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Abstract 

The existence of highly skewed success distributions in the music industry has been 

repeatedly demonstrated by scholars, but there still is no agreement about how these 

shapes relate to concepts like ‘talent’, ‘reputation’, and ‘quality’. Starting from the 

theories of Rosen (1981) and Adler (1985), this article concentrates mainly on the 

phenomenon referred to as cumulative advantage, as one of the leading candidate 

mechanisms to explain the formation of the ‘power law-like’ distributions found in e.g. 

the sales of music recordings. We make the case for the pivotal role of the market share 

approach in the music industry and demonstrate its efficacy as a ‘success measure’ 

methodology by providing a descriptive summary with regard to ‘connotations’ of 

cumulative advantage based on fifty years of Billboard Hot 100
 

history. Our results 

indicate that, while records that have sold well will keep on selling, the same might not 

be true for recording artists. However, a modest ‘star power’ effect may have 

represented a small but vital edge for the oligopoly of multinational recording 

companies. The methodology suggested in this article should provide students of ‘hit 

song science’ and the likes with a more rigorous approach to appraising commercial 

success, as well as a comprehensive background as to its origin and relevance to popular 

music studies. 
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Billboard Hot 100, economics of superstars, cumulative advantage, market share, power 

laws, hit song science 

 



 

1. Introduction 

In 2012, the Super Bowl halftime show featured the American entertainer Madonna. 

Her performance set a new record for the most-watched Super Bowl halftime show in 

history, and included the premiere of her then-new single ‘Give Me All Your Luvin’’ 

(Gallo, 2012) which debuted at #13 on the Billboard Hot 100


 for the week ending 

February 18 and climbed three places the following week, edging into the coveted top 

ten. Abruptly, the song fell 29 spots in just one week, landing at #39; the next week, it 

tumbled almost 20 more places to #58, the next, all the way down to #86, and then it 

dropped out of the Hot 100. Ultimately, Madonna’s Super Bowl song failed to make it 

into the Billboard Year-End Hot 100 singles of 2012, and for comparison, the recording 

that topped that chart, a song called ‘Somebody That I Used to Know’ by the previously 

relatively unknown Belgian-Australian artist Gotye, spent 59 weeks in the Hot 100 and 

eight weeks at the #1 spot. 

What might explain the fate of Madonna’s song? This article aims to shed light 

on this question while simultaneously providing a comprehensive – and comprehensible 

– review of the ‘economics of superstars’ that is intended for a non-economics audience 

with a scholarly interest in popular music. 

1.1 ‘Sound recording popularity charts: a useful tool for 
music research’ 

Dr. Peter T. Hesbacher (1937-2015) was an associate professor of sociology and 

psychiatry at the University of Pennsylvania. His other lifelong passion was pop music. 

He had a collection of more than 100,000 records and did statistical analysis of record 

trends for Billboard magazine (Smith, 2015). Hesbacher contributed a substantial 

number of academic articles on popular music and some notable works have recently 

been subject to a timely revisit by Carroll (2015), which serves as a convenient point of 

departure for the current article. 

Since Hesbacher’s call for increased scholarly attention to sound recording 

popularity charts (e.g. Hesbacher, Downing, & Berger, 1975b, p. 86), such data have 

been utilized in various areas of scientific research; by researchers of geography and 



 

public policy (e.g. Scott (1999)), psychology (e.g. DeWall, Pond Jr, Campbell, and 

Twenge (2011)), and ‘music information retrieval’ (e.g. Herremans, Martens, and 

Sörensen (2014); Mauch, MacCallum, Levy, and Leroi (2015)), but arguably not to the 

degree commensurate with the potential envisioned by Hesbacher. If we assume that 

popularity charts in some way reflect an evolving common culture, these historical 

documents have the capacity to serve research as a measurement variable that is 

generally both objective and quantitative. The primary objective of this article is to 

demonstrate a simple yet powerful way to operationalize this variable. This article will 

focus exclusively on the American Billboard Hot 100, which, according to Bradlow and 

Fader, ‘… has had a dramatic impact on the music industry and American culture’ 

(2001, p. 369). 

1.2 Data collection considerations 

When using song charts such as the Hot 100 as empirical data, researchers confront 

additional issues related to the elusiveness and transience of the chart compiling 

methodologies. In short, Billboard has historically derived its chart rankings from two 

major factors: radio play and record sales. Its data collection in this regard was 

traditionally survey-based, in which each weekly sample was obtained by calling a 

selection of sales outlets and radio stations (Hesbacher, Downing, & Berger, 1975a). 

This rather clumsy and subjective arrangement was obviously prone to various forms of 

error and manipulation, a presumption that was verified by the ‘SoundScan Revolution’ 

that introduced more reliable ‘direct observation’ data from barcode-reading sales 

registers (Anand & Peterson, 2000). As technology and formats have evolved, new 

measurement parameters have also been added, e.g. data from streaming services like 

Spotify


 were included in 2007, and even YouTube


 views have been taken into 

account since 2013. 

Billboard magazine occasionally publishes notes on its chart compilation 

methodology, but neither the collected field data nor the exact formulas that translate 

the data into chart rankings are available. Therefore, it has never been possible to 

independently evaluate or replicate Billboard’s procedures. The Hot 100 is 

unquestionably a widely accepted picture of reality in the US music industry. In fact, as 

a window on the world, record labels have tended to rely more on the Billboard charts 

than on their own sales (Anand & Peterson, 2000). In this manner, although the data 



 

might be considered ‘contaminated’ to a certain degree, the Hot 100’s ‘validity’ as a 

measurement of commercial success is inarguably high. 

1.3 The relative and the particular 

The Hot 100 only declares how the selected participants rank by popularity among 

themselves; it provides no information on how much more popular one song is over 

another. Statisticians often refer to measures like ranks (i.e. chart positions) as ordinal. 

Compared to the more versatile ‘continuous’ ratio variables (e.g. ‘length in inches’), 

data in the form of rank numbers have certain built-in constraints. It does not make 

much sense to add or subtract chart positions or to calculate the mean or standard 

deviation of a set of values, and the number 0 is not particularly meaningful as a rank. 

To be sure, there are particular statistical formulas and procedures for ordinal 

data, and dedicated Hot 100 studies have even introduced approaches that are novel 

enough to be published in high-ranking statistical journals (e.g. Bradlow and Fader 

(2001)). However useful these methods may be, they can never transform the relative 

property of a chart position into something more expressive or answer simple questions 

such as, ‘what is better, spending two weeks at #3 or one week at #1?’ 

1.4 Comparing chart performance: the J-curve 

Carroll (2015) presents a new methodology to compare different records’ chart 

performances, e.g. two weeks at #3 versus one week at #1, and reviews a range of 

earlier contributions that have similar objectives, including Hesbacher, Anderson, 

Snyderman, and Koppel (1982). The basic concept of most of these procedures is to 

assign different ‘weights’ or ‘scores’ to the respective chart positions that are meant to 

better reflect the underlying ‘field data’, i.e. record sales and airplay figures. Both 

Carroll (2015) and Hesbacher et al. (1982) provide formulas that take a weekly chart 

position as input and return an appropriately weighted value. 

According to Carroll, ‘Hesbacher had unique access to the Billboard 

methodology as a consultant, so one suspects this scheme may reflect the field data 

results. He fitted these weights to an equation he called a “J-curve”’ (2015, p. 595). 

When plotted as a graph, the different values it produces across the 100 chart positions 



 

do not form a straight line and instead take the shape of a sloping curve.  The term ‘J-

curve’ is not exclusive to Hesbacher et al. and is used in several different fields to 

describe very different phenomena. Mathematicians often refer to similar-looking 

distributions as ‘leptokurtic’ or ‘stable Paretian’, or even ‘highly skewed’ or ‘fat-tailed’. 

A most important point here is that the J-curve also carries a deep and non-

trivial message: the market for popular songs is an economy of stark inequality in which 

rewards are disproportionally concentrated among the higher-ranking participants, i.e. 

the stars. Evidently, this description also fits a range of other human activities and 

Hesbacher et al.’s equation is thus apparently closely related to the more famous ‘Pareto 

principle’, a.k.a. ‘the 80–20 rule’, as in ‘80% of the land in Italy is owned by 20% of the 

people’. 

The existence of highly skewed demand distributions in the music industry has 

since been demonstrated repeatedly and for other sub-sectors like concerts (Krueger, 

2005); eventually, with the advent of the rich data flow from digital distribution 

platforms like iTunes


, these J-curves have been depicted with high degrees of accuracy 

(see e.g. Duch-Brown and Martens (2014, p. 10)). 

1.5 Structure of the article 

Section 2 opens with a brief review of the origins of the scholarly field known as ‘the 

economics of superstars’ and then concentrates mainly on subsequent literature with 

reference to the concept of cumulative advantage. We also provide an overview of 

empirical research that have tested such models using data from music recording 

popularity charts. The case is made for the pivotal role of the market share approach in 

the music industry, and how the distribution of market share relates to power laws. The 

chapter concludes with a suggested methodology for applying these principles. Section 

3 presents a descriptive summary of fifty years of Hot 100 data, where the main 

objective is to demonstrate the approach and methodology presented in the previous 

chapter, while also providing a data rich overview that allows for informal reflections 

with regard cumulative advantage theories and a considerable span of popular music 

history. Section 4 highlights figures from the summary that are considered particularly 

interesting for theories of cumulative advantage, and different interpretations of the data 



 

are discussed. The final sections 5 and 6 offer concluding remarks and suggestions for 

future research. 

