plants leaving DEK1 as the only calpain of land plants (Demko et al. 2014). Genetic complementation studies in the Arabidopsis thaliana dekl-3 mutant has also shown that the $P$. patens DEK1 catalytic domain, CysPcC2L is functional in A. thaliana, complementing the dekl-3 mutant phenotype, providing evidence for functional conservation of DEK1 for at least 450 million years (Liang et al. 2013). Examination of DEK1 sequence conservation in land plants reveal a high degree of conservation of up to $80 \%$ and $60 \%$ amino acid identity for the CysPc and C2L domains, respectively (Liang et al. 2013). Thus the high degree of DEK1 sequence conservation between angiosperm and moss over the period of evolution implies an important conserved function for the DEKI gene (Tian et al. 2007).

### 1.3 DEK1 structure

The identification of the first plant calpain historically named "phytocalpain" was shown by (Lid et al. 2002) when the DEK1 gene was cloned from maize. Now, analysis of plant genomes reveals that all land plants, from mosses to angiosperms harbour only one calpain variant, DEK1 (Tian et al. 2007; Zhao et al. 2012; Liang et al. 2013). DEK1 encodes a large protein of approximately 240 kDa ( 2,159 amino acid residues in maize) (Lid et al. 2002). The DEK1 protein has been predicted to contain a transmembrane domain (MEM) composed of 23 transmembrane segments (TMs) interrupted by a Loop (300 amino acids long) located between the ninth and tenth TMs, speculated to be involved in either perception and/or transmission of positional signals (Tian et al. 2007). DEK1-MEM is further connected to the C-terminal calpain protease domain composed of the catalytic CysPc and C2L regulatory domains by the DEK1-Arm segment of approximately 620 amino acids (Figure 2). Recent searches in conserved domain databases have reveal that the C terminal region of the DEK1-Arm segment harbour a domain belonging to the Laminin-like globular domain family (LG3) (Johansen W, - manuscript in preparation). The LG3 domain belongs to the Concanavalin A-like lectin/glucanases superfamily and was initial identified as one of five modules (LG1-LG5) building the large globular domain of the $\alpha$ chain Cterminus of the heterotrimeric glycoprotein laminin (Beck et al. 1990). LG3 modules share low to moderate sequence similarity (Timpl et al. 2000) and are also found to share approximately $20-25 \%$ sequence similarities with domains found in neurexin (Ushkaryov et al. 1992) and the sex hormone-binding globulin (SHBG) (Joseph and Baker 1992). These domains are therefore often referred to as LNS domain (for LG, neurexin and SHBG). Based on available information in protein domain database, LG/LNS domains, which contain 180200 residues, are found as singletons or in tandem arrays in more than 1200 different protein architectures in a diverse range of protein families in both prokaryotic and eukaryotic organisms. The 3D structure of DEK1 is unknown. However, the CysPc-C2L structure has been predicted using homology modelling showing that the DEK1-calpain module has similar structure to classical animal calpain Cys-CL2 domains (Wang et al. 2003; Liang et al. 2013). Specifically, the active-site residues cysteine (Cys-71) is located on the $\alpha$-helix on sub-domain PC1 (IIa), and histidine (His-229) and asparagine (Asn-249) is located on subdomain PC2 (IIb) in the maize DEK1 calpain (Figure 3), thus showing a similar configuration of these amino acids as in animal calpains (Wang et al. 2003). In addition, the amino acids shown to be involved in $\mathrm{Ca}^{2+}$ binding in animal calpains (Moldoveanu et al.
2002) are conserved in land plant DEK1 proteins (Liang et al. 2013). Further, modelling of the structure show that the corresponding amino acids in the A. thaliana DEK1 CysPc domain has the potential to bind two $\mathrm{Ca}^{2+}$ in the corresponding positions to the animal calpains (Liang et al. 2013).


Figure 2. Schematics of the predicted DEK1 structure. The MEM segment is composed of 23 TMs interrupted by the loop segment located between the ninth and tenth TMs. The calpain module (CALP) is composed of the CysPC and C2L domains and is connected to the MEM via the ARM segment. The LG3 domain is located towards the C-terminal end of the ARM.


Figure 3. Predicted three-dimensional structure of maize DEK1 calpain. The catalytic triad active site residues Cys-71, His-229 and Asn-249 are shown in the structure. Cys-71 is located in Domain IIa (PC1) while His-229 and Asn-249 are located in the Domain IIb (PC2). The figure is modified from (Wang et al. 2003).

### 1.4 DEK1 function

The high degree of DEK1 sequence conservation from moss to angiosperms indicates that the DEK1 protein has an important function in land plants.

The moss $P$. patens $\Delta$ dekl mutant is characterized by the lack of gametophore (Figure 4) (Perroud et al. 2014). Closer examination of the mutant plant reveals that the first division of the bud apical cell fail to position in correct orientation and instead occurs at random planes compared to WT where the new cell wall orient with the previous cell wall in a clear median and perpendicular position (Figure 5A III and B III). Thus as a result of misorientation in the
division of the bud apical cell, bud development is arrested which subsequently leads to block of gametophore development.

Deletion of the DEK1-LOOP (dekldloop) has been shown to affect expansion of phyllids (Demko et al. 2014). Examination of the dekldloop mutant shows irregular cell divisions after the first asymetrical division and the first division of the bud apical cell. As a result of irregular patterns in cell division, subsequent developments were arrested and phyllids failed to expand (Figure 5C IV) as compared to wild-type plant.


Figure 4. WT and $\Delta d e k l$ mutant grown on BCD medium. (A) P. patens 3-weeks-old wildtype (WT) plant showing well developed gametophores, (B) 3-weeks-old $\Delta$ deklmutant plant showing filamentous growth without gametophores. Modified figure from (Perroud et al. 2014).


Figure 5. Effects of DEK1 mutation in moss P. patens. (A) WT development with fully developed gametophore. (I) Protonema cell with one bud, (II) Bud development after first asymmetrical division, (III) New cell wall development traverse the previous cell wall (yellow), (IV) Gametophore with leaf-like phyllids. (B) Development of P. patens DEK1 deletion mutant. (I) Protonema with four buds, (II) Normal bud development after first asymmetrical division, (III) Misoriented second division as compared to WT (red) and (IV) Arrested gametophore development due to misorientation of cell division plane. (C) Development of dekl Dloop mutant. (I) Development of protonema cells with two buds, (II) Asymeric first division, (III) Perpendicular second cell division (yellow) and (IV) Development of deklaloop mutant stem lacking phyllids. Figure retrieved from (Demko et al. 2014; Olsen et al. 2015).

Recent searches in conserved domain databases also reveal that the C-terminal region of the DEK1-Arm segment harbour a domain belonging to the Laminin-like globular domain family (LG3) (Johansen W, - manuscript in preparation). A deletion mutant of DEK1-LG3 (deklalg3) has shown significant defects in phyllid development. In the mutant plant the phyllids are narrow, smaller, with fewer and large cells as compared to wild-type phyllids. Moreover the phyllids in the mutant plant are lacking marginal serration, having blunt tip and short midrib as compared wild-type phyllids (Johansen W, - manuscript in preparation). Examination of phyllid morphology in the dekl $\Delta \lg 3$ mutant suggests that both phyllid apical cell activity and sectorial cell divisions within the phyllid are impaired in the mutant.

The deklalg3 mutant also shows defects in gametangia development. In deklalg3 mutant, the archegonia apex failed completely to open but also the egg canal is absent which result in sterile plants (Johansen W, - manuscript in preparation).

In maize, $\Delta d e k l$ mutant has been shown to have effect on endosperm development (Lid et al. 2002). The mutant plant shows altered development with defective aleurone layer of the endosperm (Figure 6). Thus, the DEK1 gene was shown to be involved in maintaining aleurone cell fate at an early developmental stage and also by restricting the aleurone cell fate to the surface layer of the maize endosperm (Lid et al. 2002).


Figure 6. The phenotype of dekl-muml homozygous maize kernels (A) The ear segregates 3:1 for wild-type (dark) and DEK1 grains, representing that the two mutations are both in the DEK1 gene. (B) Hand section of dekl-muml kernel starchy endosperm cells (SE) is located in the periphery of the endosperm close to the remnants of the nucleus (arrow); P representing the maternal pericarp. (C) Section of wild-type kernel with peripheral aleurone cells. Figure modified from (Lid et al. 2002).

In A. thaliana, DEK1 has been shown to be essential in early embryonic development and epidermal activity (Johnson et al. 2005). The assessment of A. thaliana dekl-3 mutant embryo reveal abnormal divisions in embryo proper and in the apical portion of the suspensor where subsequent periclinal cell divisions in the protoderm leads to abnormal embryo surface which results to embryo lethal (Figure 7B III, IV and V) as compared to WT with normal embryo development throughout (Figure 7A). In addition, down-regulation of the DEK1 in A. thaliana using RNA interference (RNAi) leads to apparent loss of epidermal identity where palisade cells were not aligned in correct positions (Johnson et al. 2005).


Figure 7. Effect of dekl mutation in A. thaliana. (A) Early cell division in A. thaliana wildtype plant. (I) fertilized zygote, (II) First asymmetrical division of the zygote, (III) Globular embryo development with protoderm initials, (IV) Mature embryo with apical and root meristems, (V) Apical meristem with L1 layer formed by division. (B) Development of $A$. thaliana dekl mutant embryo. (I and II) normal first asymmetric division, (III) Failure of subsequent division (cell wall marked in red) which results in lack of protoderm, (IV) embryo lethal after failure to orient properly and (V) mutant plant lacking epidermal identity as a result of down-regulation of DEK1 activity. Modified figure from (Olsen et al. 2015).

To summarize, DEK1 has a common function in the orientation of cell division plane in different plant species as described in this section. In P. patens, the DEK1 deletion mutant shows misorientation in the first division of the bud apical cell which fail to orient its wall perpendicular to the previous wall, which result in arrest of gametophore development. In $A$. thaliana, early mitotic division failed to orient correctly leading to failure in the establishment of a protoderm subsequently leading to arrest in embryo development.

### 1.5 Physcomitrella patens as a model organism

The moss $P$. patens is the main model system for basal plants. Due to its relatively simple body plan, well-physiological reactions and its high ratio of homologous recombination compared to other land plants, it has been widely used as the model plant (Schaefer and Zrÿd 1997; Hohe and Reski 2003). As a bryophyte, P. patens is suited to study the function of DEK1 because bryophytes are the earliest diverging group of land plant thus they harbour all ancent evolutionary features that enable them to live teristial environment (Rensing et al. 2008). Also the easiness of culture, growth under defined and controlled
environment (Cove et al. 2006) enable $P$. patens to be used as a model organism to study the function of DEK1.

### 1.5.1 Life cycle of Physcomitrella patens

Like other vascular plants, P. patens shows alternation of generations between the haploid gametophyte and diploid sporophyte in which the haploid gametophyte is the dominant phase (Schaefer and Zrÿd 1997). The life cycle of P. patens (Figure 8) begins by germination of a haploid spore into filamentous structure called protonema. Protonema produce two cell types, the chloronema cells with large chloroplast and caulonema cells which grow very fast. As the plant continue to develop a transition in the side branch of chloronemal filaments occur which then develops into gametophore, a leaf-like structure with male (antheridia) and female (archegonia) sex organs. Under moist conditions, flagellate sperm, which are produced in antheridia, swim towards the egg in archegonia and fertilization occur, finally producing a diploid zygote. The resulting diploid zygote begins the sporophyte phase that produce thousands of spores through meiosis (Prigge and Bezanilla 2010).


Figure 8. Life cycle of $P$. patens. (A) A haploid spore germinates into (B) chloronemal cells, which differentiate into (C) caulonemal cells. (D) Gametophore, emerge from protonemal filaments. (E) Both female, archegonia (arrows), and male, antheridia (arrow heads), organs form at the top of gametophore. A motile flagellate sperm fertilizes the egg and the ( F ) sporophyte (marked with a bracket) develops at the apex of the gametophore. Modified figure from (Prigge and Bezanilla 2010).

The body plan of multicellular organism is determined by the number of planes during cell division. For example, in P. patens, division in one plane leads to the formation of unbranched filaments while division in two planes leads to branched filaments and division in three planes leads to rise of gametophores (Niklas 2000). The changes in the body plan in $P$. patens, for example growth from two-dimensional to three-dimensional is determined at the single cell level (Harrison et al. 2009). During development of $P$. patens, eight (8) types of self-differentiate cells (stem cells) are formed (Kofuji and Hasebe 2014). During development, spores released from the sporophyte undergo division to form chloronema apical stem cell that can expand through tip growth to produce filamentous body (Cove and Knight 1993; Menand et al. 2007). The expansion of chloronema apical stem cell produce caulonema apical stem cell that develops into caulonema cells by tip growth (Cove and Knight 1993; Menand et al. 2007). The developed caulonema cells form side branch initial cells in which less than $5 \%$ of the cell develop into bud apical stem cells while the rest develops into caulonemal filaments and non-dividing cells (Cove and Knight 1993). The bud apical stem cells produce cells that leads to the formation of leaf apical stem. The epidermal cells of the leafy shoot cells (gametophores) develops filamentous rhizoids with rhizoid apical stem cells (Sakakibara et al. 2003). Under low temperature ( $15{ }^{\circ} \mathrm{C}$ ), low light intensity ( $20 \mu \mathrm{~mol} / \mathrm{m}^{2} / \mathrm{s}$ ) and short day conditions ( 8 hours), the tip of gametophore shoot produce male (antheridia) and female (archegonia) reproductive organs from stem cells (Hohe et al. 2002). After the formation of male and female reproductive organs, antheridia swimm towards archegonia for fertilization and produce a zygote. The resulting zygote divide asymmetrically in its first cell divison to produce cytoplasm-rich apical cell (sporophyte apical stem cell) and a basal cell (Tanahashi et al. 2005).

### 1.5.2 Leaf development

Development of body plan of plants and correct patterning of all organs merely depends on orientation of asymmetric cell division; while misorientation of cell divison pattern leads to abnormal morphogenesis (Smith et al. 1996; Heidstra 2007). In flowering plants, stems cells are formed in diploid generation and maintained in root meristem and shoot meristem, specifically in peripheral zone and as a result of repeated cell division leads to initiation of all lateral organs (Yruela 2015). In moss plants, a gametophore bud generated from caulonema stem cell play a role as meristematic cell and generates bushy leafy shoot
(gametophores) which contains phyllids (Kofuji and Hasebe 2014). In P. patens, after a series of asymmetric division of the bud initial cell, a tetrahedral initial cell is established on its apex (Harrison et al. 2009). The establieshed tetrahedral initial cell start to divide and their daughter cell bulge out and commence growth as leaves. The phytohormone auxin has been shown to be important throughout plant growth and development, from embryo to postembronic development (Finet and Jaillais 2012). The final shape and complexity of the leaf depends on the balance between different members of proteins family, KNOX-PIN-CUC (Hepworth and Pautot 2015).

### 1.5.3 Homologous recombination

Development of reverse genetic approaches has facilitated rapid progress in the study of gene function. Using different approaches, the functions of different genes in plants are studied by altering the gene of interest and then analyze the mutant phenotype. In $P$. patens, the most popular method to study gene function is to utilize the organism's capability to insert, by homologous recombination (HR), foreign DNA into the genome (Strepp et al. 1998; Puchta 2002). In genomes, two different methods has been identified to alter covalent linkage in DNA, homologous recombination and non-homologous end joining (Puchta 2002). Gene targeting approach, via HR, involves replacement of a desired gene region with a selection cassette by the use of flanking sequences which is homologous to the targeted region (Figure 9) (Frank et al. 2005; Kuwayama 2012). This method is commonly employed to produce knock-out mutants by removing entire genes, but can also be used to replace or remove specific regions of the desired gene, there by producing mutants harbouring sitedirected mutations in the gene of interest.


Figure 9. The principle of gene targeting.The gene targeting vector harbouring a selection marker with the flanking sequences is transformed into the nuclei of the cell and recombine with targeting gene via HR to replace targeted gene generating modified targeted gene. Figure adopted from (Kuwayama 2012).

In the moss $P$. patens, homologous recombination has shown to be the dominant way to transform exogenous DNA to the genome (Schaefer 2001), with a transformation efficiency of up to $100 \%$ being reported (Kamisugi et al. 2005), compared to $10^{-4}$ in flowering plants (Britt and May 2003). The transformation efficiency by HR in the moss has been postulated to be due to predominance of the gametophytic haplophase of this organism (Schaefer and Zrÿd 1997). Also the presence of non-intronic RAD51 genes in P. patens compared to RAD51 gene in other eukaryotes has been associated with the high frequency of transformation by HR in the moss (Markmann-Mulisch et al. 2002).

### 1.6 Aim of the study

The relationship between gene structure and function has been widely deduced through analysis of the mutant lines of the desired gene. DEK1 of land plants is a member of one of four ancestral calpain variants with high conservation for at least 450 million years. Multiple sequence alignment (MSA) of DEK1- LG3 sequences in land plants and the ConSurf server were used to predict several conserved residues in $P$. patens DEK1- LG3 domain. The aim of this study is to assess the importance of conserved residues in DEK1-LG3 domain for DEK1 function in P. patens. This was done by substituting highly conserved residues of DEK1-LG3 domain predicted to be functionally important to alanine (Ala) and retarget the mutegenized version of DEK1-LG3 into DEK1DLG3 locus. The resulting mutants were characterized by PCR-based genotyping, Southern blot hybridization, RT-PCR, sequencing, bright-field and dissecting microscopy techniques to assess the importance of these amino acids for $P$. patens development.

## 2. Material and Methods

### 2.1 Bioinformatic analyses of the DEK1-LG3 domain

The DEK1 sequences used in the present study are listed in Appendix 1. The sequences corresponding to DEK1-LG3 domain were extracted using the Simple Modular Architecture Research Tool (SMART) database (http://smart.embl-heidelberg.de). Multiple sequence alignment (MSA) of the DEK1-LG3 sequences was constructed using MAFFT v7 with default parameters (http://www.ebi.ac.uk/Tools/msa/mafft/). The resulting MSA was subsequently analyzed using CLC Main Workbench v6 (www.clcbio.com). The DEK1-LG3 sequence logo, a graphical representation of sequence conservation of the amino acids, was generated using the WebLogo tool (http://weblogo.berkeley.edu/logo.cgi). Conserved residues in the $P$. patens DEK1-LG3 domain were predicted using the ConSurf server, which were run in the "ConSeq" mode (http://consurf.tau.ac.il/index_proteins.php). For predicting the three-dimensional structure of the DEK1-LG3 domain the amino acids sequence corresponding to the LG3 domain (residues 1442-1609; XP 001774206.1) was submitted to Phyre2 fold recognition server. Structural alignment was performed using the PDBeFold server (http://www.ebi.ac.uk/msd-srv/ssm/cgi-bin/ssmserver) and superimposed structures were viewed using PyMOL software (v 0.99 ).

### 2.2 Construction of vectors for gene targeting

In this study, five different plasmid construct for targeted insertion of mutagenized version of the DEK1-LG3 were constructed, in addition to one vector that contained the WT sequence (Table 1). Plasmids were constructed using In-Fusion cloning technology as outlined in Figure 10.

Table 1. Plasmid constructs made in the present study. The name of each plasmid, WT sequence and mutated residues are given.

| Plasmid name (pBHRF_JI_LG3mut) | WT sequence | Mutated residues |
| :--- | :--- | :--- |
| $\mathrm{E}^{1477} \mathrm{Q}^{1478}$ | ${ }^{1472}$ LVAGAEQGLEAG | LVAGAEQGLEAGQV |
| E1481 | ${ }^{1476}$ AEQGLEAGQVG | AEQGLEAGQVG |
| S1497 | ${ }^{1492}$ KGAGQSTHNRE | KGAGQSTHNRE |
| R1514 | ${ }^{1509}$ CVADGRWHSVT | CVADGRWHSVT |
| $\mathrm{G}^{1574} \mathrm{R}^{1575} \mathrm{~S}^{1576} \mathrm{D}^{1577} \mathrm{~S}^{1578} \mathrm{E}^{1579}$ | ${ }^{1569}$ DLDAFGRSDSEGAESK | DLDAFGRSDSEGAESK |
| pBHRF_JI_LG3 |  |  |

### 2.2.1 Generation of $5^{\prime}$ _TGS, cloning and Mutagenesis reaction

First, the $5^{\prime}$ targeting sequence ( $5^{\prime}$ _TGS) was PCR amplified from genomic DNA extracted from WT P. patens tissue using Phusion® High-Fidelity PCR kit (Thermo SCIENTIFIC, Cat $\neq$ HF-549L). In a $50 \mu 1$ reaction volume, 50 ng genomic DNA was PCR amplified with 1 X HF buffer, $200 \mu \mathrm{M}$ of dNTPs, 0.02 units $/ \mu \mathrm{l}$ of Phusion DNA polymerase and $0.5 \mu \mathrm{M}$ each of gene specific primers JI_5TGS_SP_Info and JI_5TGS_ASP_Info (Appendix 3A). PCR amplification was initiated with an initial denaturation step at $98^{\circ} \mathrm{C}$ for 30 sec., followed by 40 cycles of $98^{\circ} \mathrm{C}$ for $10 \mathrm{sec} ., 64^{\circ} \mathrm{C}$ for 30 sec ., and $72^{\circ} \mathrm{C}$ for 20 sec . and a final extension step at $72^{\circ} \mathrm{C}$ for 5 min .

The PCR amplified 5, ${ }^{\text {, TGS }}$ was cloned to zero Blunt pCR vector using the Zero Blunt ${ }^{\circledR}$ PCR Cloning Kit (Invitrogen, Cat $\neq 44-0302$ ) generating vector pCR_5TGS. In a $10 \mu 1$ reaction volume, $0.5 \mu 1$ of PCR amplified 5'_TGS were ligated with $1 \mu 1$ of Zero Blunt PCR plasmid vector ( 10 ng ) using $1 \mu 1$ ExpressLink ${ }^{\mathrm{TM}}$ T4 DNA Ligase ( 5 U ) and $2 \mu \mathrm{l}$ of 5 X ExpressLink ${ }^{\mathrm{TM}}$ T4 DNA Ligase Buffer. The reaction mixture was incubated at RT for 30 min. and then transformed into $50 \mu \mathrm{l}$ of One Shot $®$ TOP10 cells (Invitrogen Cat $\neq \mathrm{C} 404003$ ) following manufacturer's instructions. The mixture of competent cells and ligation reaction was incubated on ice for 30 min . and then subjected to heat shock at $42{ }^{\circ} \mathrm{C}$ for 45 sec . Transformed cells were cooled on ice for 2 min . and then mixed with $250 \mu \mathrm{l}$ of RT SOC
medium (Appendix 8 H ). The cell culture was incubated at $37^{\circ} \mathrm{C}$ with shaking ( 225 rpm ) for 1 hr and then overnight on LB-agar medium supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin.

Methylation and mutagenesis reactions were used to introduce mutations into the vector pCR_5TGS, using GeneArt® Site-Directed Mutagenesis PLUS kit (Invitrogen, Cat $\neq \mathrm{A} 14551)$ generating the vectors collectively named pCR_5TGSmut. In a $20 \mu 1$ reaction volume, $50 \mathrm{ng} \mathrm{pCR}-5 \mathrm{TGS}$ were PCR amplified with $0.5 \mu \mathrm{M}$ each of gene specific primers, 1X of AccuPrime ${ }^{\text {TM }} P f x$ reaction buffer, 1X of Enhancer, 4.8 U of DNA methylase, 1X of SAM and 1.5 Units of AccuPrime ${ }^{\text {TM }} P f x$. The gene specific primers used were F8_9 SP and F8_9 ASP; F10E_SP and F10E_ASP; F14_SP and F14_ASP; F16_SP and F16_ASP, and F23_28 SP and F23_28 ASP (Appendix 3C). PCR cycling was performed with an initial methylation step at $37{ }^{\circ} \mathrm{C}$ for 20 min ., and then a two steps PCR with initial denaturation step at $95{ }^{\circ} \mathrm{C}$ for 2 min . followed by 35 cycles of $95{ }^{\circ} \mathrm{C}$ for 15 sec ., $68{ }^{\circ} \mathrm{C}$ for 6 min . and a final extension at $72{ }^{\circ} \mathrm{C}$ for 5 min . The mutagenesis reactions were transformed into One Shot ${ }_{\circledR}$ MAX Efficiency® DH5 ${ }^{\text {TM }}$-T1R Competent Cells (Invitrogen Cat $\neq 44-0097$ ) as described above. Inserts 5'_TGSmut were then PCR amplified from pCR_5TGSmut using the primers JI_5TGS_SP_Inf and JI_5TGS_ASP_Inf (Appendix 3D) as described above.

### 2.2.2 Generation of $3^{\prime}$ _TGS and cloning

The $3^{\prime}$ targeting sequence ( $3^{\prime}$ _TGS) was PCR amplified from genomic DNA extracted from WT $P$. patens as described in section 2.2.1 except using the primers JI_3TGS_SP_Info and JI_3TGS_ASP_Info (Appendix 3A) and an annealing temperature of $64^{\circ} \mathrm{C}$ for 20 sec .

Vector pBHRF was linearized by "Inverse PCR" using Phusion® High-Fidelity PCR kit as described in section 2.2.1 except using the primers pBHRF_1_SP and pBHRF_1_ASP (Appendix 3B) and PCR cycling with an initial denaturation at $98^{\circ} \mathrm{C}$ for 30 sec . followed by 40 cycles of $98^{\circ} \mathrm{C}$ for $10 \mathrm{sec} ., 62^{\circ} \mathrm{C}$ for 20 sec . and $72^{\circ} \mathrm{C}$ for 2 min . and a final extension step at $72{ }^{\circ} \mathrm{C}$ for 7 min . The linearized vector pBHRF was then gel purified using QIAquick gel extraction kit (QIAGEN, Cat $\neq 28704$ ) following manufacturer's instructions.

PCR amplified 3'_TGS was then cloned into the linear vector pBHRF generating vector pBHRF_JI_3TGS. In brief, the PCR amplified 3'_TGS was first purified using cloning enhancer, where $5 \mu \mathrm{l}$ of the PCR amplified 3 '_TGS were treated with $2 \mu \mathrm{l}$ of the cloning
enhancer and incubated at $37^{\circ} \mathrm{C}$ for 20 min ., and then at $80^{\circ} \mathrm{C}$ for 20 min . In-Fusion cloning reaction was then performed in a total volume of $10 \mu \mathrm{l}$ with $2 \mu \mathrm{l}$ of purified PCR product 3'_TGS with $0.5 \mu \mathrm{l}$ of linearized vector pBHRF using $2 \mu \mathrm{l}$ of 5 X In-Fusion HD Enzyme Premix. The mixture was incubated at $50^{\circ} \mathrm{C}$ for 15 min . and then transformed as described in section 2.2.1 but using the Stellar ${ }^{\text {TM }}$ Competent cells (Clontech, Cat $\neq 636763$ ) and incubated overnight on LB-agar medium supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ Amplicilin.

The resulting vector pBHRF_JI_3TGS was linearized using $2 \mu 1$ of XhoI with $5 \mu \mathrm{l}$ of plasmid DNA and $2 \mu \mathrm{l}$ of CutSmart ${ }^{\circledR}$ buffer in a total reaction volume of $20 \mu \mathrm{l}$ and then incubated at $37^{\circ} \mathrm{C}$ for 4 hrs .

Inserts 5'_TGSmut and 5'_TGSWT were cloned into XhoI digested pBHRF_JI_3TGS and then transformed into Stellar ${ }^{\mathrm{TM}}$ Competent cells as described in section 2.2.1; resulting in the final vectors pBHRF_JI_LG3mut and pBHRF_JI_LG3, respectively.


Figure 10. Cloning strategy. (A) PCR amplification of 5'_TGS and 3'_TGS from $P$. patens WT, (B) Infusion cloning of $3^{\prime}$, TGS into vector pBHRF to generate vector pBHRF_JI_3TGS, (C) Cloning of 5'_TGS into pCR vector to generate vector pCR-5TGS, Site directed mutagenesis in vector pCR-5TGS and PCR amplification of inserts 5'_TGSMut (D) Infusion cloning of vector pBHRF_JI_3TGS with 5,_TGSMut to generate final vector pBHRF_JI_LG3Mut.

### 2.3 Plasmid isolation and Construct verification

### 2.3.1 Colony PCR

In order to screen for putative E. coli colonies harbouring plasmid with cloned insert, "colony PCR" was performed. In a $25 \mu 1$ reaction volume, a small amount of the E. coli colony was PCR amplified with $0.2 \mu \mathrm{M}$ each of primers Armseq7, 35s_Rev1 (to screen for putative pBHRF_JI_LG3Mut), JI_3TGS_SP_Inf and JI_3TGS_ASP_Inf (to screen for putative pBHRF_JI_3TGS) (Appendix 3E), $200 \mu \mathrm{M}$ of dNTP's, 2.5 mM of $\mathrm{MgCl}_{2}, 0.05$ units/ $\mu \mathrm{l}$ of HOT FIREPol DNA polymerase, and 1X of Buffer B1. Amplification was initiated at $95^{\circ} \mathrm{C}$ for 15 min . to activate the enzyme then followed by 30 cycles of $95^{\circ} \mathrm{C}$ for $45 \mathrm{sec} ., 58^{\circ} \mathrm{C}$ for 45 sec ., and $72^{\circ} \mathrm{C}$ for 80 sec . and a termination step of $72^{\circ} \mathrm{C}$ for 5 min .

