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Sammendrag 
I det sammenhengende Fennoskandiske barskogbeltet har storfugl- (Tetrao urogallus) og 

orrfuglbestandene (Lyrurus tetrix) gått ned over tid, og toppene i de sykliske svingningene har blitt 

mer uregelmessige og lavere. At endringene har skjedd over hele Fennoskandia antyder at de samme 

stor-skala prosessene kan ligge bak. Endringer i menneskelig arealbruk, endringer til varmere og 

våtere klima og økt predasjonstrykk fra generalistpredatorer er tre komplementerende hypoteser 

fremsatt som mekaniske forklaringer bak den negative utviklingen. Den bakenforliggende årsaken 

eller årsakene har ført til et misforhold mellom demografiske rater. Nedgang i reproduksjonssuksess 

og voksenoverlevelse alene eller til sammen har forårsaket storskala nedgang i nivået bestandene 

har variert rundt. Den primære dødsårsaken i alle livsfaser hos fennoskandisk hønsefugl er predasjon, 

og reproduksjon er den viktigste driveren av kortsiktig populasjonsdynamikk. For å heve 

kunnskapsgrunnlaget om årsaksforhold bak den negative utviklingen i bestandstettheter og 

reduksjon i syklisk dynamikk, har jeg ved bruk av omfattende data på både bestands- og individnivå 

satt søkelyset på reproduksjon og predatorer som begrenser reproduksjon.  

Helt konkret var mine mål som følger; 1) Fastslå langtids og storskala trender i reproduksjonssuksess 

hos storfugl og orrfugl samt å evaluere reproduksjonens rolle i bestandsnedgangene. 2) Identifisere 

og kvantifisere predatorer på reir av storfugl og orrfugl samt å utforske funksjonelle og numeriske 

responser til de viktigste predatorene. 3) Studere næringssøket hos rødrev (Vulpes vulpes) og mår 

(Martes martes) og 4) evaluere forholdet mellom menneskelig arealbruk og bestandsdynamikk hos 

rødrev. 

Jeg fant bevis for at reiroverlevelse og kullfrekvens hos fennoskandisk storfugl og orrfugl har sunket 

over lang tid. Antall kyllinger per høne sank også, men over et kortere tidsrom. I samme periode, 

økte overlevelse på voksne høner. Oppgangen i overlevelse hos voksne høner var ikke tilstrekkelig for 

å kompensere for nedgangen i reproduksjon. I dag er rødrev og mår de to viktigste predatorene på 

orrfugl og storfuglreir. Bortsett fra ett tilfelle med predasjon fra kongeørn (Aquila chrysaetos), 

identifiserte vi bare pattedyr som reirrøvere. I motsetning til tidligere antakelser, basert på arbeid 

med kunstige reir, observerte vi hverken at kråke (Corvus cornix) eller ravn (Corvus corax) predaterte 

reir. Selv om det kan tenkes at kråkefugl predaterer skogsfuglreir, skjer dette fenomenet trolig langt 

sjeldnere enn tidligere antatt, og kunstige reir kan ikke brukes for å finne hvilke dyr som røver reir.  

Hvor raskt orrfuglreir ble røvet (predasjonstakten) var avhengig av smågnager- og mårindeksen. Mye 

smågnagere gav mindre røving, og mye mår gav mer røving. Sammenhengen mellom predasjonstakt 

og smågnagere opphørte imidlertid når mårindeksen økte. Ved høy mårindeks spilte det ingen rolle 

for røvingstakten på orrfuglreir om det var mye smågnagere eller ikke. Predasjonen på storfuglreir 
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var hovedsakelig avhengig av smågnagersyklusen. Flest reir ble røvet i krasjfasen av 

smågnagersyklusen, men predasjonstakten sank suksessivt ettersom smågnagersyklusen utviklet seg 

til oppgangs- og toppfasen. Også sammenhengen mellom predasjonstakten på storfuglreir og 

smågnagere opphørte når mårindeksen økte og ved høy mårindeks overgikk predasjonstakten i 

oppgangsfasen den i toppfasen. Når det var lite mår, støttet mønsteret i predasjon på storfuglreir 

den alternative byttedyrhypotesen (ABH), i motsetning til hos orrfugl. 

Analysen av predasjon fra rev og mår på storfuglreir antydet to mekanistiske regimer. Uavhengig av 

smågnagersituasjonen økte predasjonstakten fra mår med mårindeksen mens predasjonstakten fra 

rødrev, uavhengig av rødrevindeksen, minsket med mengde smågnagere gitt av smågnagersyklusen. 

Predasjonsmønsteret til måren sammenfalt ikke med predasjonsmønster for generalistpredatorer 

beskrevet av ABH, men antydet heller tilfeldig predasjon eller spesialistpredasjon mens 

predasjonsmønsteret til rødrev var i overensstemmelse med ABH. 

Mår var mer effektiv enn rødrev under jakt og graving etter byttedyr. Frekvensen av jaktforsøk 

overlappet, men rødreven gravde relativt oftere etter mat. Generelt overlappet næringsnisjene til 

rødrev og mår lite. Rødrev jaktet hovedsakelig på smågnagere og hare (Lepus timidus) og gravde først 

og fremst etter smågnagere og åtsler av hjortedyr. Mår jaktet for det meste småfugler og gravde 

frem lagrede egg. Langtidslagring av egg samt frekvensen av graving etter egg vitner om at egg er en 

betydelig ressurs for måren. Tolkningen av mår som spesialist på eggpredasjon er derfor støttet av 

dens næringsadferd om vinteren mens rødreven er til sammenligning en generalist som foretrekker 

smågnagere. 

Bestandsdynamikken til rødrev var både i tid og rom nærmere knyttet til menneskelig arealbruk enn 

til naturgitte gradienter i landskapet. Det var mer rødrev ved relativt høyere tetthet av bosetninger 

og slakteavfall etter elgjakt. Variasjonen i mengde av rødrev over tid var dominert av direkte 

tetthetsavhengige prosesser, og tetthetsavhengighetens styrke var negativt knyttet til jordbrukets 

dominans i landskapet. I områder dominert av jordbruk, fluktuerte bestanden av rødrev rundt et 

høyrere og mer stabilt likevektsnivå enn i marginale jordbruksområder. 
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Summary 
Throughout the continuous boreal forests of Fennoscandia, long-term and synchronous declines in 

population density and cyclic amplitude of capercaillie (Tetrao urogallus) and black grouse (Lyrurus 

tetrix) have been observed for decades. The extensive spatiotemporal scale involved, implies large-

scale processes behind causal mechanisms. Changes in human land use, climatic perturbations and 

elevated predation from generalist predators are three complementing hypotheses suggested as 

mechanistic explanations underlying the negative trends in density and oscillatory dynamics. As the 

proximate cause of population declines and short-term dynamics is a mismatch in demographic 

rates, diminishing reproductive success and adult survival have separately or jointly, brought about 

widespread changes in equilibrium densities and annual variation. The predominant cause of 

mortality during all life-history stages of Fennoscandian woodland grouse is predation and the major 

factor driving short-term population dynamics is reproductive success. By the use of comprehensive 

data on both individual- and population level, I therefore focus on woodland grouse reproduction 

and the predators limiting reproductive success in order to improve detailed understanding of 

important mechanisms behind reductions in population densities and amplitude of population 

fluctuations. 

Specifically, my objectives were as follows; 1) Assess long-term and large-scale trends in capercaillie 

and black grouse reproductive success and evaluate its contribution to the observed population 

decrease. 2) Identify and quantify predators of capercaillie and black grouse nests and explore the 

numerical and functional responses of the most important predators. 3) Investigate foraging patterns 

of red fox (Vulpes vulpes) and pine marten (Martes martes) and 4) evaluate relationships of 

anthropogenic land-use to red fox population dynamics. 

I found evidence supporting long-term declines in nest success and broods per hen for 

Fennoscandian capercaillie and black grouse. The number of chicks per hen also declined, but over a 

shorter time-span. In the same period, hen survival increased. Despite elevated survival rates of adult 

hens, reproduction was not equalized. Today, red fox (Vulpes vulpes) and pine marten (Martes 

martes) were the principal predators identified to prey upon capercaillie and black grouse nests. 

Apart from one identification of golden eagle (Aquila chrysaetos) predation, mammals predated all 

monitored nests. In contrast to earlier beliefs derived from artificial nests, hooded crows (Corvus 

cornix) and common ravens (Corvus corax) were confronted by the incubating hen and did not 

predate active nests. Although corvid predation may occur, it is far less than earlier claims and 

artificial nests should therefore not be used as substitutes for real nests.  
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Predation rates on black grouse nests depended on vole and pine marten abundance. The 

relationship between predation of black grouse nests and vole abundance was negative whereas the 

relationship to pine marten abundance was positive. The relationship to voles weakened as pine 

martens became more abundant. Capercaillie nests however, were heavily preyed upon in the crash 

phase of the vole cycle. Predation rates then successively relaxed as the vole cycle progressed into 

the increase and peak phase. Again, elevated abundances of pine marten detached the relationship 

between nest predation and voles and predation in the peak phase of the vole cycle eventually 

increased above those in the increase phase when pine martens were abundant. In contrast to black 

grouse, nest predation in capercaillie agreed with the alternative hypothesis (APH), but not when 

pine martens were abundant.  

Analysis of partitioned predation by red fox and pine marten on capercaillie nests suggested a 

dichotomy in mechanistic regimes. Regardless of the vole situation, pine marten predation increased 

with pine marten abundance whereas red fox predation, regardless of red fox abundance, was 

inversely related to the vole cycle. Predation by pine marten was thus inconsistent with APH and 

suggested specialist or incidental predation of eggs whereas red fox predated nests consistent with 

APH. 

Pine martens were more successful than red foxes when hunting or digging for food. The frequencies 

of hunting attempts overlapped whereas red foxes dug more frequently. Overall, their foraging niche 

overlap was small. Red foxes mostly scavenged and dug for voles and ungulates but hunted for 

mountain hares (Lepus timidus) and voles. Pine marten mostly scavenged for cached eggs and 

hunted for small birds. Long-term caching of eggs by the pine marten as well as the frequency of eggs 

in scavenging events speak to the importance of eggs to the pine marten. The interpretation of pine 

marten predation as an egg-specialist was therefore supported by their foraging behavior in winter 

whereas red fox is more of a generalist with a wider niche and a preference for voles. 

The spatiotemporal dynamics of red fox populations in the boreal forest was more closely 

interrelated with anthropogenic land use than natural-given landscape gradients, and relative density 

of settlements and offal were related to higher abundances of red fox. Direct density dependent 

processes dominated the structure of temporal variation in red fox abundance and the strength of 

density dependence was inversely related to the amount of agriculture in the landscape. In areas 

dominated by agriculture, the red fox population fluctuated around a higher, more stable equilibrium 

than in marginal agricultural areas.  
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Introduction  

Hypothetical mechanisms to long-term declines and short-term dynamics 

Capercaillie (Tetrao urogallus) and black grouse (Lyrurus tetrix) are hallmark game birds of the 

Eurasian boreal forests. During the 1970s, several scientists reported decreasing capercaillie and 

black grouse population densities in the continuous boreal forests of Fennoscandia (Rajala 1974; 

Myrberget 1977; Wegge & Grasaas 1977; Lovel 1979) but long-term density estimates have been 

collected only in Finland from 1964 (Helle & Ikonen 2015). In Finland, estimates show nationwide 

declines from 1964 until populations stabilized during the 1990s. Snippets of data confirm this 

patterns for local Norwegian capercaillie and black grouse populations as well (Wegge & Grasaas 

1977). There is no evidence that populations have recovered apart from a period of increase and 

subsequent decline in concert with an outbreak of Sarcoptic mange (Sarcoptes scabiei) in the 

Fennoscandian red fox population (Lindstrom et al. 1994; Smedshaug et al. 1999; Lindén & Helle 

2003; Lakka & Kouki 2009; Wegge & Rolstad 2011). Despite universal declines in population 

densities, black grouse and capercaillie are of least concern globally (IUCN 2016), and both species 

are still hunted in Fennoscandia. During the previous decade, mean annual harvest in Finland was 38 

000 and 155 000 (Naturresursinstitutet 2017), in Sweden 20 000 and 26 000 (Viltdata 2017) and in 

Norway 10 000 and 23 000 (Statistics Norway 2016) capercaillie and black grouse respectively. 

Population declines in woodland grouse manifest in a mismatch in demographic rates. Decreasing 

adult, juvenile, chick or egg survival have in combination or alone caused capercaillie and black 

grouse declines from one equilibrium to another across an area of 1.2 million km2. Under 

circumstances of stable reproductive success, a few studies investigating population dynamics in 

grouse have identified winter survival as the underlying driver of annual population fluctuations (e.g. 

Rajala 1974; Semenow Tjan Shanskiy 1979; Magnússon, Brynjarsdóttir & Nielsen 2004). The majority 

of studies have, however, identified reproduction as the important driver of short-term fluctuations 

(e.g. Lindström et al. 1997). To understand the mechanisms behind the long-term population 

declines in woodland grouse, a key characteristic of woodland grouse research has therefore been to 

understand limiting and regulating factors of reproductive success.  

There are mainly three, possibly complementing hypothesis put forward to explain the universal and 

long-term declines in the Fennoscandian tetraonid reproductive success. Firstly, changes in 

anthropogenic land use, mainly by the industrialization of silviculture is believed to have deteriorated 

habitat quality (Sirkiä et al. 2010). One suggested mechanism is that intensified forest management 

have caused long-term reductions in bilberry (Vaccinum myrtillus) coverage (Ludwig 2007), and 
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thereby also lepidopteran larvae which is staple chick food (Wegge & Kastdalen 2008; Baines, 

Richardson & Warren 2017). Secondly, climate change can limit reproductive success by limiting chick 

survival. Increased rainfall may for example reduce foraging time for chicks as they shelter 

underneath the hen during rainfall (Erikstad & Spidsø 1982; Moss 1986). Mortality caused by adverse 

weather or hunger happens occasionally but chicks are likely more susceptible to predation under 

such conditions (Wegge & Kastdalen 2007). Third and finally, elevated predation pressure from 

increased population densities of mammalian mesocarnivores can increase mortality rates for eggs 

and chicks. Aside from increased predation pressure caused by numerical responses in generalist 

predator populations (Helldin 2000a; Selås & Vik 2006), changes in land use and climatic 

perturbations may both interact with predators and modulate their functional responses (Storaas, 

Kastdalen & Wegge 1999; Wegge & Kastdalen 2007).  

Historical changes in the boreal landscape  

The boreal landscape of Fennoscandia is characterized by a long winter, short summer, and few 

species. Today, the landscape is a result of changing climate and anthropogenic land-use. The extent 

of land suitable for agriculture in Fennoscandia is small compared to further south in Europe and 

today, approximately 2.5, 4.9 and 7.8 % of Norway, Finland and Sweden is cropland. Since the 1930s, 

the extent of agricultural land on the Scandinavian peninsula has retracted by 14.3 % and most of 

this is attributable to Sweden as the extent of cultivated land in Norway increased by 9.6 % whereas 

cropland in Sweden decreased by 19.8 % (Li et al. 2013; Eurostat 2017). 

During the period of decreasing grouse population densities, forestry practices and thereby forest 

structure have changed substantially. Until the 1950s, natural regeneration after selective felling was 

the principal process shaping the pre-mechanized forested landscape in Norway whereas particularly 

in Finland but also in Sweden, slash and burn practices were common (Östlund, Zackrisson & 

Axelsson 1997; Lindén & Helle 2003). Such practices generated landscapes wherein tree density and 

biomass was generally lower than today with continuous, open forest where single trees were 

selected and harvested. The composition of tree species, tree dimensions and age classes were 

therefore more heterogeneously dispersed across the landscape than today (Wegge & Rolstad 2011). 

Following the mechanisation of silviculture, widespread and intensive clearcutting practices resulted 

in extensive monocultures of even-aged conifer stands wherein the field layer was dominated by 

forbs and graminoids during parts of the stand rotation. The sudden superabundant graminoid 

habitats have been hypothesized to facilitate field voles (Microtus agrestis), and thereby also red fox 

(Christiansen 1979; Henttonen 1989) (Figure 1). Clearcutting may therefore also temporarily remove 
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bilberry shrubs across entire stands during at least parts of the succession following timber harvest 

(Hansson 1992; Lakka & Kouki 2009; Hedwall & Brunet 2013; Tonteri et al. 2016). 

 

Figure 1 Annual number of governmental bounties disbursed for killed red foxes and the extent (hectares) of clearcuts 

produced annually in Norway from 1935 to 1976 after Christiansen (1979).  

Clearcutting is still the dominating method of timber harvest in Fennoscandia but during the early 

1990s, the forest industry implemented international certification standards. These certifications are 

instruments designed to reach ecological sustainable forestry practices and involves restrictions on 

interventions during the stand rotation (Spence 2001). Since the implementation of certification 

standards, deciduous species, buffer zones and areas of special consideration are to be left behind 

after thinning or final felling (Vanha-Majamaa & Jalonen 2001). 