 



 

2. Theories of superstardom 

Neither Carroll nor Hesbacher et al. dwell much on the deeper meanings of the J-curves 

– neither asks why or how they arise – but these particular shapes have puzzled scholars 

for more than one hundred years. In the context of the entertainment industry, seminal 

contributions were made in the 1980s by two American labour economists, Rosen 

(1981) and Adler (1985). The former actually introduced the term ‘superstar’ to 

economists’ vocabulary and provided a much-quoted definition of the phenomenon 

‘wherein relatively small numbers of people earn enormous amounts of money and 

dominate the activities in which they engage’ (Rosen, 1981, p. 845). 

Rosen and Adler are typically portrayed as proponents of mutually exclusive and 

competing theories in which the dichotomy criterion denotes whether there is a 

relationship between talent and success. We believe that ‘talent’ here should be 

interpreted in a broad sense; e.g. to be in possession of a quality that represents an 

advantage, also of the kinds that would not be considered purely artistic. What is not 

questioned is Rosen’s claim that certain conditions must exist for superstars and J-

curves to arise: the activity must target a sizable market, it must have media attention, 

and it must also lend itself to reproduction – preferably in a perfect and endless manner 

– which again enables mass production and consumption. Obviously, a dentist’s 

practice can hardly satisfy these requirements, but the present-day pop star who sells her 

recordings digitally over the Internet does so with an effectiveness that must have been 

difficult to envision only two decades ago (cf. Rosen, 1983, p. 460). 

Rosen’s theory is known as an equilibrium model – a popular device in 

neoclassical economics – and as with all such schemes, it is a stark simplification of the 

reality it aims to describe. The model is qualitative and rather an aggregate function – 

the summation – of the behaviours of all the individual participants in the market, 

including consumers and performers. The basic version assumes that the paying 

audience is a large, homogeneous mass; it is extended to a two-tiered group later in the 

paper, a simplification that probably does not excite music and culture scholars. In 

terms of equilibrium, this ‘system’ seeks to achieve ‘balance’, which is established 

when all participants are content with their actions and feel no reason to change them; 

thus, the price changes until both sellers and buyers find it acceptable. 



 

When the system finally rests, the result is a J-curve; a proportionally small 

group of performers takes home the lion's share of the revenues, leaving only ‘crumbs’ 

to the remaining majority. The main assumption of Rosen’s theory is that this result 

occurs because lesser talent is a poor substitute for greater talent in the entertainment 

industry and in other similar contexts. Watching two shows by an artist of average talent 

does not equal the satisfaction of experiencing one performance by a superstar; 

similarly, a single song of superstar quality is infinitely more valuable than a series of 

many mediocre songs. Notably, this assumption seems particularly apt in the context of 

the recording industry, which has a long-standing tradition in the peculiar practice of 

uniform pricing, e.g. ‘99 cents for all tracks on iTunes’ (Shiller & Waldfogel, 2011). 

Thus, there is no economic incentive for consumers to choose the lesser talent or 

quality, as it is not even offered at a discount. However, in Rosen’s model, there is no 

absolute requirement for superstardom, you simply must be that bit more talented than 

the other performers. As summarized by Adler (1985), ‘persons with only a slightly 

greater talent command much higher incomes than those who are only slightly less 

talented; output is concentrated on those few who have the most talent’ (p. 208). Thus, 

according to Rosen’s theory the artist that ends up with the largest pile of money is the 

individual whose talent is greater than the rest by just the right amount. 

Rosen does not describe the features of the talent distribution, nor does he 

explain how this distribution came to exist – it is completely arbitrary. Moreover, 

differences in talent are known and agreed upon by all consumers – yet another 

discussible assumption – and superstars can therefore emerge in a straightforward 

manner. Although he considered only the performing arts, MacDonald (1988) 

introduced the stochastic (i.e. random or non-deterministic) process into Rosen’s 

framework, in which ‘talent’ determines the difference in probability that a particular 

performance will be good. The quality of a good or bad performance is the same for all 

artists; however, the probability of putting on good shows is ‘serially correlated’. In 

other words, the artist’s record of accomplishment affects the likelihood of future 

success; hence, there is a substantial chance that a performance by a superstar talent will 

be satisfying and that she or he will therefore be able to charge higher ticket prices and 

attract larger audiences. Thus, MacDonald’s process, which is a bit more involved than 

is described here, will also eventually result in a J-curved income distribution.  



 

To the contrary, Adler (2006) argues that the emergence of J-curves and 

superstars is not explained by the differences in the talent or quality of the artistic 

offerings but instead by the peculiar nature of how such products are consumed. ‘The 

consumption of a piece of art is not a momentary experience but a dynamic process in 

which “the more you know, the more you enjoy”’ (p. 3), a phenomenon psychologists 

call ‘mere exposure’ (Zajonc, 1968). Therefore, because knowledge is required to 

realize the value of art products, consumers will seek products from which this 

knowledge can be most easily acquired. In econ-speak, when enjoying the music of 

specific artists, ‘consumption capital’ is accumulated (Stigler & Becker, 1977), which 

results in increasing ‘marginal utility’, the additional amount of satisfaction that is 

derived from consuming an additional unit of a product. Hence, superstars arise because 

economizing consumers attempt to minimize their search costs and accumulate 

consumption capital as effectively as possible. 

Acquiring such knowledge takes three different forms: exposure to the art itself, 

interaction with other people, and/or media. When an artist is popular, it is easier to find 

discussants who are familiar with the artist or to find media coverage; hence, consumers 

prefer to consume what others also consume. Because the number of artists who can be 

popular at any one time is limited, not all talented artists can be successful. For an 

economizing music consumer, already popular artists represent the best deal and given a 

choice between two artists of similar talent, a consumer is better off choosing the one 

his or her friends have already chosen. Similarly, when given a choice between two 

records of similar quality, a consumer is better off buying the one from the artist he or 

she already knows. Therefore, whoever happens to have a head start in this game, by 

random luck, will ‘snowball into’ a star and become a member of the ‘fat tail’ of the 

resulting J-curve. In other words, superstars can rise among performers of equal talent. 

Frank and Cook (1995) introduced the mainstream public to the economic 

concept of J-curves in their non-fiction bestseller, The Winner-Take-All Society; the 

book title itself is a meaningful reference to the reward structure of markets in which 

superstars dominate. The superstar phenomenon is of course also inextricably linked to 

more general perspectives on income inequality. The book can be regarded as a critical 

commentary on the economic and social consequences of this phenomenon on societies 

in which increasingly more individuals compete for increasingly fewer, but increasingly 

greater, rewards. There are several more comprehensive reviews of this literature 



 

stream, see e.g. Adler (2006) and Schulze (2011). As the former posits, ‘[t]he 

Economics of Superstars sets out to explain the relationship between talent and success 

in the arts, but there is no agreement about what this relationship is’ (Adler, 2006, p. 2). 

It has been enthusiastically prognosticated that, as consumer search costs are 

lowered by (among other things) internet features such as search, recommendation, and 

filtering tools, the new digital platform will benefit lesser known and newer artists and 

therefore may even erode the reign of the superstars (e.g. Brynjolfsson, Hu, & Simester, 

2011). However, according to Elberse (2013), sales data from the digital music services 

do not support this assumption; in fact, they exhibit a trend that is the opposite; the 

concentration is increasing, i.e. the most popular songs hold an even larger share of the 

market than before (p. 116). This observation, if correct, is evidently of some 

significance to the Rosen/Adler debate, but consequent theorising is still in its infant 

stage. 

2.1 Cumulative advantage: the effect of many names 

Adler’s model belongs to a large and somewhat disorderly family of ‘processes’ often 

referred to as cumulative advantage mechanisms. The ‘cumulative’ component can be 

traced back to the Swedish scholar Gunnar Myrdal, and, as far as we are aware, 

‘advantage’ was added by Derek J. de Solla Price, as described below. In what is 

perhaps the most extensive review undertaken by sociologists, DiPrete and Eirich 

(2006) present cumulative advantage as a ‘general mechanism for inequality across any 

temporal process … in which a favourable relative position becomes a resource that 

produces further relative gains’ (p. 271). Numerous other names have been given to 

‘effects’ that fit this description, e.g. ‘Matthew effect’ (Merton, 1968), to name just one. 

The important point here is that cumulative advantage is arguably the leading 

candidate mechanism to explain the formation of J-curves and superstars, and both the 

inequality and unpredictability of success, as a result (Watts, 2007). In the current 

setting, we will attempt to observe how advantage begets further advantage in that ‘a 

song that has already sold many copies will keep on selling many copies’ or ‘an artist 

that has already sold many records will keep on selling many records’. To illustrate 

further, we invoke three ‘main connotations’ of cumulative advantage that DiPrete and 

Eirich (2006) identify in the literature (p. 10): 



 

1. The rate of growth in an outcome variable is a function of the current values of 

that outcome. 

2. Small advantages at an early stage of a process grow larger over time. 

3. Inequality grows over time as a consequence of the cumulative advantage 

process. 

2.2 Modeling cumulative advantage 

Models in which ‘new objects tend to attach to popular objects’ are now often referred 

to as ‘preferential attachment’ models (see Barabási and Albert (1999)), which is 

arguably the current designation for cumulative advantage and perhaps most eagerly 

studied by scholars of network science. Obviously, a mechanism of such 

straightforward description will lend itself to mathematical modelling, and the first 

version was introduced by Eggenberger and Pólya (1923) and was soon followed by a 

second version offered by Yule (1925). The latter used his version to explain the 

distribution of species among the genera of plants and animals, as reported by John C. 