### 2.3.2 Plasmid isolation

PCR-positive colonies were cultured in 4 ml LB medium containing $50 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin (for pCR-5TGS constructs) and $100 \mu \mathrm{~g} / \mathrm{ml}$ Amplicilin (for pBHRF_JI_3TGS construct and pBHRF_JI_LG3mut) at $37^{\circ} \mathrm{C}$ with shaking ( 225 rpm ) overnight. Plasmid was isolated from the overnight culture using PureYield ${ }^{\mathrm{TM}}$ Plasmid Minprep System kit (Promega Cat $\neq \mathrm{A} 1222$ ) following the manufacturer's instructions.

### 2.3.3 Restriction Digestion Analysis

All generated constructs were verified by restriction digestion analysis. In a $10 \mu 1$ reaction volume, 500 ng of plasmid DNA were digested with $1 \mu 1$ of EcoRV enzyme in 1X reaction buffer ( 3.1 (NEB)) and incubated for 2 hrs at $37^{\circ} \mathrm{C}$. The restriction digestion reactions were analysed by electrophoresis using $0.5 \%$ agarose gel.

### 2.3.4 Cycle sequencing and capillary electrophoresis

All generated constructs were verified by cycle sequencing and capillary electrophoresis using the BigDye® terminator v3.1 cycle sequencing kit (Applied Biosystems, Cat
$\neq 4336915)$. In a $10 \mu 1$ reaction volume, 250 ng of plasmid DNA were cycle sequenced with 3.2 pmol each of gene specific sequencing primers TER_F, pBHRF_R, ASP-PpARM-Info, ARM 3'_F, CALP Seq1, EX25-F, $\triangle$ ARM 3'_ R, T7, M13R, ArmSeq6, CSMW_5R, pBHRF_F, 35s_Rev1, and Armseq7 (Appendix 3F), $2 \mu \mathrm{l}$ of 5X BigDye sequencing buffer and $0.5 \mu 1$ of BigDye ${ }^{\circledR}$ terminator v3.1. Cycle sequencing steps were performed according to the Stepped elongation Time Protocol (Platt et al. 2007).

Cycle sequencing steps were followed by purification of the extension products to remove excess primers, dNTP, and ddNTP. To the sequencing reactions, $10 \mu \mathrm{l}$ of $\mathrm{dH}_{2} \mathrm{O}, 2 \mu \mathrm{l}$ of 125 mM EDTA, $2 \mu \mathrm{l}$ of 3 M NaOAc ( pH 5.2 ) and $52 \mu \mathrm{l}$ of $96 \%$ EtOH were added. The reaction mixture was incubated at RT for 15 min . and DNA was precipitated at maximum speed (14800 rpm) in a Thermo Scientific Heraeus Fresco 21 Refrigerated microcentrifuge (Thermo Scientific, EW-17703-30) at $4{ }^{\circ} \mathrm{C}$ for 30 min . The DNA pellet was washed with 70 $\mu 1$ of $70 \%$ EtOH and centrifuged (Thermo SCIENTIFIC, HERAEUS PICO21) at maximum speed ( 14800 rpm ) for 10 min . The DNA was air dried for 30 min . to remove excess EtOH and resuspended in $10 \mu \mathrm{l}$ of deionized formamide and finally sequenced by Capillary Electrophoresis using the 3130xL Genetic Analyzer (Life Technologies). CLC Main Workbench v6 (www.clcbio.com) was used to analyze the sequences.

### 2.4 PEG-mediated Physcomitrella patens transformation

$P$. patens protoplast isolation and transformation was performed as described by Cove et al. (2009) using $15 \mu \mathrm{~g}$ of linearized plasmid DNA per transformation. Prior to transformation, the plasmids (Table 1) were completely digested with restriction enzymes PacI and BmrI, and then the digested DNA was precipitated by standard ethanol precipitation. The plasmids were then transformed into the $P$. patens DEK1DLG3 locus (Johansen W, - manuscript in preparation). Protoplasts were grown under long day conditions [16 hrs light ( $70-80 \mu \mathrm{~mol} / \mathrm{m}^{-}$ ${ }^{2} / \mathrm{S}^{-1}$ ) and 8 hrs dark]. Regeneration and selection of transformed plants was performed by transferring the tissue cultures to different media in the following sequence; 7 days of protoplast regeneration in protoplast regeneration medium (PRM) (Appendix 7B), 7 days of selection on BCDA medium (Appendix 7A) supplemented with $20 \mu \mathrm{~g} / \mathrm{ml}$ of hygromycin, 14 days of growth on BCDA medium and 7 days on BCDA supplemented with $20 \mu \mathrm{~g} / \mathrm{ml}$ of hygromycin. Hygromycin resistance plants were then transferred to fresh BCDA medium.

Cre recombinase procedure was performed to remove the hygromycin resistance cassette from the transformants. Protoplast was isolated and transformation was carried out using 20 $\mu \mathrm{g}$ of pAct-Cre plasmid (Trouiller et al. 2006). Protoplast were diluted four times (25,000 counted protoplasts per petri dish) to avoid mixing during picking and plated on Petri dishes containing cellophane. Protoplast regeneration and selection of putative positive Cre lines were performed as follow; 7 days of protoplast regeneration on protoplast regeneration medium, 7 days of growth on BCDA medium, picking of individual plant colony on BCDA medium and grow for 7 days, and finally, replica picking of individual plant colony on BCDA medium supplemented with $20 \mu \mathrm{~g} / \mathrm{ml}$ of hygromycin. Lines showing loss of resistance cassette were grown on BCDA medium, and analyzed.

### 2.5 Molecular characterization of mutants

### 2.5.1 Genotyping of transformants

Putative transformed and hygromycin resistance plants were PCR genotyped using the Phire Plant Direct PCR Kit (Thermo scientific, Cat $\neq \mathrm{F}-130 \mathrm{WH}$ ) following the manufacturer's instructions. Three rounds of PCR genotyping were performed. First PCR genotyping was performed to screen for insertion of the DEK1-LG3 sequence using primers LG3_Fw and LG3_Rev. Second PCR genotyping was performed to select for line harbouring single-copy insertion at the locus using primers ArmSeq3 and EX30_R. In order to confirm proper 5, and 3' targeting a third PCR genotyping was performed using primers ARMSeq3 and 35sRev1, and Term_Fw and EX30_R, respectively. Genomic DNA was isolated from hygromycin resistant plants by crushing a small amount of plant tissue in $20 \mu \mathrm{l}$ of Dilution Buffer, which was used as a template for PCR. In a $20 \mu 1$ reaction volume, $0.5 \mu \mathrm{l}$ of DNA was PCR amplified with $0.5 \mu \mathrm{M}$ each of gene specific primers (Appendix 3G), $0.4 \mu \mathrm{l}$ of Phire Hot Start II DNA polymerase and 2X Phire Plant PCR Buffer. PCR amplification were as follow: initial denaturation at $98^{\circ} \mathrm{C}$ for 5 min . then followed by 30 cycles of $98^{\circ} \mathrm{C}$ for 5 sec., $58{ }^{\circ} \mathrm{C}$ for 5 sec . and $72{ }^{\circ} \mathrm{C}$ for 1 min . (first PCR genotyping), $72{ }^{\circ} \mathrm{C}$ for 3.30 min . (second PCR genotyping) and $72{ }^{\circ} \mathrm{C}$ for 2.30 min . (third PCR genotyping). The final extension step was carried out at $72^{\circ} \mathrm{C}$ for 5 min .

### 2.5.2 Southern Blot

Southern blot analysis was performed to investigate the possibility of off target integration into the DEK1 locus. Genomic DNA for Southern-blot analysis was extracted using the PhytoPure Genomic DNA Extraction Kit (GE HealthCare, Cat $\neq$ RPN-8511) according to the manufacturer's instructions. Approximately $1 \mu \mathrm{~g}$ of genomic DNA was digested using BglII for 6 hrs. Fragmented DNA was separated by agarose gel electrophoresis using 0.6 \% ultrapure agarose at $37^{\circ} \mathrm{C}$ for 18 hrs . The DNA was transferred to positively charged nylon membrane (Roche), and then pre-hybridized using DIG Easy Hyb (Roche) at $42{ }^{\circ} \mathrm{C}$ for 30 $\min$. and finally probed using $5^{\prime}$ and $3^{\prime}$ target probes at $42^{\circ} \mathrm{C}$ overnight. The probes were synthesized using PCR DIG probe synthesis kit (Roche, Cat $\neq 11636090910$ ) and primers pair Armseq5/CSMW_5R and 3TGS_SP/3TGS_ASP (Appendix 3I) for the 5' and 3' target probes, respectively. Development of the Southern blot was performed using X-Ray films.

### 2.5.3 RT-PCR

RT-PCR and subsequent sequencing of the product were performed to analyse the DEK1 transcript to verify the introduced mutations and to investigate if the transcript were properly spliced. Total RNA was isolated from P. patens mutant tissue using the RNAqueous®Micro kit (Life technologies, Cat $\neq$ AM 1931) according to the manufacturer's instructions. 8 $\mu 1$ of RNA was treated with $1 \mu 1$ of 100 units DNase I-Amplification Grade (Invitrogen, Cat $\neq 18068-015)$ and $1 \mu 1$ of 10X DNase I buffer. The reaction was incubated at RT for 15 min ., then $1 \mu 1$ of 25 mM EDTA was added to inactivate DNase I and incubated at $65^{\circ} \mathrm{C}$ for 15 min. $8 \mu \mathrm{l}$ of DNase I-treated total RNA was primed with $1 \mu \mathrm{l}$ of $50 \mu \mathrm{M}$ Random hexamer primers and $1 \mu \mathrm{l}$ of 10 mM dNTP in a total volume of $13 \mu \mathrm{l}$. The reaction was incubated at $65^{\circ} \mathrm{C}$ for 5 min . and placed on ice for 1 min . The reaction mixture was reverse transcribed using $1 \mu \mathrm{l}$ of 200 units of Superscript III® Reverse Transcriptase (Invitrogen, Cat $\neq 18080$ 044), $1 \mu \mathrm{l}$ of 40 units of RNaseOUT ${ }^{\text {TM }}$ (Invitrogen, Cat $\neq 10777-019$ ), $4 \mu \mathrm{l}$ of 5 X First-strand buffer and $1 \mu \mathrm{l}$ of 0.1 M DTT. The reaction was incubated at RT for 5 min . and then at $50^{\circ} \mathrm{C}$ for 1 hr . Finally, the Reverse transcriptase enzyme was inactivated by incubation at $70^{\circ} \mathrm{C}$ for 15 min . Phusion® High-Fidelity DNA polymerase was used to amplify the target sequence spanning a region from exon 7 to exon 30 (transcript nucleotides 1888 to 6444) as follow: $1 \mu 1$ undiluted cDNA template was PCR amplified with primers PpLoop_Inverse SP and

Ex30_R (Appendix 3 H ) using the following cycling conditions: $98^{\circ} \mathrm{C}$ for 10 sec ., 40 cycles of $98^{\circ} \mathrm{C}$ for 10 sec ., $62{ }^{\circ} \mathrm{C}$ for 20 sec . and $72{ }^{\circ} \mathrm{C}$ for 1.5 min . and a final elongation step at $72{ }^{\circ} \mathrm{C}$ for 5 min . The PCR products was treated with Exonuclease I (Fermentas) to remove excess primers, and then cycle sequencing reactions were performed using primers LG3_R, ArmSeq7, ArmSeq8 and CSMW_5R and the ABI BigDye ${ }^{\circledR}$ terminator v.3.1 chemistry according to the SteP method (Platt et al. 2007). DNA fragments were precipitated using sodium-acetate/ethanol and finally sequenced by Capillary Electrophoresis using the 3130xL Genetic Analyzer. The CLC Main Workbench v6 software was used to analyse the sequences.

### 2.6 Microscopy

The phenotype of the mutants was characterized using dissecting (Nikon SMZ 1500) and fluorescence (Nikon ECLIPSE Ti) microscopy. The mutants generated in this study were grown side by side on BDC medium for 3 weeks, phyllids were dissected from the middle part of the gametophores, mounted in a glass slide and observed under dissection microscope.

To determine the growth and spreading of protonema tissue, generated mutants were grown side by side for 2 weeks and colonies were photographed directly by dissecting microscope while growing on BCD medium.

To observe buds initial developments, mutant tissue was stained in Fluorescent Brightener 28 for 30 min., washed two times in sterile water, then mounted in a glass slide and observed under fluorescence microscope.

## 3. Results

### 3.1 In silico analyses of DEK1-LG3

### 3.1.1 The N-terminal end and middle part of the DEK1-LG3 domain is conserved in land plants

In order to analyze the degree of sequence conservation, 94 DEK1-LG3 sequences of land plants were aligned using MAFFT (Appendix 5). As shown by the sequence logo representation (Figure 11), the N-terminal end and the middle part of the DEK1-LG3 domain are more highly conserved than the more divergent C-terminal end. Investigation of the multiple sequence alignment showed that the amino acid identity decreases with evolutionary distance. For example, the sequence identity between the angiosperm $A$. thaliana and mosses $P$. patens is $55 \%$.


Figure 11. Graphical representation of land plant DEK1-LG3 sequence conservation (using WebLogo v3). The N-terminal end and the middle part are more highly conserved while the C-terminal end is more divergent. The colour scheme of the residues represent their chemical properties; Green $=$ Hydrophilic, blue $=$ basic, red $=$ acidic and black $=$ hydrophobic amino acids.

### 3.1.2 Predicted functional and structural residues in $P$. patens DEK1-LG3 sequence

The functionally and structurally important residues in the DEK1-LG3 domain were predicted by submitting the multiple sequence alignment to the ConSurf server, which estimates evolutionary conservation of residues based on the phylogenetic relationship between homologous sequences (Armon et al. 2001). Figure 12 shows the output result of the prediction; functional residues (marked ' f ") are highly conserved and exposed while predicted structural residues (marked "s") are highly conserved and buried inside the protein. The analysis shows that important functionally and structurally residues are evenly distributed throughout the sequence.

| 1 | 11 | 21 | 31 | 41 |
| :---: | :---: | :---: | :---: | :---: |
| $S F S A \quad V M I Q P$ | SGPVC LGV | EAH KKCEF | LVAGAEQGLE | AGQVGLRLVS |
| $\underset{f}{e \mathrm{e} b \mathrm{bbbbe} e}$ | $\begin{aligned} & e \mathrm{e} e \mathrm{bbbbb} \\ & \mathrm{ff} \mathrm{f} \quad \mathrm{~s} \quad \mathrm{~s} \end{aligned}$ | $\underset{f}{\mathrm{eb}} \mathrm{e} e \mathrm{ebbbeb}$ | $\begin{gathered} \mathrm{bbbbbeebbe} \\ \mathrm{sss} \mathrm{ff} \mathrm{f} \end{gathered}$ | $\begin{aligned} & \mathrm{bb} \in \mathrm{~b} b \mathrm{~b} \in \mathrm{bb} \mathrm{~b} \\ & \mathrm{~s} f \mathrm{f} \quad \mathrm{f} \mathrm{~s} \end{aligned}$ |
| 51 | 61 | 71 | 81 | 91 |
| $\mathrm{K} A \mathrm{AQSTH}$ | E FI HTCVA | DGRWHSVTIT | VDASTGEASA | IDGGFDGDN |
| $\begin{aligned} & \mathrm{e} e \mathrm{e} e \mathrm{e} \mathrm{ebb} \mathrm{~b} \mathrm{~b} \\ & \mathrm{f} \quad \mathrm{f} \end{aligned}$ | ebbbbbbbbb | ebebbbbbbb fsfes | $\begin{aligned} & \mathrm{b} e \mathrm{~b} e \mathrm{e} \mathrm{e} \mathrm{ebbb} \\ & \mathrm{f} \mathrm{~s} \quad \mathrm{ff} \end{aligned}$ | $\begin{gathered} \mathrm{b} b \mathrm{~b} \mathrm{~b} e \mathrm{e} e \mathrm{e} e \mathrm{e} \\ \mathrm{f} \mathrm{~s} \quad \mathrm{f} \end{gathered}$ |
| 101 | 111 | 121 | 131 | 141 |
| RCDLL LGEG | GVWEEGMEVW | VGIRPPMDLD | AFGRSDSEA | ESMHAMDVF |
| eeebebebee | $\mathrm{b} b \mathrm{beebb}$ b bb | $\begin{array}{r} \mathrm{bbb} \mathrm{~b} \mathrm{~b} e \mathrm{e} \mathrm{e} \mathrm{~b} \mathrm{~b} \\ \mathrm{f} \quad \mathrm{~s} \end{array}$ | $\begin{gathered} b \mathrm{beeeeeeb} \\ \mathrm{fff} f \mathrm{ff} \end{gathered}$ | $\begin{array}{r} e \mathrm{~b} \in \mathrm{~b} \in \mathrm{~b} \mathrm{~b} \mathrm{~b} b \mathrm{~b} \\ \mathrm{~s} \mathrm{~s} \end{array}$ |
| 151 | 161 |  |  |  |
| WGRCITEDE | ILMVHNCA |  |  |  |
| $b b b e b b e e e e$ | bbbbeebe |  |  |  |

Figure 12. Predicted functional and structural residues in DEK1-LG3 domain using ConSurf server. The conservation of functionally and structurally predicted residues is evenly spread throughout the sequence. Conserved functional and structural residues are marked " f " and " $s$ " respectively, while "b" and "e" represent buried and exposed residues, respectively.

### 3.1.3 The predicted $P$. patens DEK1-LG3 3D structure adopts a fold similar to the lectin fold

The 3D structure of the DEK1-LG3 domain was predicted by submitting the $P$. patens DEK1-LG3 sequence (10618-11230; XP 001774206.1) to the Phyre2 fold recognition server. The predicted model is based on C3flpJ, the SAP-like pentraxin from Limulus polyphemus. DEK1-LG3 is predicted to contain ten (10) anti-parallel $\beta$-sheets (yellow) which are arranged in concave and convex shape, two (2) $\alpha$-helix (red) and loop regions connecting $\beta$-sheets on both edges (Figure 13A). The predicted structure form a structural
fold which is similar to the $\beta$-sandwich or lectin fold, formed by two anti-parallel $\beta$-sheets (Rudenko et al. 2001). The surface view of the model was modified using PyMOL structure viewer (v0.99) software to visualize the location of the predicted functionally important residues (Figure 13B) on the surface of the structure. The surface positions marked blue show the positions of the residues that were mutated in the current study. The mutated residues are also given.


Figure 13. The predicted 3D structure of $P$. patens DEK1-LG3 domain using Phyre2 server (A) Cartoon representation of the 3D structure with 10 anti-parallel $\beta$-sheets (yellow), $2 \alpha$ helix (red) and loop regions connecting the $\beta$-sheets on both edges. (B) Surface view of the 3D structure indicating the location of mutated residues. The positions marked blue show the location of the residues that were mutated in the current study, namely $\mathrm{E}^{1477} \mathrm{Q}^{1478}, \mathrm{E}^{1481}$, $S^{1497}, R^{1514}$ and $G^{1574} R^{1575} S^{1576} D^{1577} S^{1578} \mathrm{E}^{1579}$. The surface view was modified using PyMOL (v0.99) structure viewer.

The obtained DEK1-LG3 3D structure was pairwise superimposed to the database model 3FLP using the PDBeFold server, which shows that the two structures display a similar fold (Figure 14). The structural homology search identified a root mean square deviation (RMSD) of $0.718 \AA$ between the structures, which also shows that the structures of the two proteins are similar. The structure of heptameric SAP-like pentraxin has been reported to have a fold resembling the Concanavalin A superfamily of proteins. Proteins in this family have a highly conserved fold despite low sequence similarity (Emsley et al. 1994; Shrive et al. 2009).


Figure 14. The superimposed structural alignment between native heptameric SAP-like pentraxin from Limulus polyphemus (PDB, 3FLP) (green) and the predicted structure of DEK1-LG3 domain using PDBeFold (light blue).

### 3.2 Molecular characterization of $P$. patens mutants

### 3.2.1 Analysis of $P$. patens transformants show targeted on-locus events

To assess the dependence of the residues predicted to be functionally important in the LG3 domain (Figure 13B), constructs carrying mutagenized versions of the LG3 sequences (Table 1) were re-targeted to the $D E K 1 \Delta L G 3$ locus. Figure 15 shows the schematic of recombination strategy employed in PEG-mediated $P$. patens deklılg3 and Cre recombinase transformations. Table 2 shows the number of stable transformants (hygromycin resistant), obtained in the experiments. Transformation of construct pBHRF_JI_LG3G ${ }^{1574} \mathrm{R}^{1575} \mathrm{~S}^{1576} \mathrm{D}^{1577} \mathrm{~S}^{1578} \mathrm{E}^{1579}$ did not give any stable transformant even after several rounds of transformation. The hygromycin resistant plants were PCR-genotyped to identify lines with proper targeting as shown schematically in Figure 16 and the result of this genotyping is provided in Table 2. As an example, the PCR genotyping result for $5^{\prime}$ and 3' targeting is shown in Figure 17. This result confirms that DEK1-LG3 sequences were successfully re-targeted to the $D E K 1 \Delta L G 3$ locus.


Figure 15. Homologous recombination strategy after PEG-mediated transformation of Physcomitrella patens. The mutant locus PpDEK1DLG3 was transformed with vectors pBHRF_JI_LG3Mut creating mutant loci collectively named PpDEK1LG3_Mut before Cre. After transformation to remove the resistance cassette, PpDEK1LG3_Mut loci were generated. The number in the boxes corresponds to the P. patens DEK1 exons. Exon 22 (red) contains the mutations.

Table 2. Number of stable transformants, transformants re-targeted with DEK1-LG3, transformants with single copy insertion, and double targeting transformants obtained after PEG-mediated transformation of each construct.
$\left.\begin{array}{lllll}\hline \text { Mutants } & \begin{array}{l}\text { Number } \\ \text { stable } \\ \text { transformants } \\ (\text { HygR })\end{array} & \text { of } & \begin{array}{l}\text { Number of } \\ \text { transformants } \\ \text { with DEK1- } \\ \text { LG3 insertion }\end{array} & \begin{array}{l}\text { Number of } \\ \text { transformants } \\ \text { with single- } \\ \text { copy insertion }\end{array}\end{array} \begin{array}{l}\text { Number } \\ \text { of double } \\ \text { targeting }\end{array}\right]$


Figure 16 Schematics of the PCR genotyping strategy. Red arrows show primer annealing sites; primers marked "a" and primers marked "b" was used for 5" and 3' targeting genotyping PCR, respectively.


Figure 17. Genotyping of Physcomitrella patens dekllg3_mut. Gel photos showing amplicons generated from PCR genotyping of $5^{\prime}$ (A) and 3' (B) targeting by electrophoresis on $0.5 \%$ agarose. Positive control sample denoted as PC represents DNA extracted from the P. patens deklDlg3 mutant complemented with Marchantia polymorpha DEK1-LG3. The negative control (NC) contains no template; WT and dekldlg3 were also used as negative control. The expected fragment size for dekl-wtlg3, dek1lg3: $E^{1477} Q^{1478}$, dek1lg3: $E^{1481}$, dekllg3: $S^{1497}$ and dekllg3: $R^{1514}$ mutant lines are approximately 2.4 kbp and 3.4 kbp , respectively.

PCR-based genotyping suggest that dekllg3: $E^{1481}$, dekllg3: $5^{1497}$ and dekllg3: $R^{1514}$ mutants harbour a single copy insertion of DNA at the targeted locus and that dekl-wtlg3 and dekllg3: $E^{1477} Q^{1478}$ mutants harbour multicopy integration of DNA either at the targeted locus or off target locus (data not shown).

PCR positive double targeted lines, dek1-wtlg3 \#1, dek1lg3:E $E^{1477} Q^{1478} \# 1$, dekllg3: $E^{1481} \# 1$, dekllg3: ${ }^{1497} \# 1$ and dekllg3: $R^{1514} \# 1$ were subjected to Cre mediated transformation to remove the resistance cassette and further analyzed by Southern blot to investigate the possibility of off target integration.

### 3.2.2 Southern blot analyses

Southern blot analysis was performed for PCR positive genotyped lines to investigate the possibility of off-locus integration of DNA during transformation. Figure 18 represents schematics of the Southern-blot in which the restriction fragments were generated using $B g l$ II.

The Southern blot analysis before Cre recombinase show mutant plants dekllg3: $E^{1481}$, dekllg3: $S^{1497}$ and dekllg3: $R^{1514}$ have the two expected restriction fragments of size 15.8 kbp and 5.0 kbp (Figure 19A) suggesting that these lines harbour a single copy insertion of DNA at the targeted locus. Mutant plants dekl-wtlg3 and dekllg3:E ${ }^{1477} Q^{1478}$ display several restriction fragments which suggest that these lines harbour multicopy integration of DNA and also suggests the possibility of off locus targeting of the vector (Figure 19A). Southern blot analysis for mutant plants after Cre recombinase removal of the resistance cassette show that the mutant plants dekl-wtlg3 and dekllg3: $E^{1481}$ have a single restriction fragment of size 18.8 kbp , the same size as the WT plant suggesting that these lines harbour a single copy integration of DNA at the locus (Figure 19B). However, several restriction fragments were detected in the mutant plants dekllg3: $E^{1477} Q^{1478}$ and dekllg3: $S^{1497}$ suggesting that these lines harbour off locus DNA integration (Figure 19B).


Figure 18. Schematics of southern blot strategy showing the expected restriction fragments for generated mutants (A) and WT and dekl $\Delta l g 3$ mutant (B) using BglII. The expected restriction fragments for generated mutants using 5' and 3' targeting probes are 5.0 kbp and 15.8 kbp , respectively. The expected restriction fragments for WT plant and deklalg3 mutant are 18.8 kbp and 18.2 kbp , respectively.


Figure 19. Southern blot analysis for generated mutants before (A) and after Cre recombinase removal of the resistance cassette (B). BglII was used to create restriction fragments. (A) The two expected restriction fragments of size 5.0 kbp and 15.8 kpb in the dekllg3: $E^{1481}$, dekllg3: $S^{1497}$ and dekllg3: $R^{1514}$ suggesting these mutants harbour a single integration of DNA at the locus, and several restriction fragments were detected in the mutant plants dekl-wtlg3 and dekllg3: $E^{1477} Q^{1478}$ suggesting these lines harbour multicopy DNA integration and possible off locus targeting of the vector. (B) A single restriction fragment of size 18.8 kpb in the dekl-wtlg3, and dekllg3: $E^{1481}$ same as the WT suggesting these mutants harbour a single copy integration of DNA at the locus and several restriction fragments were detected in the mutant plants $\operatorname{dek} \operatorname{llg} 3: E^{1477} Q^{1478}$, and dekllg3: $R^{1514}$ suggesting these lines harbour off locus integration. Mutant dekl $\Delta l g 3$ was used as negative control.

### 3.2.3 RT-PCR and cDNA sequencing

The DEK1 transcript from the mutant plants were analyzed by RT-PCR using primers PpLoop_Inverse SP_ and Ex30_R, which bind to DEK1 cDNA in positions flanking the targeting sequences, to verify the mutant transcripts. Figure 20 shows the gel picture of the cDNA products amplified from the various mutant plants (dek1-wtlg3, dekllg3:E ${ }^{1477} Q^{1478}$, dekllg3: $E^{1481}$, dekllg3: $S^{1497}$ ) in addition to WT with the expected size of approximately 4.6 kbp . This result shows that the mutant transcript was produced and the expected amplicon sizes.


Figure 20. Reverse transcriptase (RT) PCR analysis of WT plant, dekl-wtlg3, dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$, dek1lg3: $S^{1497}$ mutant plants. The expected amplicon size for WT is 4.6 kbp . The mutant plants displayed an amplicon of similar size. Negative control (NC) sample contains no template.

Subsequently, $D E K 1$ cDNA from all generated mutants were sequenced to verify production of mutated transcripts. Figure 21 show part of the DEK1 cDNA sequencing result with location of the various mutations marked "Conflict". The sequencing results show that the transcripts display the introduced mutations, in addition to proper splicing of the transcript in the dekl-wtlg3, dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$, dek1lg3: $S^{1497}$ mutants (Data not shown). However, DEK1 sequencing of cDNA in the mutant dekllg3: $R^{1514}$ as shown in Figure 22 revealed that intron 22 was not spliced out rather it was retained in the transcript.

Examination of the sequenced data also shows that the remained intron 22 in the transcript introduced a frame shift leading to a stop codon in the transcript.