The small game community in the Fennoscandian boreal forest 

In this thesis, I define the Fennoscandian small game community as capercaillie, black grouse, hazel 

grouse (Bonasa bonasia), mountain hare (Lepus timidus), red squirrel (Sciurus vulgaris), a guild of 

Arvicoline rodents (e.g. voles and lemmings), and their predators. The Arvicoline voles exhibit 

multiannual (3-5 year) population cycles (Hansson & Henttonen 1988). These cycles are considered 

the main driver of dynamics in the small game community as population size and predation pressure 

from red fox and other vole consumers fluctuate accordingly (Hornfeldt & Carlsson 1990; Henden, 

Ims & Yoccoz 2009; Sundell et al. 2013). Grouse, hares, red fox and pine marten are harvested 

annually during an open season of several months. 
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Capercaillie and black grouse exhibit population cycles with a periodicity of four to seven years, 

slightly longer than those of voles (Lindén 1988; Small, Marcström & Willebrand 1993). Some authors 

however, have demonstrated diminishing cyclicity in grouse (Cf. Ranta, Helle & Lindén 2004). Cyclic 

amplitude as well as periodicity increase with latitude (Lindén 1988) and fluctuations are 

synchronous across large areas (Ranta, Lindstrom & Linden 1995). These short-term cycles in 

population size are primarily driven by annual variation in hatching success and chick survival (Lindén 

1981; Lindström et al. 1997). Both density dependent and density independent factors may cause 

these patterns. Apart from a few investigations (e.g. Dahl 1924; Brinchmann 1926) on grouse disease 

(e.g. density dependent), recent studies on mortality causes in capercaillie and black grouse point to 

predation as the predominant cause of mortality throughout all stages of the woodland grouse life-

cycle (i.e. eggs, chicks and adults) (Paper II; Wegge & Kastdalen 2007; Åhlen et al. 2013). 

Long- and short-term responses of mesocarnivores 

Red fox and pine marten are the two most common generalist mesocarnivores preying upon 

woodland grouse eggs, chicks and adults in the forested areas of Fennoscandia (Marcström, Kenward 

& Engren 1988; Lindstrom et al. 1994; Smedshaug et al. 1999; Kauhala, Helle & Helle 2000; Paper II). 

Apart from bag statistics, reliable, long-term population estimates of red fox and pine marten are 

lacking, but there is a general consensus on increasing populations of both species during the past 

century (e.g. Krott & Lampio 1983; Helldin 2000; Selås & Vik 2006). Both species were previously 

valuable fur bearers (Figure 2) but compared to the red fox, the pine marten has been extremely 

difficult to farm (Statistics Norway 1934) and pine marten pelts could therefore only be obtained 

from wild animals. Subsequently, over-harvesting led to local extinctions and overall low population 

size during the 1930s, and pine martens became totally protected in both Sweden and Norway 

(Helldin 2000a).  
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Figure 2 Red fox fur value relative to mean monthly wage from 1935 to 2011. 

Despite periods with high fur prizes and public efforts to exterminate red foxes, populations 

persisted and probably increased until the outbreak of the epizootic sarcoptic mange. The mange 

was first detected in Finland in 1967, and by 1975 and 1976, the mange had spread to Sweden and 

Norway (Mörner 1992). Several explanations for the numerical increase in red fox have been 

suggested. Relaxed persecution from man (Hudson 1992), the mass creation of field vole (Microtus 

agrestis) habitat by modern forestry practices (Christiansen 1979; Henttonen 1989), an increase in 

scavenging opportunities from increasing herbivore populations (Selås & Vik 2006; Gomo et al. 

2017), and a reduction in winter severity (Bartoń & Zalewski 2007) are proposed explanations. The 

disappearance of apex predators may additionally have caused trophic interactions via less intra-

guild predation (i.e. mesopredator release) (Prugh et al. 2009), and some authors have argued for 

red fox increase due to mesopredator release (Pasanen-Mortensen, Pyykönen & Elmhagen 2013). In 

the time frame of this thesis however, large carnivore populations in Fennoscandia had already been 

decimated decades ago (e.g. Linnell et al. 2010).  

The spatiotemporal variation in consumption rate by predators can be described by functional and 

numerical responses in the predator populations. These responses describe how the density of 

predator individuals and their consumption rate change according to varying prey density (Solomon 

1949; Holling 1959). As such, functional and numerical responses are most prominent in unstable 
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systems and the Fennoscandian boreal forest is therefore a good place to study them. Below I will 

explain their characteristics and contextual relevance. 

Numerical response 

The numerical response describes how predator density change according to prey density (Solomon 

1949), and is typically separated in two sub-groups; an aggregational (i.e. spatially explicit) and a 

demographic (i.e. temporally explicit) response. Whereas the result of the two phenomena is similar, 

the mechanisms at work are different. Heterogeneous distribution of food supplies across the 

landscape can cause predator populations to aggregate where prey is abundant or otherwise vacate 

areas where prey is depleted (McKinnon et al. 2013; Henden, Stien & Bårdsen 2014). An archetypical 

example of such aggregation is the long-distance invasions of the spotted nutcracker (Nucifraga 

caryocatactes), probably triggered by a depletion in per capita food supply (Formosof 1933). 

Similarly, the demographic response also describe how the number of individual predators change 

but via changes in survival and reproduction over time rather than movement across space.  

Functional response 

There are three types of functional responses described and they explain how predation rates from a 

constant number of predators change with changing prey density (Holling 1959). In its simplest form 

(Type I), the per capita consumption rate increase linearly with increasing prey density. Type II and III 

differ from type I in that they incorporate saturation levels at certain prey densities (e.g. searching 

and processing food are mutually exclusive activities). Type III depicts a relationship between 

consumption rates and prey density that could involve prey switching. 

Alternative prey hypothesis  

A characteristic component in the Fennoscandian small game community dynamics is the 

synchronous fluctuations of small herbivores and their predators (Hagen 1952; Lack 1954; Small, 

Marcström & Willebrand 1993). This covariation across trophic levels materialise in synchronous 

population cycles of different lengths depending on the species involved and latitude (Lindén 1988). 

During a three-year population cycle of voles (i.e. increase, peak and crash), predation pressure from 

a generalist predator (e.g. red fox) on alternative prey (e.g. grouse) inversely relates to the 

abundance of voles. Whereas the numerical and functional response depicts predator numbers and 

consumption rates through an increase in prey density, the alternative prey hypothesis combines the 

two responses to explain the chain of events in multi-annual, synchronous population cycles in 

herbivores sharing a predator species (Angelstam, Lindström & Widén 1984).  
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A fundamental assumption of the alternative prey hypothesis is prey switching (i.e. type III functional 

response) among predators. The hypothesis therefore best explain predation on alternative prey by a 

generalist predator whose main food resource cycle in abundance (e.g. grouse, red fox and voles). 

Northern systems wherein red fox predation predominates are generally in accordance with this 

model (Hörnfeldt 1978; Danell & Hörnfeldt 1987; Angerbjörn 1989) whereas systems wherein pine 

marten predation predominates, the relationship is more uncertain (Pöysä, Jalava & Paasivaara 2016; 

Paper II).  

The predation-concept in ecological research: from pest and garbage cans for a 

doomed surplus to the elephant in the room  

The focus of the scientific community on the different mechanisms regulating and limiting woodland 

grouse reproduction has shifted since the first literature emerged some 90 years ago. The proportion 

of hits in scientific databases reflected lower interest in predation studies after 1960, but increasing 

to pre-1960 levels from 1990 (Moss, Storch & Müller 2010). The common view on the effect of 

predation on grouse has also changed. In 1845, the Norwegian parliament adopted a law to 

exterminate predators of small game; goshawk (Accipiter gentilis), golden eagle (Aquila chrysaetos), 

white-tailed eagle (Haliaeetus albicilla) and eagle owl (Bubo bubo). Red fox was discussed, but in the 

end regarded as an useful species due the valuable fur (Richardsen 2012). The Norwegian law was 

consistent with Charles Darwin (1859) writing that “there seems to be little doubt that the stock of 

partridges, grouse, and hares on any large estate depends chiefly on the destruction of vermin”. 

Although the extirpation of vermin was not Darwin’s message, eradicating vermin was the 

dominating mind set behind previous and emerging wildlife legislation for a century. In Norway, it 

was legal to poison red foxes until 1981. Anti-carnivore legislation caused extensive depression and 

extinction of larger and smaller carnivorous species that posed threats to livestock as well as 

traditional hunting on the Scandinavian peninsula (Helldin 2000a; Linnell, Swenson & Anderson 

2001).  

Prior to the turn of the 19th century, Henrik Ibsen and other Scandinavian bourgeoisie was heavily 

influenced by Darwin’s views when discussing scientific approaches to wildlife management (Heiberg 

1995). These discussions were probably also facilitated by economic growth and inspired by 

philosophical ideas of animal ethics and personal freedom to hunt (Andersen, Fagerheim & Solheim 

2009). Following economic growth, sports hunting became a popular activity among the growing 

Norwegian middle-class and the Norwegian sport hunting association was founded in 1871. One of 

their main activities on the beginning of the 20th century was control of small game predators (Søilen 

1995). The effect of this extermination programme seemed enormous; grouse populations 
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skyrocketed, but collapsed in spite of continued predator control (Hjeljord 2015). As dead grouse 

were observed, researchers questioned the effects of predator control and initiated investigations 

into disease and parasites in general and coccidiosis in particular (Lesley & Shipley 1912; Brinchmann 

1926). Nonetheless, carnivore conservationists were blamed for sentiment and weak theoretical 

reasoning (Brooks 1926). In Norway, Sweden and Finland, overharvest subsequently led pine marten 

to be among the first carnivore species to be fully protected in 1930 (Helldin 2000a). 

In the years to follow, Aldo Leopold led the way with a more holistic approach to wildlife 

conservation. Nature was in a state of balance but the anthropocentric view was still dominating as 

the landscape was to be managed to produce yields for man (Leopold 1933). In his “A Sand County 

Almanac” from 1949, he has a famous chapter, “Think like a mountain” where he give a mythical 

value to wolves. In the same period, Errington (1946) reviewed population effects of predation 

across a variety of vertebrate taxa and he famously concluded that predators functioned as garbage 

cans that only removed the doomed surplus. In 1967 however, a paper testing the hypothesis that 

reproduction in blue grouse (Dendragapus spp.) was related to the nutritive state of the hen as 

mediated by variability in habitat quality was among the early empirical studies following individual 

grouse (Zwickel & Bendell 1967). This study was very much inspired by previous work from Finland 

(Siivonen 1957) in which synchrony among herbivores was explained by variations in food quality. 

Zwickel and Bendell identified predation as the dominant reason for mortality of eggs. Nonetheless, 

they concluded that annual predation contributed to a “normal loss”. Similar reasoning is found in 

subsequent research on grouse population dynamics (Lovel 1979).  

Hagen's (1952) and Lack's (1954) hypotheses on how unexplained crashes in small mammals caused 

their predators to shift diet and supress other species, including woodland grouse were refined into 

what we today know as the alternative prey hypothesis (e.g. Angelstam, Lindström & Widén 1984). In 

the 1980s, several papers on both limiting and regulating effects of predation were published. The 

most important in forming the tide was Erlinge et al. (1983) “Can vertebrate predators regulate their 

prey?”. They suggested that generalist predation prevented cyclic dynamics in small herbivores 

because alternative prey sustained numerical stability in the predator populations. This particular 

study was controversial and heated scientific discussions followed (Kidd & Lewis 1987; Erlinge et al. 

1988). In Fennoscandia, observational studies as well as randomized and natural experimental 

research continued to highlight the role of predation as a natural process shaping the population 

dynamics of woodland grouse (Storaas & Wegge 1987; Marcström, Kenward & Engren 1988; 

Lindstrom et al. 1994; Smedshaug et al. 1999; Kauhala, Helle & Helle 2000).  
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Today, predation is considered as a limiting factor of grouse populations in Britain and central Europe 

(Storch 2007; Güthlin, Storch & Küchenhoff 2013; Baines, Aebischer & Macleod 2016). Currently, 

most scientific approaches attempting to understand grouse predators and predation rates, 

indirectly focus on the ultimate factors shaping predation pressure in landscapes dominated by 

various human land use practices (Güthlin, Storch & Küchenhoff 2013; Baines, Aebischer & Macleod 

2016; Huhta et al. 2017; Kämmerle et al. 2017). The knowledge-vacuum concerning the 

fundamentals of predation-effects on grouse populations consist of detailed understanding of 

interspecies mechanisms like compensatory predation (e.g. Ellis-Felege et al. 2012), the importance 

of subsidization (e.g. Newsome et al. 2015) and mechanisms connecting habitat to woodland grouse 

mortality (Storch 2015). In many areas, predator removal is the only quick-fix to remnant grouse 

populations but it is a paradox that lethal control of predator species has generally low acceptance 

among the public (e.g. Messmer et al. 1999) despite strong evidence of the part played by humans in 

the numerical increase of generalist predators. This controversy is perhaps prolonging the time until 

more studies expand our knowledge of the elephant in the room.   

Objectives 

In the broadest sense, the perspective of this thesis is to improve detailed understanding of 

important mechanisms behind declines in population densities and reductions in cyclic amplitude of 

two small game species in Fennoscandia. The tenet has been that the proximate cause of mortality 

have been and still is predation, and that variation in reproductive success is the most important 

factor for short and long-term woodland grouse population dynamics. Specifically, the goals were: 

I. Assess long-term and large-scale trends in capercaillie and black grouse reproductive success 

and evaluate its contribution to the observed population decrease. 

II. Identify and quantify predators of capercaillie and black grouse nests and explore the 

numerical and functional responses of the most important predators. 

III. Investigate foraging patterns of red fox and pine marten. 

IV. Evaluate relationships of anthropogenic land-use to red fox population dynamics. 
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Material & methods 

Study areas 

This thesis is based on field-observations from southeast and central Norway (Paper I, II and IV) and 

northern Sweden (Paper III). Apart from Fennoscandian data in Paper I, I additionally included data 

from Andorra, Austria, England, Estonia, France, Germany, Italy, Poland, Scotland, Slovakia, 

Switzerland and Wales. Fennoscandia comprise mostly of intensively managed boreal forests 

dominated by Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) (Josefsson et al. 2010). 

Agricultural land and settlements are generally concentrated in the south and along the coast. 

Outside Fennoscandia, lowland capercaillie and black grouse habitats are mainly conifer plantations 

and scrublands whereas habitats of populations inhabiting the foothills of the alps are dominated by 

Norway spruce, fir (Abies alba) and beech (Fagus sylvatica) (Storch 1994; Saniga 2002) (Figure 3). 
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Figure 3 Map of study area used for field observations (dark) and meta-analysis of previously collected data (light). 
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Data collection and statistical analysis 

Paper I 

To conduct a meta-analysis of regional, long-term capercaillie and black grouse reproductive 

performance, I scanned online databases for publications reporting demographic data on 

reproduction parameters and adult survival throughout capercaillie and black grouse ranges. I also 

searched for data reported in grey literature like Grouse News, scientific monographs, institution 

reports, dissertations and conference proceedings. Additionally, I included nesting data collected for 

paper II between 2009 and 2012. In the end, the dataset spanned 80 years and originated from 16 

countries in Fennoscandia, Great Britain and continental Europe. Nest success data was retrieved 

from 17 and 18 studies, brood data came from 16 and 24 whereas chick data originated from 29 and 

33 studies of capercaillie and black grouse respectively. I evaluated trajectories of nest success, 

brood frequencies and chicks per hen by fitting additive binomial and Poisson mixed models (GAMM) 

(Wood 2006) with median year as independent variable. I fitted study and method used for collection 

(e.g. radio-marked, line transects etc.) as random intercepts. I weighed observations underlying 

nesting success models by sample size whereas model weights for brood and chick models were 

study duration. To illustrate the implications of changes in reproduction to capercaillie and black 

grouse populations, I estimated the survival adult females required to counterbalance the modelled 

production of chicks and compared these estimates to published survival rates.  

Paper II 

Paper II builds on monitoring of 267 capercaillie and 68 black grouse nests detected between 2009 

and 2014 in Hedmark and Nord-Trøndelag counties in Norway. Because capturing and tagging 

numerous capercaillie and black grouse hens was not economically and logistically feasible, we called 

for nest observations during spring and early summer (May-July). We published calls in local 

newspapers and other media before the onset of nesting season. Rangers and forestry workers 

planting, thinning or logging forests reported additional nests. Initially, the main objective was to 

identify nest predators and we made efforts to monitor as many nests as possible with camera traps. 