Willis’ statistical studies of biological taxonomy – which indeed included some nice 

graphs of J-curves. Notably, a year later, Lotka (1926) showed that a completely 

different ‘animal’, namely, the frequency distribution of scientific productivity (as in the 

number of authors sorted by the number of published articles they have to their name) 

also takes the shape of a J-curve, which has since been referred to as Lotka’s Law – the 

first ‘law of scattering’. 

Yule and Lotka’s J-curve phenomena were later subject to extensive studies, 

perhaps most notably Yule-Simon (Simon, 1955) and the Pólya urn (Price, 1976). The 

latter is what is known as a stochastic urn process, typically just a pictorial description, 

in which balls are added to a set of urns based on a set of rules and/or random 

mechanisms. In Price’s words, ‘[i]n general, the model supposes that fate has in storage 

an urn containing red and black balls; at regular intervals a ball is drawn at random, a 

red ball signifying a ‘success’ and a black ball a ‘failure’’ (1976, p. 293). One rule can 

then for instance be to add another ball of the same colour to the urn. In another simple 

variant of a Pólya scheme, additional balls are continuously distributed among a 

collection of urns as function of the number of balls the urns already contain. A Yule-

Simon urn scheme requires that the number of urns also increases continuously, but this 

is not a necessary condition for preferential attachment per se, and a decreasing number 



 

of urns is even possible. Thus, a Yule-Simon process applied two our setting will rests 

on the two following assumptions: the probability that consumer n + 1 chooses a record 

already chosen by exactly k of the previous n consumers is proportional to k; and that 

there is a constant probability 0 < p < 1 that consumer n + 1 choose a record not 

previously chosen by anyone. 

The major point that Price and others have made is that simple cumulative 

advantage processes such as these urn schemes generate J-curves, and similar-looking 

distributions such as Yule, Lotka, and Pareto are indeed all related. As these shapes 

occur in an intriguing variety of both ‘man-made’ and natural systems, this theory has 

quite a bit of ‘conceptual significance’ to it (Price, 1976, p. 304). Accordingly, the Yule 

process is now the most widely accepted theory to explain certain distributions, such as 

academic citations, city populations, and personal income (Newman, 2005). 

2.3 Models of superstardom: empirical testing 

Thus, if the distribution of success among pop artists can be ‘replicated’ by a simple 

random urn scheme, is ‘real world’ success random, too? This conclusion would 

evidently support Adler’s theory that stardom does not require superior talent; instead, it 

requires only a stroke of luck. Arguably, observing an appropriate J-curve in empirical 

data might indicate a cumulative advantage effect and, hence, not finding one might 

indicate no effect, but the opposite does not necessarily hold. Evidently, a J-curve is not 

sufficient proof that a cumulative advantage mechanism is at work; it is, however, the 

basic strategy of choice for what we refer to here as the ‘Yule-Lotka-Rosen-Adler’ 

research stream. 

First, but not actually part of the chain, Cook (1989) examines how well the 

distribution of US Top 40 hits among artists from the 1955-1984 period fits Lotka’s 

‘law’ and does not find it to be statistically significant. Nevertheless, he considers the 

deviation marginal and posits that it may simply stem from data contamination from 

Billboard’s known manipulations. Cook cites Price – and is even among the few to cite 

Hesbacher et al. – but does not relate his work to Rosen and Adler’s theories. 

The seminal papers in the Yule-Lotka-Rosen-Adler stream are inarguably 

Hamlen (1991), and Chung and Cox (1994). The former attempts to test Rosen’s model 



 

and, thus, must find a way to operationalize ‘talent’, which is obviously difficult. 

Hamlen solves this problem by measuring ‘voice quality’ using the harmonic content of 

how the artists sing the word ‘love’ on record. The expediency of this approach has 

been questioned by, among others, Schulze (2011), who submits Bob Dylan, Britney 

Spears, The Spice Girls, and AC/DC as examples where ‘talent’ might not be well-

represented by the artist’s voice quality. In a similar endeavour, Krueger (2005) applies 

the number of millimetres of print devoted to each artist in The Rolling Stone 

Encyclopedia of Rock & Roll as a scale for ‘star quality’. Unfortunately, finding an 

objective, empirical measure of talent might be impossible, and we will not delve 

further into this part of the stream here. However, it is pertinent to point out that the 

emerging field referred to as ‘hit song science’ has commonalities with Hamlen’s 

approach, but the overall objective is that of predicting success, usually based on the 

intrinsic characteristics of the songs, such as lyrics and audio features, but also by 

mining ‘extrinsic’ data, e.g. from social media platforms (Pachet, 2011). Equipped with 

the advantages that a laboratory-like setting offers, experimental researchers have 

apparently found ways to circumvent the ‘talent problem’ by obtaining a ‘natural 

measure’ of a song’s quality by observing its popularity among persons that have not 

had the opportunity to have their preferences influenced by others (Salganik, Dodds, & 

Watts, 2006, p. 854). 

More relevant here is the line from Chung and Cox (1994), who emphasize the 

‘close proximity between the assumptions underlying the Yule distribution and the 

superstar model proposed by Adler’ (p. 772). The Yule distribution was given its name 

by Simon (1955) and is the limiting distribution of Yule’s stochastic ‘urn scheme’ 

process introduced above: 

[Equation 1 near here] 

where pk is the probability of measuring the value k and B(k, α) is the Legendre beta 

function (the Γ denotes the gamma function). Also known as the Yule-Simon, or even 

Simon-Yule, the Yule distribution is convenient because sums involving it are often 

tractable and can be solved in closed form. 

 Chung and Cox apply the number of gold records (for both albums and singles) 

awarded the by Recording Industry Association of America (RIAA) for the 1958-1989 



 

period as a measure of success and find Yule to be ‘an excellent abstraction’ of how 

these records are distributed among different artists. Table 1 presents a summary of 

notable works following Chung and Cox. At the grave risk of oversimplifying, these 

contributions are made by statistically well-informed economists debating how well two 

datasets of #1 hits and gold records conform to Yule’s theoretical distribution. 

Apparently, successive contributions have contested Chung and Cox’s findings. 

[Table 1 near here] 

Under the illustrative title ‘Superstars without Talent? The Yule Distribution 

Controversy’, Spierdijk and Voorneveld (2009) set out to resolve the matter and apply 

no less than seven different tests to assess statistical validity. Yule is ‘overwhelmingly 

rejected’, as the authors find that the distribution captures stardom but not superstardom 

– in other words, the Yule distribution ‘overestimates the snowball effect that makes 

consumers purchase records by the most successful artists’ (p. 9). Anecdotally, both 

Fox and Kochanowski (2004) and Spierdijk and Voorneveld (2009) find the generalized 

Yule, a two-parameter variant that involves the incomplete beta function, to be ‘an 

excellent fit’. 

Spierdijk and Voorneveld inarguably provide valuable contributions to the 

discussion on the appropriateness of the analysis methodology; however, we believe the 

entire ‘controversy’ might be founded on inadequate data. In the real world of 

commercial music, the ‘basic unit’ is not gold or #1 records, but rather – and of course – 

money. We believe it likely that such crude and imperfect measures might fail as 

‘proxies’ for the actual underlying economic distribution. To give just one example of 

its possible defectiveness: for every gold or #1 record that a typical superstar earns, 

several other almost equally successful records will typically follow in its wake. To 

illustrate, most readers should be familiar with the six consecutive classic Madonna 

singles released during the 1986-1987 period that are presented in Table 2: ‘Live to 

Tell’, ‘Papa Don't Preach’, ‘True Blue’, ‘Open Your Heart’, ‘La Isla Bonita’, and 

‘Who’s That Girl’. All but one of these songs would not be included in either of the two 

datasets mentioned above because it had not been #1 or awarded a gold record, or, in 

the case of ‘La Isla Bonita’, neither. Moreover, ‘I’m Yours’ by Jason Mraz was 

unquestionably a monster hit and spent 76 weeks on the Hot 100 in 2008 and 2009; 

nevertheless, it never reached higher than #6. It is, however, RIAA certified seven times 



 

platinum, an accomplishment very rare even among #1 records. Thus, we assert that is 

seems somewhat risky to assume that a simple #1 or gold record count will truthfully 

represent the economic realities; the appropriateness of this approach have never been 

justified. Hence, it may be that the form of measurement – not Yule’s model – is not fit 

to ‘capture’ superstardom. 

[Table 2 near here] 

Notably, Giles (2006) calls attention to the ‘sensitivity of the conclusions to the 

choice of “stardom measure” and concludes that ‘much remains to be done, especially 

with respect to measuring success’ (p. 73). We make the case here that market share is 

the most relevant measure of success when studying the music industry – including on 

the level of individual artists and songs. The multinational record company oligopoly 

itself (for the time being: Universal, Sony, and Warner) has long employed a market 

share approach and competes for market share, not gold records. The typical record 

company executive will most likely be willing to sacrifice profits to gain or maintain 

market share, as market share is the measure by which his own performance will be 

appraised (Negus, 1999, p. 45). 