Figure 21. Part of the DEKl transcript sequencing confirming the presence of introduced mutations in the transcripts. (A) Part of dekllg3: $E^{1477} Q^{1478}$ cDNA sequencing showing substituted nucleotides (CAGCA) marked "Conflict". (B) Part of dekllg3: $E^{1481}$ cDNA sequencing showing substituted nucleotide (C) marked "Conflict". (C) Part of dekllg3: $\mathrm{S}^{1497}$ cDNA sequencing showing substituted nucleotide (G) marked "Conflict".

```
Exon 22
ACCGGAGTCCATGGAACTGTTTGTGTGATGGACAATGAGCCTCGTAATAGTGGTCGCTGCTGTGGACTTATTGACCCAAGTGTTTGCGG
```



```
Exon 22
GAGCCAGAAAGTGAGCTTTTCTGCAGCAGTGATGATTCAACCAGATTCTGGACCAGTCTGCATATTGGGGGTTGAAGCTCACAATAAAA
```



```
Exon 22
AATGTTTGGAATTTCTAGT CGCGGGTGCTGAGCAGGGTTTAGAAGCAGGGCAAGTTGGACTGCGGCTTGTATCGAAAGGAGCTGGCCAG
K
```



```
TCAACACATAATAGAGAGTGCTTTATCGGACACACCTGTGTAGCTGATGGAGCCTGATTTGACTCGAACACATTCTTAGCCGACAGAAA
S
```



```
|ntron 22
TACACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACAAATGCCTCAACCTCTCCACTTTTGAATGCAGGTGGCACTCACTTACT
```



```
Exon 23
ATAACGGTTGATGCTTCTACTGGCGAGGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGTGACTTGTTGCTGCTGGG
```



```
Exon 23
AGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTGGCATCAGGCCGCCTATGGATCTTGATGCCTTTGGTTCGTTCCGATAGTG
```



```
Exon 23
AAGGAGCGGAATCCAAAATGCATGCCATGGATGTTTTCATGTGGGGTCGCTGTTT
```



Figure 22. DEK1 sequence of cDNA in the mutant dekllg3: $R^{1514}$. The introduced mutations (AG to GC ) at the end of exon 22 interfere with splicing of the transcript, leaving intron 22 which introduces a frame shift leading to a stop codon and subsequently result in absence of active DEK1 protein.

In summary, the molecular characterization techniques used in this study, namely PCRbased genotyping, Southern blotting, RT-PCR and sequencing confirmed generation of dekl-wtlg3 harbouring WT sequence, and the dekllg3:E $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$, dekllg3: $S^{1497}$ mutant plants harbouring the respective substituted nucleotides. Also, molecular characterization suggests that dekl-wtlg3 and dekllg3:E ${ }^{1481}$ mutant plants harbour a single integration of DNA at the locus while dekllg3: $E^{1477} Q^{1478}$ and dek1lg3: $S^{1497}$ mutant plants harbours off locus integration of DNA. Also DEK1 cDNA sequencing confirmed that intron 22 was not spliced out in the dekllg3: $R^{1514}$ mutant plant.

### 3.3 Phenotypic characterization

All mutants for phenotypic characterization were grown side by side.

To investigate the functionality of the complementation assay, the WT DEK1-LG3 sequence was re-targeted to the $D E K 1 \Delta L G 3$ locus. The resulting mutant, dekl-wtlg3 completely reverted to the WT phenotype with well developed gametophore and expanded phyllids (Figure 23 C and 24 C ). This result confirms that the assay and the background used for transformation are working properly.
3.3.1 Mutant plants dekllg3: $E^{1477} Q^{1478}$, dek1lg3: $E^{1481}$, and dekllg3:S $\mathrm{S}^{1497}$ display WT gametophore development and phyllid morphology

In the dekllg3: $E^{1477} Q^{1478}$ mutant two conserved amino acids residues glutamic acid (E1477) and glutamine (Q1478) were mutated to alanine (Ala) while in the dekllg3:E ${ }^{1481}$ and dekllg3: $S^{1497}$ mutant plants a single amino acid, glutamic acid (E1481) and serine (S1497) were mutated to alanine (Ala), respectively.

Examination of gametophores morphology in the dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dekllg3: ${ }^{1497}$ mutants (Figure 23) show that the WT phenotype was restored in these mutants. Gametophore morphology in mutants appears the same as WT gametophore with well developed and expanded phyllids compared to completely different gametophore morphology in the dekl $\Delta \lg 3$ mutant, which harbour small and narrow phyllids. This result suggests that the amino acids E1477, Q1478, E1481 and S1497 are not important for $P$. patens gametophores development.

dekllg3:E1477Q1478



dekllg3:S1497


Figure 23. Gametophore morphology in dekl $\Delta \lg 3$, WT and generated mutants dekl-wtlg3, dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$, and dekllg3: ${ }^{1497}$. The dek10lg3 mutant plant gametophore with narrow and compressed phyllids, WT plant gametophore with well developed and expanded phyllids, dekl-wtlg3 retargeted with WT DEK1-LG3, dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dekllg3: ${ }^{1497}$ mutant plants gametophore display WT phenotype with well developed and expanded phyllids after re-targeting mutagenized versions of DEK1-LG3. All presented gametophore are 3 weeks old except dekldg3 mutant gametophore obtained from (Johansen W.).

To investigate phyllid morphology, phyllids were dissected from the middle part of the gametophore and analyzed by dissecting microscopy. Analysis of phyllid morphology (Figure 24) shows that the phyllids from dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dekllg3:S ${ }^{1497}$ mutants appeared as the WT phyllid with expanded phyllids having clear marginal serration, small cells, long midrib and sharp tip compared to the dekl $\Delta \lg 3$ mutant phyllid which is small, narrow, lacking marginal serration, having short midrib, blunt tip and large cells. This result suggests that the mutated residues are not important for shaping the phyllids.


Figure 24. Phyllids morphology in dekl $\Delta \lg 3$ mutant, WT and generated mutants. The dekl $\Delta \lg 3$ mutant phyllid which is small and narrow, WT phyllid showing normal morphology, dekl-wtlg3 phyllid re-targeted with WT DEK1-LG3 revert to WT, dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dekllg3: $S^{1497}$ mutant phyllids display WT phenotype by re-targeting mutagenized version of DEK1-LG3. The deklalg3 mutant phyllid obtained from (Johansen W.). All presented phyllids are 3 weeks old except dekldlg3 mutant phyllid.

### 3.3.2 Protonemata growth and spreading is not affected in mutants

 dekllg3: $E^{1477} Q^{1478}$, dek1lg3: $E^{1481}$ and dek1lg3: $S^{1497}$Development of protonema tissue was analyzed by dissecting microscopy to investigate the growth and spreading of protonema in mutant plants. Analysis of protonema growth in all generated mutants, namely dekl-wtlg3, dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dekllg3:S ${ }^{1497}$ show that protonema is spreading similar to WT (Figure 25) suggesting that the mutated residues are not important for the growth and spreading of protonemata tissue. However, there is a difference in the spreading of protonemata tissue between generated mutants and the dekl $\Delta \lg 3$ mutant plant (Figure 25). In generated mutants the protonema is spreading much more compared to dekl $\operatorname{llg} 3$ mutant where the protonema is spreading less.


Figure 25. Growth and spreading of protonema tissue in WT, dekl $\lg 3$ and generated mutants. WT tissue with well spreading protonema, deklalg3 tissue showing less spreading protonema, dekl-wtlg3, dek1lg3:E1477Q1478, dekllg3: $E^{1481}$ and dek1lg3: $\mathrm{S}^{1497}$ protonema tissue growing and spreading in the same pattern as in WT. All presented colony are 2 weeks old.

### 3.3.3 Mutant dekllg3: $R^{1514}$ has arrested bud development

Investigation of the mutant dekllg3: $R^{1514}$ show that the mutant display the $\Delta$ dekl mutant phenotype characterized by the lack of gametophore (Perroud et al. 2014). Closer examination of the bud initial development in the $\operatorname{dekllg} 3: R^{1514}$ mutant shows that there is no difference in the first asymmetrical division of the bud initial cell between the WT (Figure 26A, arrow) and dekllg3: $R^{1514}$ mutant (Figure 26D, arrow). However, the first cell division plane of the bud apical cell is clearly different between WT (Figure 26B, arrow) and dekllg3: $R^{1514}$ (Figure 26E, arrow) where in the WT the first cell division of the bud apical cell occurs perpendicular to the first asymmetrical division, new cell wall plane in the dekllg3: $R^{1514}$ mutant occurs at random positions. Thus, due to misorientation of cell wall in the first division of the bud apical cell, mutant bud fails to expand as in WT (Figure 26C), which subsequently leads to the arrest in bud development (Figure 26F). This result suggests that the mutant dekllg3: $R^{1514}$ is not producing a functional DEK1 protein.


Figure 26 Bud development in dekllg3: $R^{1514}$ mutant. (A) Wild-type bud development at two-cell stage, the apical and basal cells, (B) First division of the bud apical cell (arrow) which occur in perpendicular to the prevision cell wall, (C) Globular WT bud showing seven cells in a three-dimension organization, (D) dekllg3: ${ }^{1514}$ mutant bud development at twocell stage, the apical and basal cells, (E) First division of the bud apical cell (arrow) in dekllg3:R $R^{1514}$ mutant which occurs in random position rather than perpendicular to the first division, (F) dekllg3:R ${ }^{1514}$ arrested bud development. Figures A, B and C; Scale bar $50 \mu \mathrm{~m}$ and are modified from (Perroud et al. 2014).

### 3.3.4 Sporophyte development

All generated mutants were subjected to sporophyte growth conditions as described by (Perroud et al. 2011), to investigate the effects of mutated residues on gametangia and sporophyte development. However, due to time frame since induction until observation of sporophytes (about 2 month), sporophytes development data were not available to be included in this thesis.

## 4. Discussion

The aim of this study was to assess the importance of conserved DEK1-LG3 residues for DEK1 function in Physcomitrella patens. First, conserved and functionally important residues were predicted by bioinformatic analyses. Secondly, a series of $P$. patens mutants carrying site-specific mutations of the predicted functional important DEK1-LG3 residues were created. The resulting mutants were phenotypically characterized to assess the importance of these amino acids for DEK1 function. The result of the study was the generation of four different dekllg3 mutant lines: three mutants each carrying a single amino acid substitution to the amino acid alanine (Ala), namely dekllg3: $E^{1481}$, dekllg3: $S^{1497}$, dekllg3: $R^{1514}$ and one mutant carrying double amino acid substitutions to Ala, namely dekllg3: $E^{1477} Q^{1478}$.

## Acidic and polar residues are predicted to be functionally conserved in land plant DEK1-LG3 domain

Bioinformatics analysis predicted acidic residues E1477, E1481, D1577 and E1579, polar residues Q1478, S1497, S1576 and S1578, basic residues R1514, R1575 and non-polar G1574 as functionally important in DEK1-LG3 domain. These residues were predicted by ConSurf server which estimates the evolutionary conservation of residue according to its phylogenetic relation with other homologous sequence by employing empirical Bayesian method or a Maximum likelihood method (Armon et al. 2001; Landau et al. 2005). These predicted amino acids are highly conserved in land plant lineage which suggests that they may be involved in an important function in DEK1.

Phyllids morphology is not affected in dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dekllg3: $S^{1497}$ mutants

The functionality of the complementation assay was confirmed by re-targeting the WT DEK1-LG3 sequence into $D E K 1 \Delta L G 3$ locus and the mutant was complemented and completely reverted to the WT phenotype with well developed gametophores and expanded phyllids. All generated mutant plants before Cre recombinase showed $\Delta$ dekl phenotype
characterized by the lack of gametophore. The observed $\Delta$ dekl mutant phenotype was a result of absence of active calpain protein due to the insertion of the resistance cassette in an intron which probably disturbs splicing of the primary transcript and subsequently leads to the observed null phenotype. After Cre mediated excision removal of the resistance cassette, all mutants; dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dek1lg3: $S^{1497}$ except mutant dekllg3: $R^{1514}$ showed expanded phyllids indistinguishable from WT. Also the study of protonemata growth suggests there is no observable difference in the growth of protonemata between WT and generated mutants. These results suggest that these amino acids do not have an important function for protonemata growth or gametophores development. However, this study cannot rule out the possibility of importance of these amino acids in the sporophyte generation as the sporophyte development data were not available.

The conservation of amino acids throughout the period of evolution implies their importance, because slowly evolving amino acids in proteins are often very important either for structural or functional role (Celniker et al. 2013). In case where conserved residues suggested being not important can sometimes explained by the nature of amino acids substitution, whereby non-conservative substitution have high possibility of displaying the effect than conservative substitution. In this study, alanine substitution of conserved residues was carried out to study function of conserved residues, but study found that the mutated residues are not important for gametophores development and phyllids morphology. A study by (Baumberger and Baulcombe 2005) shows that a completely conserved residue can also turn out not being important. Baumberger study showed that a completely conserved residue (G758) in AGO1, an RNA-binding protein involved in RNA silencing, was mutated to serine and transiently expressed in Nicotiana benthamiana; however, an AGO1 protein was still able to mediate in vitro cleavage of PHAVOLUTA RNA as in WT plant. However, it is interestingly that sometimes even a single amino acid substitution can cause a change in phenotype as shown in the study by (Roeder et al. 2012), when A. thaliana dekl-4 mutant created by a single base substitution leads to the phenotype where sepals lack giant cells.

In this study, Consurf server was used to predict functionally important residues. The Consurf server predicts evolutionary conservation of residues based on the phylogenetic relations between homologous sequences (Armon et al. 2001). The accuracy of the server in prediction of functionally and structurally conserved residues might also have contributed to
the observed results. However its robustness of using statistical data in the predictions of evolutionary rate has shown to give the server accuracy and confidence in estimation of evolutionary rate (Celniker et al. 2013). Moreover the efficiency of this server in prediction of functional regions has been shown to be successful previously in revealing two evolutionarily conserved regions at the ends of cytoplasmic membrane protein TatC that were proposed to mediate interaction of TatC with some other proteins (Rollauer et al. 2012). In addition, the accuracy of this server was also shown to be successful in mapping the patches of conserved residues onto the surface of well known domains, the Src homology 2 (SH2), a phosphotyrosine binding module involved in signal transduction and the phosphotyrosine binding domain (PTB) involved in peptide binding and recognition (Armon et al. 2001). However besides all the successes shown by the server, studying of the functionally important residues in the core or on the surface of a protein can only be accurately identified when its 3D structure is known (Montelione and Anderson 1999).

## The introduced mutations in dek1lg3: $R^{1514}$ disturbs DEK1 transcript processing

In the mutant dekllg3: $R^{1514}$ two mutations were introduced at the end of exon 22 by substituting nucleotides AG to GC. After Cre mediated excision, this mutant still displayed the $\Delta$ dekl mutant phenotype, with lack of gametophore (Perroud et al. 2014). The mutant was phenotypically investigated and found to resemble the $\Delta d e k l$ mutant phenotype; the first division of the bud apical cell was not orienting perpendicular to the previous cell division. This phenotype suggests that the mutant do not produce an active DEK1 protein. Sequencing of the DEK1 cDNA in this mutant revealed that the mutant did not correctly process the DEK1 transcript because intron 22 was not spliced out. Failure to splice out intron 22 is suggested to be the result of the substituted nucleotides (AG to GC) which subsequently cause disturbance of splicing signals as the nucleotides are located at the exon-intron junction. Splicing errors caused by the introduced mutation is in agreement with studies by (Zorio and Blumenthal 1999; Blencowe 2000; Black 2003) when they reported that nucleotides AG at the exon-intron junction is important to bind splicing factor U2AF (Auxilliary factor), a subunit of U2 (small nuclear ribonucleoprotein (snRNP)) which is important to coordinate splicing process. The rate of intron retention has shown to be high in plants (30\%) compared to (10\%) reports in humans (Ner-Gaon et al. 2004). In order for an
intron to be excised from pre-mRNA special splicing signals that define exon-intron boundaries are required (Cartegni et al. 2002), these signals include the 5 ' and 3 ' splice sites, the branching point and the polypyrimidine tract which is located upstream of 3 ' splicing site. Therefore, the substituted nucleotides AG are suggested to be important splicing signals special for coordinating proper splicing of pre-mRNA.

The introduced mutations in the vector pBHRF-JI-LG3 $\mathrm{G}^{1574} \mathrm{R}^{1575} \mathrm{~S}^{1576} \mathrm{D}^{1577} \mathrm{~S}^{1578} \mathrm{E}^{1579}$ is suggested to be lethal in $P$. patens

To make construct pBHRF_JI_LG3G ${ }^{1574} \mathrm{R}^{1575} \mathrm{~S}^{1576} \mathrm{D}^{1577} \mathrm{~S}^{1578} \mathrm{E}^{1579}$, thirteen (13) mutations were introduced to exon 23 . Generated construct was re-targeted into the $D E K 1 \Delta L G 3$ locus in parallel with all other constructs. However, after several rounds of transformation no stable transformants were obtained. This observation suggests that the introduced mutation is toxic to the protoplasts allowing no growth and death of the protoplasts. The same observation was reported by (Perroud et al. 2014) when expressing A. thaliana Calpain cDNA and Zea mays Calpain cDNA to complement the P. patens $\Delta$ dekl mutant phenotype. Perroud et al reported the failure of complementation of either gametophore formation or overbudding phenotype after several rounds of transformation.

## Southern blot analyses suggests off locus integration

In this study, southern blot analysis of the mutants before and after Cre recombinase shows conflicting results. Southern blot before Cre recombinase shows two expected restriction fragments in the mutant dekllg3: $S^{1497}$ suggesting that the mutant harbour a single integration of DNA at the targeted locus while Southern blot after Cre for the same mutant showed several restriction fragments suggesting that the mutant harbours off locus integration of DNA. Based on Southern blot for this mutant, there is a conflict between Southern blot before and after Cre recombinase. However, this is difficult to confirm if there is off locus integration or not, but if there is off locus integration, it is suggested that the DEK1 activity is not affected because the mutant displays WT phenotype.

## Predicted DEK1-LG3 domain 3D structure resembles lectin and pentraxin crystal structures fold

To predict DEK1-LG3 domain 3D structure, the DEK1-LG3 sequence (10618-11230; XP 001774206.1 ) was submitted to the Phyre2 fold recognition server. The predicted structure of DEK1-LG3 domain displays a $\beta$-sandwich folds which is formed by two ant-parallel $10 \beta$ sheets, $2 \alpha$-helix and loop region. Despite low sequence similarity (10-15 \%) to legume lectins and pentraxins, LG has shown similar fold of $\beta$-sandwich to these classes of protein (Rudenko et al. 2001). The sub-family legume lectins and pentraxin proteins together with Laminin G-like module are all found in the super family Concanavalin A-like domain (ConA) which is characterized by sandwich fold of 12-14 $\beta$-strands in two sheets. Among the studied group of lectin protein is ConM from the seeds of leguminous plant Canavalia maritima which has been shown to have affinity to carbohydrates including mannose and glucose (Ramos et al. 1996). The study of crystal structure of this group of lectin (ConM) has revealed interaction of this group of protein with some active and inactive form of Indole-3- acetic acid (IAA) (Delatorre et al. 2013). Furthermore Delatorre et al reveal that this complex interaction between ConM-IAA might be important in restricting the availability of this phytohormone to the cell to protect its inhibitory activity during the early stages of germination. However, ConM residues shown to be involved in interaction with IAA, Ser108 and Asn131 (Delatorre et al. 2013) are not conserved in DEK1-LG3 domain.

On the other hand, the dek1 $1 \Delta \lg 3$ mutant phenotype shows phyllids morphology that resembles the phenotype of $P$. patens auxin mutants. The $P$. patens pinA pinB disruptant mutant has shown phenotype with irregular shaped leaves that are longer and thinner than WT plant (Bennett et al. 2014) which is similar to the phenotype observed in deklalg3 mutant plant. Moreover, the knockout mutant of SHORT INTERNODE/STYLISH (SHI/STY) family genes in P. Patens, the Ppshi1 and Ppshi2 genes has been shown to have effects on reproductive organs development similar to the defects observed in deklalg3 mutant (Landberg et al. 2013). Landberg et al shows that the Ppshi1 and Ppshi2 mutants have defects in the formation of the archegonia canal, the arrested development of egg cell and unopened apex throughout the development. Interestingly it was also suggested that phytohormone auxin interact with the Ppshi1 gene, in which active form of auxin is required by Ppshil gene for proper development of reproductive organs.

Taking into account the ConM-IAA interaction, with the fact that Laminin G-like module belongs to the same super family of Concanavalin A-like domain with $\beta$-sandwich fold and the similarity in dekl $\Delta \lg 3$ mutant phenotype to that of auxin mutants and the SHI/STY mutants it can also be speculated that DEK1-LG3 is involved in direct or indirect interaction with IAA.

Moreover, some other known crystal structures of LG3 domain have been shown to be involved in various functions including the LG3 of endorepellin, a calcium-dependent domain which is implicated in endothelia cell actin stress fibre and focal adhesion (Bix et al. 2004). However, the structure-function relationship prediction based on the jellyroll fold of the other available LG domains has been shown to be difficult due to differences in ligand interaction in each LG domain (Le et al. 2011).

## 5. Conclusion

The purpose of this study was to assess the importance of conserved DEK1-LG3 residues for DEK1 function in Physcomitrella patens. In the course of this study, four plasmid vector constructs harbouring mutations of the predicted functionally residues were successfully generated and re-targeted into $D E K 1 \Delta L G 3$ locus. Phenotypic characterization of all generated mutant plants, namely dekllg3: $E^{1477} Q^{1478}$, dekllg3: $E^{1481}$ and dekllg3: $S^{1497}$ suggest that these amino acids have no important function for DEK1 function during protonemata growth or gametophore development.

## 6. Further work

In this study, mutant plants dekllg3: $E^{1477} Q^{1478}$, dek1lg3: $E^{1481}$ and dek1lg3: $S^{1497}$ were generated and this study suggests that these amino acids have no important function for DEK1 function during protonemata growth or gametophore development. Future study should subject all the mutants into the sporulation growth conditions to determine whether these mutations have effect in gametangia and sporophyte development.

In the present study, amino acids E1477, Q1478, E1481 and S1497 were mutated in DEK1LG3 domain but this study suggest these residues have no important function for DEK1 function during protonemata growth or gametophore development. Further study needs to try to determine effects of combined mutation of these amino acids.

In this study, the Consurf server predicted several functionally/structural important residues in DEK1-LG3 domain, however only five (5) functionally predicted residues; E1477, Q1478, E1481, S1497 and R1514 have been addressed in this study. Future study needs also to focus on studying the functions of other predicted functionally/structurally conserved residues.

## 7. References

Armon A, Graur D, Ben-Tal N. 2001. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Journal of molecular biology 307(1): 447-463.
Baumberger N, Baulcombe D. 2005. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America 102(33): 1192811933.

Beck K, Hunter I, Engel J. 1990. Structure and function of laminin: anatomy of a multidomain glycoprotein. The FASEB journal 4(2): 148-160.
Becker B, Marin B. 2009. Streptophyte algae and the origin of embryophytes. Annals of Botany 103(7): 999-1004.
Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, Dennis RJ, O'Connor D, Wang XY, White CD. 2014. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Current Biology 24(23): 2776-2785.
Bix G, Fu J, Gonzalez EM, Macro L, Barker A, Campbell S, Zutter MM, Santoro SA, Kim JK, Höök M. 2004. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through $\alpha 2 \beta 1$ integrin. The Journal of cell biology 166(1): 97-109.
Black DL. 2003. Mechanisms of alternative pre-messenger RNA splicing. Annual review of biochemistry 72(1): 291-336.
Blencowe BJ. 2000. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends in biochemical sciences 25(3): 106-110.
Branca D. 2004. Calpain-related diseases. Biochemical and biophysical research communications 322(4): 1098-1104.
Britt AB, May GD. 2003. Re-engineering plant gene targeting. Trends in plant science 8(2): 90-95.
Campbell R, Davies P. 2012. Structurefunction relationships in calpains1. Biochemical Journal 447(3): 335.
Cartegni L, Chew SL, Krainer AR. 2002. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Reviews Genetics 3(4): 285-298.
Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, Pupko T, Ben-Tal N. 2013. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Israel Journal of Chemistry 53(3-4): 199-206.
Cove D, Bezanilla M, Harries P, Quatrano R. 2006. Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57: 497-520.
Cove DJ, Knight CD. 1993. The moss Physcomitrella patens, a model system with potential for the study of plant reproduction. The Plant Cell 5(10): 1483.
Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS. 2009. The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harbor Protocols 2009(2): pdb. emo115.
Croall DE, Ersfeld K. 2007. The calpains: modular designs and functional diversity. Genome Biol 8(6): 218.
Delatorre P, Silva-Filho JC, Rocha BAM, Santi-Gadelha T, da Nóbrega RB, Gadelha CAA, do Nascimento KS, Nagano CS, Sampaio AH, Cavada BS. 2013. Interactions between indole-3-acetic acid (IAA) with a lectin from Canavalia maritima seeds reveal a new function for lectins in plant physiology. Biochimie 95(9): 1697-1703.

Demko V, Perroud P-F, Johansen W, Delwiche CF, Cooper ED, Remme P, Ako AE, Kugler KG, Mayer KF, Quatrano R. 2014. Genetic analysis of DEFECTIVE KERNEL1 loop function in three-dimensional body patterning in Physcomitrella patens. Plant physiology 166(2): 903-919.
Emsley J, White HE, O'Hara BP, Oliva G, Srinivasan N, Tickle IJ, Blundell TL, Pepys MB, Wood SP. 1994. Structure of pentameric human serum amyloid P component. Nature 367(6461): 338-345.
Finet C, Jaillais Y. 2012. Auxology: when auxin meets plant evo-devo. Developmental biology 369(1): 19-31.
Frank W, Decker E, Reski R. 2005. Molecular tools to study Physcomitrella patens. Plant Biology 7(3): 220-227.
Graham LE, Cook ME, Busse JS. 2000. The origin of plants: body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences 97(9): 4535-4540.
Grynspan F, Griffin W, Cataldo A, Katayama S, Nixon R. 1997. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease. Brain research 763(2): 145-158.
Guroff G. 1964. A neutral, calcium-activated proteinase from the soluble fraction of rat brain. The Journal of biological chemistry 239(1): 149-155.
Harrison CJ, Roeder AH, Meyerowitz EM, Langdale JA. 2009. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Current Biology 19(6): 461-471.
Heidstra R. 2007. Asymmetric cell division in plant development. In Asymmetric Cell Division, pp. 1-37. Springer.
Hepworth SR, Pautot VA. 2015. Beyond the divide: boundaries for patterning and stem cell regulation in plants. Frontiers in plant science 6.
Hohe A, Rensing S, Mildner M, Lang D, Reski R. 2002. Day Length and Temperature Strongly Influence Sexual Reproduction and Expression of a Novel MADS-Box Gene in the Moss Physcomitrella patens. Plant Biology 4(5): 595-602.
Hohe A, Reski R. 2003. A tool for understanding homologous recombination in plants. Plant Cell Reports 21(12): 1135-1142.
Huang Y, Wang KKW. 2001. The calpain family and human disease. Trends in Molecular Medicine 7(8): 355-362.
Johnson KL, Degnan KA, Ross Walker J, Ingram GC. 2005. AtDEK1 is essential for specification of embryonic epidermal cell fate. The Plant Journal 44(1): 114-127.
Joseph D, Baker M. 1992. Sex hormone-binding globulin, androgen-binding protein, and vitamin K-dependent protein $S$ are homologous to laminin A, merosin, and Drosophila crumbs protein. The FASEB journal 6(7): 2477-2481.
Kamisugi Y, Cuming AC, Cove DJ. 2005. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic acids research 33(19): e173e173.
Kenrick P, Wellman CH, Schneider H, Edgecombe GD. 2012. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367(1588): 519536.

Kofuji R, Hasebe M. 2014. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Current opinion in plant biology 17: 13-21.
Kuwayama H. 2012. Enhancement of Homologous Recombination Efficiency by Homologous Oligonucleotides. INTECH Open Access Publisher.

Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. 2005. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic acids research 33(suppl 2): W299-W302.
Landberg K, Pederson ER, Viaene T, Bozorg B, Friml J, Jönsson H, Thelander M, Sundberg E. 2013. The moss Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Plant physiology 162(3): 1406-1419.
Le BV, Kim H, Choi J, Kim J-H, Hahn M-J, Lee C, Kim KK, Hwang H-Y. 2011. Crystal structure of the LG3 domain of endorepellin, an angiogenesis inhibitor. Journal of molecular biology 414(2): 231-242.
Liang Z, Demko V, Wilson RC, Johnson KA, Ahmad R, Perroud PF, Quatrano R, Zhao S, Shalchian-Tabrizi K, Otegui MS. 2013. The catalytic domain CysPc of the DEK1 calpain is functionally conserved in land plants. The Plant Journal 75(5): 742-754.
Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen O-A. 2002. The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proceedings of the National Academy of Sciences 99(8): 5460-5465.
Margis R, Margis-Pinheiro M. 2003. Phytocalpains: orthologous calcium-dependent cysteine proteinases. Trends in plant science 8(2): 58-62.
Markmann-Mulisch U, Hadi MZ, Koepchen K, Alonso JC, Russo VE, Schell J, Reiss B. 2002. The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms. Proceedings of the National Academy of Sciences 99(5): 29592964.