We distributed cameras to volunteers responsible for organizing nest observations locally. Nest fates 

and nest site information was recorded at the end of incubation (> 30 days). To investigate 

relationships of nest predation to vole dynamics I had to utilize Tengmalm’s owl reproductive data 

(Lehikoinen, Ranta & Pietiäinen 2011) at county resolution as a proxy of vole abundance and vole 

cycle phase. Expressing vole dynamics as both abundance and cycle phase allowed us to test for both 

cyclic amplitude and the temporal component in functional response in predator foraging behaviour 

(i.e. prey switching) during two complete vole cycles. Annual red fox and pine marten abundances 
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were collected with the same method as in Paper IV and covered the entire forested areas in both 

Hedmark and Nord-Trøndelag counties. Grouse nests are most often detected when the hen flush 

from the nest due to the perceived threat by the approaching human. This means that nests where 

incubation is already completed or aborted have lower detectability. This bias is best accounted for 

by modelling daily probabilities of nest failure (Mayfield 1975) as opposed to crude nest failure (i.e. 

percentage of nests lost). Studies commonly treat nest fates as a binary variable, either hatched or 

predated. This is problematic when nests are predated by a guild of predators rather than a single 

species. Such pooling of different nest fates (e.g. different predator species) cloud mechanisms that 

are important in regulating nest loss due to e.g. inherent differences in predator ecology. I therefore 

modelled predation on capercaillie nests in both a binary and competing risks (Etterson et al. 2007) 

framework. I did not partition the few observed nest fates in black grouse. This way, I parametrized 

predation models to evaluate common hypotheses explaining predator-prey interactions and models 

were ranked in an information-theoretic framework (Burnham & Anderson 2002). I could not 

evaluate potential camera-effects on nest predation rates but I provide detailed information on 

camera trap efficiency. Finally, I regressed daily probabilities of predation against relative change in 

hunter bag size to visualize the importance of nest survival to annual population dynamics in 

capercaillie and black grouse.  

Paper III  

Red fox and pine marten snow track data that we utilized in paper III was collected during the 

winters of 1975-81 and 1985-87 in relation to a large-scale predator-removal experiment conducted 

in Northern Sweden (Cf. Marcström, Kenward & Engren 1988). A total of 2139 and 533 km of careful 

red fox and pine marten snow tracking was conducted by experienced trappers on mostly Bergön 

and Rånön islands off the coast in Kalix municipality. We observed 330 red fox and 107 pine marten 

tracking events and we used hunting attempts and snow-digging events to model their winter 

foraging behaviour and to evaluate their foraging niches in relation to snow-depth and temperature. 

We used frequencies of hunting attempts and dig events as well as their rate of success as 

dependent variables in a Bayesian regression model framework. We fitted year as random intercept 

and we considered four covariate sets for each model.  

Paper IV 

In paper IV I synthesize data on red fox tracks crossing 613 predefined transects. Data was collected 

during an extensive monitoring programme originally designed to monitor family groups of Eurasian 

lynx (Lynx lynx) in Hedmark County, Norway. In total 268-472 transects of 2.95 km length were 

repeatedly surveyed mid-winter each year from 2003 until 2014 yielding 21675 observations of 
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crossing red fox tracks. In a Bayesian linear model framework I used red fox abundance (tracks km-1 

24hrs-1) and the instantaneous rate of increase (𝑟𝑡 = ln⁡(
𝑁𝑡

𝑁𝑡−1
)) as dependent variables. Because 

estimation of rt requires complete time series with no gaps (e.g. no observations or years not 

surveyed), I pooled transects into 300 groups based on proximity. Transect groups thereby 

represented complete, spatially explicit time series used for estimating rt. Abundance and growth (rt) 

models were parameterized with predictors describing elevation, latitude, settlement density, 

agricultural density and the number of moose culled per hectare productive forest for each 

municipality. Moose culled was an index of available gut piles (i.e. offal). Each model of rt was fitted 

with abundance as a consistent component of an interaction with each of the landscape predictors. 

This regressed rt against abundance over e.g. varying elevation and thus allowed us to investigate 

direct density dependent growth across the landscape.  
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Results and discussion 

Long-term changes in reproductive success 

Reproduction success for both capercaillie and black grouse have universally declined in 

Fennoscandia between 1930 and 2012. Apparent nest success (i.e. proportion hatched) decreased 

from 0.89 to 0.35 for capercaillie whereas black grouse nest success decreased from 0.90 to 0.55. 

Overall, the proportion of capercaillie hens with a brood in late summer decreased from 0.90 to 0.37, 

with a halt in the decrease between 1977 and 2001. Similarly, the proportion of black grouse hens 

with a brood was reduced from 0.83 to 0.35. Declines in chicks per capercaillie hen were observed 

between 1958 and 1982, and the number of chicks reared per capercaillie hen decreased from 3.1 to 

1.2 chicks whereas chicks per black grouse hens reduced from 3.5 to 1.6 between 1967 and 1987 

(Figure 4). Despite an observed increase in survival for adult hens, the increase was not sufficient to 

counterbalance declines in reproduction (Figure 5).  



 

17 
 
 

 

Figure 4 From top to bottom: Fitted trajectories from GAMM models of nest success, proportion of hens with brood and 

chicks per hen for Fennoscandian capercaillie (left) and black grouse (right) between 1930 and 2012. 



 

18 
 
 

 

Figure 5 Annual survival rate for adult capercaillie (left) and black grouse (right) hens required to offset the modelled chicks 

per hen (black) and observed annual survival rates (orange). 

Although the dominant cause of nest failure in most studies is predation, the relative proportion of 

other nest fates appears to have changed through time. In earlier studies, nest failures due to; 

desertions, embryo mortality and human disturbance occurred relatively frequently (Höglund 1953; 

Siivonen 1953; Myrberget & Hagen 1974). Later however, these types of nest fates have continuously 

receded on the account of predation. This may suggest that some nest predation is compensatory, 

and that predation occurs earlier than before. This further suggest that nest loss due to predation 

alone is represented by a steeper curve than the one showed here (Figure 4).  

Despite few accounts of identified mortality-causes in capercaillie and black grouse chicks, fates are 

normally partitioned into predation or weather-related causes (Wegge & Kastdalen 2007). Indirect 

evidence also point to the importance of nutrition to chick survival (Picozzi, Moss & Kortland 1999; 

Baines, Richardson & Warren 2017), but the causal relationships of variations in chick survival to the 

nutritional conditions are unknown. Nevertheless, apart from incidental mortality directly caused by 

adverse weather or lack of food, chicks are more susceptible to predation under such conditions 

(Wegge & Kastdalen 2007). As such, weather and nutrition are likely agents shaping predation rates. 

Precipitation during incubation and chick-rearing have also been related to lower reproductive 

success in woodland grouse (Marcström 1960; Semenow Tjan Shanskiy 1979; Moss 1986). Predation 

rates on chicks and eggs can increase immediately after precipitation events (e.g. Herman-Brunson et 

al. 2009). Such moisture-facilitated predation can occur both due to increased bacterial growth on 
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wet feathers as well as the increase in evaporation of scent molecules under wet conditions and 

thereby facilitating olfactory predators (Conover 2007).  

There is no clear explanation for the increase in hen survival. Goshawks (Accipiter gentilis), an 

important predator on adult birds have increased (Kjellén & Roos 2000). Increased hen survival may 

originate from black grouse and capercaillie today, only surviving in landscapes where adult survival 

counterbalance poor breeding success. Similar mechanisms have been discussed for rock ptarmigan 

in Europe (Novoa et al. 2011). Alternatively, reproduction comes at a cost. Capercaillie hens loose 

about 20 % of their body weight between mating and hatching of the eggs (Storaas, Wegge & 

Kastdalen 2000) and studies of both altricial and precocial bird species, have linked successful 

reproduction to reduced survival of the female due to energetic stress of incubation and brood 

rearing (Nur 1984; Flint & Grand 1997).  

Predation by red fox and pine marten on capercaillie and black grouse nests 

Red fox and pine marten were the most frequent predators on nests from capercaillie and black 

grouse nests. Of identified predators, red foxes predated 42.4 % and 55.6 % whereas pine martens 

predated 41.0 % and 33.3 % of capercaillie and black grouse nests respectively. Corresponding 

predation from the European badger (Meles meles) was 12.1 and 11.1%. We observed one occasion 

of wolverine (Gulo gulo), domestic dog (Canis familiaris) and golden eagle (Aquila chrysaetos) 

predating capercaillie nests (Figure 6). We observed corvid species (common raven and hooded 

crow) at nest sites but the incubating hen constantly confronted them and no predation from corvids 

was observed at active nest sites (Figure 7). 
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Figure 6 The distribution of camera-identified predators predating capercaillie (dark) and black grouse (light) nests. 
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Figure 7 Capercaillie and black grouse hens defending their nests against hooded crows and ravens 

Despite lacking proof of corvid predation on capercaillie and black grouse nests, there is a general 

consensus that hooded crows and common ravens are important for nest survival in woodland 

grouse and studies frequently refer to corvid habitat as high-risk habitat for capercaillie and black 

grouse (e.g. Huhta et al. 2017). This belief originates from a set of studies conducted by the use of 

artificial nests (e.g. Picozzi 1975; Andren & Angelstam 1988). It is credible nonetheless, that corvid 

predation occur as hens may not always be successful in defending their nests but the extent of avian 

predation on capercaillie and black grouse nests is to a lesser extent than earlier reasoned. 

Daily probabilities of pooled predation on black grouse nests were best explained by pine marten 

abundance, vole abundance and their interaction. The main effects of pine marten and voles were as 

expected. Predation increased with pine marten abundance and decreased with vole abundance. The 

relationship to vole abundance however, did not follow the expected trajectory when the abundance 
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of pine marten increased. At high pine marten abundances, more voles did not relieve black grouse 

nests of predation (Figure 8). These patterns are not consistent with the mechanisms explained by 

the alternative prey hypothesis but rather those of incidental predation (Vickery, Hunter Jr. & Wells 

1992; McKinnon et al. 2010). One possible caveat behind these results are the relatively low sample 

of black grouse nests when spread across each phase in the vole cycle. Nevertheless, similar 

uncertain relationships of nest loss in black grouse to vole abundances have been observed earlier 

(Wegge & Storaas 1990).  

 

Figure 8 Estimated daily probability of pooled predation for black grouse nests as a function of standardized vole abundance 

(VA) under minimum, mean and maximum observed pine marten abundances (PMA). 

Conversely, patterns of pooled predation on capercaillie nests followed the vole cycle as predicted by 

the alternative prey hypothesis. High losses to predators in the crash phase of the cycle and 

subsequent reduced predation as voles increased and peaked. Again, pine marten abundance 

affected the structure of nest predation in relation to voles. At high pine marten abundances, 

probabilities of predation on capercaillie nests in the peak phase succeeded those of the increase 

phase (Figure 9). Similar patterns were observed in a system wherein alternative prey sustained 

elevated densities of generalist predators which subsequently supressed cyclicity in voles. The 

proposed mechanism was that a numerical response in the predator population had already 

occurred due to alternative food and an increase (or decrease) in voles would only trigger a 

functional response (i.e. prey switching) (Erlinge, Göransson & Hansson 1983).   
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Figure 9 Estimated daily probability of pooled predation on capercaillie nests during the vole cycle with minimum, mean and 

maximum observed pine marten abundances. 

Competing risk analysis of partitioned predation on capercaillie nests showed that pine marten 

predation was best explained by pine marten abundance whereas red fox predation was best 

explained by the vole cycle (Figure 10). Regardless of the vole situation, pine martens predated 

capercaillie nests. As eggs constituted half of all pine marten digs during winter (Paper III) they are 

important food items for long-term caching (Helldin 1999). Since caching is a form of surplus killing 

(i.e. higher kill-rates than immediate consumption rates) (Smith & Reichman 1984), this behaviour 

can affect the functional response of the predator (e.g. Fletcher et al. 2010) and thus mask potential 

effects of e.g. vole fluctuations. Pine marten predation on capercaillie eggs does therefore not 
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coincide with the mechanics explained by the alternative prey hypothesis. The same was concluded 

in a study of pine marten predation on cavity nests of common goldeneye (Bucephala clangula) 

(Pöysä, Jalava & Paasivaara 2016). Interestingly, two long-term studies of small game community 

dynamics in the boreal forests have previously found little support for the alternative prey 

hypothesis in their data (Lindén 1988; Small, Marcström & Willebrand 1993). Coincidentally, these 

studies were based on data collected partly during the outbreak of sarcoptic mange in Finland and 

Sweden. During the mange, red foxes were scarce and pine martens more abundant (Lindstrom et al. 

1994; Smedshaug et al. 1999). Conversely, patterns of red fox predation is predictable as described 

by the alternative prey hypothesis and therefore complements earlier studies on red fox predation 

(Hörnfeldt 1978; Danell & Hörnfeldt 1987; Angerbjörn 1989). 

 

 

Figure 10 From left to right; pine marten and red fox predation on capercaillie nests as a function of standardized pine 

marten abundance (PMA) and the vole cycle (VC) respectively. 

Foraging patterns of red fox and pine marten 

Red fox dug for food at a higher frequency that pine marten whereas the frequency of hunting 

events was similar (Figure 11 a and b). Pine marten however, was more successful than red fox 

during both digging and hunting (Figure 11 c and d). Red fox had a wider niche breadth than pine 
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marten in their prey selection when hunting or digging. Red fox dug mostly for voles (37 %) and 

ungulates (26 %) meanwhile pine marten dug for mostly for eggs (48 %) but also some small birds (22 

%) and voles (21 %). Red fox hunting attempts were mostly directed towards voles (48 %) and to a 

smaller degree towards mountain hares (22 %) and grouse (20 %). Pine marten on the other hand, 

hunted mostly for small birds (59 %) and some hares (24 %). Overall, red fox had wider niche breadth 

than pine marten in prey selection for digs and hunting attempts. Food niche overlap was small 

between the two species (Table 1). 

 

Figure 11 Predicted distributions for red fox and pine marten a) digging and b) hunting events and c) digging and d) hunting 

success under mean snow depth and temperatures. 

 

Perhaps a bit surprising was the relatively small niche overlap in prey items for both dig and hunting 

events which suggests little competition between red fox and pine marten in these activities. 

Similarly, little change in pine marten habitat selection was found in response to the absence of red 

fox in Sweden (Storch, Lindström & de Jounge 1990). Although we did not observe intra-guild 
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predation or attempts by red fox to kill pine marten, such a mechanism has been hypothesized to 

have played a part in the increase of pine marten during the sarcoptic mange (Lindstrom et al. 1994; 

Lindström & Brainerd 1995).  

The consumption of cached eggs in winter by pine marten have been observed earlier (Höglund 

1960; Pulliainen 1980; de Jounge 1981; Helldin 2000b) and suggest that eggs are frequently used for 

long-term caching since eggs are only available in spring and early summer. This is a special feature 

of the pine marten since only 8 % of red fox dig events were for eggs. This study also confirms the 

importance of both voles and ungulate remains for red foxes during winter (Needham et al. 2014) as 

well as the low utilization of ungulate remains by pine marten (Gomo et al. 2017). 

Since Pianka’s niche overlap index is symmetric (Pianka 1974), it is quite suitable for investigating the 

proportional use of a resource that two species depend on. Nevertheless, it also assumes that 

resources are equally available to the species analyzed. Although little arboreal activity by the pine 

marten was observed in this study, arboreal prey like birds are available to the pine marten (Brainerd 

et al. 1995) but not to the red fox. 

Table 1 The proportion of different prey items identified from red fox and pine marten digs and hunting events during snow 

tracking. 

 

 

Effects of anthropogenic land use on spatiotemporal population dynamics in red fox 

Red fox abundance was best explained by relative settlement density and offal density in the forest. 

Red fox abundance positively related to settlements whereas the relationship to offal was weak 

(Figure 12). We did not detect cyclicity in the red fox population and first order dynamics (i.e. direct 

density dependence) was the dominating pattern in population fluctuations. Among the models 

parameterizing first order density dependence, the relative density of agricultural land was the best 

performing covariate. Across the agriculture spectrum, the red fox population was more stable when 

the amount of agriculture was relatively high than low (i.e. population equilibrium point increased 

with agriculture). Moreover, the intrinsic rate of increase was asymmetrically related to abundance 

depending on the amount of agriculture in the landscape thus suggesting stronger density dependent 

processes in marginal agricultural areas (Figure 13).   
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Anthropogenic subsidization is a key concept explaining the relatively close relationships between 

red fox population dynamics and abundance to human land use. Both settlements and gut piles from 

big game hunting have earlier been identified as frequently used resources by red fox (Panek & 

Bresiński 2002; Gomo et al. 2017; Paper III). Offal however, is temporally important to red foxes and 

inversely related to the abundance of voles and lemmings (Jędrzejewski & Jędrzejewska 1992; 

Killengreen et al. 2011). Since all years were pooled in this analysis, the relationship between red fox 

abundance and offal encompass potential variation mediated by voles. The importance of such 

readily available resources to red fox population dynamics and its potential to trigger ripple effects 

throughout the food web is scarcely studied and mostly in winter. In general however, human-

provided foods can be expected to increase consumer abundance, change the consumers dietary 

preferences to include subsidies and change life-history traits (e.g. sociality, survival, fecundity etc.) 

of the consumer (Newsome et al. 2015).  