In the period we examine (1960-2010), the record industry has predominantly 

been a traditional transaction economy in which vinyl records, cassettes, CDs, and 

mp3s, among others, have been sold for a nonrecurring one-time charge. We are 

currently moving into what appears to be an age of streaming in which consumers 

simply pay for access to an entire music catalogue via a monthly subscription fee and 

the revenue pool is then distributed to the various rights holders based on their market 

share within the service. In this setting, record companies and artists now compete 

solely for market share – both implicitly and explicitly. 

As a measure, market share has several qualities that recommend it. In contrast 

to gold or #1 records, market share can describe every type of chart ‘success’ – 

including very modest success. In addition, it is pertinent when comparing across 

different periods, as specific sales figures can vary over time due to numerous factors. 

Moreover, market shares can be meaningfully added together, e.g. the sum of a series of 

weekly attainments represents a value that is directly and quantitatively comparable to 



 

any other such sum. Of course, this is what Hesbacher et al. realized, and the ‘weights’ 

they assigned to the different chart positions are essentially the same as market shares. 

On a final note, Spierdijk and Voorneveld (2009) point out that the analytic 

procedure that Chung and Cox (1994) and others perform is in fact not a test of the Yule 

distribution but rather a test of a so-called power law, which they claim is merely an 

approximation. Hence, Chung and Cox found that the latter fits their data. 

2.4 Power laws and market shares 

In 1913, a German physicist named Felix Auerbach made a rather uncanny discovery: 

some J-curves, when plotted on a logarithmic axis, take the form of approximately 

straight lines (Rybski, 2013). Simply, J-curves that form straight logarithmic lines are 

said to adhere to a power law and can be expressed in form: 

[Equation 2 near here] 

where α is the exponent and C is the normalizing constant. In empirical distributions, 

power law behaviour is usually seen only in the tail of the distribution, for values x ≥ 

xmin, but theoretically a power law can hold all the way down to x = 1 (Newman, 2005). 

As a type of distribution, power laws have properties that are exclusive to them, 

such as ‘scalability’; subordinate values do not have a characteristic scale; a power law 

is the same whatever scale we look at it on, or ‘self-similarity’; cf. ‘fractals’, the big, 

aggregated patterns that are an assembly of many smaller similar patterns, e.g. 

‘Sierpinski triangle’ and ‘Koch snowflake’ (see Mandelbrot (1983)). We believe it is 

noteworthy here to compare power laws to the more famous and familiar normal 

distribution, a.k.a. the Gaussian distribution. The latter frequently appears in settings in 

which events are random and independent, e.g. coin tossing, but also shows up in 

nature, such as in the distribution of height among humans. Although Gaussian 

distributions are quite orderly and can be described with just two numbers (the mean 

and the variance), power law distributions are more unruly; they have infinite variance, 

and some even have infinite mean values. As opposed to normal distributions, power 

law distributions are not dominated by the mediocre majority, but by the few extreme 

values – in our case, the ‘superstar’ songs and artists – and you never really know what 



 

type of monsters might show up. Therefore, drawing a sample from a population while 

assuming the values in question are normally distributed, when the values are in fact 

distributed under a power law, can lead to severe selection bias. For instance, if you 

randomly choose one hundred female pop performers, the mean value of the number of 

their #1 hits will be extremely influenced by whether Madonna happens to be included 

or not – she will very likely have more #1s than the rest of the sample put together. 

As already noted, power laws and Yule are closely connected. Generically, the 

Yule process yields a Yule distribution, which is just a beta function (cf. Eq. (1)). The 

beta function has a power law tail, but ‘rolls off’ at low values. In other words, the Yule 

process – i.e. in the form of the Yule-Simon urn scheme described above – generates a 

power law distribution. Because mechanisms other than cumulative advantage can also 

do this, power law distributions show up in an even more diverse range of areas than 

Yule distributions, but some relevant examples with moderate-to-good support include 

city sizes, the occurrence of words in English text, and the sales of music recordings 

(Newman, 2005). 

2.4.1 ‘Appropriate proportion of designated popularity’ 

Hesbacher et al. (1982) propose an equation to ‘satisfactorily measure each position's 

appropriate proportion of designated popularity’, resulting in a shape said to be 

‘resembling the mirror image of a J-curve’ (p. 101). The formula is incorrectly 

transcribed in the original article, a corrected version is provided by Carroll (2015, p. 

595): 

[Equation 3 near here] 

where x is the rank on the chart, a value between 1 and 100 (both inclusive),  and y is 

the ‘weight’, i.e. ‘appropriate proportion of designated popularity’. After reviewing a 

range of methods, Carroll settles for an expression on the same form as Hesbacher et al., 

where y is altered to ‘score’ (2015, p. 597): 

[Equation 4 near here] 

Given Hesbacher et al.’s privileged access to Billboard’s data and methodology, 

there is reason to suspect that their equation truthfully reflects the underlying realities in 

terms of record sales and radio exposure figures. However, we believe there is room for 



 

further development of this approach. First, equations (3) and (4) formally only applies 

to the periods 1970–1979 and 1958-1975, respectively. As the number of annual chart 

entrants has been in steady decline since 1967 (see Figure 3), it does not seem safe to 

assume that the weekly ‘popularity distribution’ has remained unchanged during the 

80s, 90s, and 00s, so a comparison against more recent data appears timely. Second, 

although being analogous concepts, we argue that ‘market share’ as a success measure 

is more comprehensible and meaningful in the current setting than ‘weight’ or ‘score’. 

Third, as the current consensus is that recorded music sales follow a power law 

distribution, it seems reasonable to suggest that this is the appropriate form to employ. 

Evidently, sales figures and market shares are closely related, and it has been 

demonstrated that the pattern of market shares in product categories like foods and 

sporting goods are represented well by power laws (Kohli & Sah, 2006). Thus, based on 

the approach of Kohli and Sah (2006), we suggest the following expression to describe 

relationships between rank and market share in sound recording popularity charts: 

[Equation 5 near here] 

where C and α are constants, r is the rank on the chart, a value between 1 and 100 (both 

inclusive), and s is the ‘market share’, i.e. the share of the weekly total market value of 

all the top 100 records. 

2.4.2 A Hot 100 power law formula: a first pass 

For our current purposes, equation parameters suitable to represent the Billboard Hot 

100 over a fifty year period from 1960-2010 need to be determined. Regrettably, unlike 

Hesbacher et al., we do not have wide access to ‘field data’, so their results will serve as 

a baseline and benchmark. For a more up-to-date account, a set of power law equation 

parameters are estimated empirically based on a sample of 12 randomly selected Digital 

Songs charts from the period between week 48, 2012 and week 32, 2013. The Digital 

Songs chart, compiled by Nielsen SoundScan


, tracks the sales of the most popular 

songs in the U.S. and is an underlying component of the Billboard Hot 100. 

The max value in the dataset, the highest weekly sales figure observed, belongs 

to the song ‘Thrift Shop’ by Macklemore & Ryan Lewis, with 412,336 registered sales 

in week 7, 2013 – a 5.94 % share of the combined volume of all the top 100 tracks that 

week (6,939,292). The min value is 16,885 from John Legend’s ‘All of Me’ at #100 in 



 

week 32, 2013. Notably, in week 33, 2012, the Taylor Swift song ‘We Are Never Ever 

Getting Back Together’ debuted at #1 in the Digital Songs chart with a weekly sale of 

623,000 (Caulfield, 2012). Somewhat intriguingly, the following week the song still 

held the top spot, although its count had dropped by more than half to 307,000. Such 

fluctuations in the ‘left-hand tail’ obviously pose a modelling challenge. However, 

converting the data points to a weekly marked share percentage format (simply, for each 

weekly chart, each of the 100 individual sales figures are divided by the total) 

sometimes alters the scheme slightly. While ‘Thrift Shop’ had its highest sales in week 

7, 2013, it actually had a higher market share in week 5, 2013 (7.6% – 381,056 out of a 

total volume of 5,012,673). Admittedly, this dataset is rather small and is even sampled 

outside the period under investigation (1960-2010). Moreover, sales is only one of the 

Hot 100 ‘constituents’, as Billboard’s editorial director wrote in March 2013: 

“Generally speaking, our Hot 100 formula targets a ratio of sales (35-45%), airplay (30-

40%) and streaming (20-30%)” (Werde, 2013, p. 7). 

Apparently, identifying and measuring power laws in empirical data is a more 

complex task than most researchers realize (Clauset, Shalizi, & Newman, 2009); as a 

result, most reported power laws lack both sufficient statistical support and mechanistic 

backing (Stumpf & Porter, 2012). Fortunately, we seek merely a satisfactory 

approximation and leave to future research to characterize a Hot 100 power law more 

correctly. Hence, we here opt to estimate the power law parameters by the simple 

procedure of fitting an ordinary least squares (OLS) regression line to the empirical 

Auerbach line that is derived from the average market share for each chart position over 

the twelve weeks in the dataset (Figure 1). Conceptually, power law distributions and 

market shares have the common requirement of summing to 1. For a power law 

distribution, once the exponent α is fixed, the normalizing constant C is determined by 

the sum-to-1 requirement. Thus, C will be the market share assigned to the #1 chart 

position.  