Menand B, Calder G, Dolan L. 2007. Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. Journal of experimental botany 58(7): 1843-1849.
Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL. 2002. A Ca 2+ switch aligns the active site of calpain. Cell 108(5): 649-660.
Montelione GT, Anderson S. 1999. Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol 6(1): 11-12.
Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R. 2004. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. The Plant Journal 39(6): 877-885.
Niklas KJ. 2000. The evolution of plant body plans-a biomechanical perspective. Annals of Botany 85(4): 411-438.
Olsen O-A, Perroud P-F, Johansen W, Demko V. 2015. DEK1; missing piece in puzzle of plant development. Trends in plant science 20(2): 70-71.
Ono Y, Sorimachi H. 2012. Calpains—An elaborate proteolytic system. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1824(1): 224-236.
Perroud PF, Cove DJ, Quatrano RS, McDaniel SF. 2011. An experimental method to facilitate the identification of hybrid sporophytes in the moss Physcomitrella patens using fluorescent tagged lines. New Phytologist 191(1): 301-306.
Perroud PF, Demko V, Johansen W, Wilson RC, Olsen OA, Quatrano RS. 2014. Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens. New Phytologist 203(3): 794-804.
Platt AR, Woodhall RW, George AL. 2007. Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. BioTechniques 43(1): 58.

Prigge MJ, Bezanilla M. 2010. Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137(21): 3535-3543.
Puchta H. 2002. Gene replacement by homologous recombination in plants. In Functional Genomics, pp. 173-182. Springer.
Ramos JA, Zenser N, Leyser O, Callis J. 2001. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. The Plant Cell 13(10): 2349-2360.
Ramos MV, Moreira RdA, Oliveira JTA, Cavada BS, Rougé P. 1996. The carbohydratebinding specificity and molecular modelling of Canavalia maritima and Dioclea grandiflora lectins. Memórias do Instituto Oswaldo Cruz 91(6): 761-766.
Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859): 64-69.
Roeder AH, Cunha A, Ohno CK, Meyerowitz EM. 2012. Cell cycle regulates cell type in the Arabidopsis sepal. Development 139(23): 4416-4427.
Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F, Johnson S, Krehenbrink M, Liu S-M, Lukey MJ, Marcoux J. 2012. Structure of the TatC core of the twinarginine protein transport system. Nature 492(7428): 210-214.
Rudenko G, Hohenester E, Muller YA. 2001. LG/LNS domains: multiple functions-one business end? Trends in biochemical sciences 26(6): 363-368.
Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M. 2003. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development 130(20): 4835-4846.
Sato K, Saito Y, Kawashima S. 1995. Identification and Characterization of Membrane-Bound Calpains in Clathrin-Coated Vesicles from Bovine Brain. European Journal of Biochemistry 230(1): 25-31.
Schaefer DG. 2001. Gene targeting in Physcomitrella patens. Current opinion in plant biology 4(2): 143-150.
Schaefer DG, Zrÿd JP. 1997. Efficient gene targeting in the moss Physcomitrella patens. The Plant Journal 11(6): 1195-1206.
Shrive AK, Burns I, Chou H-T, Stahlberg H, Armstrong PB, Greenhough TJ. 2009. Crystal structures of Limulus SAP-like pentraxin reveal two molecular aggregations. Journal of molecular biology 386(5): 1240-1254.
Smith LG, Hake S, Sylvester AW. 1996. The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122(2): 481-489.
Strepp R, Scholz S, Kruse S, Speth V, Reski R. 1998. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proceedings of the National Academy of Sciences 95(8): 43684373.

Suzuki K, Hata S, Kawabata Y, Sorimachi H. 2004. Structure, activation, and biology of calpain. Diabetes 53(suppl 1): S12-S18.
Tanahashi T, Sumikawa N, Kato M, Hasebe M. 2005. Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development 132(7): 1727-1736.
Theißen G, Münster T, Henschel K. 2001. Why don't mosses flower? New Phytologist 150(1): 1-5.
Tian Q, Olsen L, Sun B, Lid SE, Brown RC, Lemmon BE, Fosnes K, Gruis DF, OpsahlSorteberg H-G, Otegui MS. 2007. Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for
aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. The Plant Cell 19(10): 3127-3145.
Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E. 2000. Structure and function of laminin LG modules. Matrix biology 19(4): 309-317.
Tompa P, Emori Y, Sorimachi H, Suzuki K, Friedrich P. 2001. Domain III of calpain is a Ca 2+-regulated phospholipid-binding domain. Biochemical and biophysical research communications 280(5): 1333-1339.
Trouiller B, Schaefer DG, Charlot F, Nogue F. 2006. MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens. Nucleic acids research 34(1): 232-242.
Ushkaryov YA, Petrenko AG, Geppert M, Siidhof TC. 1992. Neurexins: Synaptic Cell Surface Proteins Related to the. Science 257: 3JULY.
Wang C, Barry JK, Min Z, Tordsen G, Rao AG, Olsen O-A. 2003. The calpain domain of the maize DEK1 protein contains the conserved catalytic triad and functions as a cysteine proteinase. Journal of Biological Chemistry 278(36): 34467-34474.
Waters ER. 2003. Molecular adaptation and the origin of land plants. Molecular phylogenetics and evolution 29(3): 456-463.
Yruela I. 2015. Plant development regulation: Overview and perspectives. Journal of plant physiology 182: 62-78.
Zhao S, Liang Z, Demko V, Wilson R, Johansen W, Olsen O-A, Shalchian-Tabrizi K. 2012. Massive expansion of the calpain gene family in unicellular eukaryotes. BMC evolutionary biology 12(1): 193.
Zorio DA, Blumenthal T. 1999. Both subunits of U2AF recognize the $3^{\prime}$ splice site in Caenorhabditis elegans. Nature 402(6763): 835-838.

## Appendices

Appendix 1: Land plant DEK1 sequences and their accession number used in this study

| Species | Accession |
| :---: | :---: |
| Aegilops tauschii | EMT33050.1 ${ }^{\text {A }}$ |
| Amborella trichopoda | XP_006856301.1 ${ }^{\text {A }}$ |
| Aquilegia coerulea | Aquca_009_00510.1 ${ }^{\text {B }}$ |
| Arabidopsis lyrata | XP_002894501.1 ${ }^{\text {A }}$ |
| Arabidopsis thaliana | NP_175932.2 ${ }^{\text {A }}$ |
| Beta vulgaris | XP_010673464.1 ${ }^{\text {A }}$ |
| Brachypodium distachyon | XP_003570209.1 ${ }^{\text {A }}$ |
| Brassica napus_A | CDY33052.1 ${ }^{\text {A }}$ |
| Brassica napus_B | XP_013706153.1 ${ }^{\text {A }}$ |
| Brassica rapa | XP_009147506.1 ${ }^{\text {A }}$ |
| Camelina sativa_B | XP_010501149.1 ${ }^{\text {A }}$ |
| Camelina sativa_C | XP_010501148.1 ${ }^{\text {A }}$ |
| Camptotheca acuminata | GACF01058706.1 ${ }^{\text {A }}$ |
| Cannabis sativ | JP475882.1 ${ }^{\text {A }}$ |
| Capsella rubella | XP_006303131.1 ${ }^{\text {A }}$ |
| Capsicum annuит | JW063188.1 ${ }^{\text {A }}$ |
| Carica papaya | evm.TU.supercontig_119.40 ${ }^{\text {B }}$ |
| Ceratodon purpureus | SRS $140252^{\text {C }}$ |
| Chorispora bungeana | KA022282.1 ${ }^{\text {A }}$ |
| Cicer arietinum | XP_004504206.1 ${ }^{\text {A }}$ |
| Citrus clementina | XP_006445587.1 ${ }^{\text {A }}$ |


| Citrus sinensis | XP_006488938.1 ${ }^{\text {A }}$ |
| :---: | :---: |
| Coffea canephora | CDP18596.1 ${ }^{\text {A }}$ |
| Costus pictus | JW231520.1 ${ }^{\text {A }}$ |
| Cucumis melo | XP_008451014.1 ${ }^{\text {A }}$ |
| Cucumis sativus | Cucsa.142290.1 ${ }^{\text {B }}$ |
| Curcuma longa | JW811525.1 ${ }^{\text {A }}$ |
| Elaeis guineensis_A | XP_010936786.1 ${ }^{\text {A }}$ |
| Elaeis guineensis_B | XP_010940022.1 ${ }^{\text {A }}$ |
| Erythranthe guttata_A | EYU25999.1 ${ }^{\text {A }}$ |
| Erythranthe guttata_B | EYU39270.1 ${ }^{\text {A }}$ |
| Eucalyptus grandis | XP_010032857.1 ${ }^{\text {A }}$ |
| Eutrema salsugineum | XP_006392645.1 ${ }^{\text {A }}$ |
| Fragaria vesca | XP_004294954.1 ${ }^{\text {A }}$ |
| Genlisea aurea | EPS66151.1 ${ }^{\text {A }}$ |
| Glycine max_A | XP_003532791.1 ${ }^{\text {A }}$ |
| Glycine max_B | Glyma05g 30080 ${ }^{\text {B }}$ |
| Glycine soja_A | KHN06483.1 ${ }^{\text {A }}$ |
| Glycine soja_B | KHN48081.1 ${ }^{\text {A }}$ |
| Gossypium arboreum | KHG02979.1 ${ }^{\text {A }}$ |
| Gossypium raimondii | Gorai.003G153800.1 ${ }^{\text {B }}$ |
| Hevea brasiliensis | JT914256.1 ${ }^{\text {A }}$ |
| Hordeum vulgare | ABW81402.1 ${ }^{\text {B }}$ |
| Jatropha curcas | KDP30593.1 ${ }^{\text {A }}$ |
| Lactuca serriola | JO020465.1 ${ }^{\text {A }}$ |
| Linum usitatissimum_A | Lus10010313 ${ }^{\text {B }}$ |
| Linum usitatissimum_B | Lus10013411 ${ }^{\text {B }}$ |


| Malus domestica_A | XP_008354991.1 ${ }^{\text {A }}$ |
| :---: | :---: |
| Malus domestica_B | MDP0000245785 ${ }^{\text {B }}$ |
| Malus domestica_C | MDP0000094595 ${ }^{\text {B }}$ |
| Manihot esculenta | cassava4.1_000045m ${ }^{\text {B }}$ |
| Marchantia polymorpha_A | D |
| Marchantia polymorpha_B | D |
| Medicago truncatula | XP_003629937.1 ${ }^{\text {A }}$ |
| Mimulus guttatus_A | mgv1a023650m.g ${ }^{\text {B }}$ |
| Mimulus guttatus_B | mgv1a000044m.g ${ }^{\text {B }}$ |
| Morus notabilis | XP_010112666.1 ${ }^{\text {A }}$ |
| Musa acuminata | XP_009403924.1 ${ }^{\text {A }}$ |
| Nelumbo nucifera | XP_010257664.1 ${ }^{\text {A }}$ |
| Nicotiana benthamiana | AAQ55288.2 ${ }^{\text {A }}$ |
| Nicotiana tomentosiformis | XP_009619217.1 ${ }^{\text {A }}$ |
| Oryza brachyantha | XP_006647780.1 ${ }^{\text {A }}$ |
| Oryza sativa | AAL38190.1 ${ }^{\text {A }}$ |
| Panicum virgatum | Pavirv00022988m ${ }^{\text {B }}$ |
| Phaseolus vulgaris | XP_007159560.1 ${ }^{\text {A }}$ |
| Phoenix dactylifera_A | XP_008787933.1 ${ }^{\text {A }}$ |
| Phoenix dactylifera_B | XP_008799338.1 ${ }^{\text {A }}$ |
| Physcomitrella patens | XP_001774206.1 ${ }^{\text {A }}$ |
| Populus euphratica_A | XP_011025140.1 ${ }^{\text {A }}$ |
| Populus euphratica_B | XP_011048187.1 ${ }^{\text {A }}$ |
| Populus euphratica_C | XP_011048187.1 ${ }^{\text {A }}$ |
| Populus trichocarpa_A | XP_002299263.2 ${ }^{\text {A }}$ |
| Populus trichocarpa_B | Potri.001G003900.1 ${ }^{\text {B }}$ |


| Prunus mum | XP_008222910.1 ${ }^{\mathrm{A}}$ |
| :--- | :--- |
| Prunus persica | XP_007208412.1 ${ }^{\mathrm{A}}$ |
| Pyrus x bretschneideri_A | XP_009339183.1 ${ }^{\mathrm{A}}$ |
| Pyrus x bretschneideri_B | XP_009375947.1 |
| Ricinus communis | XP_002523419.1 ${ }^{\mathrm{A}}$ |
| Selaginella moellendorffii_B | 236021 (fgenesh1_pm.C_scaffold_108000004) ${ }^{\mathrm{B}}$ |
| Selaginella moellendorffii_A | XP_002990425.1 ${ }^{\mathrm{A}}$ |
| Sesamum indicum | XP_011089164.1 ${ }^{\mathrm{A}}$ |
| Setaria_italica | XP_004984907.1 ${ }^{\mathrm{A}}$ |
| Solanum lycopersicum | Solyc12g100360.1.1 ${ }^{\mathrm{B}}$ |
| Solanum tuberosum | XP_006367593.1 ${ }^{\mathrm{A}}$ |
| Sorghum bicolor | XP_002468005.1 ${ }^{\mathrm{A}}$ |
| Tarenaya hassleriana_A | XP_010534866.1 ${ }^{\mathrm{A}}$ |
| Tarenaya hassleriana_B | XP_010552284.1 ${ }^{\mathrm{A}}$ |
| Thellungiella halophila | Thhalv10011175m ${ }^{\mathrm{B}}$ |
| Theobroma cacao | Thecc1EG038725t2 ${ }^{\mathrm{B}}$ |
| Thlaspi arvense | GAKE01002389.1 ${ }^{\mathrm{A}}$ |
| Utricularia gibba | Scf00134.g10074.t1 |
| Vea mays vinifera | XP_002285732.1 ${ }^{\mathrm{A}}$ |
|  |  |

${ }^{\text {A }}$ NCBIGenbank; ${ }^{\text {B }}$ Phytozome; ${ }^{\text {C }}$ Sequence retrieved from the SRS 140252 library deposit at NCBI GenBank and ${ }^{\text {D }}$ Sequences provided by Katsuyuki T. Yamato and Takayuki Kohchi (Liang et al. 2013).

Appendix 2: Mutated DEK1-LG3 nucleotide sequences (Indicated by small letters)
$E^{1477} Q^{1478}$
AGCTTTTCTGCAGCAGTGATGATTCAACCAGATTCTGGACCAGTCTGCATATTGGGCGTT GAAGCTCACAATAAAAAATGTTTGGAATTTCTAGTCGCGGGTGCTGcagcaGGTTTAGAAG CAGGGCAAGTTGGACTGCGGCTTGTATCGAAAGGAGCTGGCCAGTCAACACATAATAG AGAGTGGTTTATCGGACACACCTGTGTAGCTGATGGAAGGTGATTTGACTCGAACACAT TCTTAGCCGACAGAAATACACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACAAA TGCCTCAACCTCTCCACTTTTGAATGCAGATGGCACTCAGTTACTATAACGGTTGATGCT TCTACTGGCGAGGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGTGA CTTGTTGCTGCTGGGAGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTGGC
 CAAAATGCATGCCATGGATGTTTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATTTT AATGGTGCATAATTGTGCT

## $E^{1481}$

AGCTTTTCTGCAGCAGTGATGATTCAACCAGATTCTGGACCAGTCTGCATATTGGGCGTT GAAGCTCACAATAAAAAATGTTTGGAATTTCTAGTCGCGGGTGCTGAGCAGGGTTTAGc AGCAGGGCAAGTTGGACTGCGGCTTGTATCGAAAGGAGCTGGCCAGTCAACACATAAT AGAGAGTGGTTTATCGGACACACCTGTGTAGCTGATGGAAGGTGATTTGACTCGAACAC ATTCTTAGCCGACAGAAATACACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACA AATGCCTCAACCTCTCCACTTTTGAATGCAGATGGCACTCAGTTACTATAACGGTTGATG CTTCTACTGGCGAGGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGT GACTTGTTGCTGCTGGGAGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTG GCATCAGGCCGCCTATGGATCTTGATGCCTTTGGTCGTTCCGATAGTGAAGGAGCGGAA TCCAAAATGCATGCCATGGATGTTTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATT TTAATGGTGCATAATTGTGCT

## $S^{1497}$

AGCTTTTCTGCAGCAGTGATGATTCAACCAGATTCTGGACCAGTCTGCATATTGGGCGTT GAAGCTCACAATAAAAAATGTTTGGAATTTCTAGTCGCGGGTGCTGAGCAGGGTTTAGA

AGCAGGGCAAGTTGGACTGCGGCTTGTATCGAAAGGAGCTGGCCAGgCAACACATAATA GAGAGTGGTTTATCGGACACACCTGTGTAGCTGATGGAAGGTGATTTGACTCGAACACA TTCTTAGCCGACAGAAATACACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACAA ATGCCTCAACCTCTCCACTTTTGAATGCAGATGGCACTCAGTTACTATAACGGTTGATGC TTCTACTGGCGAGGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGTG ACTTGTTGCTGCTGGGAGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTGG CATCAGGCCGCCTATGGATCTTGATGCCTTTGGTCGTTCCGATAGTGAAGGAGCGGAAT CCAAAATGCATGCCATGGATGTTTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATTT TAATGGTGCATAATTGTGCT
$\mathrm{R}^{1514}$

AGCTTTTCTGCAGCAGTGATGATTCAACCAGATTCTGGACCAGTCTGCATATTGGGCGTT GAAGCTCACAATAAAAAATGTTTGGAATTTCTAGTCGCGGGTGCTGAGCAGGGTTTAGA AGCAGGGCAAGTTGGACTGCGGCTTGTATCGAAAGGAGCTGGCCAGTCAACACATAAT AGAGAGTGGTTTATCGGACACACCTGTGTAGCTGATGGAgcGTGATTTGACTCGAACACA TTCTTAGCCGACAGAAATACACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACAA ATGCCTCAACCTCTCCACTTTTGAATGCAGATGGCACTCAGTTACTATAACGGTTGATGC TTCTACTGGCGAGGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGTG ACTTGTTGCTGCTGGGAGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTGG CATCAGGCCGCCTATGGATCTTGATGCCTTTGGTCGTTCCGATAGTGAAGGAGCGGAAT CCAAAATGCATGCCATGGATGTTTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATTT TAATGGTGCATAATTGTGCT
$G^{1574} R^{1575} S^{1576} D^{1577} S^{1578} E^{1579}$

AGCTTTTCTGCAGCAGTGATGATTCAACCAGATTCTGGACCAGTCTGCATATTGGGCGTT GAAGCTCACAATAAAAAATGTTTGGAATTTCTAGTCGCGGGTGCTGAGCAGGGTTTAGA AGCAGGGCAAGTTGGACTGCGGCTTGTATCGAAAGGAGCTGGCCAGTCAACACATAAT AGAGAGTGGTTTATCGGACACACCTGTGTAGCTGATGGAAGGTGATTTGACTCGAACAC ATTCTTAGCCGACAGAAATACACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACA AATGCCTCAACCTCTCCACTTTTGAATGCAGATGGCACTCAGTTACTATAACGGTTGATG CTTCTACTGGCGAGGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGT GACTTGTTGCTGCTGGGAGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTG GCATCAGGCCGCCTATGGATCTTGATGCCTTTGcagcagCaGcagcaGcAGGAGCGGAATCCA

AAATGCATGCCATGGATGTTTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATTTTAA TGGTGCATAATTGTGCT

## Appendix 3: Primer sequences

A. Primer sets used for Amplification of In-Fusion inserts form P. patens WT $\mathrm{F}=$ Forward Primer, $\mathrm{R}=$ Reverse Primer

| Insert | Primer Name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- | :--- |
| 5'_TGS | JI_5TGS_SP_Inf | F=TACGTCGCGACTCGATGCATGATTAATATGATCTTCA |
|  | JI_5TGS_ASP_Inf | R=ACGAAGTTATCTCGACATGTGCTTCGTGATATGC |
| 3'_TGS | JI_3TGS_SP_Inf | F=CGCCACGCGTGATATGTTTAATTGAGTCAGTAATTAG |
|  | JI_3TGS_ASP_Inf | R=ATGTTAACATGCATGACTGATACGTAAACGAAGATA |

B. Primers for inverse PCR of the vector, $\mathrm{F}=$ Forward Primer, $\mathrm{R}=$ Reverse Primer

| Vector | Primer name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- | :--- |
| pBHRF | pBHRF_1_SP | $\mathrm{F}=$ CATGCATGTTAACATCGATCCATGG |
|  | pBHRF_1_ASP | $\mathrm{R}=$ ATATCACGCGTGGCGCCACTAG |

C. Primers for Methylation and Mutagenesis reaction, F=Forward Primer, $\mathrm{R}=$ Reverse Primer

| Construct | Primer <br> Name | Primer sequence (5' $\left.\rightarrow 3^{\prime}\right)$ |
| :--- | :--- | :--- |
| pCR_5TGSF8_9 | F8_9 SP | F=TAGTCGCGGGTGCTGcagcaGGTTTAGAAGCAGG |
|  | F8_9 ASP | R= CCCTGCTTCTAAACCtgctgCAGCACCCGCGACTA |
| pCR_5TGSF10 | F10E_SP | F= CTGAGCAGGGTTTAGcAGCAGGGCAAGTTGG |
|  | F10E_ASP | R=CCAACTTGCCCTGCTgCTAAACCCTGCTCAG |


|  |  |  |
| :--- | :--- | :--- |
| pCR_5TGS14 | F14_SP | F= AAAGGAGCTGGCCAGgCAACACATAATAGAG |
|  | F14_ASP | R= CTCTATTATGTGTTGcCTGGCCAGCTCCTTT |
| pCR_5TGS16 | F16_SP | F= TGTGTAGCTGATGGAgcGTGATTTGACTCGAA |
|  | F16_ASP | R= TCGAGTCAAATCACgcTCCATCAGCTACACA |
| FCR_5TGS23_28 | F23_28 SP | F=CCGCCTATGGATCTTGATGCCTTTGcagcagCaGcag <br> caGcAGGAGCGGAATCCAAAATGCATGCC |
|  |  | F23_28 ASP |
|  |  | R=GGCATGCATTTTGGATTCCGCTCCTgCtgctgCtGctgctgC |
| AAAGGCATCAAGATCCATAGGCGG |  |  |

D. Primers for amplification of insert (5, TGSmut) from the vector

| Primer name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- |
| JI_5TGS_SP_Inf | TACGTCGCGACTCGATGCATGATTAATATGATCTTCA |
| JI_5TGS_ASP_Inf | ACGAAGTTATCTCGACATGTGCTTCGTGATATGC |

E. Primers for colony PCR

| Primer name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- |
| Armseq7 | GCATATTGGGCGTTGAAGCT |
| 35s_R | TAAAGTGACAGATAGCTGGG |
| JI_3TGS_SP_Inf | CGCCACGCGTGATATGTTTAATTGAGTCAGTAATTAG |
| JI_3TGS_ASP_Inf | ATGTTAACATGCATGACTGATACGTAAACGAAGATA |

F. Sequencing primers

| Primer name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- |
| TER_F | AGGGTTCTTATAGGGTTTCGCTCATG |
| pBHRF_R | AGGAAACAGCTATGACCATGA |


| ASP-PpARM-Info | CTGCCGGTCGTGTATCTAT |
| :--- | :--- |
| ARM 3'_F | CCGCCATCAGATCAGTCGCT |
| CALP Seq1 | AAAGAGGAGGTCTTGCAGCG |
| EX25-F | AACAAGGGCAAGATTCTCGG |
| ARM 3'_R | AATGGACTACAAACTGATACG |
| T7 | TAATACGACTCACTATAGGG |
| M13R | CAGGAAACAGCTATGAC |
| ArmSeq6 | GGCAGGTACCAAAGAAGCAGC |
| CSMW_5R | GCCTCTTCGCTATTACGCCA |
| pBHRF_F | TAAAGTGACAGATAGCTGGG |
| 35s_Rev1 | GCATATTGGGCGTTGAAGCT |
| Armseq7 |  |
| ArmSeq8 |  |

G. Primers for genotyping of transformed lines

| Primer name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- |
| ArmSeq1 | TGCAAGTTCAGCAGCTCTGC |
| ArmSeq3 | TGTTTTAGCACGGCTATTCTTTTC |
| 35 sRev1 | TAAAGTGACAGATAGCTGGG |
| Term_Fw | AGGGTTCTTATAGGGTTTCGCTCATG |
| EX30_R | GTTACACGATTGTTCCAACCACA |
| LG3_Fw | TTGGCACATTTCAGACCGGA |
| LG3_Rev | GGCAGGGATCTCCAATGGAA |

H. Primers for amplifying DEK1 cDNA

| Primer name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- |
| PpLoop_Inverse_SP | TGGGTCTTCTTCAGTGTGATC |
| Ex30_R | GTTACACGATTGTTCCAACCACA |

I Primers for probe synthesis

| Probe | Primer name | Primer sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ |
| :--- | :--- | :--- |
| 5TGS | ArmSeq5 | TGCATCGGAACAAGAATCTAGTGTA |
|  | CSMW_5R | GCGGCTTGTATCGAAAGGAG |
| 3TGS | JI_3TGS_SP_Inf | CGCCACGCGTGATATGTTTAATTGAGTCAGTAATTAG |
|  | JI_3TGS_ASP_Inf | ATGTTAACATGCATGACTGATACGTAAACGAAGATA |

## Appendix 4: Sequences

## A. P. patens genomic sequence

ATGGGGGCGTCCGTGGACGGTGCACCTGTGCACGCTGTGGTCAAATCTTGTGCGCTGTTT GGGTCACTCTTCGTGGTTCTTTGTGCACTCTCCGTCGTTATTCTAGTTGCTGTAAATTGGC GCCCCTGGCGGATCTACAGGTACTTATCTCAGCTGCAGCTTGTCTGTATATTGGTTCTTG GTTCTTTGGATAGTTCTTTCACTCTCTGATTCACACTTGGATATTGGGTTGCGGGTGATGC CGATGAACCTAGGAATCAATACCTAGGAGTTCTTATTGCCATCCGCTTTTGCTTGGATTG GGCAGTTCTCAGCGGTTGAGTAGTTGGTCCTATGCAATCTTTCGTCCGATAACCTATGTT TCATGAATAGATTAAGATTTTACTGGCGATTACATTTCAGAGGTATATCTTAACACAGTG TATGGATTTCTCGTTTTGGCACATACTGAAGGATCCAATTGAGCACGGCACTCTTCTCTA CTGATCACAGATGGAGTAGAAAGTCGAGTGTAATGTCGAGTAGTGGCTGCAATCCTGTC ATCCTTACTCTTAGCTTATATAGGGCACGTAATGCAGAGACGTGCAAGCTCAGCCTATTG ACAATAGTGTTACCTGTCATGGAAGACCGTTGCAACTAGCCTTATATTCTTGAAATGAA AGAAAACAATGAATTACTTTGTAAAGTAGTGGTCTTGTTTATTAACATGAGTTTGCAATC GTTTGACATCGTGTATCGATGTCAACGCTTGTAATTTATAAAGTTAGGGATGAAACCCA GCCACTGGTTACATAGGATCCTGTCCTTTCATTAGAGTTATGCCGATTGTCTGCATAACG TCGTAGGTGTTGTCGTGTGAACGACTGTATTTGATGCGCATTGTTTGATGCTTTCGTAGG