A criticism of direct density dependency is regression toward the mean (e.g. Kelly & Price 2005). This 

phenomena describes how an extreme measurement of a given parameter subsequently yield values 

closer to the mean of that parameter (e.g. Stigler 1997). Since annual variation was the dominating 

dynamic in red fox abundance, regression to the mean is a credible concept explaining this particular 

pattern. However, the asymmetry we show in density dependent growth for red foxes across the 

agricultural landscape is not consistent with regression effects as you would expect regression effects 

to result in uniformly distributed rt across variations in agriculture as well as a unimodal distribution 

around mean Nt-1.   
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Figure 12 Model weighted predictions of red fox abundance as a function of standardized settlements (left) and 

standardized offal ha-2 productive forest (right) whilst holding the other fixed effect constant at mean value. Shaded areas 

are 95% highest posterior density intervals. 
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Figure 13 Model weighted predictions of the interaction between standardized agricultural land and red fox abundance (Nt-1) 

on the instantaneous rate of increase in the red fox population. Red to green gradient depict negative to positive 

instantaneous rate of increase. 
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Conclusions and future work 

I have shown that Fennoscandian populations of capercaillie and black grouse have suffered from 

long-term declines in the number of nests that hatch and the number of chicks that survive until fall. 

Populations seem to be stuck around a new and lower equilibrium. Reoccurring failure in 

reproductive attempts is a sufficient explanation for the reported population declines and changes in 

the levels of predation pressure is a part of the explanation. Today, red fox and pine marten are the 

most common mesocarnivores in the boreal forests, and I have shown that they are main predators 

on capercaillie and black grouse nests. In areas outside Fennoscandia, other species e.g. wild boar 

(Sus scrofa) and stone marten (Martes foina) may compensate or add to red fox and pine marten 

predation on woodland grouse nests.  

Previous studies have suggested that nest predation on ground-nesting birds in the boreal forest is a 

random process (Wegge & Storaas 1990) but here I show that nest predation patterns are multi-

faceted depending on the predator involved. Red fox predation was modulated by the vole cycle 

whereas pine marten predation increased with a numerical increase in pine marten. Nest predation 

by red fox therefore agree with the alternative prey hypothesis whereas nest predation by pine 

marten does not. Density estimates (Marcström, Kenward & Engren 1988; Marcström et al. 1989) as 

well as indirect evidence (Kurki et al. 1998) moreover suggest that pine martens are less abundant 

than red foxes in the boreal forest. Pine marten appeared henceforth more specialized and efficient 

than red foxes in predating nests. Investigations into their foraging niche supported this 

interpretation. Pine martens foraged for cached eggs, whereas the foraging niche of red fox was 

opportunistic in comparison. The red fox is closely tied to human land use and agricultural practices 

may regulate red fox populations via subsidization, induce numerical stability and furthermore mask 

any potential relationships between naturally given landscape features and red fox population 

dynamics.  

The massive transformation of forest structure following mechanisation of silviculture was 

temporally in line with population declines in Fennoscandian capercaillie and black grouse. This 

temporal match is probably what spurred research interests into relations of forest composition and 

structure to woodland grouse population performances. Still today, these relationships are 

considered a “black box” (Storch 2015). Besides the importance of bilberry (e.g. Storch 1993; Baines, 

Moss & Dugan 2004) and the extent of conifer forest cover (e.g. Sirkiä et al. 2011), there is no 

consensus on the specifics of forest habitat requirements. Previously suggested habitat 

requirements, e.g. capercaillie and old growth forest, have been downgraded and habitat quantity 

(i.e. extent) rather than quality is considered important landscape features (Angelstam 2004; Sirkiä et 
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al. 2011; Wegge & Rolstad 2011; Lande et al. 2014). Perhaps the devil is not in the details as an 

increasing number of studies point to coarse, landscape-scale processes as important factors in 

shaping the mechanisms driving capercaillie and black grouse population performances rather than 

fine-grained and small-scale e.g. vegetation structure (e.g. Storch 2002; Graf et al. 2005). 

Whereas capercaillie and black grouse populations in Fennoscandia are of least concern, British and 

central European populations are in trouble (IUCN 2016). There is good evidence that predator 

control will improve reproductive success and facilitate population growth. In most areas however, 

this approach to grouse conservation is not ethically or practically feasible. Despite a focal topic for 

decades (Moss, Storch & Müller 2010), there is little evidence of forest-habitat structures that 

directly or indirectly change demographic rates in woodland grouse, but experiments are lacking. 

Until such experiments are conducted, managers have to grope in the dark for alternative 

conservation measures to predator control.  
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Abstract 

To understand mechanisms behind increasing reproductive failure in sympatric woodland grouse it is 

necessary to identify nest predators and related processes. Using camera traps, we provide the first 

empirical identification of predation among 335 capercaillie and black grouse nests in the boreal 

forest. We evaluated nest predation patterns in relation to predators and voles via binomial and 

competing risk models. Daily rates amounted to 79 and 66 % losses to predation for capercaillie and 

black grouse nests respectively. Red fox and pine marten was responsible for 84 % of identified 

events whereas other predators were few and hens successfully defended their nest against corvids. 

Model rankings suggested that nest predation in black grouse followed pine marten and vole 

abundances as expected. Their interaction further showed that high pine marten abundances 

masked the relieving effect of voles. Red fox predation patterns on capercaillie nests supported the 

alternative prey hypothesis whereas pine marten predation was unaffected by voles and increased 

with pine marten abundance. We conclude that artificial nests are poor substitutes for real nests 

when aims are to identify and understand mechanisms regulating nest predation. We further suggest 

that woodland grouse nests are alternative prey for red foxes whereas pine martens are more 

efficient and specialized nest predators. Finally, legal control of pine martens can improve hatching 

success in both capercaillie and black grouse.  

 

Keywords: red fox, pine marten, nest predation, camera trap, capercaillie, black grouse, voles 

 

Introduction 

Recruitment is an important driver of population dynamics in many ground-nesting birds, especially 

those with fast life-histories and a short life expectancy (Lack 1968; Newton 1998) and recent 

research has focused on predation as an important cause of nest failure. To advance the 
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understanding of nest predation mechanisms, it is essential to identify the predator species 

responsible and obtain data on factors affecting their numerical and functional responses (Benson, 

Brown & Bednarz 2010).  

Despite known limitations, artificial nests are often used to investigate these mechanisms because 

collecting data on active nests is difficult (Andren & Angelstam 1988; Major & Kendal 1996). Unlike 

artificial nests, active woodland grouse nests are protected by an incubating, cryptic-colored female, 

which is not only concealing the eggs from predators but is also releasing olfactory cues that can 

attract predators (Conover 2007). Females may also divert or deter predators (Montgomerie & 

Weatherhead 1988; Martin 1993). Studies using artificial nests often identify avian predators as the 

most important (Picozzi 1975; Storaas 1988; Willebrand & Marcström 1988), and the perceived 

importance of corvid predation of boreal woodland grouse nests originates from studies using 

artificial nests (e.g. Klaus 1985; Andren 1992; Summers et al. 2004).  

Capercaillie (Tetrao urogallus) and black grouse (Lyrurus tetrix) are sympatric ground nesting 

woodland grouse in the forests of Fennoscandia (Seiskari 1962; Swenson & Angelstam 1993). In the 

boreal forest, they have similar associations to landscape characteristics and habitat diversity is 

important in explaining population fitness (Lande et al. 2014). Albeit population declines, their 

conservation status is of least concern at a global level (IUCN 2016) and several explanations for 

declining populations have been proposed. In contrast to populations in Britain and mainland 

Europe, habitat loss is not considered a detrimental driver in Fennoscandia. Instead, changes in land 

use, climate change (e.g. spring warming) and increasing populations of generalist predators are 

considered threats to Fennoscandian capercaillie and black grouse conservation (Jahren et al. 2016). 

Knowledge about the importance of juvenile survival after brood breakup during fall as well as winter 

survival is largely lacking, but in the closely related willow ptarmigan (Lagopus lagopus), population 

models suggest juvenile survival to be of particular importance to future population persistence 

(Sandercock, Martin & Hannon 2005). Reproductive success in general and particularly early chick 
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survival is mediated by several ultimate factors that predominantly predispose capercaillie and black 

grouse chicks to predation (e.g. weather and abundance of protein-rich food items (Moss 1986; 

Wegge & Kastdalen 2007)). Until hatching, nests of black grouse have higher probability of survival 

than those of capercaillie (Storaas & Wegge 1987; Jahren et al. 2016). In both species however, the 

vast majority of nest loss is due to predation, and differences in nesting success is therefore likely 

explained by nest detection probabilities mediated through a combination of female behavior and 

nesting habitat (e.g. Storaas et al. 1999).  

Large annual variation in nest loss is common. Apparent nest losses vary from 0 to 84 % and 11 to 62 

% for capercaillie and black grouse respectively (Myrberget & Hagen 1974; Spidsø, Wegge & Storaas 

1984; Brittas & Willebrand 1991).  However, over the past 80 years, nest loss in both capercaillie and 

black grouse has increased, with subsequent population declines. This is partly due to increased 

predation likely resulting from higher numbers of generalist predators (Jahren et al. 2016).  

Annual variation in capercaillie and black grouse nest predation is inversely correlated with the vole 

cycle (Angelstam 1983; Wegge & Storaas 1990), which is consistent with the alterative prey 

hypothesis (Hagen 1952; Lack 1954; Angelstam, Lindström & Widén 1984). Since the 1980s when 

these studies were conducted, regional vole cycles have diminished or even disappeared (Ims, 

Henden & Killengreen 2008; Cornulier et al. 2013), although recent studies have suggested a return 

to cyclic fluctuations (Brommer et al. 2010; Korpela 2014) with reduced amplitude (Cornulier et al. 

2013). Preceding and during the period of low-amplitude vole cycles, the red fox (Vulpes vulpes) 

population in Scandinavia was affected by an epizootic sarcoptic mange (Sarcoptes scabiei) (Mörner 

1992). This revealed the importance of red fox as predator and possibly also competitor as 

population sizes in a number of small game species, notably also the pine marten (Martes martes) 

increased (Storch, Lindström & de Jounge 1990; Lindstrom et al. 1994; Lindström & Brainerd 1995; 

Smedshaug et al. 1999).  
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Nest predation in capercaillie and black grouse have also been described as incidental (Wegge & 

Storaas 1990; Saniga 2002) and predation rates could therefore also be explained by predator 

density and abundance of their main prey rather than phase-dependent predation rates dictated by 

the vole cycle. It therefore appears that mechanisms linking predation rates on woodland grouse 

nests to predators and their preferred prey are context dependent. We therefore expect that 

predation patterns described some 30 years ago have changed due to both increased populations of 

generalist predators (Krott & Lampio 1983; Helldin 2000a; Selås & Vik 2006) and distortion of the 

vole cycle (Hörnfeldt, Hipkiss & Eklund 2005). 

No study has yet presented quantitative data of nest predators predating capercaillie and black 

grouse nests outside Scotland. In Scotland, pine marten was the only predator identified predating 

capercaillie nests, probably because it is protected and other potential nest predators are controlled 

(Summers, Willi & Selvidge 2009). In Fennoscandia, studies on active nests have shown that 

mammals are important nest predators (Storaas 1988; Willebrand & Marcström 1988) although the 

data has been limited.  

In this study, we identify key predators of capercaillie and black grouse nests in the boreal forests of 

Norway. We further evaluate mechanisms behind predator-specific predation patterns, as well as 

predation in general, by linking nest predation to the vole cycle, vole abundance and red fox and pine 

marten abundances. We thereby attempt to evaluate principal hypotheses explaining nest predation 

patterns in precocial ground-nesting woodland grouse. We hypothesized that both mammals and 

birds would prey upon nests of capercaillie and black grouse but we expected mammals to be more 

frequent. We further anticipated that the previously strong and predictable relationship between 

predators, voles and alternative prey as predicted by the alternative prey hypothesis has changed, 

due to both increased populations of generalist predators and reduced cyclic amplitude in voles.  

Methods 
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Study area 

This study was carried out in the boreal forests of Hedmark (61° N 11° E, 27400 km2, during 2009 – 

2014) and Nord-Trøndelag (64° N 12° E, 22400 km2, during 2010 – 2014) counties in southeast and 

central Norway. Forests (13000 and 6600 km2) were dominated by Scots pine (Pinus sylvestris) and 

Norway spruce (Picea abies) intermixed with birch (Betula spp.). Rowan (Sorbus aucuparia), alder 

(Alnus incana) and aspen (Populus tremula) were also present but at substantially lower densities 

(Moen 1999). The forests were commercially managed and most forested areas were accessible by 

forest roads. Capercaillie and black grouse were common and local (7 to 24 forest properties) density 

estimates from transect surveys (total 378 – 1373 km transects) showed large annual variation and 

prior to our study, combined August densities of both species varied between 1 - 26 birds km-² 

(Solvang et al. 2009). Combined densities of 26 birds km-2 was estimated in 2006 and since then 

populations have fluctuated at lower levels. Potential nest predators included pine marten, red fox, 

European badger (Meles meles), common raven (Corvus corax), hooded crow (Corvus cornix), 

Eurasian jay (Garrulus glandarius), stoat (Mustela erminea), lynx (Lynx lynx), gray wolf (Canis lupus), 

brown bear (Ursus arctos), and wolverine (Gulo gulo). 
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Figure 14 Nord-Trøndelag (north) and Hedmark (south) counties in Norway. Capercaillie (Tetrao urogallus) nests are white 

circles and black grouse (Lyrurus tetrix) nests are black circles.  
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Locating nests 

Throughout spring in each year from 2009-2014 (2010-14 in Nord-Trøndelag), we invited the public 

and forest workers to report capercaillie and black grouse nests (see also Storaas and Wegge 1984). 

Each year, a few nests were also located using pointing dogs between May 10th and mid-June. Nests 

detected opportunistically have same survival as nests detected randomly (i.e. radio-tagged birds) 

(Storaas & Wegge 1984). For each nest, we recorded species and the UTM-position. Because we 

wanted to study predation, we excluded 25 nests (15 (5.32 %) and 10 (12.82 %) capercaillie and black 

grouse nests respectively) where female disappeared, leaving 267 capercaillie and 68 black grouse 

nests in the sample for predation analysis (Table 1). Two nest desertions were caused by flooding, 

one by human disturbance (i.e. shooting practice) and one by forest fire. Other potential causes may 

be predation of the female during off-bouts (Angelstam 1984; Wegge & Rolstad 2011), exhaustion or 

observer effects.  

Dog handlers and most forestry workers had camera traps available and cameras were mounted 

immediately after they detected a nest. Most nests, in total 194 of 267 and 56 of 68 capercaillie and 

black grouse nests, respectively, were monitored with camera traps. For nests detected by the 

public, we mounted camera traps minimum one day after detection. After camera mounting, nests 

were not visited again for > three weeks. Nest fates were not always certain from photographs, and 

we then interpreted the remains of the eggshells to determine whether eggs hatched (neatly halved 

in cup and bowl with eggshell membrane attached) (e.g. Leopold 1937) or were predated (only 

fragments of eggshell or no remains were left). Camera traps were mounted on a tree or tree stump, 

1-5 m away from the nest. If no natural feature was available, we considered longer mounting 

distances (< 10 m) but did not use artificial mounts. Initially (2009-12), we used camera traps with 

passive infrared (PIR) detection only, programmed to record three images when triggered and sleep-

time of 1-10 minutes depending on the size of the memory card. Later (2013-14), we also used 
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cameras with combined time-lapse (TL) and PIR. TL-cameras were, in addition to PIR, set to record 

three images every ten minutes to minimize false negatives. Camera models used were Moultrie 

Game Spy I-45™ (PIR) (http://www.moultriefeeders.com/), Bushnell Trophy Cam™ (PIR) 

(http://www.bushnell.com/) and WingCam II™ (PIR + TL) (http://www.wingevapen.no/).  

  

http://www.wingevapen.no/
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Table 2 Details of sample size for capercaillie and black grouse nests 

 
Year 2009 2010 2011 2012 2013 2014 Total 

 
Vole cycle phase Crash Increase Peak Crash Increase Peak 

 

         

C
ap

er
ca

ill
ie

 

Total sample1 16 68 60 50 35 53 282 

Deserted 0 5 2 5 0 3 15 

Complete capture history2 16 63 58 45 35 50 267 

Hatched 5 32 31 14 20 33 135 

Predated 11 31 27 31 15 17 132 

         

B
la

ck
 g

ro
u

se
 

Total sample1 0 29 24 15 4 6 78 

Deserted 0 5 4 1 0 0 10 

Complete capture history2 0 24 20 14 4 6 68 

Hatched 0 18 9 8 2 6 43 

Predated 0 6 11 6 2 0 25 

1Annual distribution of all the nests detected in this study.  2Nests with complete capture histories (i.e. known dates of 

detection and end of incubation) used in predation analysis excluding nest desertions.  