 [Figure 1 near here] 

This yields the following power law function for converting a weekly Digital Songs 

chart position into a marked share value: 

[Equation 6 near here] 



 

where s is market share and r is chart position. Figure 1 might give some cause for 

concern; the formula (6) appears to overestimate the market share held by the most 

popular songs. Note that the objective here is to approximate the Hot 100, which during 

the 1960-2010 period has always included airplay as well. The output from Hesbacher 

et al.’s (1982) and Carroll’s (2015) formulas are easily numerically converted to a 

market share framework (for each chart positions xi, the ‘weight’ is divided by the sum 

of ‘weight’ over all values of x), and Figure 2 shows how the resulting curves compare 

to our version. According to Carroll, the ‘fat tail’ of Hesbacher et al.’s distribution is 

‘driven by the steepness of the radio rating system’ (2015, p. 595), implying that the 

distribution of airplay among popular songs is even more skewed than that of sales. We 

therefore assume that our equation can be accepted as a satisfactory approximation of 

the distributions of market share on the Hot 100 for the period in question. 

[Figure 2 near here] 

Thus, we now have a variable that can be considered a ratio scale, with all the 

convenience that such a scale offers. By adding together the appropriate series of 

weekly marked shares, we can now e.g. calculate that two weeks at #3 has 

approximately similar value to that of spending one week at #1, which again is 

approximately equally valuable to 20 weeks at #100. This approach will also manage to 

fully account for the success of a song like ‘I’m Yours’, by Jason Mraz and it will also 

assign it a value that faithfully represents what a big record it was. 

 



 

3. Descriptive summary: The Hot 100 

This section provides an example that demonstrates how a rank-to-market share 

equation like (6) can be utilized in combination with freely available chart data. The 

intent is also to make visible how this approach may yield a more comprehensive and 

detailed account of how success is distributed in the pop music economy. The analysis 

that follows is claimed to be no more than a descriptive summary, and the data are 

arranged for the purpose of rudimentary reflection over how historical Hot 100 chart 

data seem to align with theories of cumulative advantage. 

3.1 Arranging the data: Billboard Hot 100 (1960-2010) 

The data originate from a book series called Joel Whitburn Presents the Billboard Hot 

100 Chart; each volume contains every weekly Hot 100 chart in a given ten-year period, 

e.g. the 1990s (Whitburn, 2000). Arguably, the weekly Hot 100 chart, which is a 

sequence of data points measured at successive points spaced at uniform time intervals, 

somewhat meets the criteria for a time-series of a cohort or panel but with different 

numbers of cases being replaced every week. However, for the current study, this way 

to arrange the data is not considered useful. 

The data arrangement described below is based on the following reasoning: 

generally, a record is only released to the market once. If a song fails to attract interest 

from the market itself and/or from the media, the release process is unlikely to be 

repeated at a later stage; instead, the record will most likely be ‘dropped’ and forgotten 

promptly. This ‘one-shot-only’ feature allows for the possibility to treat all songs as 

existing in the same ‘time and space’. All songs in our dataset were subject to the same 

conditions, regardless of era and environment; only 100 possible spots are available in 

any given week for any given song. The registration process begins when a song first 

enters the chart (e.g. ‘1
st
 week: #64’), and some songs may drop out and re-enter at a 

later stage. Arranging the data in this fashion transforms the data into a longitudinal 

form that lends itself to more straightforward and simple methods of analysis (see Table 

3). 

 [Table 3 near here] 



 

3.2 A few descriptive figures 

The dataset contains the complete chart history of 23,905 individual releases that have 

spent at least one week on the Hot 100. The songs are sorted reverse chronologically 

from 1960 to 2010 based on the year they reached their highest position and the date 

they first entered the chart. Therefore, ‘Welcome Christmas’ performed by the Glee 

Cast (December 25, 2010) is the first case, and the last is Johnny Preston’s ‘Running 

Bear’ (October 12, 1959) – which entered the chart in 1959 but peaked in 1960. There 

are a few examples in which the same recording has been released more than once, and 

in these rare occurrences, a re-release is treated as a new, separate record. As shown in 

Figure 3, charted songs are not particularly evenly distributed across the years, clearly 

indicating how the chart ‘dynamics’ have changed – which is what Carroll’s 

methodology intended to mitigate. The publishers of Billboard also compensate for 

these variations when they compile ‘all-time’ lists, such as Hot 100 55th Anniversary: 

The All-Time Top 100 Songs: ‘Due to changes in chart methodology over the Hot 100’s 

55 years …, certain eras are weighted differently to account for chart turnover rates over 

various periods’ (Bronson, 2013). However, in the current undertaking, we treat all 

songs on the same basis. 

[Figure 3 near here] 

 ‘Although every song’s path may be unique’, Bradlow and Fader posit that a 

records lifespan on the Hot 100 can be described as a ‘birth-growth-decline-death’ 

process (2001, p. 369). Hence, the number of songs with a registered chart position 

declines as the week number increases (see Figure 6, right axis). As Figure 4 illustrates, 

the distribution of weeks spent in the chart over the 23,905 records yields a right-

skewed curve centred at 7 weeks, but a more striking feature is the significant spike at 

week 20. This anomaly is also identified by Bradlow and Fader (2001) and is very 

likely the result of a manipulation referred to as ‘early deletion’ (see e.g. Cook (1989, p. 

282)). By the 11th week, the number of songs still in the chart is reduced by more than 

half to 11,171. By week 26, it drops to triple digits (839 songs), and in the 43rd week, 

only 93 releases remain. Within the 1960-2010 period, only two songs are registered in 

the 76th week; ‘Macarena’ by Los Del Rio (1996) and ‘I’m Yours’ by Jason Mraz 

(2009). The dataset includes 6,384 recognized unique artists of which a half (49.66%) 



 

had a song enter the Hot 100 only once. The number of individual data points in the 

form of registered chart positions for all songs sum to 267,738. 

[Figure 4 near here] 

3.3 Preliminary data processing 

With reference to the data structure example provided in Table 3, Table 4(a) shows 

three arbitrary cases and their Hot 100 chart history. Then, a weekly chart position of, 

e.g. #59, will thus be converted to a market share value using the equation (6) 

introduced above, and the value 0 is assigned to all blank cells. For each case, the 

aggregated market share value over all weeks is then calculated in the variable Total 

MS. Table 4(b) shows the resulting chart. 

 [Table 4a near here] 

 [Table 4b near here] 

Because the dataset is ordered in reverse chronology, the number of previously 

charted songs by the artist for each case are counted and entered into the Preceding 

variable. Similarly, the combined Total MS of the preceding songs is recorded in Accu 

MS. As an illustrative example of this arrangement, Table 5 shows the resulting dataset, 

which is limited to Madonna’s career (note: the list is abbreviated, the complete version 

contains 54 songs). Notably, our methodology recognizes the song ‘Take a Bow’ as 

Madonna’s all-time biggest hit, with a Total MS value of ≈1.09.
 
As an expression of 

‘stardom’, by the time the song ‘Celebration’ entered the Hot 100 on August 22, 2009, 

Madonna had already amassed an Accu MS value of ≈15.61. Likewise, her Hot 100 

debut ‘Holiday’, which entered the chart on October 29, 1983, has an associated Accu 

MS value of exactly 0. 

 [Table 5 near here] 

On a final note, the applied procedure relates only to artist concepts, and 

therefore, some individuals will appear in several different instances. For instance, Sean 

John Combs has released singles under various names since 1997, i.e. Puff Daddy, P. 

Diddy, and Diddy, and Diddy-Dirty Money, all of which will be treated as separate 

entities, following Chung and Cox (1994). The same applies for simple inconsistencies 



 

in spelling, e.g. a band from Michigan appears as three different entities: ‘? & the 

Mysterians’, ‘? and the Mysterians’, and ‘? (Question Mark) and the Mysterians’. 

We assume here that the data – the entire history of Hot 100 records for a 

specified period – represent a population; they are not a sample. This approach 

conveniently dodges several methodological issues and simplifies matters, but it will 

also affect the validity of the results. Nonetheless, the population should be unequivocal 

and well defined, as a song has either been on the Hot 100 or not. The dataset contains 

the complete chart history of all members of the population – songs that reached its 

highest position within the period 1960-2010 – so data from 1959 and 2011 are included 

where appropriate. Table 6 provides a summary of the key variables used in the 

analysis. 

What follows should therefore not be taken as a test for the significance of the 

null hypothesis or something similar; instead, we simply make a descriptive summary 

of historical data. Hence, we make no formal attempts at casual inference; our objective 

here is just to describe the association between variables. We measure this relationship 

by Pearson correlation and, for good measure, we also report the results from the linear 

regression where appropriate. Pearson’s r ranges between ±1 (a +1 indicates a perfect 

positive correlation), like most correlation coefficients, and thus summarizes the 

relationship between two variables with a single number. 

[Table 6 near here] 

3.4 Methodological considerations 

Pearson’s r is a measure of linear association; in observance of the J-curve, our data 

appear to have certain non-linear properties. Unfortunately, measuring correlation in 

‘power law’ data is tricky. Pearson’s r requires both the mean and the standard 

deviation of the distributions, whereas a theoretical power law distribution does not 

necessarily provide such concepts. Naturally, the actual dataset offers numerically 

calculable mean and variance – and the min and max values are known. Moreover, this 

is certainly not an attempt to contribute to the science of measuring cumulative 

advantage; to be sure, there are already considerably more elegant approaches (e.g. 

Jeong, Néda, and Barabási, (2003)). Therefore, it is not particularly easy to extract 



 

statistical information from ‘fat-tailed’ data; however, in this case, the data consist of 

the complete chronicles of a population for a specified period – and the dataset ‘is what 

it is’. 