CAGCAGTCATTTCCCGACTTATGACGATTTATACATCTATTGTTTAAATACGCGACTAGA TACCCATTATTTGAGACAAAAGCGGTCAACAAGAGGTCTTAGTCAGCCTACGGCAATTG ATGATGGCTTGCGTGCTACAGAATGTGAATGAAACCTCCGTGCTTGTTTTACAGCTAGA AAGTTTCTGAAACATACTTAGCATGCCTCCTCACTGGCCAAGTTATAAAAGTGAGAGTA GTTATCGTTTGTTTTTCCATAGCAGCCATTCCTGCTGTTTCTGATATAATTGTGCCATGAA ATAGATATTTTATTGCTTAGTTTAGTGTGTTTGTACGTCGTCTTCGTATTTAATGTGGATT TCCCACAGCTTCTCTCATCTCATGTTGTGGAGTGTGATTGCTCCTTGTTCTCCTTGTTGTA ACATCTCTCCCTGATTATTGCTGTCGTTGTTGCAGCTGGATATTTGCCCGCAGATGGAGA TCGTTTATGCAAGGCCATCGGCTCAGCATAATTACAGCAGTACTTGCCGCAGCTGCATG GACCATAGTCCTGTCCCCAATCGCGGTTCTTATCTTGTGGGGAGCTAGACTCATAATTTT ACTGAATCATGACACAATCGGCCTTGCAGTGATCCTGGCAGGCACAGCTCTACTGTTAG CATTTTATGCTATCATGCTTTGGTGGAGGACGCAATGGCAAAGCTCACGTATGTATTCCA TTAGATCTCATTAGGCTACATTTCTGATCGGCTACATTGTAAGTTCATTTCTACATTTGGT AGTACCCTGTTCTGGATTGTTCTGAAGGTTTTATTTATATGTTTTCTTGTCCTGCCCATCC CAGGTGCTGTTGCAATCCTGCTTCTTCTAGCTGTATCGTTATTATGCGCCTACGAGCTTTC AGCAGTCTACGTTACAGCAGGACGAAGTGCTTCAAATCAGTTTTCTCCATCAGCTTTCTT TTTCGGGGTTTCAGCGATCGCAATGGGCATTAACATGCTCTTCATATGTAAAATGGTTTT CAATGGTGAGTAATGGAAACTTGATGCCATTGTCGGCAGAAGTACAATTCTTATAAATG GAAAGTGTCTTTGGTAATGATCGTCTGCACTTCACAGCTCTTGATTTAGATTTTTCCTGTT TCGGGTAAACAAATCTTTTGAGTGTTTACCTAGCTTTCTGTGGCTAACAGTTCGAAAGTT CTGTTTACAGGGGCAGGGCTTGATGTGGATGAGTATGTGAGAAGGTCCTACAAGTTTGC GCATGCAGAAACGTTAGAAGTTGGTCCGATTGCATGCTTGCCAGAGCCTCCTGAGCCTC GCGACGCAAGCATTCAGAGGAAAAGCAGGTGGTTCTTCTCTTGATGTAATTGTATTGTG GTTGTGATATTTATGAACTACTTCTTGATTCCTGTCTTTCATACGGTGAAATTCCATGTAA TCCTGCATGTTTATTTCTTCTGTACCCATGTTTTGACAAGACATCAGTTTTGAAGTGCATC CAAGTGGTCTCCAAGTGTTAGATTCTTAGATATACTGCAAATGTTCAAGTTGGTGAATTC TTGGGCTTGTTGTTTTTGAGCGAACCCGTGATAGCGACGTTGCCTAGTGCTTTGCTTTTCC AATTATTAGTGGCTCTTGATTTTCTTAGCTAGCGTGAGTGAAAGCCTTAGCTATAATCAG CAACTTACAGTTACGTCGCGATCTCAGAATTTTAAGTTTTACAGGGGAGGAATCCCGAG GTCGTTTAACACATTCTTGTAGAACCTAGTCTCATCTCTTATTGCTTGCAGTACATGGCG GCTGGCCCAGTTATATCAAGCATCTGTTGTGGTTCTGGCGGCATATTCAGTGCTGTATGG ACTGACAGCAAGGGAAGCACGATGGCTTGGAGGAGTTACTTCGGCCGCTGTGATCATTT TGGGTATGTTTTTTCTCAATCAATGACGAATGCGCACCAAAATTCTTTGATGGAGTCTTT GTTCTTTATACTCAGTTGTGTGCTCAGCTACTAGTTGTCTCGTTTACTTTCTTTAGAAGCA GTACTATTTCAGTACTTGCTTAAGTAATTTCTGTTTTGTATGAGGTGGTTTTCTTAACGCT GCGTAGTATTTTTTACAGTTCTTAACCATGTATCATTTACTGTCAATAATTTGTACCTGGT GTTGTGGCCTCGATCATTTATGAGGCAGATCACGTACTCACAACGCATTGGTTTCTCGTT

GAATACAGATATGAACATAGGAGCTTGCTTGTTTGGTTTCAAACTCCTCAAGAGCCGCA TTGCAGCTCTCCTGGTAGCTGGGTCCTACAGAATGATATTGATCTGCTTTGGTGTACATT TTTGGTAGGTCATGCTTGTTTCGGTTTGTCTTTGTTATCTCCAGATTATTAGGCATGTTTT CAGTTGGAATTTACATAGATGTAGGTGATTAATTTGCTATTAACTCAAAGATATTCTGTG ATACTAGAAACACTATACCAGGTCATTTGGGAATCATGGCAGGTCAATTTGAACTTGAG GGCTTATGGAATATTTCAGGATTTTATTGTATTAGTTAAGAACACCTCTTGATCTATGTT ACACTAGATTTGGTAGAGCAGTGTCAGATTGACATTAAAATTGGATGTCAACTTCTATG AAGCAGGATAAATCGTGTTGTGTCTGTATCTGCATAAATAATTTTGGGTGTTTGCAGGTA TTTGGGCCACTGTGTAGGGTACTCCGTGGTCGCTTCTGTGTTATTGGGAGCTGTGGTAGT TCGTCATGTGTCTGTTGTTAATCCAGAAGCAGCTCGTCGAGCTGCCTTAAAGAACACTGT AATTCGACTGCGGGAGGGTTTCGGCAGGCGAGGTCCAGGAAGCTCGTCGAGTGTGTCGG AAGGCCGAACTTCTAGTGTTGTCCATAGTAGCGTTGGAGCTGAGCAAATTGGAGCTGCG ATAGAGCTGATTAGTAGGGCAAATGCAAGGCCTCAAGGTGAAACGTTAGGTGCTGGATT TGTTGGACACAATGGAGGAACTGGGCTTACTGACGCTTTTACAGCAGGTTTCGGCCTTC AAAGTGTGGATTCTCATGTGTCAACTGAAAGAGTTGGTAGCTCTCAGCAGCCCTCTTCAC CAGATCATGACACTACAGACTCCAACCGCATCTCTTGCGCGGGATCTGTCGCTGCAATT GAGCCATTGAACGCTGTGGAACGGAGCAGCACATTTGCATCATTGACCGATCAACAGAC GCTTGATTTGAACCTAGCTTTGATGTTTCAAGAGAGAATGAATGACCCTAGAATTACCTC AATTCTTCGTCAAAATCCGGAGTTCGCCCGGGGTGGAGAACACGAGCTGATGACATTGC TTCAGGATAAGGGACTTGATCCAAACTTTGCAACCATGTTGAAAGAGAAAGGTTTAGAT CCGACAATCTTAGCCTTGCTACAACGGAGCAGCATTGATGCTGGCAGAGATCCAGGGGG AAACGAAAACTCAACTGCAGGCTTGAAACAGTCGCAATCACTCGCTCCAGATGATGCAG TTGGCTGGACAGGGGAATCCCATAAACATGCTTGTGGGAATTGGTTCAAGAGTGTTGAA GATGTTGTACAGTTCTTTGTGGGGACACCAGAGCGAGCATGGGTCTTCTTCAGTGTGATC TTTGTTGTGGAATGTGTTATCGTCGCTGTATTCCGTCCCACAACAGTGACTGTCATCAAC GGAAGACACGAGCAGGTTAGCAATCAACAGCTAACTATCTTGTATACGGGTTATCAAGA GAGGGAGGATATATATAATACTGGTAAAGTGCACAAAGCTGGCTTATTCACCGAATCAT ATAGAGACCTTCAACTATAGATTGTGTCAGCATTTTGAGGTAGCTAGTGAGTTAGAAAA TGTGCAGTTTCACATTTCCACACGCTGTCCTACATATGAATCCTTTCGTCTTCTTTTAAAT TTGGGGATTCATTGTGATTTTTGTTTGTTTGTTTGTCTTGTTTTGTTTTGTAGAAGTCGATT GTGCGCTCTACGTTTTTTCGCCGCTATCTGTCATTCCAGCTTGCGTTACTTGTTTGTATAT TGAGAACCCGGCTTTATTTTGCAGTTTGAATTTGGCTTTTCGGCACTTCTGCTGTCTCCTG TCACATGCTCATTACTAGCTTTCCTACGGTCTCTGCAAGCAGAGAATATGGCCCTTACGA AAAAGGTCCGAAAGGTATGTTTCGATTCCTGGGAAGTGAGGAATCATTGTTACCCACCA TTCTAATTCTTGAACTTGCCAGTTTTTTCGGTCTTAAGCATTAGCGCTTCTATTTGTATTT GTATGTATAGATGGCTCTTATTGTGATGGCACGAACACATGATAACCCTTTGAGACTTAA TTTTTCTATTCTCTGACACTGATTATTGTAACTTTCAGTTTGGATTGATTGCATGGCTTTT

GAGTACTGGAGTGGGACTTCTCTTGGCTTTTCTCAGGTTTGATCCTTGCTTTAAGATATTC AGTCCTGCAGTTAGAATACTATTATGGGTGCTAAAGAGATCTTGTGGGAGTGCATATCG GTTGTGCCTTTGTTATTGTGCGTGCTGGTGTTATTGTTTTATTTTCACTAATTTATCTCTCC GACAATTGTTCTAAGCATATGCTTTGTTTTCTCTGCTCTCTGACATCGAGCAACATCTTTT TTGTGGCTGTTTTTTTTTTTTTATTGATGCAACAGTAAGTCATCGATCATCTTAGGGCTCG CTGTGACTGTCCCGTTAATGTTGGCTGCCCTGTCTGTTGCACTGCCTATTTGGGTGCACA ATGGGTATAATTTCTATCAAGCTCCTGTCTTGGAGTATCATGCTACTCGAGCTTGGGAAC AACAGGCAAGGCGTGGCAGAACGAAAGAGGTGAACTTCGCTTATTTATTTGTTTTGTTTT TCCTCAACCAATTTCTCGTGCATTTCATTATGTTGCTTAACTGAAAATTTTGCTCAGAAA GGGTTTCCTTAGTGTTTAAATATCTTCAAGTAATGTAATTGAACTGTGTGTCGTAGTGTA GTATCAGCTTTTTCACAGGTAGCAACCAAGTGCATTTGCTATAGTTTGTTGTTGATTGAG ACACATATGGTGTGGTGTGACATCGTTGTAACAGATCTGTTATAGATGCGCAGCGTCAC ATTGTGATGTTTGGTTTCGGTTATTGAAATGCCGTTCTGAAAAGTTGAAATTTCACTCTCT TTTAGTGTTACAAGTTCATTGTTTACTGGCTCATTGGTGCGTTAGGTCTAGCATGATGAC GCAAAATTGCTGCTTTATTTCTGCAGGATAATGTAATGACACTTTGCATCTTGGTCACTG TTATCTGCATAATTGCTCTGGGGGTTATCATCTCATTCAGCCCTCTCGATGATATTAAAT ATCATAGCTGGAGCAGTGTGACAAGATATTCCACCTCTCCTTACACGTCACCTTTATACC TAGGGTGGGCAATTGCCTCAGCATTTGCCCTTGTGATAACTGGAGTATTACCAGCTATCT CTTGGTTTGCGACTTATCGTTTTTCTCTTTCATCAGCTGTGTGTGTTGCCATCTTCACCGG TACTTGTTATACTGTAACCTTAACTTGACTTTGGCACGCTTTGCCTGTTCGGCTTGCTTAG CAACTTAATATTTGTGTTGTTTTGCTGTATCCCTTTAAACACTATAGAAGTATAACTTACG ACTCCATTCGCTGGTGTCACACTAGAGGAATGTGCACATTTGAATGGTCTCATTAGAGGT GTATGAAAAGTATAATGACTTATGTAATAATATTTTATTTTCTTATCAAATGGCAACATT TGCAGTGGTATTGATGACATTCTGTGGAGGATCTTACGTGGGCATTGTTCGGAGCCGTAT CGGTAAAACACCGACAGAAGCCGATTTTCTAGCTGCGTTGCTGCCGTTGGTCTGCATAC CAGCTGTTTTCTCTCTTGGTTGTGGCCTTTACAAGTGGTGAGTAGTTGTGTCATTGATCAC GAGCGAAAGCTTTCGACTTTATTGGTTGTTTGAAGATTTGTTTGAAAATAATATCGGAAT TTCCGCTGGATACAATGTCGTGACCTAATCTTCTTCTGATAGTTTTTTCACGTCTCTTTTG TAATCATTAGGAGAGACGAAGGTTGGCGGTTCTCGAAGGGTGCGTACGTTTTTGTTGGT CTTGGGCTCACGCTTCTGTTGGGTGCAATCTCAGCGGTCATTGCTACCATTAATCCATGG ATGGTAAGGAAAATTGGCTATTGGTCGTGAAAGACTCACACCGTTATTTCCTTCTGGATC TGTCTTTTAAAAAAAAGGTATATATTTATTGATTTATTTTCATCTTGTGCTAATCTAGCTT TTGTGATGACAGGTTGGCGCAGCTTTCCTGTTGGTTTTGGTGCTTGTCGTTTTGACGATA GCTGTTATACATCATTGGGCGTCGCATAACTTTTACTTGACTCGCATGGAGGTTCTTTTT GTCTGTCTGGCGGCGTTGGTACTGGCTCTAGCTGCTTTCCTTATTGGACTCCTAGCGGGT GAGGACCGTCTTTGGTGATGTTTTCAGCTGTTTTGTGTTATGATTGCTAGATATTTGTTTG CAATATTCTAGAATTGCACTATACACTCCAGCAAACATATATTGTGGATCGCTTTGAGCT

ACACTGGTGTTCTACCTGTAGTTATTTCTGTTACTTTTTTGTTTGTTGCAGATGAACCATT CGTGGGAGCATCAGTGGGATATTTCGCTTTCCTAGGAGTTCTGGCTGGAAGGTCTTTCAC GGTAATGTTTGCGTAGAATGCTCCTAACTATCACTTGGTTCTCGTCAGGTTCGAGAACAT CAATATGTCGCCATAATTTCTTGTTTGGTTTTTTGGTGGGGTGAGTATATTTTGCCGAATT GACTGACTTGACAAGGTCAGTACAATGATTCTATTTGTCATCTATATTAACATCGGCCCC ATGTTTATTCTATGTAACGGACAGGTTCTCTTGTCTCCCGCGGTGGTTGTATACTCTCCTA GAGTTCTCCCCGTCTACGTCTACGATGCCCATGCAGACTCTGCTAAGAATGTCAGGTAA GTTTCGATGATTTATTGTTCTATTCATGTTCCATTGGAGCAACCTCATTTCTGAGATCTTG AAGAGCAATTGTGTACATTTTTAGCTGTACGTAAAGAACTCTGCAGTGCATAAGAGGAT CTGTTTTACATATGTTTTTCTGGAAATTTTCTCATGGAAACTTGTATCACACCAGTGGCG CCTTCTTGGTTCTTTATGGGATAGCCCTGGCCACAGCGGGATGGGGAGTGGTTGCGAGTT TGGAGATCTATCCTCCCTTTGCAGGATCAGCGGTTTCAGCCATCACCTTGGTCGTGGCAT ATGCTTTTGCTATTTCCCGGCCACAGCTTACATTAAAGGTGTACGCATATGACATTATTA CTATTGGTTTACCTCACATTCATATTTGATTTGATAATTGCAGCCGTGTTGAGTACAGTG AAATGATTCTTTTACTCAGTTTTCTTGCGCTTTTTTTGTTCTTGTAGATGATGGAAGATGC TCTTCAGTTTTTGCGAAAGGAGACTATTGCTCAAGCTATTGCTCGCTCCTCAACTAAGGT AACTTATGGGTGATGCATTATTTCATAGTATTTCTATCCTGCCATATTTTGGCTTCAGCTA TTTCGTTAGATTAGGCGAGTTCAGCAAACGAGCAACTTTGATCACTCATGGCCTTAAACT CACATTGTTGCTGTTTTCCAGACTAGGAATGCCATGTCGGGAACATGTTCAGCTCCTCAA CGATCTGCAAGTTCAGCAGCTCTGCTTGTAGGTGATGCTTCTGTTACCCGTGATAAAGCT GGAAATTATGTTCTTCCTCGTGCTGATGTATTGAAGCTGCGGGAATGGCTTCGCAACGA GGAACATGCCGCGGGGCTTCGATGGTGGCCTCCGTTCTCTGCCTTCGGCTCTCCCTTTGA CTCTACAACGGATACTAGGTTCAGAAGGAAGTTGTGCGCTCATGCGCGAATATTGGCAC TTGAGGAGGCTATAGACACTGAGTGGGTGTACATGTGGGATAAGTTTGGTGGCTATTTG CTTCTGGTTCTTGGTCATGCTACACGAGCCGAAAGAGTACAGGTACGACCAAGTCCTGA AGCACTGATTTCCAGAAATTCTTTGGCATGTATTCCACCTTATAGAGGAGATTTTTTTCTT CTTGATGATTGATGTGCGGATATTTTTTAAGGGTGGGATTCTTTTGAAATTTAGTCTTCTT CAACTTTAGCAAACTGGATCTATTCTCCATTGAGTTCTAGAATAAATTTTGAGTTCTTTTT TTTGTTCTCATATTCCTGAGAATAGTTCGCTGTTTTAGCACGGCTATTCTTTTCTATTTAA ACAGTCTTTTTATTTATTTTCCTCCTTACAGGATGAAGTGAGGCTACGGTTATTTCTGGAC AGCATTGGCTTCTCGAATCTCAGTGCAAAGAAAATCAAGACATGGACACCTGAAGATAG GAAGCAGTTCGAGACAGTGCAAGAGAAGTAAGCGCGTGCTTTCCTTCTTTCTCTCTCTCT
 ATCATCATCATCTTTTCCTCTGCATGATTAATATGATCTTCAGTTTTGGGCATAGATGAA GTATACCCTTTCCAAGTTAGTAGATCATAGAGTTATCATTCGGTGGTATTATTCCGAACT AGAGCACATATAACCGATTCCTCTGAAGTGTTTGATATCGTAAATTTAGTACATTAAGTC GTAATCTTAAGTCCACTATTCCTGATTTATGGTGTCTAAAACTTTTATTTAAAATTAATTA

TAAGTGTTGGTGGGTTTCTCTGCACTTGCGTCTCCAAGTGTTTGGTCCTAAAGTTCTTTAT AAATGACGTGTCTTGCATCGGAACAAGAATCTAGTGTACAGTCATCGATGTTGGACAAC ATTTCATATAGTACACAATGTTTTGATGCCGAATTTAGTTGCATACTGTGTTGCATTCCTA CTGTACTAAGTAGATGATGGTGGGTGCAATAGTCTCGTTTCAAGGTGCTTCAAAAGTGG AATTTCTGAATATCTGATTCAAGAATGTGGCACATGACTACGTATGTTATTCAGTTATAT GCGGGAGAAGGAAACAGAAGAGGAGCTTTTTGCAGCAAAGGCGTGAGGAGGAAGGAAA AGGTCGTGAGAGGCGCAGGGCTTTGCTCGAAAAGGAAGAACGACGACGTCACGAAATT GAGGCGTCAGTTATTTCAACTGTTCCTGATGCAGGTACCAAAGAAGCAGCAGCGATGGC AGCTGCTGTTCGTGCAGTTGGAAGAGATATTTTACTCGATGAGAACTCTGCCAGTGATC AGGTGTCGAGTTTGGCCCGGCGAATATTAGTTGCTCAAAGAGCCCAACGTGCGCAGCAG GTCTGAGAACGAAGGGCTTATTTTCCGTGCGATGCAGGACTGCTTTTTAAAATTGTTTAA ATTTATGAATAGTTCTGCGTTAAAGCTGGAAATTGTTTTTACAAACCTTTTTAATATATTG ATTGGCACATTTCAGACCGGAGTCCATGGAACTGTTTGTGTGATGGACAATGAGCCTCG TAATAGTGGTCGCTGCTGTGGACTTATTGACCCAAGTGTTTGCGGGAGCCAGAAAGTGA GCTTTTCTGCAGCAGTGATGATTCAACCAGATTCTGGACCAGTCTGCATATTGGGCGTTG AAGCTCACAATAAAAAATGTTTGGAATTTCTAGTCGCGGGTGCTGAGCAGGGTTTAGAA GCAGGGCAAGTTGGACTGCGGCTTGTATCGAAAGGAGCTGGCCAGTCAACACATAATA GAGAGTGGTTTATCGGACACACCTGTGTAGCTGATGGAAGGTGATTTGACTCGAACACA TTCTTAGCCGACAGAAATACACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACAA ATGCCTCAACCTCTCCACTTTTGAATGCAGATGGCACTCAGTTACTATAACGGTTGATGC TTCTACTGGCGAGGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGTG ACTTGTTGCTGCTGGGAGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTGG CATCAGGCCGCCTATGGATCTTGATGCCTTTGGTCGTTCCGATAGTGAAGGAGCGGAAT CCAAAATGCATGCCATGGATGTTTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATTT TAATGGTGCATAATTGTGCTAATCTGGAGGAGCAGAATGAGCTGGATATTATGGATGAC TATTGGCAGGGATCTCCAATGGAAACGCCAATGAGAGTAAGTTGGGCATATCACGAAGC ACATGGTTTAATTGAGTCAGTAATTAGATGTGGGGAATTGTAAGCTTGGAGTCTGCATGT TCTTTAGATTGCATGTCAAAACAACCCTCATGCTTCTAAGTTACTTATGTTTGATGTATTC ATCCGAAGTGGTCTGACCATTTGGTTTTGTTGAAGGTGCTTAAGTTTTTATAACTCATAC TGTGATTCTCATGTGTGTGTGTTTTGATGTCCTGCCGGTCGTGTATCTATCTTGTTCTCTA GTTTGAGGATTGGAGATATGATCCGGATCTCAGCTACGAGCGAGATGAAATTTTTTGGG ATGAACAACAATCCTCAGGAGCAAAGAGGAAGGCAGCAGACATCGAGAATGTGGCGGT AGATATTGAATATTTATCCAGGAAGATCCGACGCCCCAAAATTGAAACGAAAGAGGAG GTCTTGCAGCGCATGCAGGCTGTTGAATTGGCTATTAAGGAGGCTTTGGTAGCAAGAGG CGAGAAGAGATTTACCGACCAAGAGTTTCCGCCATCAGATCAGTCGCTTTTTGTTGATAC TGATCACCCTGCTGCTAAGCTTCAGGTAAGCTAATATCCTTAACTCGTCTTTTAGTGTCC AGGAATATTTAGATGTAATACATACAGGCTATTTTGGTGTGGTGACTGCCAATTAAAAG

TGCATTTTTATGTTTGCCAGGTTGTTAACAAGTGGTCGCGCCCAGAAGAGGTTTTGCGCG AACAAGGGCAAGATTCTCGGCCGTGCCTGTTTGCAGGCACTGCCAACCCTTCAGACGTC TGCCAGGTTCGAAGTGAACTTTATTTGTCTCCTTCAAGTTTTACTCAACCCGTTCATTGAT TCATTCATGAACACCATTTGAGCGCTTTCGTGTTAAGCTGCATGTAGATAGAATACTTAA ACGAGCACCATTTTCTGAGTCCTTCACCAGGGCTACATACGCGGTCATTGAAGCAACTT GGAAACATTTTCGGTCATATCAAGCTAACAGCTTTTTAATAGTAATAGTAGTAACACTTT CGCCAAATTCTTAGGGGCATAGCACGTTATAGGGTAAGAATTATGTCTAATCGCAGACA CAGAGAATCTTTACCCACATCTCATGGAAACAAAGCATATTAAAAATTGCAGTAAAGGA AGGTTGAGCACCTTCGAATCAGCTCCTGTTTATCTTCGTTTACGTATCAGTTTGTAGTCC ATTAGTTTTCCTTTTTACGAACATGCCCTTCTAGAAAGAAGTAAAAAGTTGAACTTAACG GTTCTAATTAAGCTCTAATAGTATATATCGGATTTATATATGGAAGCCCATGTCAGTTTC TGGGAAGCTCAATGTCTAACATTGTTCTGTAACCTATACTTGTTATGCAGGGCCACCTAG GAGATTGCTGGTTTTTGAGTGCAGTTGCTGTGTTAACCGAGGCATCACGGATATCTGATG TCATGATTACCCCCGAATTCAACGAAGAGGGGATCTATACAGTTAGGTTTTGTATTCAG GTATGAGGATGAAGATCATAATGATGTTTCCGTACTTGTTGTATTTTCATATTTGATATG GTTACTTTTGAGTACTCTTTCATTCTACTCTTTTCAGTTTCCTCCAAATATGTTTTCAACC ATTGTATTTAATGCATGCAGGGTGAGTGGGTGCCTGTGGTCGTTGACGACTGGATACCTT GCGAGGCCAGGGGAAAACCGGCCTTCGCCACTAGCAGAAAAGGAAATGAACTTTGGGT GTCTATTTTGGAGAAAGCGTATGCGAAGTTACACGGGTCTTACGAGGCCTTGGAAGGTG GTCAGGTCCACGATGCGCTTGTCGACCTGACGGGAGGTGCTGGAGAGGAGATTGATCTA ACAAATGAAGTTGCGCAGTTGGATCTTGCTAGTGGCCATCTATGGTCCCAGTTGCAACG CTTTAAGCAAGAAGGATTTCTTCTCGGAGCAGGCAGCCCATCGGGTTCTGATGTTCATGT TTCATCTAGTGGAATTGTACAAAATCATGCATATTCTCTTTTACAGGTGAGCACGATCTG TCСТTTCCAATTCCAAACTACTACCTTGGTTATTTTTGTCAGGTTTTATTCACTTCAAATT TTTGTAAATACAGTTATTATTACAGCATGCTTCAACATTTCATATTACGATTGAAGTACG GCAATGTTTCTAAACGATCGATCATATAAATGTATCAATGTATCAGGTACGAGAGGTCG ACGGTCACAAGCTCGTGCAGATCCGCAACCCATGGGCTAATGAAGTTGAATGGAATGGC CCGTGGTCGGATTTTTCCCCAGAGTGGACAGATAGAATGAAACACAAGCTCAAGTATTC CCCTCAGGTATTTGGAATTTAGTTCTGTGTTTTACAGTTCTGATCCCTTTCCATTGGTAGG ATATGGCTCTTTCGTTGTGCAACTGATGGATAGTGTCCCACTTTGTAGCCTTTCTTTTGCT GCAAAGGGGTCTCAGCGTGTGCCACTCGCGTGTTGCCTTAAGCACCTTTCATATTTTCCA TCGAAGGATCTCAAGTATCTCAATGTGTTTCTAGGCTGCAAATGGAGTATTCTGGATGTC ATGGCAAGATTTCCAGCTTCATTTTCGTTCTCTATACGTGTGTCGAATTTATCCACCTGA GATGAAGTATTCAGTTCGGGGTCAGTGGCGTGGACCAACTGCTGGTGGATGCCAGGATT ACGAAACTTGGCATTTAAATCCTCAATTTCATTTGAAAGCCGTGGGTAGTGATGCCCGA GAACCCATTCATGTCTTCGCAACACTTACTCAGGTTTGCAATGTTCACTTCTTCAATAGT GGGTGGCCTCAACAAGTAGATGAGATGCATTTGTTAATTGATTAGTTTTATTTATTTATT

TATTTATTTTTATCATACCCTGGAGTTTAGTTGTGTGCCTCTCATGAAGATATGATTTGCT GAACAGGGTGTGCAGTCCACATCTCGATCTACAGCCAGCTTTGGGAATTACCAATTAGT TGGAGATGCACCTCGATTTTATATCGGCATGCGTGTCATAAAAACCGGTGGTAGGCGAT CTGGAAAGAATATCTTTATGCATGAAGCAGTGAATGGAACAGATTATGTGAATGCAAGA GAAATATCTTGCGAAATGGTACTTGATCCTGATCCTAAAGGTTACACGATTGTTCCAACC ACACATGCGCCGGGTGAAGAATGCCAGTTCTTGCTCTCAGTTTTCACGAAGGCTTCTATC ATCTTGGAACCGCTTTAG

## B. $\quad$. patens cDNA sequence

ATGGGGGCGTCCGTGGACGGTGCACCTGTGCACGCTGTGGTCAAATCTTGTGCGCTGTTT GGGTCACTCTTCGTGGTTCTTTGTGCACTCTCCGTCGTTATTCTAGTTGCTGTAAATTGGC GCCCCTGGCGGATCTACAGCTGGATATTTGCCCGCAGATGGAGATCGTTTATGCAAGGC CATCGGCTCAGCATAATTACAGCAGTACTTGCCGCAGCTGCATGGACCATAGTCCTGTC CCCAATCGCGGTTCTTATCTTGTGGGGAGCTAGACTCATAATTTTACTGAATCATGACAC AATCGGCCTTGCAGTGATCCTGGCAGGCACAGCTCTACTGTTAGCATTTTATGCTATCAT GCTTTGGTGGAGGACGCAATGGCAAAGCTCACGTGCTGTTGCAATCCTGCTTCTTCTAGC TGTATCGTTATTATGCGCCTACGAGCTTTCAGCAGTCTACGTTACAGCAGGACGAAGTGC TTCAAATCAGTTTTCTCCATCAGCTTTCTTTTTCGGGGTTTCAGCGATCGCAATGGGCATT AACATGCTCTTCATATGTAAAATGGTTTTCAATGGGGCAGGGCTTGATGTGGATGAGTAT GTGAGAAGGTCCTACAAGTTTGCGCATGCAGAAACGTTAGAAGTTGGTCCGATTGCATG CTTGCCAGAGCCTCCTGAGCCTCGCGACGCAAGCATTCAGAGGAAAAGCAGTACATGGC GGCTGGCCCAGTTATATCAAGCATCTGTTGTGGTTCTGGCGGCATATTCAGTGCTGTATG GACTGACAGCAAGGGAAGCACGATGGCTTGGAGGAGTTACTTCGGCCGCTGTGATCATT TTGGATATGAACATAGGAGCTTGCTTGTTTGGTTTCAAACTCCTCAAGAGCCGCATTGCA GCTCTCCTGGTAGCTGGGTCCTACAGAATGATATTGATCTGCTTTGGTGTACATTTTTGG TATTTGGGCCACTGTGTAGGGTACTCCGTGGTCGCTTCTGTGTTATTGGGAGCTGTGGTA GTTCGTCATGTGTCTGTTGTTAATCCAGAAGCAGCTCGTCGAGCTGCCTTAAAGAACACT GTAATTCGACTGCGGGAGGGTTTCGGCAGGCGAGGTCCAGGAAGCTCGTCGAGTGTGTC GGAAGGCCGAACTTCTAGTGTTGTCCATAGTAGCGTTGGAGCTGAGCAAATTGGAGCTG CGATAGAGCTGATTAGTAGGGCAAATGCAAGGCCTCAAGGTGAAACGTTAGGTGCTGG ATTTGTTGGACACAATGGAGGAACTGGGCTTACTGACGCTTTTACAGCAGGTTTCGGCCT TCAAAGTGTGGATTCTCATGTGTCAACTGAAAGAGTTGGTAGCTCTCAGCAGCCCTCTTC ACCAGATCATGACACTACAGACTCCAACCGCATCTCTTGCGCGGGATCTGTCGCTGCAA TTGAGCCATTGAACGCTGTGGAACGGAGCAGCACATTTGCATCATTGACCGATCAACAG ACGCTTGATTTGAACCTAGCTTTGATGTTTCAAGAGAGAATGAATGACCCTAGAATTAC