 

Red fox and pine marten abundances 

Indices of pine marten (PMA) and red fox (RFA) abundances were obtained from snow tracking along 

899 predefined transects (Figure A1). Transect surveys were conducted in each county by volunteers 

surveying between 99 and 444 (mean = 294, SD = 120.03) transects of 3.5 (SD = 1.61) km length in 

late January or early February each year under favorable tracking conditions (i.e. 2-5 days after 

snowfall). On average, each transect was repeatedly surveyed 3.6 years (SD=1.57). Annual mean 

density of transects was one transect per 35.2 (29.7 – 51.6) km2 forested area (i.e. capercaillie and 
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black grouse habitat) and transect centroid points were spaced out 3800 (480-11000) m apart and 

were across contour lines, largely covering the entire forested area in each county.  

For each transect we calculated annual RFA and PMA as crossing tracks/km/24 hrs. Red fox 

prevalence (i.e. proportion of transects with tracks) varied between 0.33 and 0.94 whereas pine 

marten prevalence varied between 0.17 and 0.49. Abundances varied between 0.40 and 0.67 for red 

fox and between 0.20 and 0.31 for pine marten (Table 2). Such indices reflect true densities of red 

fox and pine marten quite well (Thompson et al. 1989; Kurki et al. 1998), but they cannot discern 

predator density from predator activity. Therefore, they reflect relative predation pressure across 

space and time (Kurki et al. 1998) prior to nesting season. Annual predator-specific abundances were 

log-transformed and then attributed to the transects’ centroid point. We further developed annual, 

county-wise spherical variogram models for each species to obtain models describing mean and 

spatial covariance. Variogram models were then fitted in ordinary kriging prediction models with 

leave one out cross validation and we predicted annual RFA and PMA for each county (Figure A2). 

Variogram and krige models were developed in the gstat library (Pebesma 2004) in program R (R 

Core Team 2016). 

To capture spatial heterogeneity among home ranges, each nest was assigned a randomly-sized 

circular buffer corresponding to capercaillie or black grouse hens home range during incubation 

(capercaillie mean = 0.204 km2, SE = 0.0183 and black grouse mean = 0.236 km2, SE = 0.0774 (Kolstad, 

Wegge & Bø 1985; Wegge 1985)). Because generation of random numbers with the given parameters 

yield small as well as negative numbers, buffer size was restricted to minimum 0.1 km2 for both 

species. Finally, each nest was assigned mean values of the predicted RFA and PMA the buffer 

included for the appropriate year. 
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Table 3 Annual transect data used for red fox (Vulpes vulpes) and pine marten (Martes martes) abundance indices in 

Hedmark and Nord-Trøndelag counties between 2009 and 2014. Prevalence is proportion of transects with red fox or pine 

marten tracks observed. Annual mean abundance is track crossings / transect length / days since last snowfall.  

   
2009 2010 2011 2012 2013 2014 

 

Transects surveyed 

Hedmark 429 444 406 371 400 280 

Nord-Trøndelag - 215 203 215 173 99 

R
e

d
 f

o
x 

 

Hedmark 

Prevalence 0.93 0.88 0.94 0.92 0.93 0.86 

Abundance 0.59 0.62 0.46 0.67 0.61 0.66 

2SE 0.053 0.060 0.039 0.065 0.054 0.089 

 

Nord-Trøndelag 

Prevalence - 0.45 0.46 0.55 0.36 0.33 

Abundance - 0.40 0.52 0.70 0.51 0.53 

2SE - 0.065 0.080 0.096 0.093 0.091 

P
in

e
 m

ar
te

n
 

 

Hedmark 

Prevalence 0.49 0.36 0.44 0.42 0.35 0.27 

Abundance 0.25 0.24 0.20 0.26 0.24 0.26 

2SE 0.034 0.042 0.028 0.037 0.034 0.046 

 

Nord-Trøndelag 

Prevalence - 0.22 0.28 0.35 0.18 0.17 

Abundance - 0.23 0.24 0.31 0.24 0.22 

2SE - 0.049 0.047 0.062 0.040 0.056 

 

Vole cycle and vole abundance 

Tengmalm’s owl (Aegolius funereus) fecundity is dependent on vole fluctuations, which occur 

synchronously across large areas (Hornfeldt & Carlsson 1990; Sundell et al. 2004; Lehikoinen, Ranta & 

Pietiäinen 2011) and so we used annual, county-specific mean brood size of Tengmalm’s owl 

(collected by Birdlife Norway) as an annual index of vole abundance (VA) (Table A 3). Because VA as a 

continuous predictor will not capture the temporal component of the alternative prey hypothesis 

(i.e. prey switching), we also specified annual dynamics in VA as phases in a population cycle. From 

the vole abundance index, we identified phases of the vole cycle (VC) as follows: annual vole indices 

were mean centered. We coded negative values as zero and positive values as one. Two consecutive 

years with either 0 (0 0) were defined as low (none detected) and two consecutive 1’s (1 1) as peak 
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phase. A 1 followed by 0 (1 0) was defined as crash, 0 followed by 1 (0 1) as an increase phase (Table 

1). 

Predation analysis 

Prior to model building, predator abundances were checked for homoscedasticity by inspecting the 

residuals and then standardized to z-scores (mean/2SD) (Arm package; Gelman & Su 2016) to 

simplify interpretations of interactions between the quantitative predictors (González & Cox 2007). 

We also checked for collinearity between RFA and PMA.  

Nest predation was analyzed in MCestimate (Etterson, Greenberg & Hollenhorst 2014), which is a 

standalone software for modelling the probability of nest failure in a binomial and competing risk 

(multi-fate) environment. MCestimate differ from classical survival analysis by modelling time as 

discrete and estimates are thereby probabilities of survival or failure across a fixed period of 

incremental time steps. This is in contrast to e.g. exponential or Weibull survival functions (i.e. 

instantaneous) in continuous time. The discrete-time logit-model in MCestimate is a generalization of 

the Mayfield method (Mayfield 1975; Dinsmore, White & Knopf 2002), with relaxed assumptions 

(e.g. daily monitoring not required). Daily probabilities of survival or failure are then calculated 

across transition matrices as a Markov chain. Thus, the probability of a nest surviving until day i is 

formalized as the product of probabilities per Markov transition matrix until day i. 

Few observations of predators preying upon black grouse nests prevented us from partitioned 

analysis of those and so competing risk analysis were performed only for the fates of capercaillie 

nests. Competing events for capercaillie nest fates were hatched (n=135), red fox (n=28), pine 

marten (n=27) or unidentified predation (n=66). We left other identified predators (i.e. competing 

events) as constants because of few observations. When evaluating pooled predation (i.e. binomial 

fates), we included 135 hatched and 132 predated capercaillie nests and 42 hatched and 26 predated 

black grouse nests in the analysis.  
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We designed a set of simple candidate models to evaluate the support for the following hypotheses 

in explaining predator-specific and overall nest predation:  

 Numerical response in predators (i.e. incidental) 

 Functional response in predators  (i.e. alternative prey) 

 Predation patterns are predator-specific 

To specifically address the different hypotheses, nest predation was formalized by a mixture of 

predictors including PMA, RFA, VA and VC (i.e. crash, increase or peak). Each modeled fate consisted 

of maximum two main effects and their interaction.  

We did not fit red fox predation with PMA as main effect and vice versa, but they were fitted with 

the interaction between PMA and RFA. Parameterization of unidentified predation always mimicked 

the corresponding fit of red fox or pine marten (i.e. hypothesized to consist of both predator 

species). Therefore, each model fit for pine marten and red fox were repeated twice with 

unidentified predation hypothesized to be pine marten in the first case and red fox in the second. 

The candidate set for binary fates included 11 models whereas competing risk included 23 models. 

Model evaluation and goodness of fit 

We assessed goodness of fit by the Hosmer-Lemeshow χ2-test (implemented in MCestimate) on the 

global model. No evidence for lack of fit was detected (Table 3).  
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Table 4 Hosmer-Lemeshow  χ2 goodness of fit assessment of the global models formalizing black grouse and capercaillie 

binomial fates and capercaillie competing risks.  

 Groups d.f. χ2 p-value 

Black grouse 10 8 7.12 0.52 

Capercaillie 10 8 6.33 0.61 

Capercaillie 

comp. risks 

10 68 42.40 0.99 

 

Candidate models were ranked according to AICc (AIC corrected for small sample size). We inferred 

from the top ranking model as well as models within ΔAICc < 2 from the top ranking model. We 

exported the estimated regression coefficients and variance co-variance matrices from MCestimate 

to R (R Core Team 2016) for visualization.  

Consequences of nest predation 

To evaluate the potential impact of nest predation on population dynamics in black grouse and 

capercaillie, we regressed annual indices of capercaillie and black grouse populations against daily 

probabilities of predation at timet (DPPt). Because capercaillie and black grouse density estimates 

were not available for both counties all years, we used relative change in hunter bag size between 

years (Nt/Nt-1) as population index (Figure A3). Annual bag size and number of hunters per county 

was retrieved from Statistics Norway (Statistics Norway 2016). 
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Results 

Predator identification and daily predation rates 

Of 132 and 26 predated capercaillie and black grouse nests, we identified the predator in 66 and 10 

cases, accounting for 50 and 38.5 % of all predation events (details on camera trap performance 

further down). Mammals represented 98.5 % of identified capercaillie nest predators and 100 % of 

black grouse nest predators. Of identified predators red fox predated 42.4 % and 55.6 % of 

capercaillie and black grouse nests respectively, and corresponding pine marten predation was 41.0 

% and 33.3 %. Of less importance were European badger (12.1 % and 11.1 %), domestic dog (1.5 % 

and 0 %), wolverine (1.5 % and 0 %) and golden eagle (1.5 % and 0 %) (Figure 2A).  

From 267 capercaillie and 68 black grouse nests, we estimated daily predation rates of 0.0541 and 

0.0425 respectively. These daily predation rates are equivalent to total predation of 0.79 and 0.66 

when accounting for 28 (Summers, Willi & Selvidge 2009) and 25 (Ludwig et al. 2010) days of 

incubation for capercaillie and black grouse respectively. Estimates of daily probabilities of predation 

in capercaillie and black grouse nests overlapped (Figure 2B). Daily probabilities of unidentified 

predation was 0.028 and 0.028, red fox was 0.009 and 0.012 whereas pine marten predation was 

0.005 and 0.012 for black grouse and capercaillie respectively (Figure 2C). Nest predation in 

capercaillie and black grouse explained 26 and 50 % of the variation in hunter bags between years 

(Figure A3).  
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Figure 15 (A) Distribution (percentage) of camera-identified species predating black grouse (Lyrurus tetrix) (light) and 

capercaillie (Tetrao urogallus) (dark) nests. (B) Estimated daily probabilities of pooled predation (± 95 % CI) on black grouse 

and capercaillie nests and (C), estimated daily probabilities of species-specific predation (± 95 % CI) on black grouse and 

capercaillie nests. 

Corvids 

We did not observe corvid predation on active nests of neither capercaillie nor black grouse. In total, 

we observed corvids during four black grouse nest days and 14 capercaillie nest days. On active nests 

(i.e. female incubating), black grouse and capercaillie females confronted successfully defended their 

nest against hooded crow and raven attacks for all occasions (Figure 3). Eurasian jays and magpies 

(Pica pica) did not attack the active nests and were therefore not confronted (Table 4).  
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Figure 16 Female capercaillie (Tetrao urogallus) defending nest against hooded crow (Corvus cornix). 

 

Table 5 Details of all corvid observations on capercaillie and black grouse nests. 

County Species Year Corvid Species Minimum 

corvid group 

size 

Number of 

days visited 

Number of 

days 

confronted 

Nest status 

at corvid 

visit 

Nest fate 

N
o

rd
-T

rø
n

d
el

ag
 

Capercaillie 2010 Corvus cornix 3 1 1 Active Red fox 

Capercaillie 2011 Corvus corax 1 1 1 Active Unidentified predator 

Capercaillie 2013 Corvus cornix 1 1 1 Active Red fox 

Capercaillie 2014 Corvus corax 1 1 1 Active Red fox 

Black grouse 2010 Garrulus glandarius 1 3 0 Not active Previously deserted 

H
e

d
m

ar
k 

Capercaillie 2010 Corvus corax 1 1 0 Not active Previously deserted 

Capercaillie 2010 Garrulus glandarius 1 1 0 Active Unidentified predator 

Capercaillie 2013 Corvus corax 2 1 1 Active Badger 

Capercaillie 2013 Corvus cornix 1 1 1 Active Hatched 

Capercaillie 2013 Corvus cornix/Pica pica 1 & 3/1 4/1 4/0 Active Unidentified predator 

Capercaillie 2014 Corvus corax 1 & 2 2 2 Active Hatched 

Black grouse 2010 Corvus cornix 1  1 1 Active Unidentified predator 

 

Camera trap performance 
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We identified the predator in 76.7 and 71.4 % of possible cases on capercaillie and black grouse nests 

respectively. The predominant reason for unsuccessful identification of nest predators was that 67.7 

and 60 % of predated capercaillie and black grouse nests were not camera monitored. Cameras 

stopped monitoring before predation took place (i.e. not operational) in 4.4 % and 6.7 % due to full 

memory card. False negatives (i.e. operational camera failed to record event) occurred in 23.3 and 

28.6 % of cases for capercaillie and black grouse (Table 5). 

Table 6 Overview of camera-trap performance on predated nests.  

 
Predated Predated & monitored  Identified of monitored§  False negative§ Memory card full 

Capercaillie 49.4% (132) 68.2% (90) 76.7% (66) 23.3% (20) 4.4% (4) 

Black grouse 36.8% (26) 60% (15) 71.4% (10) 28.6% (4) 6.7% (1) 

Total 47.2% (158) 66.5% (105) 76% (76) 24% (24) 4.8% (5) 

§Cameras with full memory card (i.e. not operational) is not included.  

 

Nest predation patterns in black grouse 

Model ranking suggested PMA and VA as well as their interaction as the best models formalizing nest 

predation in black grouse (Table A1). As main effects, PMA was positively associated whereas VA was 

negatively associated with daily probability of predation (DPP) in black grouse (Figure 4). Their 

interaction however, showed that voles only relieved black grouse nests of predation when pine 

martens were at low or intermediate abundances. When pine martens were abundant, the 

relationship of voles to predation was positive but uncertain (Figure 5). 
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Figure 17 The relationships of pine marten abundance and vole abundance index to daily probability of pooled predation in 

black grouse. 

  

 

Figure 18 Estimated daily probability of pooled predation for black grouse nests as a function of vole abundance index under 

minimum, mean and maximum observed pine marten abundances. 

 

Nest predation patterns in capercaillie 
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In general, daily probability of predation for capercaillie nests was highest in the crash phase of the 

vole cycle and subsequently decreased as the cycle progressed (Figure 6). Varying PMA did however 

disrupt the pattern of phase-dependent predation. As PMA increased, the increase phase in the vole 

cycle still relieved capercaillie nests of predation but during the peak phase, predation probabilities 

elevated at intermediate PMA and eventually exceeded those of the crash phase when PMA was high 

(Figure 7). 

  

 

Figure 19 Estimated daily probability of pooled predation on capercaillie nests during the vole cycle 
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Figure 20 Estimated daily probability of pooled predation on capercaillie nests during the vole cycle with min, mean and max 

observed pine marten abundances. 

 

Predator-specific predation patterns in capercaillie 
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The model best explaining partitioned predation on capercaillie nests was pine marten predation 

formalized as PMA with red fox and unidentified predation formalized as VC. Pine marten predation 

increased with PMA and both red fox and unidentified predation was highest in the crash phase of 

the VC and decreased as the VC progressed. Predation was generally higher and the phase-to-phase 

change in predation was more prominent for unidentified predators than for red fox (Figure 8). 

 

Figure 21 Estimated daily probability of predation on capercaillie nests by pine marten (top) as a function of pine marten 

abundance, red fox (middle) and unidentified (bottom) as a function of vole cycle. 
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Discussion 

Here we show that red fox and pine marten are the most important predators of woodland grouse 

nests, and that previous studies identifying avian predators as significant are likely biased by their 

uncritical use of artificial nests (e.g. Moore & Robinson 2004). Pine marten and red fox were 

responsible for 84 % of all identified cases and European badger predated 12 %. Capercaillie and 

black grouse hens fought off both ravens and hooded crows and successfully defended their nests 

during all corvid visits. Eurasian jays and magpies were ignored. Overall nest predation in black 

grouse increased with PMA (pine marten abundance) and decreased with VA (vole abundance). The 

strength of the relationship to VA however, weakened as PMA increased. For capercaillie nests, 

overall predation rates were mediated by the VC (vole cycle) as predicted by the alternative prey 

hypothesis but only when pine martens were scarce. As PMA increased, peak years in the VC did not 

relieve capercaillie nests of predation. Pine marten predation on capercaillie nests increased with 

PMA. Conversely, red fox and unidentified predation was modified by the VC. Our results therefore 

confirm earlier reports that predation on boreal woodland grouse nests is mediated by vole and 

predator abundances (e.g. Angelstam, Lindström & Widén 1984; Wegge & Storaas 1990; Ludwig et 

al. 2010) but additionally, we shed light on nuances both with regards to interspecific variation in 

possible drivers as well as predator-specific responses to variable vole and predator abundances. 