We nevertheless attempt to summarize non-linear data in a linear framework. The 

coefficient of non-linear correlation – eta (η) – will be provided where it is deemed 

appropriate. The eta is the ratio of the between sum of squares to total sum of squares in 

analysis of variance (ANOVA) and is calculated by dividing one of the variables into 

groups of equal width according to their rank (Kennedy, 1970). The extent to which η is 

greater than r is here interpreted as an estimate of the extent to which the data 

relationship is non-linear. 

3.5 A simple operationalization of cumulative advantage 

We here recall the first ‘main connotation’ of DiPrete and Eirich (2006), as stated 

above, and create the following testable statement based on it: 

1. The market share obtained by a record in the current week is positively 

associated with the market share obtained in the following week (Snowball) 

We add another statement of similar form but shift the focus to the artist level: 

2. The market share obtained by a current record is positively associated with the 

market share accumulated by the recording artist’s earlier releases (Star Power) 

For illustrative purposes only – and in their loosest meaning – we offer the following 

nicknames for these relationships; respectively Snowball and Star Power. Thus, the 

song-level ‘snowball’ cumulative advantage is assessed mainly by observing the 

separate levels of association between different measurement points in time, in other 

words, by simply contemplating the correlation matrix of all the weekly market shares. 

This approach remains wholly descriptive; we merely summarize ‘the spectrum of the 

process’ – whatever it is – and make no assumptions regarding any particular structure. 

Based on similar reasoning, the Accu MS value represents the artist’s 

cumulative advantage – her ‘favourable relative position’ or her ‘star power’ – at the 

time the song with the corresponding Total MS value entered the chart. If this general 



 

and inherent ‘influence’ on events exists – regardless of the specific mechanisms 

involved – there must be a positive association between these two variables. 



 

4. Results and discussion 

The correlation analysis is implemented for a total of 47 relevant variables and 

in a single matrix; therefore, all the results reported below originate from this one table. 

Because a 47*47 matrix does not lend itself to meaningful reproduction in the current 

format, it is not included here. An HTML-formatted version of the matrix is included in 

the supplemental material and can thus be explored in a more user-friendly manner with 

a standard web browser. However, in the current setting, the ‘shape’ of the correlation 

matrix itself might be interesting in its own right. Because it is frequently easier to 

obtain an impression of such a compilation of figures when presented graphically, a so-

called contour plot of the matrix is also provided (Figure 5). At the risk of being 

repetitive, because we claim to be considering a population, the significance level is not 

necessary of particular interest; nonetheless, all the coefficients reported are significant 

at the 0.01 level (2-tailed). 

[Figure 5 near here] 

4.1 Snowball 

In relation to the first statement formulated above, perhaps the most striking and telling 

descriptive representation of the data can be found in Figure 6, left axis. The graph 

illustrate an excerpt from the matrix, i.e. the diagonal of the pairwise, week-on-week 

correlation between consecutive weeks, otherwise known as autocorrelation with lag of 

1. 

[Figure 6 near here] 

For example, the week-on-week associations in market share, i.e. the correlation 

between the 2nd Week and the 1st Week is r = 0.717; for the 5th Week and the 4th 

Week, it is r = 0.914; and so on. Summarized in the form of linear regression, an r here 

of 0.914 amounts to an adjusted r squared (a.k.a. the coefficient of determination) of 

0.835. However, the objective of this undertaking is not, for example, to estimate the 

parameters of a model describing a stochastic cumulative advantage process or 

something similar. For a descriptive approach, the contour plot representation of the 

correlation matrix found in Figure 5 provides a simple illustration of the ‘spectrum of 



 

the process’. It bears unequivocal testimony to ‘seriality’ being present; in fact, even the 

very extremities appear to be associated. Figure 7 contains four ‘arbitrary’ examples of 

similar week-on-week associations in the form of scatter plots. Animation 1(a) 

(provided in the supplemental material) demonstrates how this scatter plot pattern 

evolves from week to week. 

[Figure 7 near here] 

To an observer that merely studies sales and airplay figures (and perhaps 

disregards the first four weeks) for the 1960-2010 period, it might certainly appear that 

there was a phenomenon taking place that would be adequately described with a 

snowball metaphor, i.e. a Yule process of proportional growth. Arguably, it should not 

require any mathematical formality to account for the fact that in an environment in 

which next week’s outcome for any participant is generally (r > 0.9) associated with 

that of the current week, the larger snowball will continue to draw proportionally more 

snow, and the end result of this process should be easy to envision. Simplified, an artist 

selling 300,000 copies will continue selling an approximately similar amount – in the 

same order of magnitude – the following period; unfortunately, the same applies for a 

participant selling just 10,000 copies. The relative ratios will remain intact, so after ten 

weeks, for example, the greater-selling participant has snowballed into a ‘star’, whereas 

the lesser-selling participant has merely found its place somewhere among the 

numerous inhabitants of the ‘long tail’. Each week, a number of songs lose momentum, 

stop ‘rolling’, and fall off the chart; the majority of these songs will be of the smaller 

snowballs (they form the small ‘pillar’ to the very left in the scatter plots in Figure 7). 

However, it is important to remember that the J-curve is in itself not a result of a longer-

term process; a similar shape also appears on a weekly basis. This might also provide a 

notion of the fractal nature of the power law phenomenon: the aggregated pattern is 

made up of many smaller similar patterns – i.e. the ‘self-similarity’ property mentioned 

earlier. 

4.1.1 The first four weeks 

The depictions in Figures 6 and 7 pose another question that goes to the heart of the 

Rosen/Adler dichotomy: what is going on in the first four weeks? The scatter plots in 

Figure 7 show the week-on-week market share comparison at four different points in 



 

time and arguably portray some type of arrangement that appears to begin rather 

chaotically but that quickly takes on a distinct shape that again seems to become 

increasingly significant over time (see also Animation 1(a), and 1(b)). In other words, 

the Hot 100 market appears to have generally needed four weeks to ‘get a grip on’ a 

new song, and from then on, that song’s destiny is largely determined. 

Are we just seeing the footprints of a game of chance sorting itself out? The 

market may have been collectively undertaking a complex four-week quality 

assessment routine, or the scatter plots may have shown the impression of a random 

social process that would have occurred in this way regardless of how the songs were 

introduced? These questions are not exclusive to our setting but instead belong to a 

slowly evolving debate that has gone on for more than 50 years: is preferential 

attachment rooted in pure chance or in some form of optimization? (Barabási, 2012). 

To be sure, authors other than Rosen and Adler have found themselves on opposite 

sides of this issue. In the 1960s, the aforementioned Herbert A. Simon and Benoît 

Mandelbrot engaged in a fierce public dispute, with the former arguing that random 

preferential attachment explains the power law distribution of word frequencies in text, 

and the latter arguing that it is the result of optimization (Perc, 2014, p. 10) –  i.e. that 

language is being developed to transmit information most efficiently. Since the turn of 

the millennium, experimental evidence supporting preferential attachment in the context 

of networks has arguably accumulated in support of the former view, but the debate 

remains open. In the words of Barabási (2012): 

The fact that the effect is widespread suggests that it probably derives from 

both agency and random actions. Most complex systems have a bit of both, 

so we do not need to choose between them. Luck or reason, preferential 

attachment wins either way. And so do we, gaining a deeper understanding 

of this puzzling yet ubiquitous force. (p. 507) 

This conclusion will perhaps not be considered sensational by most observers of 

the market for pop songs. Even before the term ‘rock and roll’ was coined, Leibenstein  

(1950) included both ‘functional’ and ‘non-functional’ elements (of which the 

‘bandwagon effect’ was an ‘external effect on utility’) in his theoretical model of 



 

consumer demand motivation. Hesbacher et al.’s (1975b) model ‘factors influencing 

sound recording popularity’ also included both intrinsic and extrinsic factors. This ‘a bit 

of both’ notion also corresponds with results from large-scale experiments that found 

that ‘success was also only partly determined by quality: The best songs rarely did 

poorly, and the worst rarely did well, but any other result was possible’ (Salganik et al., 

2006, p. 854). 

4.2 Star Power 

 [Table 7 near here] 

Table 7 presents the main results from the analysis with respect to statement (2) above. 

The variables Accu MS(2000), and Accu MS(500) are similar to Accu MS, but with 

shorter ‘memory’; they only ‘remember’ the 2,000 and 500 previously charted songs. 

For example, Accu MS(2000) indicates the value for a given song in the respective 

recording artist’s accumulated market share by preceding singles among the 2,000 

previous cases (songs). 

Appraised in a linear framework, recent success seems to have a higher and 

longer-lasting association with current success than older success. We can also observe 

how this ‘star power’ association varies over time. Figure 8 depicts how the three Accu 

MS variables correlate with the different individual weekly outcomes. Arguably, the 

following quote from Bradlow and Fader provides an apt description of the graphs, i.e. 

‘historically popular artists find it easier to move higher in the chart more quickly, 

remain up high for longer, and have an overall longer stay’ (2001, p. 369). 

[Figure 8 near here] 

If we also further summarize the data here with linear regression, the calculation 

with respect to Accu MS yields an adjusted r
2
 of 0.014 (if the cases without previous 

chart history are removed from the analysis, we obtain a marginally better result of r = 

0.015 and adjusted r
2
 = 0.022). The similar figure for Accu MS(2000) is more than 

double the previous figure: 3.2%. Regardless, this amount might not sound like much. 