CTCAATTCTTCGTCAAAATCCGGAGTTCGCCCGGGGTGGAGAACACGAGCTGATGACAT TGCTTCAGGATAAGGGACTTGATCCAAACTTTGCAACCATGTTGAAAGAGAAAGGTTTA GATCCGACAATCTTAGCCTTGCTACAACGGAGCAGCATTGATGCTGGCAGAGATCCAGG GGGAAACGAAAACTCAACTGCAGGCTTGAAACAGTCGCAATCACTCGCTCCAGATGATG CAGTTGGCTGGACAGGGGAATCCCATAAACATGCTTGTGGGAATTGGTTCAAGAGTGTT GAAGATGTTGTACAGTTCTTTGTGGGGACACCAGAGCGAGCATGGGTCTTCTTCAGTGT GATCTTTGTTGTGGAATGTGTTATCGTCGCTGTATTCCGTCCCACAACAGTGACTGTCAT CAACGGAAGACACGAGCAGTTTGAATTTGGCTTTTCGGCACTTCTGCTGTCTCCTGTCAC ATGCTCATTACTAGCTTTCCTACGGTCTCTGCAAGCAGAGAATATGGCCCTTACGAAAA AGGTCCGAAAGTTTGGATTGATTGCATGGCTTTTGAGTACTGGAGTGGGACTTCTCTTGG CTTTTCTCAGTAAGTCATCGATCATCTTAGGGCTCGCTGTGACTGTCCCGTTAATGTTGG CTGCCCTGTCTGTTGCACTGCCTATTTGGGTGCACAATGGGTATAATTTCTATCAAGCTC CTGTCTTGGAGTATCATGCTACTCGAGCTTGGGAACAACAGGCAAGGCGTGGCAGAACG AAAGAGGATAATGTAATGACACTTTGCATCTTGGTCACTGTTATCTGCATAATTGCTCTG GGGGTTATCATCTCATTCAGCCCTCTCGATGATATTAAATATCATAGCTGGAGCAGTGTG ACAAGATATTCCACCTCTCCTTACACGTCACCTTTATACCTAGGGTGGGCAATTGCCTCA GCATTTGCCCTTGTGATAACTGGAGTATTACCAGCTATCTCTTGGTTTGCGACTTATCGTT TTTCTCTTTCATCAGCTGTGTGTGTTGCCATCTTCACCGTGGTATTGATGACATTCTGTGG AGGATCTTACGTGGGCATTGTTCGGAGCCGTATCGGTAAAACACCGACAGAAGCCGATT TTCTAGCTGCGTTGCTGCCGTTGGTCTGCATACCAGCTGTTTTCTCTCTTGGTTGTGGCCT TTACAAGTGGAGAGACGAAGGTTGGCGGTTCTCGAAGGGTGCGTACGTTTTTGTTGGTC TTGGGCTCACGCTTCTGTTGGGTGCAATCTCAGCGGTCATTGCTACCATTAATCCATGGA TGGTTGGCGCAGCTTTCCTGTTGGTTTTGGTGCTTGTCGTTTTGACGATAGCTGTTATACA TCATTGGGCGTCGCATAACTTTTACTTGACTCGCATGGAGGTTCTTTTTGTCTGTCTGGCG GCGTTGGTACTGGCTCTAGCTGCTTTCCTTATTGGACTCCTAGCGGATGAACCATTCGTG GGAGCATCAGTGGGATATTTCGCTTTCCTAGGAGTTCTGGCTGGAAGGTCTTTCACGGTT CTCTTGTCTCCCGCGGTGGTTGTATACTCTCCTAGAGTTCTCCCCGTCTACGTCTACGATG CCCATGCAGACTCTGCTAAGAATGTCAGTGGCGCCTTCTTGGTTCTTTATGGGATAGCCC TGGCCACAGCGGGATGGGGAGTGGTTGCGAGTTTGGAGATCTATCCTCCCTTTGCAGGA TCAGCGGTTTCAGCCATCACCTTGGTCGTGGCATATGCTTTTGCTATTTCCCGGCCACAG CTTACATTAAAGATGATGGAAGATGCTCTTCAGTTTTTGCGAAAGGAGACTATTGCTCA AGCTATTGCTCGCTCCTCAACTAAGACTAGGAATGCCATGTCGGGAACATGTTCAGCTC CTCAACGATCTGCAAGTTCAGCAGCTCTGCTTGTAGGTGATGCTTCTGTTACCCGTGATA AAGCTGGAAATTATGTTCTTCCTCGTGCTGATGTATTGAAGCTGCGGGAATGGCTTCGCA ACGAGGAACATGCCGCGGGGCTTCGATGGTGGCCTCCGTTCTCTGCCTTCGGCTCTCCCT TTGACTCTACAACGGATACTAGGTTCAGAAGGAAGTTGTGCGCTCATGCGCGAATATTG GCACTTGAGGAGGCTATAGACACTGAGTGGGTGTACATGTGGGATAAGTTTGGTGGCTA

TTTGCTTCTGGTTCTTGGTCATGCTACACGAGCCGAAAGAGTACAGGATGAAGTGAGGC TACGGTTATTTCTGGACAGCATTGGCTTCTCGAATCTCAGTGCAAAGAAAATCAAGACA TGGACACCTGAAGATAGGAAGCAGTTCGAGACAGTGCAAGAGAATTATATGCGGGAGA AGGAAACAGAAGAGGAGCTTTTGCAGCAAAGGCGTGAGGAGGAAGGAAAAGGTCGTG AGAGGCGCAGGGCTTTGCTCGAAAAGGAAGAACGACGACGTCACGAAATTGAGGCGTC AGTTATTTCAACTGTTCCTGATGCAGGTACCAAAGAAGCAGCAGCGATGGCAGCTGCTG TTCGTGCAGTTGGAAGAGATATTTTACTCGATGAGAACTCTGCCAGTGATCAGGTGTCG AGTTTGGCCCGGCGAATATTAGTTGCTCAAAGAGCCCAACGTGCGCAGCAGACCGGAGT CCATGGAACTGTTTGTGTGATGGACAATGAGCCTCGTAATAGTGGTCGCTGCTGTGGAC TTATTGACCCAAGTGTTTGCGGGAGCCAGAAAGTGAGCTTTTCTGCAGCAGTGATGATT CAACCAGATTCTGGACCAGTCTGCATATTGGGCGTTGAAGCTCACAATAAAAAATGTTT GGAATTTCTAGTCGCGGGTGCTGAGCAGGGTTTAGAAGCAGGGCAAGTTGGACTGCGGC TTGTATCGAAAGGAGCTGGCCAGTCAACACATAATAGAGAGTGGTTTATCGGACACACC TGTGTAGCTGATGGAAGATGGCACTCAGTTACTATAACGGTTGATGCTTCTACTGGCGA GGCTTCTGCTTTCATAGACGGAGGTTTCGATGGAGACAACAGATGTGACTTGTTGCTGCT GGGAGAGGGTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTGGCATCAGGCCGCCT ATGGATCTTGATGCCTTTGGTCGTTCCGATAGTGAAGGAGCGGAATCCAAAATGCATGC CATGGATGTTTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATTTTAATGGTGCATAA TTGTGCTAATCTGGAGGAGCAGAATGAGCTGGATATTATGGATGACTATTGGCAGGGAT CTCCAATGGAAACGCCAATGAGATTTGAGGATTGGAGATATGATCCGGATCTCAGCTAC GAGCGAGATGAAATTTTTTTGGGATGAACAACAATCCTCAGGAGCAAAGAGGAAGGCAG CAGACATCGAGAATGTGGCGGTAGATATTGAATATTTATCCAGGAAGATCCGACGCCCC AAAATTGAAACGAAAGAGGAGGTCTTGCAGCGCATGCAGGCTGTTGAATTGGCTATTAA GGAGGCTTTGGTAGCAAGAGGCGAGAAGAGATTTACCGACCAAGAGTTTCCGCCATCA GATCAGTCGCTTTTTGTTGATACTGATCACCCTGCTGCTAAGCTTCAGGTTGTTAACAAG TGGTCGCGCCCAGAAGAGGTTTTGCGCGAACAAGGGCAAGATTCTCGGCCGTGCCTGTT TGCAGGCACTGCCAACCCTTCAGACGTCTGCCAGGGCCACCTAGGAGATTGCTGGTTTTT GAGTGCAGTTGCTGTGTTAACCGAGGCATCACGGATATCTGATGTCATGATTACCCCCG AATTCAACGAAGAGGGGATCTATACAGTTAGGTTTTGTATTCAGGGTGAGTGGGTGCCT GTGGTCGTTGACGACTGGATACCTTGCGAGGCCAGGGGAAAACCGGCCTTCGCCACTAG CAGAAAAGGAAATGAACTTTGGGTGTCTATTTTGGAGAAAGCGTATGCGAAGTTACACG GGTCTTACGAGGCCTTGGAAGGTGGTCAGGTCCACGATGCGCTTGTCGACCTGACGGGA GGTGCTGGAGAGGAGATTGATCTAACAAATGAAGTTGCGCAGTTGGATCTTGCTAGTGG CCATCTATGGTCCCAGTTGCAACGCTTTAAGCAAGAAGGATTTCTTCTCGGAGCAGGCA GCCCATCGGGTTCTGATGTTCATGTTTCATCTAGTGGAATTGTACAAAATCATGCATATT CTCTTTTACAGGTACGAGAGGTCGACGGTCACAAGCTCGTGCAGATCCGCAACCCATGG GCTAATGAAGTTGAATGGAATGGCCCGTGGTCGGATTTTTCCCCAGAGTGGACAGATAG

AATGAAACACAAGCTCAAGTATTCCCCTCAGGCTGCAAATGGAGTATTCTGGATGTCAT GGCAAGATTTCCAGCTTCATTTTCGTTCTCTATACGTGTGTCGAATTTATCCACCTGAGA TGAAGTATTCAGTTCGGGGTCAGTGGCGTGGACCAACTGCTGGTGGATGCCAGGATTAC GAAACTTGGCATTTAAATCCTCAATTTCATTTGAAAGCCGTGGGTAGTGATGCCCGAGA ACCCATTCATGTCTTCGCAACACTTACTCAGGGTGTGCAGTCCACATCTCGATCTACAGC CAGCTTTGGGAATTACCAATTAGTTGGAGATGCACCTCGATTTTATATCGGCATGCGTGT CATAAAAACCGGTGGTAGGCGATCTGGAAAGAATATCTTTATGCATGAAGCAGTGAATG GAACAGATTATGTGAATGCAAGAGAAATATCTTGCGAAATGGTACTTGATCCTGATCCT AAAGGTTACACGATTGTTCCAACCACACATGCGCCGGGTGAAGAATGCCAGTTCTTGCT CTCAGTTTTCACGAAGGCTTCTATCATCTTGGAACCGCTTTAG

## C. $5^{\prime}$ targeting sequence $\left(5^{\prime}\right.$, TGS $)$

TGCATGATTAATATGATCTTCAGTTTTGGGCATAGATGAAGTATACCCTTTCCAAGTTAG TAGATCATAGAGTTATCATTCGGTGGTATTATTCCGAACTAGAGCACATATAACCGATTC CTCTGAAGTGTTTGATATCGTAAATTTAGTACATTAAGTCGTAATCTTAAGTCCACTATT CCTGATTTATGGTGTCTAAAACTTTTATTTAAAATTAATTATAAGTGTTGGTGGGTTTCTC TGCACTTGCGTCTCCAAGTGTTTGGTCCTAAAGTTCTTTATAAATGACGTGTCTTGCATC GGAACAAGAATCTAGTGTACAGTCATCGATGTTGGACAACATTTCATATAGTACACAAT GTTTTGATGCCGAATTTAGTTGCATACTGTGTTGCATTCCTACTGTACTAAGTAGATGAT GGTGGGTGCAATAGTCTCGTTTCAAGGTGCTTCAAAAGTGGAATTTCTGAATATCTGATT CAAGAATGTGGCACATGACTACGTATGTTATTCAGTTATATGCGGGAGAAGGAAACAGA AGAGGAGCTTTTGCAGCAAAGGCGTGAGGAGGAAGGAAAAGGTCGTGAGAGGCGCAG GGCTTTGCTCGAAAAGGAAGAACGACGACGTCACGAAATTGAGGCGTCAGTTATTTCAA CTGTTCCTGATGCAGGTACCAAAGAAGCAGCAGCGATGGCAGCTGCTGTTCGTGCAGTT GGAAGAGATATTTTACTCGATGAGAACTCTGCCAGTGATCAGGTGTCGAGTTTGGCCCG GCGAATATTAGTTGCTCAAAGAGCCCAACGTGCGCAGCAGGTCTGAGAACGAAGGGCTT ATTTTCCGTGCGATGCAGGACTGCTTTTTAAAATTGTTTAAATTTATGAATAGTTCTGCGT TAAAGCTGGAAATTGTTTTACAAACCTTTTTAATATATTGATTGGCACATTTCAGACCGG AGTCCATGGAACTGTTTGTGTGATGGACAATGAGCCTCGTAATAGTGGTCGCTGCTGTG GACTTATTGACCCAAGTGTTTGCGGGAGCCAGAAAGTGAGCTTTTCTGCAGCAGTGATG ATTCAACCAGATTCTGGACCAGTCTGCATATTGGGCGTTGAAGCTCACAATAAAAAATG TTTGGAATTTCTAGTCGCGGGTGCTGAGCAGGGTTTAGAAGCAGGGCAAGTTGGACTGC GGCTTGTATCGAAAGGAGCTGGCCAGTCAACACATAATAGAGAGTGGTTTATCGGACAC ACCTGTGTAGCTGATGGAAGGTGATTTGACTCGAACACATTCTTAGCCGACAGAAATAC ACATTTTAAAGATGTTGATATTTCTCTATGTTTAAGACAAATGCCTCAACCTCTCCACTTT

TGAATGCAGATGGCACTCAGTTACTATAACGGTTGATGCTTCTACTGGCGAGGCTTCTGC TTTCATAGACGGAGGTTTCGATGGAGACAACAGATGTGACTTGTTGCTGCTGGGAGAGG GTGGAGTATGGGAAGAAGGGATGGAAGTATGGGTTGGCATCAGGCCGCCTATGGATCTT GATGCCTTTGGTCGTTCCGATAGTGAAGGAGCGGAATCCAAAATGCATGCCATGGATGT TTTCATGTGGGGTCGCTGTTTAACCGAAGATGAAATTTTAATGGTGCATAATTGTGCTAA TCTGGAGGAGCAGAATGAGCTGGATATTATGGATGACTATTGGCAGGGATCTCCAATGG AAACGCCAATGAGAGTAAGTTGGGCATATCACGAAGCACATG
D. 3 ' targeting sequence $(3$,_TGS)

GTTTAATTGAGTCAGTAATTAGATGTGGGGAATTGTAAGCTTGGAGTCTGCATGTTCTTT AGATTGCATGTCAAAACAACCCTCATGCTTCTAAGTTACTTATGTTTGATGTATTCATCC GAAGTGGTCTGACCATTTGGTTTTGTTGAAGGTGCTTAAGTTTTTATAACTCATACTGTG ATTCTCATGTGTGTGTGTTTTGATGTCCTGCCGGTCGTGTATCTATCTTGTTCTCTAGTTT GAGGATTGGAGATATGATCCGGATCTCAGCTACGAGCGAGATGAAATTTTTTGGGATGA ACAACAATCCTCAGGAGCAAAGAGGAAGGCAGCAGACATCGAGAATGTGGCGGTAGAT ATTGAATATTTATCCAGGAAGATCCGACGCCCCAAAATTGAAACGAAAGAGGAGGTCTT GCAGCGCATGCAGGCTGTTGAATTGGCTATTAAGGAGGCTTTGGTAGCAAGAGGCGAGA AGAGATTTACCGACCAAGAGTTTCCGCCATCAGATCAGTCGCTTTTTGTTGATACTGATC ACCCTGCTGCTAAGCTTCAGGTAAGCTAATATCCTTAACTCGTCTTTTAGTGTCCAGGAA TATTTAGATGTAATACATACAGGCTATTTTGGTGTGGTGACTGCCAATTAAAAGTGCATT TTTATGTTTGCCAGGTTGTTAACAAGTGGTCGCGCCCAGAAGAGGTTTTGCGCGAACAA GGGCAAGATTCTCGGCCGTGCCTGTTTGCAGGCACTGCCAACCCTTCAGACGTCTGCCA GGTTCGAAGTGAACTTTATTTGTCTCCTTCAAGTTTTACTCAACCCGTTCATTGATTCATT CATGAACACCATTTGAGCGCTTTCGTGTTAAGCTGCATGTAGATAGAATACTTAAACGA GCACCATTTTCTGAGTCCTTCACCAGGGCTACATACGCGGTCATTGAAGCAACTTGGAA ACATTTTCGGTCATATCAAGCTAACAGCTTTTTAATAGTAATAGTAGTAACACTTTCGCC AAATTCTTAGGGGCATAGCACGTTATAGGGTAAGAATTATGTCTAATCGCAGACACAGA GAATCTTTACCCACATCTCATGGAAACAAAGCATATTAAAAATTGCAGTAAAGGAAGGT TGAGCACCTTCGAATCAGCTCCTGTTTATCTTCGTTTACGTATCAGT

Appendix 5: Multiple sequence alignment of land plants DEK1-LG3 sequences

|  | $\begin{gathered} 20 \\ 1 \end{gathered}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aegilops_tauschii |  |  | VR | AVG - -VCL | 15 |
| Brachypodium_distachyon |  | LDLCLCQSQR | VSFSISVMVQ | PVSGPVCL | 30 |
| Hordeum_vulgare |  | LCQSQK | VSFSIAVMVQ | PVSGPVCL | 28 |
| Oryza_brachyantha |  | LCESKK | VSFSIAVMVQ | PVSGPVCL | 26 |
| Oryza_sativa |  | CESKK | VSFSIAVMVQ | PVSGPVCL | 26 |
| Panicum_virgatum |  | CLCLSQK | VTLSIAVMVQ | PVSGPVCLF | 27 |
| Setaria_italica |  | LDSCLCQSQK | VTLSIAVMVQ | PVSGPVCLF | 31 |
| Sorghum_bicolor |  | LDLCLCQSQK | VTLSIAVMVQ | PVSGPVCLF | 31 |
| Zea_mays |  | LDLCLCQSQK | VTLSIAVMVQ | PVSGPVCLF | 30 |
| Elaeis_guineensis_A |  | IDPSLCQIQK | VSFSIAVMIQ | PESGPVCL | 31 |
| Phoenix_dactylifera_B |  | IDPSLCQIQK | VSFSIAVMIQ | PESGPVCLL | 31 |
| Phoenix_dactylifera_A |  | I DQSLCQLQK | VSFSIAVMIQ | PESGPVCL | 31 |
| Elaeis_guineensis_B |  | IDSSLCQLQK | VSFSIAVMIQ | PESGPVCL | 32 |
| Aquilegia_coerulea |  | -PSLCQSQK | VCFSVVTMIQ | PESGPVCLL | 28 |
| Arabidopsis_lyrata | Q | MDSSVCQSQK | ISISVTAMIQ | SESGPVCLF | 35 |
| Arabidopsis_thaliana | KHCGQ | MDSSVCQSQK | ISFSVTAMIQ | SDSGPVCLF | 35 |
| Camelina_sativa_B | GQ | IDSSVCQSQK | ISFSITAMIQ | SDSGPVCLF | 35 |
| Camelina_sativa_C | HHCGQ | IDSSVCQSQK | ISFSITAMIQ | SDSGPVCLF | 35 |
| Capsella_rubella | GKHCGQ | IDSSVCQSQK | ISISITAMIQ | SDSGPVCLF | 36 |
| Brassica_napus_B | GQ | MDASVCQSQK | ISFSITAMIQ | PDSGPVCLF | 32 |
| Brassica_rapa | GQ | MDASVCQSQK | ISFSITAMIQ | PDSGPVCLF | 32 |
| Thlaspi_arvense | GQ | MDSSVCQSQK | ISFSITAMIQ | PDSGPVCLF | 32 |
| Eutrema_salsugineum | Q | MDLSVCQSQK | ISLSITAMIQ | PDSGPVCLF | 31 |
| Thellungiella_halophila |  | MDLSVCQSQK | ISLSITAMIQ | PDSGPVCLF | 31 |
| Chorispora bunaeana Tarenaya_hassleriana_A | - GKHCGQ GKNCGQ | LDSSVCQSQK IDSSVCQSQK | ITFSITVMIQ VSFSVTVMIQ | PDSGPVCLF PDSGPVCLF | $\begin{aligned} & 36 \\ & 37 \end{aligned}$ |
| Tarenaya_hassleriana_B | SGKNCGQ | IDSSVCQSQK | ISLSITVMIQ | PDSGPVCVF | 37 |
| Camptotheca_acuminata | GQ | IDPSICESQK | VSFSIAVMIQ | PESGPVCLL | 32 |
| Vitis_vinifera | - TTSGRNCGQ | IDPTICQSQK | VSFSIAVTIQ | PESGPVCLL | 39 |
| Gossypium_arboreum | - GRHCGQ | IDPSMCQSQK | VSFSVAVMIQ | PESGPVCLL | 36 |
| Gossypium_raimondii | - GRHCGQ | IDPSMCQSQK | VSFSVAVMIQ | PESGPVCLL | 36 |
| Theobroma_cacao | HCGQ | IDPSMCQSQK | VSFSIAVMIQ | PESGPVCLL | 34 |
| Hevea_brasiliensis |  | IDPSICQTRK | VSFSIAVMIQ | PESGPVCLL | 31 |
| Manihot_esculenta |  | IDPSICQTRK | VSFSIAVMIQ | PESGPVCLL | 31 |
| Jatropha_curcas |  | MDPSVCQTRK | VSFSISVMIQ | PESGPVCLL | 31 |
| Ricinus_communis | -GRNCGE | IDPSICQTQK | VSFSIAVMIQ | PESGPVCLL | 36 |
| Populus_euphratica_A | HCGE | IDPSVCQSRK | VSFSIAVMIQ | PESGPVCLL | 34 |
| Populus_trichocarpa_B | - HCGE | IDPSVCQSRK | VSFSIAVMIQ | PESGPVCLL | 34 |
| Populus_euphratica_B | -RHCGE | IDSSVCQSRK | VSFSIAVLIQ | PESGPVCLL | 35 |
| Populus_euphratica_C | -RHCGE | IDSSVCQSRK | VSFSIAVLIQ | PESGPVCLL | 35 |
| Populus_trichocarpa_A | -RHCGE | IDSSVCQSRK | VSFSIAVLIQ | PESGPVCLL | 35 |
| Morus_notabilis | - I SGRHYGQ | IDPSICQTRK | VSFSVAVMIQ | PESGPVCLL | 38 |
| Citrus_clementina | -HCGQ | IDASICQSQK | VSFSIAVMIQ | PESGPVCLL | 34 |
| Citrus_sinensis | - HCGQ | IDASICQSQK | VSFSIAVMIQ | PESGPVCLL | 34 |
| Fragaria_vesca | ...CGQ | IESSICQSQK | ISFSIAVMIQ | PVSGPVCLL | 33 |
| Malus_domestica_A | - TSGRHCGQ | IDXTICQSQK | ISFSVTVMIQ | PVSGPVCLF | 38 |
| Malus_domestica_B | - TSGRHCGQ | IDXTICQSQK | ISFSVTVMIQ | PVSGPVCLF | 38 |
| Pyrus_x_bretschneideri_B | - TSGRHCGH | IDPTICQSQK | ISFSVTVMIQ | PVSGPVCLF | 38 |
| Malus_domestica_C | - GQ | IXPTICQSQK | ISFSVAVMIQ | PVSGPVCLF | 32 |
| Pyrus_x_bretschneideri_A | ..-HCGQ | IDPTICQSQK | ISFSVAVMIQ | PVSGPVCLF | 34 |



|  |  | ${ }_{1}^{60}$ |
| :---: | :---: | :---: |
| Aegilops_tauschii | TEFEKKVCWE | ILVAGSEQGM |
| Brachypodium_distachyon | TEFQKKVCWE | ILVAGSEQGM |
| Hordeum_vulgare | TEFEKKVCWE | ILVAGSEQGM |
| Oryza_brachyantha | TEFQKKMCWE | ILVAGSEQGM |
| Oryza_sativa | TEFQKKVCWE | ILVAGSEQGM |
| Panicum_virgatum | SEFQKKVCWE | M |
| Setaria_italica | SEFQKKVCWE | ILVAGSEQGM |
| Sorghum_bicolor | SEFQKKVCWE | ILVAGSEQGM |
| Zea_mays | SEFQK - VCWE | G |
| Elaeis_guineensis_A | TESQKKTCWE | ILVAGSEQGI |
| Phoenix_dactylifera_B | TEFQKKSCWE | AG |
| Phoenix_dactylifera_A | TEFQKRVCWE | 1 |
| Elaeis_guineensis_B | TEFQK - VCWE | ILVAGSEQGI |
| Aquilegia_coerulea | TEFQKKVCWE | ILVAGSEQGI |
| Arabidopsis_lyrata | TEFQKKVCWE | 1 |
| Arabidopsis_thaliana | TEFQKKVCWE | ILVAGSEQGI |
| Camelina_sativa_B | TEFQKKVCWE | ILVA |
| Camelina_sativa_C | TEFQKKVCWE | ILVAGSEQGI |
| Capsella_rubella | TEFQKKVCWE | ILVAGSEQGI |
| Brassica_napus_B | TEYQKKVCWE | VLVA |
| Brassica_rapa | TEYQKKVCWE | VLVAGSEQGI |
| Thlaspi_arvense | TEYQKKVCWE | ILVAGSEQGI |
| Eutrema_salsugineum | TEYQKKVCWE | A |
| Thellungiella_halophila | TEYQKKVCWE | AGSEQGI |
| Chorispora_bungeana | TEFQKKVCWE | ILVAGSEQG |
| Tarenaya_hassleriana_A | TEFQRKICWE | I LVAG |
| Tarenaya_hassleriana_B | TEFQKTICWE | VLVAGSEQGI |
| Camptotheca_acuminata | TEFQKKVCWE | ILVAGSEQG |
| Vitis_vinifera | TEFQKKVCWE | I LVAG |
| Gossypium_arboreum | TEFQKKVCWE | ILVAGSEQGI |
| Gossypium_raimondii | TEFQKKVCWE | ILVAGSEQ |
| Theobroma_cacao | TEFQKKVCWE | ILVAGSEQG |
| Hevea_brasiliensis | TEFHKKVCWE | VLVAGAEG |
| Manihot_esculenta | TEFQKKVCWE | ILVAGAEQ |
| Jatropha_curcas | TEFQKKVCWE | I LVAGAEQGI |
| Ricinus_communis | TEFQKKVCWE | VAGAEQ |
| Populus_euphratica_A | TEFQKKECWE | I LVAGAEQ |
| Populus_trichocarpa_B | TEFQKKECWE | ILVAGAEQGI |
| Populus_euphratica_B | TEFQKKECWE | I LVAG |
| Populus_euphratica_C | TEFQKKECWE | I LVAGAEQGI |
| Populus_trichocarpa_A | TEFQKKECWE | ILVAGAEQGI |
| Morus_notabilis | TEFQQKICWE | I LVAGSEQ |
| Citrus_clementina | TEFQKKVCWE | ILVAGSEQGI |
| Citrus_sinensis | TEFQKKVCWE | ILVAGSEQGI |
| Fragaria_vesca | TEFQKKICWE | ILVAGSEQGI |
| Malus_domestica_A | TEFQKKDCWE | ILVAGSEQGI |
| Malus_domestica_B | TEFQKKDCWE | ILVAGSEQGI |
| Pyrus_x_bretschneideri_B | TEFQKKDCWE | ILVAGSEQGI |
| Malus_domestica_C | TEFQKKVCWE | ILVAGSEQGI |
| rus_x_bretschneideri_A | TEFQKKV | 1 |