 

Empirical data presented here, on both number of corvids and behavior of incubating hens visited by 

corvids contradict earlier beliefs and seriously question the external validity of artificial nest studies 

promoting corvid predation on not only woodland grouse nests, but also nests of any sizeable ground 

nesting species in the boreal forest. Artificial nests mimicking e.g. grouse nests, lack the cryptic 

colored hen concealing the eggs and are therefore more easily detected by avian predators acting on 

visual cues (Storaas 1988; Willebrand & Marcström 1988). This bias increase further as hens protect 

and successfully defend the nest from corvid predation. Additionally, detection probabilities related 
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to females escaping threats, and thereby revealing her eggs are lacking in such studies. 

Consequently, inference from artificial nests is ambiguous also due to species-specific differences in 

detection probabilities. Ravens have however been identified as a prominent predator on sage-

grouse (Centrocercus urophasianus) nests in the sage-brush grasslands of North-America (Coates, 

Connelly & Delehanty 2008). There are obvious habitat properties favoring visually hunting predators 

in such landscapes compared to the conifer forests of Fennoscandia and indeed, sage-grouse nests 

well covered in shrubs were less likely to be detected by ravens (Coates & Delehanty 2010). 

  

For approximately two to three out of ten cases, operational cameras failed to record the predation 

event (i.e. false negative). This number can be somewhat reduced by ensuring better camera 

mounting (e.g. camera tilts out of focus with time). Although these events remain unknown, we do 

not suspect species frequently predating capercaillie and black grouse eggs to have evaded detection 

altogether by our camera traps because within the same project, the range of nest predators 

identified predating willow ptarmigan (Lagopus lagopus) nests extends to a different predator guild 

including smaller species with presumed lower detectability (e.g. stoat). Thus, the camera set-up was 

capable of detecting potential differences in predator communities. Some nests were lacking camera 

trap monitoring due to camera availability. This led to low resolution in the capture histories (i.e. 

specific day of failure or success unknown) of non-monitored nests compared to nests with 

monitoring and so we could not sufficiently assess camera-effects on nest predation rates. Review 

studies of camera-effects on active nests however, suggest that camera presence tends to reduce 

predation rates (e.g. Richardson, Gardali & Jenkins 2009).  

 

We wanted to study nest predation and we therefor did not include deserted nests. Stress from 

disturbance or from poor body condition may both cause nest abandonment. Hens may also be killed 

during off-bouts. Woodland grouse are staple food for goshawks (Accipiter gentilis) during spring 

(Angelstam 1984; Tornberg 2001) and goshawks were observed twice at capercaillie nests without 
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predating eggs or hens. Adult black grouse hens do have lower survival than capercaillie (reviewed in 

Jahren et al. 2016) and so earlier day of nest abandonment is therefore expected if desertion is 

caused by mortality during off-bouts. For black grouse, the mean day of desertion after nest 

detection was day 3 and day 6 for capercaillie. Mean monitoring time for all nests was 10.23 and 

10.45 days respectively. Additionally, we cannot rule out nest desertions triggered by observer 

effects. Although nest desertion rates caused by observer-effects in other precocial ground-nesters 

are generally low, they are higher during early stages of incubation and particularly during egg-laying 

(e.g. Livezey 1980) but individual variation in susceptibility to such stress is probably high. 

Nonetheless, according to estimated mortality rates for hens during spring (Wegge & Rolstad 2011), 

rates of abandonment detected here can be explained by mortality alone for capercaillie but not so 

for black grouse.  

 

Contrary to expectation, we did not observe a statistical difference in daily probabilities of pooled 

predation between black grouse and capercaillie nests. This was largely due to substantial variation 

around the estimates rather than similar means and the lack of difference may relate to the relatively 

small sample of black grouse nests. Since their densities were rather similar (Solvang et al. 2009), we 

probably found more capercaillie nests because they are easier to detect than black grouse nests. It 

is likely that capercaillie hens flush relatively early (Storaas, Kastdalen & Wegge 1999) because the 

larger body size leads to a slower escape and higher expected adult survival make capercaillie hens 

favor own survival over the current reproductive attempt (Stearns 1992). Irrespective of sample size 

however, capercaillie and black grouse utilize and nest in different landscapes (Seiskari 1962; Storaas 

& Wegge 1987; Swenson & Angelstam 1993) and landscape-dependent predation pressure from red 

fox and pine marten (e.g. Kurki et al. 1998) may in part explain the unexpectedly high predation rates 

for black grouse nests.  
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Accounting for incubation duration (i.e. nest exposure), our estimates of 78.9 and 66.3 % predation 

of capercaillie and black grouse nests are higher than recent reports of apparent nest loss (Jahren et 

al. 2016). Estimates of nest loss accounting for exposure time are typically higher than apparent (i.e. 

proportional) estimates because failed nests are usually not found (Johnson 2007). Yet, the total loss 

in our sample of nests was higher still because we did not include nest failures other than predation. 

Despite high losses to predators, hens of both species may compensate and re-nest if the first 

nesting attempt fails (Willebrand 1992; Marjakangas & Törmälä 1997; Caizergues & Ellison 2000; 

Storaas, Wegge & Kastdalen 2000) and so annual re-nesting rates have likely mediated predation 

rates reported here but to an unknown degree. 

 

Predation rates on black grouse nests were positively associated with PMA and negatively associated 

with VA. The relationship to voles however, leveled off in strength with increasing PMA. This suggests 

that incidental processes (e.g. numerical response in predators) are part of the mechanics governing 

nest predation in black grouse and that at certain levels of PMA, voles will not sufficiently buffer 

black grouse nests from predation. Furthermore, the lack of vole cycle phase-dependency in 

predation patterns also indicate that prey switching (i.e. type-III functional response) was not a 

mechanism dominating predation patterns on black grouse nests. Characteristic to incidental 

predation is the lack of reliability of the particular prey item to the predator and thus consumption of 

the particular prey item does not change predator behavior (Vickery, Hunter Jr. & Wells 1992). 

Incidental prey may be unreliable in terms of net energy gained from its consumption due to e.g. low 

detectability (McKinnon et al. 2010) and relative to capercaillie nests, nests of black grouse fits this 

description. Nonetheless, to confirm this pattern, predation rates need to be evaluated in relation to 

nest densities. 

 

In contrast, predation patterns on capercaillie nests agree with those described by the alternative 

prey hypothesis (Hagen 1952; Lack 1954; Angelstam, Lindström & Widén 1984). This relationship 
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however, was only consistent with the model when PMA was low. At higher PMA, a switch in 

predator foraging behavior from voles to capercaillie nests still took place when voles increased but 

vole peaks did no longer relieve capercaillie nests of predation and rates eventually exceeded those 

of crash years. This means that under elevated PMA, hatching success will not contribute to 

sequential years (i.e. vole-increase and peak) of population growth for capercaillie. Such a process 

may well be one of the underlying mechanisms driving the long-term population declines in boreal 

capercaillie (Jahren et al. 2016) additional to having a stabilizing effect on the population (Hanski, 

Hansson & Henttonen 1991). Nonetheless, this mechanism is likely ratio-dependent and may 

therefore also arise from low amplitude in vole peaks as well as from increased PMA (Arditit & 

Ginzburg 1989; Krebs et al. 2014).  

 

Sympatric predators may exhibit different functional and numerical responses to variations in a 

shared prey species (Redpath & Thirgood 1999) and prey-switching during depletion of main prey 

may be towards different alternatives (O’Donoghue et al. 1998). Partitioned predation on capercaillie 

nests did indeed suggest different patterns for pine marten and red fox predation. Predation rates by 

pine marten was unaffected by voles and followed PMA, similar to findings in Finland where pine 

martens predate goldeneye (Bucephala clangula) nests with no apparent effect of vole fluctuations 

(Pöysä, Jalava & Paasivaara 2016). Capercaillie nests were relieved of red fox predation as the VC 

progressed irrespective of RFA (red fox abundance). Because we do not have information on nest 

densities, we cannot discern if pine martens predate capercaillie eggs incidentally or if they actively 

search them. Willebrand et al. (2017) however, showed that half of all dig events by pine martens 

during winter was for cached eggs and thereby suggested that eggs collected in spring can be 

important food for pine martens during winter.  

 

The alternative prey hypothesis (Hagen 1952; Hörnfeldt 1978; Lindström et al. 1987) was developed 

during a period in which Scandinavian pine marten populations were recovering from eradication 
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(Helldin 2000a). Later, the alternative prey hypothesis’ application to the woodland grouse system 

has been debated (e.g. Lindén 1988) but confirmed for other systems where red fox is the key 

predator (Hörnfeldt 1978; Danell & Hörnfeldt 1987; Angerbjörn 1989). Our results suggest that the 

effect of voles on nest predation is predictable according to the model when PMA is low. 

Additionally, the red fox appears as the moderator behind the classical relationship whereas pine 

marten predation is probably indirectly mediated by voles via a numerical response (e.g. Helldin 

1999).  

 

Conclusions 

Nest survival is a pivotal part of reproductive output in woodland grouse and in order to reverse the 

negative population trends in Fennoscandia, implementation of measures to increase reproductive 

output is necessary (Jahren et al. 2016). By reducing pine marten abundances, overall nest success in 

black grouse can be improved. For capercaillie, measures can be taken to reduce red fox predation 

during the crash phase of the vole cycle. In contrast, pine marten predation can be reduced by 

reducing pine marten abundances. A reduction in pine marten numbers have both been suggested 

and demonstrated to increase reproductive output for capercaillie in other parts of their range 

(Moreno-Opo et al. 2015; Baines, Aebischer & Macleod 2016). However, whereas the reduction of 

e.g. red fox may reduce predation risk by red fox, this reduction can be compensated for by 

increased predation risk by other nest predators (Ellis-Felege et al. 2012).    

We observed equal predation rates between red fox and pine marten but more red fox than pine 

marten tracks crossed our transects and relative densities indicated that pine martens were less 

abundant than red foxes in the boreal forest (Kurki et al. 1998). Consequently, future research can 

address potential differences in the efficiency of pine marten and red fox as nest predators. 

Additionally, investigations into the predation ratio-dependence between the amplitude in vole 
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fluctuations and baseline population sizes of nest predators in the crash phase will possibly 

illuminate important mechanisms limiting nesting success in capercaillie and black grouse. 
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Appendix 

Model ranking 

Table A 1 Overview of candidate models parameterizing nest predation in black grouse (top) and capercaillie (bottom) 

ranked according to AICc. Covariate abbreviations are as follows: PMA is pine marten abundance, RFA is red fox 

abundance, VA is vole abundance index and VC is phase in the vole cycle. For models with interaction terms (e.g. 

χ1: χ2), main effects are included but not shown. Constant survival is highlighted bold. Log(L) is the log likelihood of the 

respective model. ΔAICc, wi and K are AICc distance from respective model to best ranking model, model weight and number 

of parameters in the model respectively. 

 

Model log(L) AICc ΔAICc wi K 

B
la

c
k

 g
ro

u
se

 

PMA 101.01 206.03 0.00 0.29 2 

VA 101.54 207.11 1.07 0.17 2 

VA:PMA 99.86 207.79 1.76 0.12 4 

RFA:PMA 99.99 208.05 2.02 0.10 4 

VC 101.13 208.30 2.26 0.09 3 

Constant 103.41 208.82 2.79 0.07 1 

VA:RFA 100.52 209.10 3.07 0.06 4 

RFA 102.99 209.99 3.96 0.04 2 

VA:VC 99.30 210.75 4.72 0.03 6 

VC:PMA 99.49 211.12 5.09 0.02 6 

VC:RFA 100.51 213.17 7.14 0.01 6 

       

C
a

p
e
rc

a
il

li
e 

VC 506.91 1019.82 0.00 0.39 3 

VC:PMA 504.44 1020.92 1.10 0.23 6 

VA:PMA 507.18 1022.38 2.56 0.11 4 

PMA 509.27 1022.54 2.72 0.10 2 

VA 509.52 1023.04 3.22 0.08 2 

VA:VC 506.45 1024.93 5.11 0.03 6 

VC:RFA 506.58 1025.19 5.37 0.03 6 

RFA:PMA 508.87 1025.75 5.93 0.02 4 

VA:RFA 509.42 1026.87 7.05 0.01 4 

RFA 512.29 1028.59 8.77 0.00 2 

Constant 513.40 1028.80 8.98 0.00 1 
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Table A 2 Overview of candidate models parameterizing competing risk nest predation in capercaillie ranked according to 

AICc. All other predators besides pine marten, red fox and unidentified are kept constant. Covariate abbreviations are as 

follows: PMA is pine marten abundance, RFA is red fox abundance, VA is vole abundance index and VC is phase in the vole 

cycle. For models with interaction terms (e.g. χ1: χ2), main effects are included but not shown. Constant survival for all 

events is highlighted bold. Log(L) is the log likelihood of the respective model. ΔAICc, wi and K are AICc distance from 

respective model to best ranking model, model weight and number of parameters in the model respectively. 

Model 
     

Pine marten Red fox Unidentified log(L) AICc ΔAICc wi K 

PMA VC VC 667.36 1358.85 0.00 0.71 12 

PMA VA VA 671.19 1362.47 3.62 0.12 10 

PMA RFA PMA 671.97 1364.03 5.18 0.05 10 

PMA RFA RFA 672.18 1364.45 5.59 0.04 10 

VC:PMA VC:RFA VC:RFA 661.01 1366.43 7.58 0.02 22 

VA:PMA VA:RFA VA:RFA 667.26 1366.75 7.90 0.01 16 

VC RFA VC 671.50 1367.13 8.28 0.01 12 

VA:PMA VA:RFA VA:PMA 667.58 1367.39 8.53 0.01 16 

PMA VA PMA 673.81 1367.71 8.86 0.01 10 

PMA VA RFA 674.00 1368.09 9.23 0.01 10 

PMA VC PMA 673.62 1369.36 10.50 0.00 11 

VC:PMA VC:RFA VC:PMA 662.48 1369.38 10.53 0.00 22 

PMA VC RFA 673.81 1369.73 10.88 0.00 11 

VA RFA VA 675.25 1370.59 11.74 0.00 10 

VC VC VC 673.11 1372.36 13.51 0.00 13 

RFA:PMA RFA:PMA RFA:PMA 670.48 1373.18 14.33 0.00 16 

VA VA VA 677.08 1374.26 15.40 0.00 10 

VA RFA PMA 677.96 1376.01 17.16 0.00 10 

VA RFA RFA 678.12 1376.32 17.47 0.00 10 

VC RFA PMA 677.78 1377.68 18.82 0.00 11 

VC RFA RFA 677.94 1377.99 19.13 0.00 11 

Constant Constant Constant 682.49 1379.02 20.17 0.00 7 

VA:VC VA:VC VA:VC 670.13 1384.68 25.83 0.00 22 
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Figure A  1 Location of transects (centroids) used for snow track indices of red fox (Vulpes vulpes) and pine marten (Martes 

martes) in Nord-Trøndelag (top) and Hedmark (bottom) counties between 2009 (2010) and 2014.  
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Table A 3 Data on tengmalm’s owl (Aegolius funereus) reproduction used as proxy for voles  
 

Year Mean brood 

size 

Number of nest boxes 

w/reproduction attempt 

Centered value 

(VAI) 

Binary 

coding 

VC 

H
e

d
m

ar
k 

2008 4.24 250 0.21 1 
 

2009 3.46 202 -0.57 0 Crash 

2010 5.66 639 1.63 1 Increase 

2011 5.8 2331 1.77 1 Peak 

2012 0 28 -4.03 0 Crash 

2013 4.22 571 0.19 1 Increase 

2014 4.81 1367 0.78 1 Peak 

Mean 4.03 
    

 

      

N
o

rd
-T

rø
n

d
e

la
g 

2009 0 0 -2.94 0 
 

2010 7 6 4.06 1 Increase 

2011 3.41 41 0.47 1 Peak 

2012 0 0 -2.94 0 Crash 

2013 4.25 10 1.31 1 Increase 

2014 3 3 0.06 1 Peak 

Mean 2.94 
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Figure A  2 Kriging maps of mean red fox (Vulpes vulpes) (top) and pine marten (Martes martes) (bottom) abundance in 

Nord-Trøndelag (left) and Hedmark (right) between 2009 (2010) and 2014.  
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Figure A  3 From left to right: The relationship between daily probability of predation and rate of change in annual bag per 

hunter for capercaillie (Tetrao urogallus) and black grouse (Lyrurus tetrix) in Hedmark and Nord-Trøndelag between 2009 

and 2014. Trend lines are fitted values from linear models. In upper, right-hand corner are respective linear model equation 

(Y = a+bx) and goodness of fit (R2) for the respective model. 