At first glance, star power might seem negligible – at least in this manner of 

operationalization and appraisal. Presumably, star power is of little significance on the 



 

individual artist level – a notion supported by the low rate of repeat visitors. In a 

somewhat similar assessment of the movie industry, De Vany and Walls concluded the 

following: ‘the audience makes a movie a hit and no amount of “star power” or 

marketing can alter that. In other words, the real star is the movie’ (1999, p. 285). The 

appreciation of these percentage figures might depend on one’s perspective and 

perception of the ‘game’. A Las Vegas blackjack gambler would definitely be happy 

with an advantage of similar magnitude. In fact, a typical ‘house edge’ – the built-in 

advantage a casino has on its blackjack games – is ~0.5% (see e.g. ‘Blackjack House 

Edge - Wizard of Odds’, n.d). That does not sound like much, but it is evidently enough 

to ‘tilt the table’ sufficiently in favour of the house to allow a lucrative business. 

Similarly, for the small group of oligopolists that has dominated the recording 

industry for more or less its entire existence (Belinfante & Johnson, 1982), ‘star power’, 

even just in the form of a correlation-based prediction, may actually provide a small but 

vital edge that ‘tilts the table’ sufficiently in their favour. Because nobody knows; the 

demand for new songs is highly uncertain, and because historical estimates suggest that 

85% of the single records released throughout history have not even recouped their 

associated expenses (Caves, 2000), this setting is perhaps not so different from that of a 

casino. Moreover, because it is costly to retain and cultivate superstars, this 

phenomenon will also act as a ‘barrier to entry’ keeping smaller record companies out 

of the market. Over the years, the oligopoly have apparently become increasingly rooted 

in what Elberse calls ‘blockbuster strategies’; the competition is for the next superstar 

because that is where the crucial market shares are made or lost (2013, p. 250). 

4.3 The case of Madonna 

Finally, we return to Madonna for an anecdotal example. Figure 9 provides a scatter 

plot of the 54 Madonna songs in our dataset. Arguably, we can envision a trend line 

among the points sloping downwards from left to right, and this trend would imply that 

her star power association is in fact negative, a somewhat sensational and dramatic 

circumstance. Indeed, a statistical summary of Madonna’s numbers yields a negative r 

of -0.3 (p = 0.028), which translates to an adjusted r
2
 of 0.072. 

[Figure 9 near here] 



 

Presumably, it is well known that stardom is not a unidirectional and constant 

blessing – the ‘favourable relative position’ can turn into a curse. In a comment to 

Rosen’s seminal article, Bowbrick (1983) quotes David Ogilvy, a.k.a. the Father of 

Advertising, who reveals a somewhat dark secret from the movie industry in the 1930s: 

I discovered that some stars had a negative effect at the box office; their 

names on the marquee repelled more ticket buyers than they attracted. The 

list, which I called Box Office Poison and classified TOP SECRET, 

included some of the most famous names in show business, and ruined their 

careers. (p. 459)  

As for other factors with negative signs, Leibenstein’s (1950) model mentioned above 

includes a ‘snob effect’ in which ‘demand for a consumers’ good is decreased owing to 

the fact that others are also consuming the same commodity (or that others are 

increasing their consumption of that commodity)’ (p. 189). 

[Figure 10a near here] 

Consequently, it appears that cumulative advantage is not a constant, linear, and 

unidirectional effect and thus cannot be fully uncovered in a linear framework. The 

scatter plots in Figure 10(a) and 10(b) yield little in the way of discernible patterns 

(note: almost half of the songs are in the ‘pillar’ to the left – all the ‘one hit wonders’ in 

addition to all the other chart debuts like e.g. Madonna’s ‘Holiday’), and the eta (η) 

estimate (see Table 7) indicates that the relationship between the variables is largely 

non-linear. 

4.4 Life and death 

Notably, although the general week-on-week correlation is high – it is not a perfect 1. In 

a largely methodological paper using a dataset of 248 Hot 100 songs from 1993, 

Bradlow and Fader claim to identify a ‘fairly complex “death process” that is rather 

hard to detect in simple summaries of the raw data’ (2001, p. 378). They observe that 

songs fall very quickly after leaving the Top 40, and that a 20-week lifespan on the 



 

chart seems to have particular hazardous qualities. Support for the latter claim can be 

found in our Figure 4; the most common fate appears to be elimination by ‘early 

deletion’ in the 20
th

 week. 

Although some artists and records can persevere for a considerable length of 

time – e.g. Pink Floyd’s The Dark Side of the Moon spent 917 weeks on Billboard’s 

album chart between 1973 and 1988 (Caulfield, 2015) – no lifespan in the hit song 

industry seems to be eternal. Madonna may still be among the most recognizable 

individuals on the planet, but as a recording artist she has not had a #1 on the Hot 100 

since year 2000. In fact, apart from the Super Bowl song, Madonna has only had one 

song on the Hot 100 in the 2010s (‘Bitch I’m Madonna’, two weeks in 2015: #84 and 

#95). 

While a considerable body of literature has accumulated that encompass various 

approaches to uncovering the ‘rules’ that explains or describes how stars and hits are 

made (see e.g. Walls (2014) or Thompson (2017)), little attention have been paid to 

what one might, somewhat unsentimentally, call the ‘product life cycle’ of popular artist 

and songs. That is, the consideration of not only how they rise, but also how they fall. In 

addition to Bradlow and Fader (2001) – who introduce what they coin a Bayesian latent 

lifetime process, based on a stochastic utility model – a few attempts have been made 

by employing so-called duration models in the form of survival and hazard functions, 

e.g. Strobl and Tucker (2000), Bhattacharjee, Gopal, Lertwachara, Marsden, and Telang  

(2007), and Giles (2007). The ‘survival’ that is modelled is the duration a record stays 

on the charts, governed by a stochastic process with a one-week time index. Apparently, 

J-shaped curves show up in the resulting chart survival estimates (see e.g. Strobl and 

Tucker (2000, p. 128)). The hazard functions are similar but address the ‘death’, i.e. the 

event of exiting the chart. 

In addition to the time factor, a small variety of explanatory variables and 

covariates have been included in these models, e.g. Bradlow and Fader (2001) settled 

for two measures: the artist’s number of previous Hot 100 songs and a binary variable 

indicating whether the song appeared on a movie soundtrack. Bhattacharjee et al. 

(2007), who studied the album charts, added measures describing the record company 

(minor/major) and the artist (female/male/group). Arguably, the character of these 

works are predominantly methodological and descriptive, and it seems reasonable to 



 

assume that the selection of variables is influenced more by (lack of) availability of data 

than of theory, but duration models appear as a promising approach for capturing the 

dynamics of the hit song system. The indications put forward in the current article do 

not contradict any of the results from these models, which, among other things, provide 

evidence for both a superstar and a snowball effect, and for the advantage of ‘initial 

popularity’ (a high chart debut) – all of which again align nicely with the connotations 

of cumulative advantage articulated by DiPrete and Eirich (2006). However, we dare 

suggest that future efforts in duration modelling may consider a marked share approach 

in place of the ordinal chart rank used in the existing literature – a modification that 

may facilitate the application of such models to artist careers as well. 

 [Figure 10b near here] 



 

5. Conclusion 

Confronted with highly esteemed champions of the Hot 100 ‘tournament’, e.g. Elvis 

Presley (121 chart entries in our dataset), the Beatles (80), or Aretha Franklin (75), to 

mention just three, it is not tempting to fight the case for pure randomness. Even more 

astonishingly, the Beatles at one point managed to hold all five top spots on the Hot 100 

simultaneously, truly a remarkable achievement (see Billboard April 4, 1964). The 

probability of such an outcome due to pure chance is truly infinitesimal and thus 

presents a challenge to the ‘randomness’ perspective and may even be interpreted as 

debunking the infamous hot hand fallacy (see Gilovich, Vallone, and Tversky (1985)). 

Certain aspects of the pop music industry may deserve somewhat more 

emphasis in the superstar discussion than what it typically is awarded in the literature. 

The hit song economy must be considered peculiar as far as markets go; it has certain 

properties that are not found in many other industries, at least not to the same degree. 

We can argue that the main premise and objective of the pop music media industry is to 

elect ‘the chosen few’, to single out the officially most popular songs. It does not seem 

plausible that the influx of talent and quality will be perfectly constant over time; 

regardless, every week, the hundred spots of the Hot 100 must be filled by different 

songs, and one fortunate participant will find itself at the top. This ranking process must 

be performed for the songs available at the time, and there are no absolute requirements. 

In other words, the entire hit song ‘food chain’ can be said to exist for the primary 

purpose of creating hits; special songs will then receive equally special treatment and a 

lot more attention than the rest of the participants combined. Again, this market feature 

can be interpreted as support for the Rosen position that you do not have to be 

outstanding to bubble to the top of this hierarchy; you must only be a little bit better 

than the others. Unfortunately, these circumstances do not exclude the randomness 

argument: much like in a hat-drawing lottery, one song will have to be #1 every week – 

you must only happen to be the lucky winner. Our analysis, as vividly illustrated by the 

scatter plots depicted above, does not reveal whether this ranking process is 

deterministic, random or a combination – the same patterns might appear in all cases. 

In conclusion, the current study emphatically suggests that cumulative 

advantage is a striking characteristic of the Hot 100 market, particularly on the level of 

individual songs. This process will again lead to ‘path dependencies’, e.g. it appears to 



 

be difficult to sell many copies in the 11
th

 week if you have not already sold a 

substantial number of copies in the preceding ten weeks. This path dependence effect is 

presumably so erratic that it sometimes accidentally propels poor-quality songs and 

untalented artists to the top of the charts, a phenomenon also demonstrated by 

experimental research (Salganik & Watts, 2008). 