EAGQVGLRLV TK -..-GERM 51
ESGQVGLRLV TK .... GERM 66
EAGQVGLRLV TK....GERM 64
EAGQVGLRLV TK ....GERM 62
EAGQVGLRLV TK....GERM 62
EAGQVGLRLV TK...-GERI 63
EAGQVGLRLV TK....GERM 67
EAGQVGLRLV TK . . . GERM 67
EAGQVGLRLV TK .... GERM 65
EAGQVGLRLV TK .... GDRL 67
EAGQVGLRLV TK....GDRL 67
EAGQVGLRLV TK....GDRL 67
EAGQIGLRLV TK ...-GHRL 67
ESGQVGLRLV TK .... GDRQ 64
EAGQVGLRLI TK -...GERQ 71
EAGQVGLRLI TK ....GERQ 71
EAGQVGLRLI TK....GERQ 71
EAGQVGLRLI TK....-GERQ 71
EAGQVGLRLI TK ....-GERQ 72
EAGLVGLRLI TK ....GERQ 68
EAGLVGLRLI TK.... GERQ 68
EAGQVGLRLI TK....-GERQ 68
EAGQVGLRLI TK ....-GERQ 67
EAGQVGLRLI TK ....GERQ 67
EAGQVGLRLI TK....GERQ 72
EAGQVGLRLI TK.... GERQ 73
EAGLVGLRLI TK…-GERQ 73
EAGQVGLRLI TK.... GDRQ 68
EAGQVGLRLI TK....GDRQ 75
EAGQVGLRLI TK .... GDRQ 72
EAGQVGLRLI TK....GDRQ 72
EAGQVGLRLI TK....GDRQ 70
EAGQVGLRLI TK....GDRQ 67
EAGQVGLRLI TK....-GDRQ 67
EAGQVGLRLI TK.... GDRQ 67
EAGQVGLRLI TK . . . G GRRQ 72
EAGQVGLRLI TK....GDRQ 70
EAGQVGLRLI TK .... GDRQ 70
EAGQVGLRLI TK…-GDRQ 71
EAGQVGLRLI TK....GDRQ 71
EAGQVGLRLI TK....GDRQ 71
EAGQVGLRLI TK....GDRQ 74
EAGQVGLRLI TK.... GDRQ 70
EAGQVGLRLI TK....GDRQ 70
EAGQVGLRLI TK....-GDRQ 69
EAGQVGLRLI TK .... GDRQ 74
EAGQVGLRLI TK....GDRQ 74
EAGQVGLRLI TK....GDRQ 74
EAGQVGLRLI TK....GDRQ 68
EAGQVGLRLI TK .... GDRQ 70

| Prunus_mum | TEFQKQICWE | ILVAGSEQGI | EAGQVGLRLI | RQ 68 |
| :---: | :---: | :---: | :---: | :---: |
| Prunus_persica | TEFQKQICWE | ILVAGSEQGI | EAGQVGLRLI |  |
| Carica_papaya | PEFQKKVCWE | ILVAGSEQGI | EAGQVGLRLI | Q 69 |
| Cannabis_sativ | TEFQKKICWE | ILVAGSEQGI | EAGQVGLRLI | Q 73 |
| Cicer_arietinum | TEFQKKVCWE | ILVAGSEQGI | EAGQVGLRLI | TK...-GDRQ 68 |
| Medicago_truncatula | TEFQKKVCWE | I LVAGAEQGI | EAGQVGLRLI | TK...-GDRQ 67 |
| Glycine_max_A | TEFQKKICWE | ILVAGSEQGI | EAGQVGLRLI | TK - . - GDRQ 68 |
| Glycine_soja_B | TEFQKKICWE | ILVAGSEQG | EAGQV | Q 69 |
| Glycine_max_B | TEFQKKICWE | I LVAGSEQGI | EAGQVGLRLI | TK - - - GDRQ 69 |
| Glycine_soja_A | TEFQKKICWE | ILVAGSEQGI | EAGQVGLRLI | TK...-GDRQ 69 |
| Phaseolus_vulgaris | TEFQKKICWE | VLVAGSEQGI | EAGQV | RQ 67 |
| Erythranthe_guttata_A | TEFERKVCWE | ILVAGSEQG | EAGQV | TK .... GDRQ |
| Erythranthe_guttata_B | TEFERKVCWE | ILVAGSEQGI | EAGQVGLRLI | TK - . - GDRQ |
| Mimulus_guttatus_A | TEFERKVCWE | ILVAGSEQGI | EAGQVGLRLI | TK...-GDRQ |
| Mimulus_guttatus_B | TEFERKVCWE | ILVAGSEQGI | EAGQVGLRLI | TK ...-GDRQ 74 |
| Sesamum_indicum | TEFQRKVCWE | ILVAGSEQGI | EAGQVG | TK .... GDRQ |
| Linum_usitatissimum_A | TEFQKKNCWE | ILVAGAEQGI | EAGQVGLRLI | TK...-GERQ 73 |
| Linum_usitatissimum_B | TEFQKKNCWE | ILVAGAEQGI | EAGQVGLRLI | TK - . - - GERQ |
| Cucumis_melo | TEYQKKICWE | FLVAGSEQGI | EAGQV | RQ 65 |
| Cucumis_sativus | TEYQKKICWE | FLVAGSEQGI | EAGQVGLRL | TK - - - GDRQ 64 |
| Nelumbo_nucifera | TEYQKKVCWE | ILVAGSEQGI | EAGQVGLRLV | TK - - - GDRQ 68 |
| Coffea_canephora | TEFQKKLCWE | ILVAGSEQGI | EAGQVGLRLI | TK - .- GDRQ 72 |
| Eucalyptus_grandis | TEFQKKVCWE | ILVAGSEQGI | EAGQV | TK...-GDRH 67 |
| Lactuca_serriola | TEFQKQICWE | ILVAGSEQGI | EAGQVGLRLI | TKEDRQGDRQ 75 |
| Amborella_trichopoda | TEFQKKICWE | VLVAGSEQGI | ESGQVALRLV | TK...-GVRQ 72 |
| Capsicum_annuum | TEFQKNICWE | FLVAGSEQGI | EAGQVGLRLI | TK - .-. TNKQ 65 |
| Solanum_lycopersicum | TEFQKNICWE | FLVAGSEQGI | EAGQVGLRLI | TK...-TDKQ 65 |
| Solanum_tuberosum | TEFQKNICWE | FLVAGSEQGI | EAGQVGLRLI | TK...-TDKQ 65 |
| Nicotiana_benthamiana | AEFQKNICWE | FLVAGSEQGI | EAGQVGLRLI | TK . . - ${ }^{\text {ADKQ }}$ |
| Nicotiana_sylvestris | TEFQKNICWE | FLVAGSEQGI | EAGQVGLRLI | TK - . - TDKQ 71 |
| Nicotiana_tomentosiformis | TEFQKNICWE | FLVAGSEQGI | EAGQVGLRLI | TK - . - TDKQ 68 |
| Costus_pictus | TEFGNKVCWE | ILVAGSEQGI | EAGQVGLRLV | SK - . - GDRL 69 |
| Curcuma_longa | TEFEKKYCWE | ILVAGSEQGI | EAGQVGLRLV | SK ...-GDRL 72 |
| Musa_acuminata | TEYEKKLCWE | ILVAGSEQGI | EAGQVGLRLI | SK .... GDRL |
| Genlisea aurea | TEFQQRVCWE | ILVAGSEQGI | EAGQVGLRLI | TK...-GDKH 76 |
| Utricularia_gibba | TEFQKSVCLE | ILVAGSEQGI | EAGQVGVRLI | MK - .-. GENH |
| Beta_vulgaris | TEFQKKLCWE | FLVAGSEQGI | EAGQVGLRLI | TK...GDRQ 69 |
| Marchantia_polymorpha_A | SETRQLICWE | ILIAGAEQGL | EAGQVGLRLV | VK .... ${ }^{\text {GSGQ } 68}$ |
| Marchantia_polymorpha_B | SEAQQRICWE | IFIAGAEEGL | EAGQVGLRLV | VK .... GAGQ |
| Selaginella_moellendorffii_B | TESCQKICLE | ILIAGAEQNL | ESGQVGIRLV | LK . . . - GPGH 62 |
| Selaginella_moellendorffii_A | TESCQKICLE | ILIAGAEQNL | ESGQVGIRLV | LK . . - - GPGH 62 |
| Ceratodon_purpureus | VEAHNQKCWE | FLVAGAEQGL | EAGQVGLRLV | LK . . . - GAGQ |
| Physcomitrella_patens | VEAHNKKCLE | FLVAGAEQGL | EAGQVGLRLV | SK .... GAGQ 55 |
| Brassica_napus_A | TEYQKKVCWE | VLVAGSEQGI | EAGLVGLRLI | TK .... GERQ |
| Consensus 100\% | TEFQKKVCWE | ILVAGSEQGI | EAGQVGLRLI | TK--- - GDRQ |
| Conservation |  |  |  |  |



FTVTIDADL GEATSFIDGV 91 IVTVTIDADL GEATSFIDGV 106 I ITVTIDADL GEATSFIDGV 104 LVTVTIDADL GEATSFVDGV 102 LVTVTIDADL GEATSFIDGV 102 LVTVTIDADL GEATSFIDGN 103 LVTVTIDADL GEATSFIDGV 107 LVTVTLDADL GEATSFIDGV 107 LVTVTLDADL GEATSFIDGV 105 IVTVTIDADI GEATSYIDGG 107 IVTVTIDADL GEATSYIDGG 107 IVTVTIDADL GEATSYIDGG 107 IVTVTIDADL GEATSYIDGG 107 MVTMIIDAEL GEATCYLDGG 104 TVTITIDADA GEATCYVDGG 111 TVTITIDADA GEATCYIDGG 111 TVTITIDADA GEATCYIDGG 111 TVTITIDADA GEATCYIDGG 111 TVTITIDADA GEATCYIDGG 112 TVTITVDADA GEATCYLDGG 108 TVTITVDADA GEATCYLDGG 108 TVTITIDADA GEATCYLDGG 108 TVTITIDADA GEATCYLDGG 107 TVTITIDADA GEATCYLDGG 107 TVTITIDADA GEATCYVDGG 112 MVTMTIDADT GEATCYLDGG 113 MVTMTIDADV GEAACYLDGG 113 IVTMTVDADL GEATCYLDGG 108 IVTMTIDADL GEATCYLDGG 115 TVTMTIDADI GEATCYLDGG 112 TVTMTIDADI GEATCYLDGG 112 IVTMTIDADI GEATCYLDGG 110 IVTMTVDADL GEATCYLDGG 107 IVTMTVDADL GEATCYLDGG 107 IVTMTIDADL GEATCYLDGG 107 IVTMTIDADL GEATCYLDGG 112 IVTMTIDADL GEATCYMDGG 110 IVTMTIDADL GEATCYMDGG 110 IVTMTVDADL GEATCYLDGG 111 IVTMTVDADL GEATCYLDGG 111 IVTMTVDADL GEATCYLDGG 111 MVTMTIDADL GEATCYLDGG 114 IVTMTIDADI GEATCYLDGG 110 IVTMTIDADI GEATCYLDGG 110 LVTMTIDADL GEATCYLDGG 109 LVTMTIDADL GEATCYLDGG 114 LVTMTIDADL GEATCYLDGG 114 SVTMTIDADL GEATCYLDGG 114 LVTMTIDADL GEATCYLDGG 108 LVTMTIDADL GEATCYLDGG 110

| m | S | H | L | G | 108 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prunus_persica | TTVAKEWSIS | ATSIADGRWH | LVTMTIDADL | GEATCYLDGG | 12 |
| Carica_papaya | TTVAKEWS I | ATSIADGRWH | VVTMTIDADL | GEATCYLDGG | 109 |
| Cannabis_sativ | TTVAKEWSIS | ATSIADGRWH | MVTMTVDAES | GEATCYLDGG | 113 |
| Cicer_arietinum | TTVAKEWS IS | ATSIADGRWH | IVTMTIDADL | GEATCYLDGG | 108 |
| Medicago_truncatula | TTVAKEWS IS | ATSIADGRWH | IVTMT IDADL | GEATCYLDGG | 07 |
| Glycine_max_A | TTVAKEWSIS | ATSIADGRWH | IVTMSIDADL | GEATCYLDGG | 108 |
| Glycine_soja_B | TTVAKEWS IS | ATSIADGRWH | IVTMSIDADL | GEATCYLDGG | 09 |
| Glycine_max_B | TTVAKEWSIS | TTSIADGRWH | IVTMSIDADL | GEATCYLDGG | 09 |
| Glycine_soja_A | TTVAKEWSIS | TTSIADGRWH | IVTMSIDADL | GEATCYLDGG | 109 |
| Phaseolus_vulgaris | TTVAKEWS IS | ATSIADGRWH | IVTMTIDADL | GEATCYLDGG | 107 |
| Erythranthe_guttata_A | TTVAKEWSIS | SSSIGDGRWH | I ITMTIDAEL | GEATCFIDGG | 114 |
| Erythranthe_guttata_B | TTVAKEWS IS | SSSIGDGRWH | I ITMTIDAEL | GEATCFIDGG | 114 |
| Mimulus_guttatus_A | TTVAKEWSIS | SSSIGDGRWH | I ITMTIDAEL | GEATCFIDGG | 14 |
| Mimulus_guttatus_B | TTVAKEWS IS | SSSIGDGRWH | I ITMTIDAEL | GEATCFIDGG | 114 |
| Sesamum_indicum | TTVAKEWSIS | SSSIADGRWH | IVTMTVDADL | GEATCFIDGG | 111 |
| Linum_usitatissimum_A | TTVAKEWSIG | ASSIADGRWH | FVTMTIDADV | GEATCYLDGG | 113 |
| Linum_usitatissimum_B | TTVAKEWSIG | ASS IADGRWH | FVTMTIDADV | GEATCYLDGG | 14 |
| Cucumis_melo | STVTKEWSIS | ATSIADGRWH | IVTMT IDADL | GEATCYLDGG | 105 |
| Cucumis_sativus | STVTKEWSIS | ATSIADGRWH | IVTMTIDADL | GEATCYLDGG | 104 |
| Nelumbo_nucifera | TTVAKEWSVG | ATCIADGRWH | IVTVTIDADL | GEATCYLDGA | 08 |
| Coffea_canephora | STVAKEWNIG | AAS IADGRWH | IVTITIDADL | GEVNCFLDGN | 12 |
| Eucalyptus_grandis | TAV-KEWS IG | ATS ITDGRWH | IVTVTIDAEI | GEATCYLDGG | 106 |
| Lactuca_serriola | STVSKGWNIG | AACIADGRWH | TVTVTIDADL | GEATCYLDGG | 5 |
| Amborella_trichopoda | TTVVKEWNIG | ATSIADGRWH | MVSVTIDAEL | GEAASFVDGG | 12 |
| Capsicum annuum Solanum_lycopersicum | TTV-KEWS IS <br> TTV-KEWS IS | ATSIADGRWH <br> ATSIADGRWH | I ITLTIDAEL IITLTIDADL | GEATCYLD GEATCYLD | 104 |
| Solanum_tuberosum | TTV-KEWS IS | ATSIADGRWH | I ITLTIDADL | GEATCYLDG | 104 |
| Nicotiana_benthamiana | TTV-KEWS IS | ATSIADGRWH | I ITMTIDAEL | GEATCYLDGN | 110 |
| Nicotiana_sylvestris | TTV-KEWS IS | ATSIADGRWH | I ITMTIDAEL | GEATCYLDGN | 110 |
| Nicotiana_tomentosiformis | TTV-KEWSIS | ATSIADGRWH | I ITMTIDAEL | GEATCYLDGN | 107 |
| Costus_pictus | TTVTKEWSIG | SAS I TDGRWH | IVTVTIDADL | GEATSYIDGG | 109 |
| Curcuma_longa | TIVAKEWSIG | SAC I TDGRWH | IVTVTLDAEL | GEATCYIDGG | 112 |
| Musa_acuminata | TTVAKECSIG | SAS ITDGRWH | IVTVTLDAEL | GEATSYIDGG | 109 |
| Genlisea aurea | TFVAKEWTIS | SSSVADGRWH | IVTLTIDADL | GEVTCFIDGG | 116 |
| Utricularia_gibba | TVVAKDWTVG | ASSIADGRWH | I ITMTVDADV | GEATCFIDGV | 115 |
| Beta_vulgaris | TAATKEWSIS | GTCIADGRWH | MVTMTLDADV | GEATCFVDGT | 109 |
| Marchantia_polymorpha_A | TTSAREWNIG | NTCLADGRWH | TVTVTLDAEI | GEAAAYLDGE | 108 |
| Marchantia_polymorpha_B | TTSVKDWNIG | NTCLHDGRWH | TVTVTLDADV | GEAAAYLDGH | 108 |
| Selaginella_moellendorffii_B | TMTVRERNIG | NTDIADGRWH | TVAVTVDATT | GEVAAYLDGM | 102 |
| Selaginella_moellendorffii_A | TMTVRERNIG | NTDIADGRWH | TVAVTVDATT | GEVAAYLDGM | 102 |
| Ceratodon_purpureus | TTYNREWFIG | HTCIADGRWH | SVAVTVDAAT | GEAFAFTDGV | 114 |
| Physcomitrella_patens | STHNREWFIG | HTCVADGRWH | SVTITVDAST | GEASAFIDGG | 95 |
| Brassica_napus_A | TTVAREWYIG | ATSITDGRWH | TVTITVDADA | GEATCYLDGG | 108 |
| Consensus | TTVAKEWSIS | ATSIADGRWH | IVTMTIDADL | GEATCYLDGG |  |
| Conservation ${ }_{\text {0\% }}^{\text {100\% }}$ |  |  |  |  |  |


|  | $\begin{gathered} 140 \\ 1 \end{gathered}$ |  |  | $\begin{gathered} 160 \\ 1 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aegilops_tauschii | YDG....-YQ | NGLPLPRNNG | VWEPGADIWV | GARPP | 122 |
| Brachypodium_distachyon | YDG ..... YQ | NGLPLPKNTG | I WEPGADVWV | GARP | 137 |
| Hordeum_vulgare | YDG.....YQ | NGLPLPRNNG | VWEPGADIWV | GARP | 135 |
| Oryza_brachyantha | YDG.....YQ | NGLPLPRNNG | IWEPGTDIWV | GARPP | 133 |
| Oryza_sativa | YDG.....YQ | NALPLPRNNG | IWEPGTDIWV | GARPP | 133 |
| Panicum_virgatum | YDG..... YQ | NGLPLPTING | I WEPGTDIWV | GARPP | 134 |
| Setaria_italica | YDG ..... YQ | NGLPLPTING | IWEPGTDIWV | GARP | 138 |
| Sorghum_bicolor | YDG....-YQ | NGLPLPTENG | I WEPGTDIWV | GARP | 38 |
| Zea_mays | YDG ..... YQ | NGLPLPTDNG | I WEPGTDIWV | GARPPM | 136 |
| Elaeis_guineensis_A | FDG.....YQ | IGLPLHGSSG | I WEQGTDVWV | GARP | 138 |
| Phoenix_dactylifera_B | FDG.....YQ | IGLPLHGSSG | I WEQGTDVWV | GARP | 38 |
| Phoenix_dactylifera_A | FDG.....YQ | SGLPLHGSGG | VWEQETDVWV | GARPL | 138 |
| Elaeis_guineensis_B | FDG.....YQ | SGLPLHGSGG | IWELGTDVWV | GCRP | 38 |
| Aquilegia_coerulea | FDG..... YQ | TGLPLHMGNG | I WEQGTEVWV | GIRPP | 35 |
| Arabidopsis_lyrata | FDG.....YQ | TGLPLSIGSA | I WEQGAEVWL | GVRPP | 142 |
| Arabidopsis_thaliana | FDG..... YQ | NGLPLSIGSA | I WEQGAEVWL | GVRPP | 42 |
| Camelina_sativa_B | FDG.....YQ | TGLPLSIGSA | I WEQGAEVWL | GVRPP | 142 |
| Camelina_sativa_C | FDG.....YQ | TGLPLSIGSA | I WEQGAEVWL | GVRP | 42 |
| Capsella_rubella | FDG.....YQ | TGLPLSIGNA | I WELGAEVWL | GVRA | 43 |
| Brassica_napus_B | FDG.....YQ | TGLPLSISSA | I WEQGAEVWL | GVKPP | 139 |
| Brassica_rapa | FDG..... YQ | TGLPLSVSSA | I WEQGAEVWL | GVKPP | 39 |
| Thlaspi_arvense | FDG..... YQ | TGLPLSVGSA | I WEQGAEVWL | GVKPP | 139 |
| Eutrema_salsugineum | FDG..... YQ | TGLPLSIGSA | VWEQGAEVWL | GVRPP | 138 |
| Thellungiella_halophila | FDG ....-YQ | TGLPLSIGSA | VWEQGAEVWL | GVRP | 138 |
| Chorispora_bungeana | FDG.....YQ | TGLPLSIGSA | IWEQGTEVWL | GVRPP | 143 |
| Tarenaya_hassleriana_A | FDG.....YQ | NGLPLSVGSA | IWAQGAEVWL | GVRPP | 44 |
| Tarenaya_hassleriana_B | FDG..... YQ | TGLPLSVGSA | I WEQGADVWL | GVRPP | 44 |
| Camptotheca_acuminata | FDN . . . - Y $Q$ | TGLPLCVGNG | I WEQGTEVWT | GVRPP | 39 |
| Vitis_vinifera | FDG.....YQ | TGLPLRVGNG | IWEQGTEVWI | GVRPP | 146 |
| Gossypium_arboreum | FDG..... YQ | TSLPLFVGTS | I WEQGTEVWV | GVRPP | 143 |
| Gossypium_raimondii | FDG..... YQ | TSLPLFVGTS | I WEQGTEVWV | GVRPP | 43 |
| Theobroma_cacao | FDG..... YQ | TGLPLCVGSS | I WEQETEVWV | GVRPP | 141 |
| Hevea_brasiliensis | FDG.....FQ | TGLPLSVGSS | I WEQGTEVWV | GFRPPT | 38 |
| Manihot_esculenta | FDG.....FQ | TGLPLSVGSS | I WEQGTEVWV | GFRPPT | 138 |
| Jatropha_curcas | FDG.....FQ | TGLPLSVSNT | I WEQGTEVWV | GFRPPT | 138 |
| Ricinus_communis | FDG.....FPQ | TGLPLSVGNS | IWELGTEVWV | GFRPP | 143 |
| Populus_euphratica_A | FDG.....IQ | TGLPLSVGSS | I WEQGTEVWV | GVRPP | 141 |
| Populus_trichocarpa_B | FDG..... YQ | TGLPLSVGSS | I WEQGTEVWV | GVRPP | 41 |
| Populus_euphratica_B | FDG.... F ${ }^{\text {P }}$ | TGLPLSVGSS | I WEQGTEVWV | GVRPP | 142 |
| Populus_euphratica_C | FDG.....FQ | TGLPLSVGSS | I WEQGTEVWV | GVRPP | 142 |
| Populus_trichocarpa_A | FDG....-FQ | TGLPLSVGSS | I WEQGTEVWV | GVRPP | 142 |
| Morus_notabilis | FDG.....YQ | TGLPLHVGES | I WEQGTEVWI | GVRPP | 145 |
| Citrus_clementina | FDG..... YQ | TGLALSAGNS | I WEEGAEVWV | GVRPP | 141 |
| Citrus_sinensis | FDG.....YQ | TGLALSAGNS | I WEEGAEVWV | GVRPPT | 141 |
| Fragaria_vesca | FDG.....YQ | TGLPLHVGNT | I WELGTEVWV | GVRPPT | 140 |
| Malus_domestica_A | FDG..... YQ | TGLPLQVGNT | I WEEGTEVWV | GVRPPT | 145 |
| Malus_domestica_B | FDG.....YQ | TGLPLQVGNT | I WEEGTEVWV | GVRPPT | 145 |
| Pyrus_x_bretschneideri_B | FDG..... YQ | TGLPLQVGNT | I WEEGTEVWV | GVRPPT | 145 |
| Malus_domestica_C | FDG.... ${ }^{\text {PQ }}$ | TGLPLHVGNT | VWEEGTEVWV | GVRPP | 139 |
| Pyrus_x_bretschneideri_A | FDG..... YQ | TGLPLHVGNT | VWEQGTEVWV | GVRPP | 141 |


| m | YQ | G N T | I WEQGTEVWV | 139 |
| :---: | :---: | :---: | :---: | :---: |
| Prunus_persica | FDG.... YQ | TGLPLHVGNT | I WEQGTEVWV | GVRPPT . . . 143 |
| Carica_papaya | FDG.....YQ | TGLPLCVGNS | I WEQGTEVWL | GVRPPI . . . 140 |
| Cannabis_sativ | FDG.....YQ | NALPLQIGDS | I WEQGTEVWL | GVRPPI .... 144 |
| Cicer_arietinum | FDG..... YQ | NGLPLCVGSS | I WDHGTEVWV | GVRPPT . . . 139 |
| Medicago_truncatula | FDG.....YQ | NGLPLCVGSS | I WDHGTEVWV | GVRPPT . . . 138 |
| Glycine_max_A | FDG.....YQ | NGLPLCVGSS | I WEQGTEVWV | GVRPPT . . . 139 |
| Glycine_soja_B | FDG.....YQ | NGLPLCVGSS | IWEQGTEVWV | GVRPPT . . . 140 |
| Glycine_max_B | YDG.....YQ | SGLPLCVGSS | IWEQGTEVWV | GVRPPT . . . 140 |
| Glycine_soja_A | YDG.....YQ | SGLPLCVGSS | IWEQGTEVWV | GVRPPT . . . . 140 |
| Phaseolus_vulgaris | FDG.....YQ | NGLPLCVGSS | I WEEGTEVWV | GVRPPT . . . 138 |
| Erythranthe_guttata_A | YDG.....YQ | TGLPLNVGNG | I WEQGTDVWV | GVRPPT . . . . 145 |
| Erythranthe_guttata_B | YDG.....YQ | TGLPLNVGNG | I WEQGTDVWV | GVRPPT . . . 145 |
| Mimulus_guttatus_A | YDG.....YQ | TGLPLNVGNG | I WEQGTDVWV | GVRPPT . . . 145 |
| Mimulus_guttatus_B | YDG.....YQ | TGLPLNVGNG | I WEQGTDVWV | GVRPPT . . . 145 |
| Sesamum_indicum | YDG.....YQ | MGLPLNVGNG | I WEQGTDVWV | GIRPPI .... 142 |
| Linum_usitatissimum_A | FDG.... M M | TGLPLPADNS | IWEQGTEVWV | GVRPPM . . . 144 |
| Linum_usitatissimum_B | FDG . . . . M M | TGLPLPADNS | IWEQGTEIWV | GVRPPM . . . 145 |
| Cucumis_melo | FDG.....YQ | TGLPLNVGDN | IWEQGTEIWV | GVRPPT . . . 136 |
| Cucumis_sativus | FDG.....YQ | TGLPLNVGDN | IWEQGTEIWV | GVRPPT . . . 135 |
| Nelumbo_nucifera | FDA.... YQ | SGLPLHTGNG | IWDQGTEVWV | GIRPPT.... 139 |
| Coffea_canephora | FDG.....YQ | AGLPLSVGNG | I WEDGAEVWV | GIRPPI.... 143 |
| Eucalyptus_grandis | FDG.....YE | TGLPLPVGND | IWEQGTEVWI | GVKPPI . . . 137 |
| Lactuca_serriola | FDG..... YQ | TGLPLRVGNG | I WEPGTDVWV | GVRPPT .... 146 |
| Amborella_trichopoda | FDG.....YQ | TGLPLLVENG | IWEQGTEAWI | GIRPPT . . . 143 |
| Capsicum annuum | FDG..... YQ | TGLPLRVASC | I WELGTDVWV | GIRPPI .... 135 |
| Solanum_lycopersicum | FDG.....YQ | TGLPLRVASC | IWDLGTDVWV | GIRPPI .... 135 |
| Solanum_tuberosum | FDG.....YQ | TGLPLRVASC | I WDLGTDVWV | GIRPPI .... 135 |
| Nicotiana_benthamiana | FDG..... YQ | TGLPLRVASC | I WELGTDVWV | GIRPPI .... 141 |
| Nicotiana_sylvestris | FDG.....YQ | TGLPLRVASC | I WELGTDVWV | GIRPPI .... 141 |
| Nicotiana_tomentosiformis | FDG.....YQ | TGLPLRVASC | I WELGTDVWV | GIRPPI.... 138 |
| Costus_pictus | YDG.....YQ | SGLPIHGTSC | I WEEGTSVWT | GVRPPV . . . 140 |
| Curcuma_longa | YDG.....YQ | SGLPLHGTNC | I WEEGTSVWA | GIRPPI . . . 143 |
| Musa_acuminata | YDG.....YQ | SVSLLQGTSC | I WEEGTSVWA | GVRPPV . . . 140 |
| Genlisea aurea | YDG.....YQ | TSLPLNMGDC | I WERGTDVWI | GVRPPM . . . . 147 |
| Utricularia_gibba | YDG . . . . YQ | IVLPLNMGNG | IWEQGTEIWI | GVRPPM . . . . 146 |
| Beta_vulgaris | FDG.....YL | NELPLRVLNG | IWQQGTEVWI | GVRPPT . . . 140 |
| Marchantia_polymorpha_A | YDGFAKFESL | NGLQQPAEGG | I WEDGTEVWV | GIRPPM .... 144 |
| Marchantia_polymorpha_B | FDGDVLLDNL | NGLQLPAEKG | I WEEGTEVWV | GIRPPM - . . 144 |
| Selaginella_moellendorffii_B | LDG.....TQ | SGLQIPVEGG | I WQRETEVWV | GSRPPM . . . 133 |
| Selaginella_moellendorffii_A | LDG..... TQ | SGLQIPVEGG | I WQRETEVWV | GSRPPM . . . 133 |
| Ceratodon_purpureus | FDG....EVR | CDLSLPAEGG | VWQEEMEVWV | GIRPPM - . . 146 |
| Physcomitrella_patens | FDG.... DNR | CDLLLLGEGG | VWEEGMEVWV | GIRPPM .... 127 |
| Brassica_napus_A | FDG.....YQ | TGLPLSISSA | I WEQGAEVWL | DEAASLHAAV 143 |
| Consensus | FDG----YQ | TGLPLSVGNG | IWEQGTEVWV | GVRPPT - - - |
| Conservation ${ }_{\text {0\% }}^{\text {100\% }}$ |  | $\square \square \square \square$ | $\square \square \square \square$ | $\square$ |