  



 

152 
 
 

Paper III 

  



 

153 
 
 

 
  



 

154 
 
 



 

155 
 
 



 

156 
 
 



 

157 
 
 



 

158 
 
 



 

159 
 
 



 

160 
 
 



 

161 
 
 



 

162 
 
 



 

163 
 
 

 

  



 

164 
 
 

Paper IV 
  



 

165 
 
 

  



 

166 
 
 

The impact of human land use and landscape productivity on the abundance and dynamics of red 
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Abstract 

In the boreal forest, the red fox (Vulpes vulpes) is a key species due to its many strong food web 

linkages and its exploitation of niches that form in the wake of human activities. Recent altitudinal 

range expansion and a perceived population increase have become topics of concern in Scandinavia, 

primarily due to the potential impacts of red foxes on both prey and competitor species. However, 

despite it being a common species there is still surprisingly little knowledge about the temporal and 

spatial characteristics of its population dynamics. In this study, we synthesized 12 years of snow-track 

transect data covering a 27.000 km2 study area to identify factors associated with red fox distribution 

and population dynamics. Using Bayesian hierarchical regression models, we evaluated the 

relationships of landscape productivity and climate gradients as well as anthropogenic subsidies with 

an index of red fox population size and growth rates. We found that landscapes with high human 

settlement density and large amounts of gut piles from moose (Alces alces) hunting were associated 

with higher red fox abundances. Population dynamics were characterized by direct density 

dependent growth, and the structure of density dependence was best explained by the amount of 

agricultural land in the landscape. Population equilibrium levels increased and populations were 

more stable in areas with a higher presence of agricultural lands, whereas density dependent 

population growth was more prominent in areas of low agricultural presence. We conclude that 

human land-use is a dominant driver of red fox population dynamics in the boreal forest, and we 

suggest that reducing anthropogenic subsidization preceding and during winter may reduce 

predation pressure on species inhabiting the agriculture-forest matrix in the southern boreal forest.   



 

167 
 
 

Introduction 

Human land use has dramatically altered the structure and dynamics of natural habitats in biomes 

across the world (Walther et al. 2002; Foley 2005). Effects of human land use on species distribution 

and abundance vary in their complexity and direction. Direct effects of human influence may be 

inevitable outcomes of habitat change (Andren 1994) and resource management (e.g. Milner et al. 

2006), or indirect consequences mediated through changes in community structure (e.g. Prugh et al. 

2009). A matter of concern is an observed large-scale and long-term increase in the number and 

distribution of generalist predators, for example the red fox (Vulpes vulpes) in Europe (e.g. Vos 1995; 

Prugh et al. 2009; Selås et al. 2011; Baines, Aebischer & Macleod 2016). Several ultimate 

explanations for the increase in generalist predator populations have been discussed, and in the 

context of our paper, findings about the potential role of land use practices are especially relevant 

(Christiansen 1979; Henttonen 1989; Selås & Vik 2006). Additionally, the role of climate change and 

mesopredator release have received attention (e.g. Bartoń & Zalewski 2007; Prugh et al. 2009; 

Elmhagen et al. 2015). These are complementary hypotheses and they have been used to explain 

increased carrying capacity of red fox populations due to increased resource availability or less intra-

guild predation.  

Opportunistic and facultative species like the red fox may successfully exploit niches that form in the 

wake of human activities, and this may subsequently have detrimental effects on competitor- and 

prey species (Hersteinsson & MacDonald 1992; Lindstrom et al. 1994; Smedshaug et al. 1999; 

Kämmerle et al. 2017). Diverse and strong food-web linkages of red foxes in the boreal forests have 

been demonstrated via both experimental and correlative predation studies on roe deer (Capreolus 

capreolus) and several other prey species (Marcström, Kenward & Engren 1988; Frafjord, Becker & 

Angerbjörn 1989; Lindstrom et al. 1994; Kauhala, Helle & Helle 2000; Panzacchi et al. 2009). 

The red fox is a very successful habitat generalist, and its distribution range is the largest among 

carnivores (Hersteinsson & MacDonald 1992). Locally, however, red foxes can turn into specialists 

and select mosaic landscapes (Pulliainen 1981; Kurki et al. 1998; Güthlin, Storch & Küchenhoff 2013) 

with relatively high prey densities (Cavallini & Lovari 1991; Panzacchi et al. 2008a; Henden, Stien & 

Bårdsen 2014; Carricondo-Sanchez et al. 2016) and such landscapes are often modified by humans. 

Human settlements will primarily provide red foxes with increased scavenging opportunities 

(McKinney 2002; Vuorisalo et al. 2014). Secondary (i.e. indirect) effects from anthropogenic land use 

may be modulated via forestry and agricultural practices as they create habitats for preferred prey 

(i.e. voles) (Christiansen 1979; Henttonen 1989; Panzacchi et al. 2010; Güthlin, Storch & Küchenhoff 

2013; Bogdziewicz & Zwolak 2013), and increase predation success by increasing the amount of 
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habitat edges (Gorini et al. 2012 and references therein). The secondary effects of human land use 

distribute uniformly throughout the year and are therefore likely to increase overall carrying 

capacity. Additionally, a marked increase in ungulate abundances in Scandinavia during the last 

decades has increased the availability of gut piles form big game hunting during autumn hunting 

season and natural mortality (Loison & Langvatn 1998; Stubsjøen et al. 2000; Gomo et al. 2017). 

These are pulsed, but substantial, food resources that increase in abundance particularly preceding 

and during winter (Halpin & Bissonette 1988; Cagnacci, Lovari & Meriggi 2003; DeVault, Jr & Shivik 

2003; Sidorovich, Sidorovich & Izotova 2006; Needham et al. 2014; Gomo et al. 2017). 

Red fox population densities in the boreal forest vary considerably among years according to the 

multi-annual population cycles of its main prey, microtine voles (Lindström 1982). This pattern is 

more profound with increasing latitude and altitude (Englund 1980a; Lindén 1988), and the degree of 

stability in the red fox population probably relates to both the availability of alternative prey in the 

low phase of the vole cycle as well as density dependent, negative feedback mechanisms from 

predation on voles (Erlinge, Göransson & Hansson 1983). Such negative feedback mechanisms may 

result from alternative prey sustaining high red fox population densities that, in turn, increase 

predation pressure on voles in the crash phase of the cycle. 

Studies investigating red fox population performance rarely incorporate spatiotemporal variability 

and are therefore limited to either temporal or spatial inference. Whereas such studies are often 

valuable in identifying ecological factors and mechanisms in the dimension under study, they often 

fail to identify the complexity of spatiotemporal heterogeneity which is essential in understanding 

population and community dynamics (Thorson et al. 2015). We therefore aim to investigate factors 

potentially involved in the regulation of spatiotemporal variation in red fox abundance and 

population growth across a gradient of human influence on the landscape. To do this, we contrast 

potential effects of anthropogenic subsidies and land use to natural productivity gradients on red fox 

abundance and temporal variability in population growth structure. The bulk of literature on red fox 

spatial and temporal performance suggests that we can expect red fox population abundance to 

relate positively to human land use and that human land use should stabilize the variability in 

population growth. Finally, we discuss potential mechanisms underlying the observed patterns as 

well as potential consequences of anthropogenic subsidization of generalist predators on the boreal 

forest ecosystem. 
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Methods 

Study area 

This study was conducted in Hedmark County, Norway between 2003 and 2014 (Figure 1). Hedmark 

(27400 km2, of which 13000 km2 is forest) has marked latitudinal productivity gradients. In the south, 

there are relatively high productivity agricultural lowlands intermixed with large forested areas on 

low hills. Further north there are deeper valleys, forest ridges and mountains. In the north, 

agriculture and human settlements are confined to strips along the valley bottoms and the landscape 

is less productive. Similarly, the continental climate is milder in the south (annual mean temperature 

4.76 °C) than in the north (annual mean temperature 1.68 °C) (www.no.climate-data.org) and winter 

severity (i.e. snow depth and temperature) increases with a latitudinal as well as an altitudinal 

gradient. Forests are primarily made up of conifers, dominated by Scots pine (Pinus sylvestris) and 

Norway spruce (Picea abies), but intermixed with deciduous species such as rowan (Sorbus 

aucuparia), grey alder (Alnus incana), aspen (Populus tremula), birch (Betula pubescens and B. 

pendula) and willow (Salix caprea). Municipality-wise, human population densities vary from 0.6 to 

86 people km-2, with the lowest densities in the north. Red foxes are common throughout the county 

and annual hunting bags varied between 2160 and 4170 foxes during the study period (Statistics 

Norway 2016). Potential predators of the red fox e.g. Eurasian lynx (Lynx lynx) (Linnell et al. 1998) 

and golden eagle (Aquila chrysaetos) (Tjernberg 1981) occur throughout the county, whereas the 

grey wolf (Canis lupus) population is concentrated in the east and southeast (Odden, Linnell & 

Andersen 2006; Ordiz et al. 2015; Tovmo et al. 2016).  
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Figure 22 Hedmark County in southeastern Norway with transect centroid points depicted as dots. 

Red fox abundance 

Snow tracking along 613 predefined transects averaging 2.95 km in length (SD = 0.54) was organized 

by the Hedmark chapter of the Norwegian Association for Hunters and Anglers. Experienced 

volunteers conducted the fieldwork under favorable conditions (i.e. from 2 to 5 days after snowfall) 

in late January or early February each year between 2003 and 2014. The number of surveyed 

transects varied among years (mean = 391.7), with the highest number in 2006 (n=472) and the 

lowest in 2014 (n= 268, Table 1). Transect layout was originally designed to monitor Eurasian lynx 
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family groups, and transects were therefore situated below the timberline and across contour lines 

(Linnell et al. 2007). Along each transect, the number of crossing red fox tracks, transect length (km) 

and days since last snowfall were reported during each transect survey. Transect density within the 

whole study area varied between 0.98 (2014) and 1.72 (2006) transects per 100 km2 whereas the 

density per 100 km2 forested area varied between 2.06 and 3.63 (Table 1). In total, 21.675 fox 

crossings were observed along 13.746 km of transect during the 12-year survey. Annual abundance 

estimates were calculated for each transect. Here, abundance was an index of relative density and 

was expressed as crossing tracks km-1 24hrs-1. In total, we obtained abundance estimates for 4700 

transect-years. Snow-track surveys may reflect actual density quite well (Thompson et al. 1989; Kurki 

et al. 1998), but they cannot distinguish between red fox density and activity. Hence, the transect 

data better reflect predation pressure by red fox as perceived by prey-species across the landscape 

(Kurki et al. 1998). 

Red fox temporal variation 

Not all individual transects were complete 12-year time-series because of zero observations or they 

were not surveyed. The presence of zero-observations constitutes a problem when doing time-series 

analysis because of e.g. logarithmic transformations and calculation of population growth rates. To 

amend both zero-observations and years not surveyed, individual transects were pooled into 300 

transect-groups based on proximity by using the spatstat and raster libraries in R (Baddeley, Rubak & 

Turner 2015; Hijmans 2016). These transect-groups then constituted new individual time series for 

investigations of temporal variation in the red fox population. Consequently, after grouping, transect-

groups had longer sequences of monitoring and fewer zero-observations. For zero counts (not to be 

confused with not surveyed) still remaining after grouping (n=97) we added the smallest observable 

entity possible (Turchin 2003), which in our case was 1 crossing red fox track. Finally, because red fox 

populations in the southern boreal forest have previously been described as cyclic with a length of 3-

4 years, each time series should cover minimum one potential cycle. We therefore discarded 

segments of < 4 years of consecutive monitoring and remaining segments were treated as 255 

individual, complete time-series with 1781 time-steps of abundance estimates (Figure A 1).  

Table 7 Annual number of transects surveyed and transect density 

Year 2003 2004 2005 2006 2007 2008 

Number of transects 360 434 459 472 367 347 

Transects per 100km-2 total area 1.31 1.58 1.68 1.72 1.34 1.27 

Transects per 100km-2 forested area 2.77 3.34 3.53 3.63 2.82 2.67 
       

Year 2009 2010 2011 2012 2013 2014 
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Number of transects 415 430 403 354 391 268 

Transects per 100km-2 1.51 1.57 1.47 1.29 1.43 0.98 

Transects per 100km-2 forested area 3.19 3.31 3.10 2.72 3.01 2.06 

 

Habitat data 

Transects were related to predictor variables via the transect centroid point. These predictors 

included elevation, latitude, relative settlement density and relative agricultural density (Figure 2). 

Transect altitude was assessed via a digital terrain model (DTM) from The Norwegian Mapping 

Authority (The Norwegian Mapping Authority 2017). We expressed latitude as the UTM-north 

coordinate of the transect centroid point. Land-use maps (N250) (The Norwegian Mapping Authority 

2017) were the basis for relative settlement and agricultural density estimates. We transformed 

houses to a point layer that was subsequently used to predict a planar kernel density map from 

which we extracted kernel values for each transect centroid point. Kernel bandwidth was estimated 

by Gaussian approximation (Silverman 1986). For relative density of agricultural land, we calculated 

the geometrical center of agriculture fields and predicted planar kernel density by using agricultural-

field size as z-value. Again, kernel density values were extracted to the transect centroid points.  

The only predictor with spatiotemporal variation was moose culled per hectare productive forest. 

This variable (hereafter “offal”) was calculated for each municipality (351 to 3180 km2 large), as this 

was the smallest scale from which culling data was available. The annual number of moose culled per 

municipality was retrieved from Statistics Norway (Skara & Steinset 2016) and Hjorteviltregisteret 

(Miljødirektoratet & Naturdata 2016), whereas the extent of productive forest was derived from 

digital land-use maps (N250) (The Norwegian Mapping Authority 2017). Transect-group predictors 

were the means of the transect predictor values prior to grouping. Development of planar kernel 

density predictions was done in ArcGIS (ESRI INC 2011). 
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Figure 23 From left to right: Relative density of agricultural land, relative settlement density and the digital elevation model 
used as predictors. From light to dark color indicate low to high values of the respective parameter. 

 

Statistical analyses 

We evaluated environmental and anthropogenic relationships to red fox abundance by modeling red 

fox abundance (tracks km-1 24hrs-1) as a dependent variable in a hierarchical Bayesian linear model 

framework via the rethinking library (McElreath 2016) in R (R Core Team 2016). Red fox abundance 

was formalized as a Gamma-Poisson distribution with a log-link function. The linear predictor was 

offset with the log of transect length (km) and log of days since last snowfall, and we fitted 

municipality as a random effect (See appendix for details on model components). 

To describe and specify temporal variation in the red fox population we first detrended all time-

series with the fitted values from a linear model of the respective time-series. Then, each transect-

group with > 10 time-steps (n=58) was checked for cyclicity in the negative feedback processes via 

the partial rate correlation function (PRCF). The PRCF is quite  similar to the partial auto correlation 

function, but it regresses the instantaneous rate of increase (𝑟𝑡 = ln⁡(
𝑁𝑡

𝑁𝑡−1
) on lagged population 

abundances (Berryman & Turchin 2001). We did not detect any cyclic pattern in the negative 
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feedback processes of population regulation by using Bartlett’s criteria of significance. Furthermore, 

lag 1 from the partial rate correlation function (PRCF[1]) was the dominating order of feedback-delay 

indicating that direct density dependence was the dominating pattern in growth structure of the red 

fox population. Henceforth we used the instantaneous rate of increase (r) as a dependent variable in 

the model framework investigating spatiotemporal variation in population growth. These models 

were formalized as a Gaussian distribution with an identity-link (See appendix for details on model 

components). 

We modeled both abundance and density dependent growth as functions of linear terms. Each 

model of instantaneous rate of increase included red fox abundance at time t-1 as part of an 

interaction with each predictor. This allowed us to investigate spatial variation in density 

dependence. Red fox abundance at time t-1 however, was formalized as a second order polynomial 

due to its curvilinear relationship to the instantaneous rate of increase. We fitted 20 and 11 a priori 

models for each dependent variable (abundance and r respectively). We specified simple models 

aiming at obtaining factor-specific information relating red fox abundance and density dependent 

growth to anthropogenic activity and natural productivity gradients.   

Relative -settlement and -agricultural density, as well as elevation and latitude were not paired in the 

same model due to collinearity (r > 0.6). All predictors were scaled to z-scores (x - mean/2SD), and 

thus, intercepts and interactions were simpler to interpret (Gelman & Su 2016). Markov chain Monte 

Carlo sampling (MCMC) was specified to run at four chains across 6000 iterations and burn-in was set 

to 4000 iterations. We detected spatial autocorrelation in our data via the Moran’s I test (Moran 

1950). Spatial autocorrelation was handled by modelling varying intercepts as a function of squared 

distances between the random effects (i.e. between municipalities and transect groups for 

abundance and growth models respectively). 