 



 

6. Future Research 

The single was the core product in the recording industry for most of the 20th century, 

but was eventually eclipsed by the album format during the 1970s (Millard, 2005), and 

for several decades, albums have been the primary source of revenues for record 

companies. Now – in what appears to be a new paradigm in which streaming will come 

to dominate – it appears that the individual track will again become the bread and butter 

of the recording industry. Thus, the single deserves particular attention. 

The relationship between talent and success in popular music might seem like a 

mystery beyond the reach of science. However, the prospects for gaining a deeper 

understanding of these connections have never been better. For example, the streaming 

service provider Spotify currently shares its top 200 chart in (daily) minute detail 

(‘Spotify Charts’, n.d.). Such rich and accurate data, combined with the swiftly 

advancing research field of music information retrieval (MIR), represents infinite 

opportunities for future endeavours into the economics of superstars. 

As ‘success measure’, the current state of the art in the relatively new area 

referred to as ‘hit song science’ usually employ a binary ‘hit/non-hit’ variable based on 

certain cutoff chart positions (e.g. Herremans et al. (2014), Nunes and Ordanini (2014)). 

We believe that a market share approach can make such analyses more sensitive, with 

the inherent potential of uncovering more subtle relationships. The equation (6) 

provided in this paper is considered preliminary; however, advancement will require 

wider access to field data. Future research could also consider whether the Yule 

distribution might provide a better fit to such data than a power law. 

… 
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Table 1. Notable works from the Yule-Lotka-Rosen-Adler research stream. 

Work Theoretical framework Success measure Support (Lotka and/or Yule) 

Cook (1989) Lotka Top 40 hits No (‘marginal deviation’) 

Chung and Cox (1994) Yule, Rosen, Adler Gold records Yes (‘excellent fit’) 

Cox, Felton, and Chung (1995) Lotka Gold records No 

Crain and Tollison (2002) Rosen, Adler #1 hits, weeks N/A 

Fox and Kochanowski (2004) Lotka, Yule, Rosen, Adler Gold records No and No 

Giles (2006) Yule, Rosen, Adler #1 hits, weeks No (‘overwhelmingly rejected’) 

Fox and Kochanowski (2007) Yule, Rosen, Adler Gold records N/A 

Spierdijk and Voorneveld (2009) Yule, Rosen, Adler All of the above No (‘overwhelmingly rejected’) 

 

  



 

Table 2. Six consecutive Madonna singles from 1986-1987. 

Song Hot 100 peak position RIAA certification 

Live to Tell #1  

Papa Don’t Preach #1 Gold 

True Blue #3 Gold 

Open Your Heart #1  

La Isla Bonita #4  

Who’s That Girl #1  

 

  



 

Table 3. Example of data structure (weekly chart positions). 

Song 1st Week 2nd Week … 75th Week 76th Week 

Song 1 93 78 … 49 48 

Song 2 5 22 …   

… … …. … … … 

Song 23904 80 83 …   

Song 23905 

 

75 64 …   

 

  



 

Table 4(a). Data example - weekly chart positions. 

Artist Track 1st Week 2nd Week 3rd Week 4th Week 5th Week 6th Week ... 76th Week 

Glee Cast Welcome Christmas 59 

    

 ... 

 Glee Cast Baby, It's Cold Outside 57 99 
   

 ... 
 T.I. That's All She Wrote 18 31 68 88 99  ... 

  

  



 

Table 4(b). Data example - weekly market share values. 

Artist Track 1st Week 2nd Week 3rd Week 4th Week 5th Week ... 76th Week Total MS 

Glee Cast Welcome Christmas 0.0061 0 0 0 0 ... 0 0.0061 

Glee Cast Baby, It's Cold Outside 0.0062 0.0043 0 0 0 ... 0 0.0106 

T.I. That's All She Wrote 0.0134 0.0093 0.0056 0.0047 0.0043 ... 0 0.0373 

 

  



 

Table 5. Example of data structure: Madonna Hot 100 songs (1983-2009), abbreviated. 

Date entered Track # of weeks Peak pos. Total MS Preceding Accu MS 

22 August 2009 Celebration 1 71 0.0054 53 15.6081 

17 May 2008 Give It 2 Me 1 57 0.0062 52 15.6019 

5 April 5 2008 4 Minutes 20 3 0.3924 51 15.2095 

11 March 2006 Sorry 6 58 0.0314 50 15.1782 

5 November 2005 Hung Up 20 7 0.2257 49 14.9524 

5 April 5 2003 American Life 8 37 0.0460 48 14.9064 

19 October 2002 Die Another Day 17 8 0.1992 47 14.7072 

5 May 2001 What It Feels Like for a Girl 10 23 0.0783 46 14.6289 

9 December 2000 Don't Tell Me 21 4 0.3586 45 14.2704 

12 August 2000 Music 24 1 0.9026 44 13.3677 

19 February 2000 American Pie 9 29 0.0725 43 13.2953 

12 June 1999 Beautiful Stranger 19 19 0.1530 42 13.1423 

… … … … … … … 

17 December 1994 Take a Bow 30 1 1.0904 31 10.4162 

… … … … … … … 

18 March 1989 Like a Prayer 16 1 0.5052 15 5.3855 

12 September 1987 Causing a Commotion 18 2 0.3405 14 5.0451 

11 July 1987 Who’s That Girl 16 1 0.3832 13 4.6619 

21 March 1987 La Isla Bonita 17 4 0.2644 12 4.3975 

6 December 1986 Open Your Heart 18 1 0.3972 11 4.0002 

4 October 1986 True Blue 16 3 0.2951 10 3.7051 

28 June 1986 Papa Don’t Preach 18 1 0.4665 9 3.2386 

12 April 1986 Live to Tell 18 1 0.4521 8 2.7866 

17 August 1985 Dress You Up 16 5 0.2114 7 2.5752 

27 April 1985 Angel 17 5 0.2294 6 2.3457 

2 March 1985 Crazy for You 21 1 0.5474 5 1.7983 

9 February 1985 Material Girl 17 2 0.3620 4 1.4364 

17 November 1984 Like a Virgin 19 1 0.7221 3 0.7142 

25 August 1984 Lucky Star 16 4 0.2547 2 0.4596 

10 March 1984 Borderline 30 10 0.2833 1 0.1763 

29 October 1983 Holiday 21 16 0.1763 0 0 

 

  



 

Table 6. Summary of variables: Billboard Hot 100 dataset (1960-2010). 

Variable Description Example value 

Year The year the recording attained its highest chart position 2009 

Date entered The date the recording entered the chart (i.e. 1st Week) 22 August 2009 

Artist Name of recording artist Madonna 

Track Title of recording Celebration 

# of Weeks The total number of weeks the recording spent in the chart 1 

Peak Pos The highest chart position attained by the recording 71 

nth Week The recording’s chart position in week n (for n = 1, 2, 3,..., 76) 71 

nth Week The recording’s market share in week n (for n = 1, 2, 3,..., 76) 0.0054 

Total MS The recording’s total market share over all 76 weeks 0.0054 

Preceding The recording artist number of previously charted recordings 53 

 

Accu MS The recording artist’s accumulated market share based on all successive cases in the 

dataset 

15.6081 

Accu MS(2000) The recording artist’s accumulated market share based on the next 2000 successive 

cases in the dataset 

0.6557 

Accu MS(500) The recording artist’s accumulated market share based on the next 500 successive 

cases in the dataset 

0 

  



 

Table 7. Main results from correlation and regression analysis: Total MS – Accu MS. 

  
Accu MS Accu MS(2000) Accu MS(500) 

Total MS N 23905 23905 23905 

 

Pearson correlation (r) .118 .180 .176 

 

Adjusted r
2
 .014 .032 .031 

 

Sig. (2-tailed) .000 .000 .000 

 

Eta (η) .858 .841 .761 

 Eta squared (η
2
) .737 .708 .579 

 

  



 

Fig. 1. Rank-to-market share equation: ‘plain’ OLS estimation of power law parameters. 

Data: Nielsen


 Digital Songs, average market share for top 100 chart positions over 12 

randomly selected weeks (2012–2013). 

Fig. 2. Three J-curve equations compared: chart positions’ designated market share of 

top 100 total. 

Fig. 3. Billboard Hot 100: number of chart entries per year (1960–2010: 23,905 songs). 

Fig. 4. Billboard Hot 100: distribution of songs over total number of weeks spent in the 

chart (1960–2010: 23,905 songs). 

Fig. 5. Contour plot: correlation r matrix of weekly market shares (1st Week: 26th 

Week). 

Fig. 6. Left axis: Correlation r between weekly market shares: n-th week and preceding 

week. Right axis: Number of songs with a chart position in n-th week. 

Fig. 7. Scatter plots: weekly market shares, n-th week by following week (four 

‘arbitrary’ examples). 

Fig. 8. Correlation r between Accu MS and n-th week market share (1st Week: 26th 

Week). 

Fig. 9. Scatter plot: Total MS by Accu MS, Madonna’s 54 songs. 

Fig. 10(a). Scatter plot: Total MS by Accu MS, all 23,905 songs. 

Fig. 10(b). Scatter plot: Total MS by Accu MS, zoom bottom-left corner. 
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