|  | $\begin{gathered} 180 \\ 1 \end{gathered}$ |  |  | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aegilops_tauschii | GR | SDSEGTDSKM | QIMDAFLWG . |  | 15 |
| Brachypodium_distachyon | GR | SDSEGSDSKM | QIMDAFLWG - |  | 170 |
| Hordeum_vulgare | R | SDSEGTDSKM | QIMDAFLWG |  | 168 |
| Oryza_brachyantha | AFGR | SDSEGSDSKM | Q IMDAF LWG - |  | 66 |
| Oryza_sativa |  | S | QIMDAFLWG |  | 66 |
| icum_virgatum | GR | SDSEGSDSKM | QIMDAFLWG |  | 167 |
| Setaria_italica | R | S | QIMDAFLW |  |  |
| Sorghum_bicolor | DLDAFGR | SDSEGSDSKM | Q IMDAFLWG - | RCLSEDE | 171 |
| Zea_mays | GR | SDSEGSDSKM | Q IMDAF LWG | CLS | 69 |
| Elaeis_guineensis_A | GR | SDSEGADSKM | QIMDAFLWG |  | 171 |
| Phoenix_dactylifera_B | GR | SDSEGADSKM | Q IMDAF LWG . | TEDE | 71 |
| Phoenix_dactylifera_A | GR | SDSEGSDS | QIMDAFLWG | DE | 171 |
| Elaeis_guineensis_B | LDAFGR | SDSEGSGSKM | QIMDAFLWG | RCLTEDE | 171 |
| Aquilegia_coerulea | GR | SDSEGVDPKM | HIMD |  |  |
| Arabidopsis_lyrata | DVDAFGR | SDSDGVESKM | H IMDVFLWG | KCLSEDE | 175 |
| Arabidopsis_thaliana | DAFGR | SDSDGVESKM | HIMDVFLWG | CCLSE | 75 |
| Camelina_sativa_B | VVDAFGR | SDSDGVESKM | HIMDVFLWG - | CLSE | 175 |
| Camelina_sativa_C | FR | SDSDGVESKM | HIMDVFLWG | D | 175 |
| Capsella_rubella | GR | SDSDGVESKM | H IMDVF LW |  |  |
| Brassica_napus_B | FGR | SDSDGAESKM | HIMDVFLWG | KCLTEDE | 172 |
| Brassica_rapa | ...DVDAFGR | SDSDGAESKM | HIMDVFLW |  |  |
| Thlaspi_arvense | DAFGR | SDSDGAESKM | HIMDVFLWG | .KCLTEDE | 72 |
| Eutrema_salsugineum | GR | SDSDGAESKM | HIMDVFLWG | KCLTED | 71 |
| Thellungiella_halophila | DAFGR | SDSDGAESKM | H IMDVFLW |  | 171 |
| Chorispora_bungeana | GR | SDSDGAESKM | HIMDVFLLG | -KCLTEDE | 176 |
| Tarenaya_hassleriana_A | ..-DVDAFGR | SDSDGAEPKM | HMM |  |  |
| Tarenaya_hassleriana_B | DAF | SDSDGVESKM | HMMDVFVWG | KCLTEDE | 177 |
| Camptotheca_acuminata | MDAFGR | SDSEGAESKM | HIMDVFLW | -RCLTEDE | 172 |
| Vitis_vinifera | - DIDAFGR | SDSEGAESKM | H IMDVFMWG |  | 9 |
| Gossypium_arboreum | MDAFGR | SDSEGAESKM | HIMDVF LWG | RCLNED | 176 |
| Gossypium_raimondii | - DMDAFGR | SDSEGAESKM | HIMDVFLWG - |  | 176 |
| Theobroma_cacao | . . DMDAFGR | SDSEGAESKM | HVMDVFLWG |  | 174 |
| Hevea_brasiliensis | DVDAFGR | SDSEGAESKM | H IMDVFLWG |  |  |
| Manihot_esculenta | R | SDSEGAESKM | HIMDVFLWG |  |  |
| Jatropha_curcas | - DVDAFGR | SDSEGAESKM | HIMDVFLW | RCL | 171 |
| Ricinus_communis | - DVDAFGR | SDSEGAESKM | H IMDVFLWG . |  | 176 |
| Populus_euphratica_A | GR | SDSEGAESKM | HIMDVFLW |  |  |
| Populus_trichocarpa_B | GR | SDSEGAESKM | Y IMDVF LWG - |  | 174 |
| Populus_euphratica_B | ...DVDAFGR | SDSEGAESKM | H IMDVFLWG |  | 175 |
| Populus_euphratica_C |  | SDSEGAESKM | H IMDVFLWG - | RCLTED | 175 |
| Populus_trichocarpa_A | AFGR | SDSEGAESKM | HIMDVFLWG |  | 175 |
| Morus_notabilis | - DMDAFGR | SDSEGAESKM | HLMDVFLWG | RCL | 178 |
| Citrus_clementina | - DMDVFGR | SDSEGAESKM | HIMDVFLWG | RCLTEDE | 174 |
| Citrus_sinensis | - DMDVFGR | SDSEGAESKM | HIMDVFLW | RCLTEDE | 174 |
| Fragaria_vesca | - DMDAFGR | SDSEGAESKM | H IMDVFLWG - | TEDD | 173 |
| Malus_domestica_A | AFGR | SDSEGAESKM | HIMDVFLWG | LTED | 178 |
| Malus_domestica_B | - DVDAFGR | SDSEGAESKM | H IMDVF LWG - | LTE | 178 |
| Pyrus_x_bretschneideri_B | DVDAFGR | SDSEGAESKM | HIMDVFLWG | RCLTEDD | 178 |
| Malus_domestica_C | ..-DVDAFGR | SDSEGAESKM | HIMDVFLWG . | LTEDD |  |
| yrus_x_bretschneideri_A | DAFGR | SDSEGAESKM | HIMDVFLWG | D | 174 |
| Prunus_mum | AFGR | SD | H | RCLTEDD |  |


| Prunus_persica | GR | SDSEGAESKM | HIMDVF LWG - | D | 176 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Carica_papaya | - DVDAFGR | SDSEGAESKM | HIMDVFLWG - | RCLSEDE | 173 |
| Cannabis_sativ | DMDAFGR | SDSEGAESKM | HIMDVF LWG - | EDE | 177 |
| Cicer_arietinum | DIDAFGR | SDSEGVESKM | HIMDVFLWG - | RCLSDDE | 172 |
| Medicago_truncatula | DIDAFGR | SDSEGVESKM | HIMDVF LWG - | DDE | 171 |
| Glycine_max_A | DIDAFGR | SDSEGVESKM | HIMDAF LWG - | RCLTDDE | 172 |
| Glycine_soja_B | DIDAFGR | SDSEGVESKM | HIMDAFLWG - | RCLTDDE | 173 |
| Glycine_max_B | DIDAFGR | SDSEGVESKM | HIMDAF LWG - | RCLTDDE | 173 |
| Glycine_soja_A | DIDAFGR | SDSEGVESKM | HIMDAF LWG - | RCLTDDE | 173 |
| Phaseolus_vulgaris | ..-DIDAFGR | SDSEGVESKM | HIMDAF LWG - | RCLSDDE | 171 |
| Erythranthe_guttata_A | DIDAFGR | SDSENAESKM | HVMDVFLWG - | RCLSEDE | 178 |
| Erythranthe_guttata_B | - DIDAFGR | SDSENAESKM | HVMDVFLWG - | RCLSEDE | 178 |
| Mimulus_guttatus_A | DIDAFGR | SDSENAESKM | HVMDVF LWG - | RCLSEDE | 178 |
| Mimulus_guttatus_B | DAFGR | SDSENAESKM | HVMDVF LWG . | RCLSEDE | 178 |
| Sesamum_indicum | - DMDAFGR | SDSEGTESKM | HVMDVF LWG - | RCLNEDE | 175 |
| Linum_usitatissimum_A | DMDAFGR | SDSEGAESKM | HMMDVFLWG - | KCLTDDD | 177 |
| Linum_usitatissimum_B | DMDAFGR | SDSEGAESKM | HMMDVF LWG - | KCLTDDD | 178 |
| Cucumis_melo | DVDIFGR | SDSEGAESKM | HIMDVFLWG - | RSLTEDE | 169 |
| Cucumis_sativus | DVDIFGR | SDSEGAESKM | HIMDVFLWG - | RSLTEDE | 168 |
| Nelumbo_nucifera | DLDAFGR | SDSEGADSKM | HIMDAF LWG - | RCLTEDE | 172 |
| Coffea_canephora | DMDAFGR | SDSEGAESKM | HIMDVFLWG - | RCLTEDE | 176 |
| Eucalyptus_grandis | GLDAIGR | SDSEGAESKM | HIMDIFLWG - | RCLTEDE | 170 |
| Lactuca_serriola | DVDAFGR | SDSEGAESKM | HIMDLFLWG. | RCLLEDE | 179 |
| Amborella_trichopoda | DLDAFGR | SDSEGSESKM | HLMDAFLWG - | RCLNEDE | 176 |
| Capsicum_annuum | DVDSFGR | SDSEGAESKV | L IMDVF LWG - | RCLTEDE | 168 |
| Solanum_lycopersicum | DVDSFGR | SDSEGVESKV | HIMDVFLWG - | RCLTEDE | 168 |
| Solanum_tuberosum | DVDSFGR | SDSEGAESKV | HIMDVFLWG - | RCLTEDE | 168 |
| Nicotiana_benthamiana | DVDSFGR | SDSEGAESKV | HIMDVFLWG - | RCLTEDE | 174 |
| Nicotiana_sylvestris | DVDSFGR | SDSEGAESKV | HIMDVFLWG - | RCLTEDE | 174 |
| Nicotiana_tomentosiformis | DVDSFGR | SDSEGAESKV | HIMDVFLWG - | RCLTED | 171 |
| Costus_pictus | - DLDAFGR | SDSEGVESKM | QIMDAFLWG - | -RCLTEDE | 173 |
| Curcuma_longa | DLDAFGR | SDSEGGDSKM | QIMDAFLWG . | -RCLTEDE | 176 |
| Musa_acuminata | DLDAFGR | SDSEGVDSKM | QIMDAFLWG - | -RCLTEDE | 173 |
| Genlisea_aurea | - DMDAFGR | SDSEATEPKM | HVMDSFLWG - | RCLSEDE | 180 |
| Utricularia_gibba | - DMDAFGR | SDSEGSEPKM | HIMDSFLWG. | -RCLSEDE | E 179 |
| Beta_vulgaris | DIDTFGR | SDSEGAESKM | HVMDVFLWG - | RCLSEEE | E 173 |
| Marchantia_polymorpha_A | DLDAFGR | SDSEGADSRM | HVMDVFLWG - | LLNEEE | E 177 |
| Marchantia_polymorpha_B | DLDAFGR | SDSEGNDSRM | HVMDVF LWG - | -RLLTEDE | E 177 |
| Selaginella_moellendorffii_B | -DLDAFGR | SDSEGVEASM | HIMDVF LWG - | -RCLKEEE | E 166 |
| Selaginella_moellendorffii_A | - DLDAFGR | SDSEGVEASM | HIMDVFLWG - | -RCLKEEE | E 166 |
| Ceratodon_purpureus | - DLDAFGR | SDSEGAESRM | HAMD I MMWG - | -RCLSEDE | E 179 |
| Physcomitrella_patens | .-.DLDAFGR | SDSEGAESKM | HAMDVFMWG - | -RCLTEDE | E 160 |
| Brassica_napus_A | GMADLDMIDL | ND | - DNWQWTA | SPPRVDGWDS | 172 |
| Consensus <br> 100\% | ---DVDAFGR | SDSEGAESKM | H I MDV F LWG - | -RCLTEDE |  |
| Conservation | $\square \square^{\square}$ | $\square \square$ |  |  |  |

Aegilops_tauschii
V - . . . - A 172
Brachypodium_distachyon
I -. - . . A 170
Hordeum_vulgare
V … . - A 168
Oryza_brachyanthaOryza_sativaV ...... A 168
Panicum_virgatum ..... V - . . . A 169
Setaria italica ..... - A 173Sorghum_bicolor
V . . . . . . T ..... T 173
Zea_mays ..... T 171
Elaeis_guineensis_A ..... A 173
Phoenix_dactylifera_B ..... A 173
Phoenix_dactylifera_A ..... A 173
Elaeis_guineensis_B ..... A 173
Aquilegia_coerulea ..... I -.....-V 170
Arabidopsis lyrata ..... A - . . . . A 177
Arabidopsis_thaliana ..... A … .- A 177
Camelina_sativa_B ..... A - . . . . A 177
Camelina_sativa_C ..... A - .-. . A 177
Capsella_rubella ..... A - . . . A 178
Brassica_napus_B ..... A - . . . A 174
Brassica_rapa ..... A 174
Thlaspi_arvense ..... A 174
Eutrema_salsugineum ..... A 173
Thellungiella_halophila ..... A 173
Chorispora_bungeana ..... A 178
Tarenaya_hassleriana_A ..... A 179
Tarenaya_hassleriana_B ..... A 179
Camptotheca_acuminata ..... A 174
Vitis_vinifera ..... A 181
Gossypium_arboreum ..... V ...... A 178
Gossypium_raimondii ..... V-… A 178
Theobroma_cacao ..... I -..... A 176
Hevea_brasiliensis ..... I -.... A 173
Manihot_esculenta ..... I -..... A 173
Jatropha_curcas I -..... A 173
Ricinus communis ..... I -..... A 178
Populus_euphratica_A ..... I -..... A 176
Populus_trichocarpa_B ..... I …...A 176
Populus_euphratica_B ..... I -...... A 177
Populus euphratica_C ..... I -...... A 177
Populus trichocarpa_A ..... I -...... A 177
Morus_notabilis ..... I .......A 180
Citrus_clementina ..... I -...... A 176
Citrus_sinensis ..... A 176
Fragaria_vesca ..... I -...... A 175
Malus_domestica_A ..... V-..... A 180
Malus_domestica_B ..... A 180
Pyrus_x_bretschneideri_B ..... V … . A 180
Malus_domestica_C ..... 174
Pyrus_x_bretschneideri_A ..... 176
Prunus_mum ..... I......A ..... 174
Prunus_persica I ...... A 178
Carica_papaya ..... A 175
Cannabis_sativ ..... A 179
Cicer_arietinum ..... S 174
Medicago_truncatula ..... S 173
Glycine_max_A ..... S 174
Glycine_soja_B ..... S 175
Glycine_max_B ..... S 175
Glycine_soja_A ..... S 175
Phaseolus_vulgaris ..... S 173
Erythranthe_guttata_A ..... A 180
Erythranthe_guttata_B ..... A 180
Mimulus_guttatus_A ..... A 180
Mimulus_guttatus_B ..... A 180
Sesamum_indicum ..... A 177
Linum usitatissimum A ..... A 179
Linum_usitatissimum_B ..... A 180
Cucumis melo ..... A 171
Cucumis_sativus ..... A 170
Nelumbo_nucifera ..... G 174
Coffea canephora ..... A 178
Eucalyptus_grandis ..... A 172
Lactuca_serriola ..... S 181
Amborella_trichopoda ..... A 178
Capsicum_annuum ..... A 170
Solanum_lycopersicum ..... A 170
Solanum_tuberosum ..... A 170
Nicotiana_benthamiana ..... A 176
Nicotiana_sylvestris ..... A 176
Nicotiana_tomentosiformis ..... A 173
Costus_pictus ..... A 175
Curcuma_longa ..... A 178
Musa_acuminata ..... A 175
Genlisea_aurea ..... S 182
Utricularia_gibba ..... S 181
Beta_vulgaris ..... S 175
Marchantia_polymorpha_A ..... V 179
Marchantia_polymorpha_B ..... A 179
Selaginella_moellendorffii B ..... 168
Selaginella_moellendorffii_A ..... 168
Ceratodon purpureus ..... 181
Physcomitrella_patens I LMVHNCA 168 ..... 168
Brassica_napus_A
Consensus
Conservation

$0 \%$
$\square$

## Appendix 6: Chemicals and kits

| Name | Supplier | Country |
| :---: | :---: | :---: |
| Phusion® High-Fidelity PCR kit | Themo Scientific | Lithuania |
| QIAquick gel extraction kit | QIAGEN | Germany |
| Zero Blunt® PCR Cloning Kit | Invitrogen | USA |
| In-Fusion HD cloning kit | TaKaRa Clontech | USA |
| GeneArt®Site-Directed Mutagenesis PLUS kit | Invitrogen | USA |
| HOT FIREPol DNA polymerase | Solis BioDyne | Estonia |
| PureYield ${ }^{\text {TM }}$ Plasmid Minprep System kit | Promega | USA |
| BigDye® terminator v3.1 cycle sequencing kit | Applied Biosystem | USA |
| QIAGEN Plasmid mid kit | QIAGEN | Germany |
| Phire Plant Direct PCR Kit | Thermo Scientific | Lithuania |
| PhytoPure Genomic DNA Extraction Kit | Illustra | UK |
| RNAqueous ${ }^{\text {®- }}$ - Micro kit | Life Techologies | Lithuania |
| DNase I-Amplification Grade | Invitrogen | USA |
| Superscript III® Reverse Transcriptase | Invitrogen | USA |
| RNaseOUT ${ }^{\text {TM }}$ | Invitrogen | USA |
| PCR DIG Probe Synthesis Kit | Roche | Germany |
| Micribiology LB (MILLER) | Merck | Germany |
| Kanamycin | Sigma-Aldrich | USA |
| Ampicillin | Sigma-Aldrich | USA |
| Hygromycin | Sigma-Aldrich | USA |
| Carbanicillin | Invitrogen | USA |
| Driselase | Sigma-Aldrich | USA |
| Manitol | Sigma-Aldrich | USA |


| Agar | Sigma-Aldrich | USA |
| :--- | :--- | :--- |
| FeSO $_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | Merck | Germany |
| AccuPrime $P f x$ | Invitrogen | USA |
| SeaKem® LEA Agarose | Lonza | USA |
| Deammonia tertrate | Alfa Aesar | Germany |
| Tween 20 | VWR | France |
| CSPD | Roche | Germany |
| Ant-DIG-AP | Roche | Germany |

## Appendix 7: $P$. patens growth media

## A. BCD medium

| Reagent | 1 Litre | Final concentration |
| :--- | :--- | :--- |
| Agar | 7 g | $0.7 \%(\mathrm{w} / \mathrm{v})$ |
| $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 12.5 mg | $45 \mu \mathrm{M}$ |
| Solution B | 10 ml | $1 \mathrm{mM} \mathrm{MgSO}_{4}$ |
| Solution C | 10 ml | $1.84 \mathrm{Mm} \mathrm{KH}_{2} \mathrm{PO}_{4}$ |
| Solution D | 10 ml | $10 \mathrm{Mm} \mathrm{KNO}_{3}$ |
| TES | 1 ml | Trace |

For BCDA media, add 920 mg of Diammonium tertrate to the medium to make final concentration of 5 mM . Add $\mathrm{dH}_{2} \mathrm{O}$ to 1 L and autoclave at $121^{\circ} \mathrm{C}$ for 40 min . After autoclaving add $\mathrm{CaCl}_{2}$ to final concentration of 1 mM .
B. Protoplast Regeneration Medium for the Bottom layer (PRMB)

| Reagent | 1 Litre | Final concentration |
| :--- | :--- | :--- |
| Agar | 7 g | $0.7 \%(\mathrm{w} / \mathrm{v})$ |
| Diammonium tertrate | 920 mg | 5 mM |
| D-Mannitol | 60 g | $6 \%(\mathrm{w} / \mathrm{v})$ |
| BCD medium, liquid | 10 ml each |  |
| Add $\mathrm{dH}_{2} \mathrm{O}$ to 1 L and autoclave at $121{ }^{\circ} \mathrm{C}$ for 40 min. After autoclaving add $\mathrm{CaCl}_{2}$ to the final <br> concentration of 10 mM. |  |  |

C. Protoplast Regeneration Medium for the Top layer (PRMT)

| Reagent | 1 Litre | Final concentration |
| :--- | :--- | :--- |
| Agar (Sigma-Aldrich) | 4 g | $0.4 \%(\mathrm{w} / \mathrm{v})$ |
| Diammonium tertrate | 920 mg | 5 mM |
| D-Mannitol | 80 g | $8 \%(\mathrm{w} / \mathrm{v})$ |
| BCD medium, liquid | 10 ml each |  |
| Add $\mathrm{dH}_{2} \mathrm{O}$ to 1 L and autoclave at $121{ }^{\circ} \mathrm{C}$ for 40 min. After autoclaving add $\mathrm{CaCl}_{2}$ to the final <br> concentration of 10 mM. |  |  |

## Appendix 8: Solutions

## A. Driselase solution

| Reagent | 100 ml | Final concentration |
| :--- | :--- | :--- |
| Driselase | 2 g | $2 \%$ |
| D-Mannitol solution $(8.5 \% \mathrm{w} / \mathrm{v})$ | to 100 ml |  |
| Stir the mixture for 15 min . Centrifuge at 2500 g for 5 min . and filter sterilize the clear supernatant. |  |  |

B. Hoagland's A-Z trace element solution (TES)

| Reagent | 1 Litre | Final concentration |
| :--- | :--- | :--- |
| $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} 0$ | 55 mg | $0.006 \%(\mathrm{w} / \mathrm{v})$ |
| $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 55 mg | $0.006 \%(\mathrm{w} / \mathrm{v})$ |
| $\mathrm{H}_{3} \mathrm{BO}_{3}$ | 614 mg | $0.061 \%(\mathrm{w} / \mathrm{v})$ |
| KI | 28 mg | $0.003 \%(\mathrm{w} / \mathrm{v})$ |
| $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 389 mg | $0.039 \%(\mathrm{w} / \mathrm{v})$ |
| $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 55 mg | $0.006 \%(\mathrm{w} / \mathrm{v})$ |

Add $\mathrm{dH}_{2} \mathrm{O}$ to 1 litre.
C. MMM solution

| Reagent | 10 ml | Final concentration |
| :---: | :---: | :---: |
| D-Mannitol | 910 mg | 9.1\% |
| 2- [ N -morpholino] ethanesulfonic acid (MES) ( $1 \% \mathrm{w} / \mathrm{v}, \mathrm{pH} 5.6$ ) | 1 ml | 10\% |
| $\mathrm{MgCl}_{2}$ | $150 \mu 1$ | 15 mM |
| $\mathrm{dH}_{2} \mathrm{O}$ | 8.85 |  |

Dissolve D-mannitol in the $\mathrm{dH}_{2} \mathrm{O}$ and sterilize by autoclaving. On the day of use, add the MES and $\mathrm{MgCl}_{2}$ and filter sterilize.
D. PEG solution for protoplast fusion (PEG/F)

| Reagent | Quantity |
| :--- | :--- |
| $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 109 mg |
| $\mathrm{dH}_{2} \mathrm{O}$ | 10 ml |
| Polyethylene glycol (PEG) (MW 6000) | 5 g |

Dissolve $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} 0$ in $\mathrm{dH}_{2} \mathrm{O}$ and then mix the solution with the melted PEG

## E. Solution B

| Reagent | Quantity (for 1 litre) | Final concentration |
| :--- | :---: | :---: |
| $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 25 g | 0.1 M |
| Add $\mathrm{dH}_{2} \mathrm{O}$ to 1 litre and sterilize by autoclaving for 20 min . at $120^{\circ} \mathrm{C}$. |  |  |

## F. Solution C

| Reagent | Quantity (for 1 litre) | Final concentration |
| :--- | :--- | :--- |
| $\mathrm{KH}_{2} \mathrm{PO}_{4}$ | 25 g | 184 mM |

Adjust the pH to 6.5 with 4 M KOH . Add $\mathrm{dH}_{2} \mathrm{O}$ to 1 litre and sterilize by autoclaving for 20 min . at $120^{\circ} \mathrm{C}$.

## G. Solution D

| Reagent | Quantity (for 1 litre) | Final concentration |
| :--- | :--- | :--- |
| $\mathrm{KNO}_{3}$ | 101 g | 1 M |

Add $\mathrm{dH}_{2} \mathrm{O}$ to 1 litre and sterilize by autoclaving for 20 min . at $120^{\circ} \mathrm{C}$.

## H. SOC medium

| Reagent | Quantity (1 litre) | Final concentration |
| :--- | :--- | :--- |
| Tryptone | 20 g | $2 \%$ |
| Yeast Extract | 5 g | $0.5 \%$ |
| 1 M NaCl | 10 g | 10 mM |


|  |  |  |
| :--- | :--- | :--- |
| 1 M KCl | 2.5 ml | 2.5 mM |
| $1 \mathrm{M} \mathrm{MgCl}_{2}$ | 10 ml | 10 mM |
| $1 \mathrm{M} \mathrm{MgSO}_{4}$ | 10 ml | 10 mM |
| 1 M Glucose | 20 ml | 20 mM |

Adjust pH to 7 with NaOH , add $\mathrm{dH}_{2} \mathrm{O}$ to 1 litre and autoclave for 20 min .

## I. Antibiotics

| Antibiotics | Stock concentration | Working concentration |
| :--- | :--- | :--- |
| Amplicillin | $100 \mathrm{mg} / \mathrm{ml}$ | $100 \mu \mathrm{~g} / \mathrm{ml}$ |
| Kanamycin | $50 \mathrm{mg} / \mathrm{ml}$ | $50 \mu \mathrm{~g} / \mathrm{ml}$ |
| Hygromycin | $50 \mathrm{mg} / \mathrm{ml}$ | $20 \mu \mathrm{~g} / \mathrm{ml}$ |
| Carbenicillin | $250 \mathrm{mg} / \mathrm{ml}$ | $100 \mu \mathrm{~g} / \mathrm{ml}$ |

## J. Southern Blot Buffers

1. Depurination solution

| Component | 1 litre |
| :--- | :---: |
| $0.25 \mathrm{M}(37 \%) \mathrm{HCl}$ | 19.2 ml |
| Add $\mathrm{dH}_{2} \mathrm{O}$ until 1 litre, then autoclave and store at RT |  |

2. Denaturation solution

| Component | 1 litre |
| :--- | :--- |
| 1.5 M NaCl | 80 g |
| 0.5 M NaOH | 20 g |
| Add dH 2 O to 1 litre, autoclave and store at $4^{\circ} \mathrm{C}$ |  |

3. Neutralization solution

| Component | 1 litre |
| :--- | :---: |
| 0.5 M Tris- HCl pH 7.0 | 66.6 g |
| 1.5 M NaCl | 88 g |
| Add dH |  |
| 2 | O, adjust pH to 7.5, autoclave and store at $4^{\circ} \mathrm{C}$ |

4. Southern blot transfer buffer (20X SSC)

| Component | 1 litre |
| :--- | :---: |
| NaCl | 175.3 g |
| Trisodium citrate | 88.2 g |
| Add dH $\mathrm{H}_{2} \mathrm{O}$, adjust pH to 7, then autoclave and store at RT |  |

## 5. 10X DIG1 buffer

| Component | 1 litre |
| :--- | :--- |
| Maleic acid | 116.1 g |
| NaOH | 87.66 g |

Add $\mathrm{dH}_{2} 0$, adjust to pH 7.5 with NaOH pellets, autoclave and store at RT

## J. Stock solutions

| Reagent | Quantity (100 mL) | Sterilization |
| :--- | :--- | :--- |
| 1 M NaCl | 5.80 g | Autoclave |
| 1 M KCl | 7.50 g | Autoclave |
| $1 \mathrm{M} \mathrm{MgCl}_{2} 6 \mathrm{H}_{2} 0$ | 20.30 g | Autoclave |
| $1 \mathrm{M} \mathrm{MgSO}_{4}$ | 12.00 g | Filter |


| $1 \mathrm{M} \mathrm{CaCl}_{2}$ | 11.10 g | Filter |
| :--- | :--- | :--- |
| $3 \mathrm{M} \mathrm{NaOAc} .3 \mathrm{H}_{2} 0, \mathrm{pH} 5.2$ | 40.8 g | Autoclave |
| 5 M EDTA pH 8 | 186.1 g | Autoclave |
| 1 M Tris | 12.114 g | Autoclave |