 

Model evaluation and selection 

We visually inspected Markov chains for failure to converge and no convergence issues were 

detected. All 𝑅̂ values were between 1 and 1.01. Relative model parsimony was assessed by WAIC 

(widely applicable information criterion) (Watanabe 2010) based on posterior likelihoods. We 

followed an information-theoretic approach when evaluating models, and hence, a combination of 

model weights and relative distance to the top model were criteria of inference. Parameter posterior 

predictions were averaged across models based on model weights, keeping all other fixed effects 

constant, and reported parameter predictions henceforth incorporate parameter uncertainty. 
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Results 

Temporal variation in abundance of red fox in the study area varied between 2003 and 2014 with 

more variation earlier than later in the period (Figure 2).  

 

Figure 24 Mean red fox abundance (tracks km-1 24 hrs-1) ± 2SE across transects in the study area (2003-2014) 
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Evaluation of the abundance models showed that the additive effect of settlement density and offal 

performed markedly better than any other model (WAICw = 0.82) (Table A 1). The positive effect of 

settlement density on red fox abundance was quite strong, whilst the weaker, but positive, effect of 

offal included a slope of zero (Table A 3). Adding offal to settlements greatly improved the model 

parsimony as compared to settlements alone (Figure 4). 

 

 

Figure 25 Model weighted predictions of red fox abundance as a function of settlements (left) and offal ha-2 productive 

forest (right) whilst holding the other fixed effect constant. Shaded areas are 95% highest posterior density intervals. 

 

Whereas the mean abundance from transect-groups was generally concentrated around a few 

hotspots, absolute values of instantaneous rate of increase were more heterogeneously distributed 

(Figure 5). The first order (i.e. annual) density dependent structure indicated a relatively strong 

degree of density dependence (β = -1.33) (Figure 6). Median instantaneous rate of increase was 

0.045 (Mean = 0.027, SD = 0.025) and ranged between -3.62 and 3.68 (Figure 7). 



 

177 
 
 

 

Figure 26 Spatial variation in mean abundance (2003-14) and instantaneous rate of increase (mean of absolute values 2003-
14) from the transect-groups in Hedmark county. 

 

Figure 27 First order density dependent structure (𝑟𝑡 = 𝑓(𝑁𝑡−1) + 𝜖𝑡) in the red fox population. 
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Figure 28 Density plot of instantaneous rate of increase frequencies from the transect groups in Hedmark between 2003 and 
2014. Vertical dotted line depicts the median around which values were standardised. Upper right values refer to median, 
standard deviation and mean values. Minimum and maximum observed rate of increase are referred to as rmin and rmax. 
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The best performing model of spatially explicit, first order density dependent growth was the 

interaction between the red fox abundance and relative density of agricultural land in the landscape 

(Table A 2; Table A 3). The density dependent structure in the red fox population was asymmetric 

throughout the agricultural landscape indicating higher variability in abundance in areas with little 

agricultural land. Landscapes with more agriculture sustained a slightly higher equilibrium and 

increasingly stable abundances of red fox, as the equilibrium point (i.e. rt = 0) increased along the 

agricultural gradient. (Figure 8). 

  

Figure 29 Model weighted predictions of the interaction between agricultural land and red fox abundance (Nt-1) on the 

instantaneous rate of increase in the red fox population. Red to green gradient depict negative to positive instantaneous rate 

of increase.  
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Discussion 

In this paper, we show that the spatiotemporal dynamics of red foxes are closely interrelated with 

human landscape modification and activities. Red fox abundance related positively to relative 

settlement density and the density of moose offal from hunting. Furthermore, we found that 

negative feedback processes of first order dynamics (i.e. direct density dependence) dominated the 

structure of temporal variation in abundance. An increase in abundance of one reduced the 

instantaneous rate of increase by 1.3, implying relatively strong density dependence. Overall, the 

equilibrium of abundance (i.e. rt = 0) was relatively high and temporal variability was low in areas 

dominated by agriculture. 

Positive relationships between fox abundances and human settlements have been observed earlier 

(e.g. Panek & Bresiński 2002). Human dominated landscapes are attractive to red foxes primarily via 

anthropogenic subsidies in the form of increased scavenging opportunities (Rosalino et al. 2010; 

Selås, Johnsen & Eide 2010). Elevation was nonetheless included in the second best model, but other 

predictors representing climate and productivity gradients (i.e. elevation and latitude) were generally 

not ranked high. This implies that potential effects of settlements differ from those of landscape 

productivity and climate, and furthermore, that strong relationships between red fox abundances 

and anthropogenic influence mask potential effects of natural productivity and climate gradients. 

Although there was a positive relationship between offal and red fox abundance, the relationship 

was weak. This is surprising given the multitude of forage- and diet studies identifying entrails, 

carrion and carcass remains as important items in red fox diets (Halpin & Bissonette 1988; 

Jędrzejewski & Jędrzejewska 1992; Cagnacci, Lovari & Meriggi 2003; DeVault, Jr & Shivik 2003; 

Sidorovich, Sidorovich & Izotova 2006; Panzacchi et al. 2008b; Needham et al. 2014). The inclusion of 

the offal term however, greatly improved the relative model performance over settlements alone 

and offal thus explained a large proportion of the variance in red fox abundance not accounted for by 

settlements. This specific pattern may be caused by the fact that offal from hunting is mainly 

available in a temporally narrow pulse during late autumn (Gomo et al. 2017). Additionally, as 

highlighted in several dietary studies, there is temporal variability in the importance of large 

herbivore remnants and carcasses. In Poland, deer carcasses from kills from large carnivores or other 

winter mortality were important buffer-foods when voles were scarce (Jędrzejewski & Jędrzejewska 

1992) whereas the importance of carcasses from semi-domesticated reindeer (Rangifer tarandus 

tarandus) was inversely related to lemming (Lemmus lemmus) abundance in northern Norway 

(Killengreen et al. 2011). As such, the degree of scavenging for carcasses probably interacts with 

varying accessibility to voles, either via their abundance or e.g. snow cover (Willebrand et al. 2017). 
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The impact of such alternative sources of foods to the red fox needs to be better understood, but 

they are probably improving body condition preceding winter and thus winter survival (Needham et 

al. 2014).  

The observed range in the estimated instantaneous rate of increase was higher than in other reports 

(e.g. Hone 1999), and we propose two explanations for this pattern. Firstly, dispersal of highly mobile 

juvenile red foxes (Englund 1980b) as well as considerable flexibility in space-use within home ranges 

(i.e. LoCoH 90 vs. MCP 100) (Walton et al. 2017) are innate components of the monitored population 

and secondly, the fluctuating nature of the boreal forest ecosystem should yield high variation in 

birth and death rates (Lindström 1982). In systems with fluctuating resources (e.g. vole cycles in the 

boreal forest) these two mechanisms are entwined because red foxes may show an aggregative 

and/or a demographic responses to spatiotemporal variability in resource distribution (Henden et al. 

2010; McKinnon et al. 2013). It is worth noting that we cannot separate the two responses (i.e. 

aggregative and demographic) because changes in track frequencies may be due to changes in both 

red fox density and activity.  

Density dependence across the agricultural continuum was asymmetric. As red fox abundance 

increased, the strength of density dependence progressively relaxed with increasing relative 

coverage of agricultural land. This suggests that the variability in red fox abundance is inversely 

related to the presence of agriculture because variable population dynamics is associated with strong 

density dependent growth (Hanski 1990). Both resource availability and social regulation may be 

underlying factors explaining this pattern. Previously, variation in space use across a large-scale 

productivity gradient have been observed (Walton et al. 2017), but the degree of heterogeneity in 

space use at smaller scales is less known, although probably similar (Kurki et al. 1998). Social 

regulation due to territoriality, is one potential mechanism that may decrease with increasing 

territory size (Goszczyński 2002), which again is inversely related to red fox density (Trewhella, Harris 

& McAllister 1988). 

In Scandinavia, predation pressure exerted on alternative prey by generalist predators (e.g. red 

foxes) varies in phase with the vole cycle, and this relationship is termed the alternative prey 

hypothesis (Hagen 1952; Angelstam, Lindström & Widén 1984; Panzacchi et al. 2008a). The 

fundamental principal is that large annual variation in the main prey, typically voles, generates 

predator-mediated fluctuations in alternative prey species, e.g. grouse. Due to prey switching, 

predation pressure on alternative prey increase during vole population declines. As vole populations 

increase, alternative prey is again relieved of predation pressure due to lower red fox abundance and 

prey switching. Provisioning red foxes with alternative foods may buffer fox population declines 
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following the crash in the vole cycle and this may well be a mechanism causing the observed 

asymmetry in population regulation along the agricultural continuum. Elevated baseline populations 

of predators in the low phase of the prey-cycle may subsequently limit cyclic amplitude in the prey 

population (Krebs et al. 2014). Moreover, negative feedback processes from predation in a cyclic 

system may also dampen prey fluctuations (Erlinge, Göransson & Hansson 1983; Erlinge et al. 1991). 

Ultimately, trophic cascades driven by increased scavenger abundance, survival and fecundity are 

expected implications of providing anthropogenic food subsidies (Newsome et al. 2015). Such effects 

on other trophic levels may for example involve stabilization of prey-species by preventing sequential 

years of population growth (Hansson 1988). 

Several factors may interact with habitat quality and successively modulate effects of habitat on red 

fox density and population dynamics in the landscape (Gorini et al. 2012). In spite of the potential for 

complex regulatory mechanisms, single-factor explanations governing red fox distribution and 

performance along the farmland continuum is of particular interest to conservation (e.g. Tryjanowski 

et al. 2011) and determinants of density dependent structure needs to be pursued in future research 

in general (Sibly & Hone 2002). For conservational purposes, it is important to distinguish between 

factors increasing the landscape’s carrying capacity from factors that stabilize red fox population 

growth. Such factors are inherently different in the potential impact on alternative and incidental 

prey in a fluctuating environment. Reducing anthropogenic subsidization, particularly preceding and 

during winter may prove a successful conservation action for farmland or other species currently 

depressed by red fox predation.  
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Appendix 

Model components 

We modelled red fox abundance likelihoods with Gamma-Poisson (i.e. negative binomial) error 

distributions, whilst we modelled density dependent growth likelihoods with gaussian (i.e. Normal) 

error distributions. 

 

Abundance models: 

𝑌𝑖~𝐺𝑎𝑚𝑚𝑎𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖, 𝐶𝑖) 

Growth models: 

𝑌𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖, 𝜎) 

 

We fitted municipality and year as group-level effects for the linear predictors for abundance and 

growth models respectively. Offset for abundance models was the log of transect length (km) and log 

of days since last snowfall. For abundance models, spatial autocorrelation was accounted for at the 

municipality level whilst in growth models, spatial autocorrelation was accounted for between 

transect groups.  

 

Abundance models: 

log(𝜇
𝑖
) = log(𝑙𝑒𝑛𝑔𝑡ℎ𝑖) + log⁡(𝑑𝑎𝑦𝑠𝑖) + 𝑎𝑀𝑈𝑁𝐼𝐶𝐼𝑃𝐴𝐿𝐼𝑇𝑌𝑖

+ 𝛾𝑀𝑈𝑁𝐼𝐶𝐼𝑃𝐴𝐿𝐼𝑇𝑌𝑖
+ 𝛽𝑥𝑖  

 

Growth models: 

𝜇𝑖 =⁡𝛼𝑌𝐸𝐴𝑅𝑖 + 𝛾𝑇𝑅𝐴𝑁𝑆𝐺𝑅𝑂𝑈𝑃𝑖 + 𝛽𝑥𝑖 

 

The prior distribution for the spatial autocorrelation component was formalized by a Gaussian 

process distribution (i.e. multivariate normal) of a K-dimensional (22 dimensions for municipalities 

and 255 dimensions for transect groups) matrix of zero means in order for the distribution to express 

the deviance from the expected mean intercept α in the linear predictor. 
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𝛾~𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙((0,… ,0)𝐾) 

 

The covariance matrix K describing covariance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ group-level factor was 

defined as the product of the maximum covariance between any two group-levels⁡𝜂2, the 

exponential covariance decline rate 𝜌2 and squared distance D between the 𝑖𝑡ℎ and 𝑗𝑡ℎ group-level 

factor. The last term, 𝛿𝑖𝑗𝜎
2 (i.e. jitter term) provides additional covariance for multiple observations 

from the same group-level factors and was fixed to 0.01. 

 

𝐾𝑖𝑗 = 𝜂2⁡𝑒𝑥𝑝(−𝜌2𝐷𝑖𝑗
2 ) +⁡𝛿𝑖𝑗𝜎

2 

 

Prior distributions of hyper- and model parameters were weakly informed (i.e. flat priors). Model 

parameters for fixed effects 𝛽 were normally distributed and set to 𝜇 = 0 and 𝜎 = 10 for all beta 

coefficient priors. The grand mean intercept parameter 𝛼 was set to⁡𝜇 = 0 and 𝜎 = 1. Scale parameter 

𝐶 was formalized as a half-Cauchy distribution with location of zero and scale of 2 (i.e. relatively 

wide) whilst standard deviation⁡𝜎, maximum covariance 𝜂2 and covariance decline rate 𝜌2 were half-

cauchy distributions with location of zero and scale of 1. 

 

𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(0,10) 

𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝐶~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,2) 

𝜎~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

𝜌2~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

𝜂2~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

 

 

  



 

200 
 
 

Table A 4 Bayesian mixed effect regression models for red fox abundance ranked according to widely applicable information 

criterion (WAIC). ΔWAIC is change in WAIC relative to the highest ranking model. K is number of parameters in the model. 

Weight is Akaike model weight. The constant model is highlighted in bold. 

Model WAIC K ΔWAIC weight 

Settlements+Offal 24327.7 38.8 0 0.82 

Elevation+Settlements 24331.3 40.3 3.7 0.13 

Settlements*Offal 24334.6 41.2 6.9 0.03 

Settlements*Elevation 24336.3 42.5 8.6 0.01 

Latitude+Settlements 24337.7 39.3 10.1 0.01 

Settlements 24338.2 38.8 10.5 0 

Latitude*Settlements 24342.3 40.9 14.7 0 

Elevation+Agriculture 24447.8 45.0 120.2 0 

Elevation*Agriculture 24452.5 47.0 124.8 0 

Agriculture+Offal 24457.6 42.9 129.9 0 

Agriculture*Offal 24467.6 46.8 139.9 0 

Latitude+Agriculture 24476.4 44.6 148.7 0 

Agriculture 24477.6 43.9 149.9 0 

Latitude*Agriculture 24482.3 46.1 154.6 0 

Elevation 24555.4 47.5 227.7 0 

Offal 24622.2 46.5 294.5 0 

Latitude+Offal 24624.6 48.3 296.9 0 

Latitude*Offal 24630.1 50.8 302.5 0 

Latitude 24640.1 48.1 312.4 0 

Constant 24643.4 46.8 315.8 0 
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Table A 5 Bayesian mixed effect regression models for red fox density dependence ranked according to widely applicable 

information criterion (WAIC). ΔWAIC is change in WAIC relative to the highest ranking model. K is number of parameters in 

the model. Weight is Akaike model weight. The constant model is highlighted in bold. 

Model WAIC K ΔWAIC weight 

Agriculture*Density^2 4119.1 156.3 0 0.62 

Settlements*Density^2 4121.8 151.9 2.6 0.17 

Agriculture*Density^2+Offal 4122.6 156.9 3.5 0.11 

Settlements*Density^2+Offal 4122.8 152.9 3.6 0.10 

Density^2 4151.9 167.1 32.7 0 

Offal*Density^2 4159.1 170.0 39.9 0 

Elevation*Density^2 4159.6 168.7 40.4 0 

Elevation*Density^2+Offal 4161.6 169.3 42.4 0 

Latitude*Density^2+Offal 4161.8 169.8 42.6 0 

Latitude*Density^2 4162.0 170.2 42.8 0 

Constant 5074.7 30.4 955.6 0 
 

 

 

 

Figure A  4 Schematic representation of transect grouping prior to analysis of spatial variability. In this particular example, 
the first four years of the transect group are excluded because of only three years of consecutive monitoring after grouping. 
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Table A 6 Parameter estimates for the best performing models explaining red fox abundance (top) 

and population growth (bottom). Credible intervals are given at the 95 % level. 
 

α β1 β2 β3 β4 Β5 
 

Intercept Settlement Offal 
      

Abundance -0.79 0.47 0.12 
      

95% CI -0.88 -0.7 0.03 0.41 -0.02 0.27 
      

             

 
Intercept Agri Abundance Abundance2 Agri:Abundance Agri:Abundance2 

Growth -0.11 0.42 -1.93 0.56 0.5 -0.33 
 

95% CI -0.26 0.04 0.3 0.53 -2.07 -1.8 0.48 0.66 0.28 0.72 -0.51 -0.16 

 

 


