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Seasonal changes in eicosanoid metabolism in the brown bear
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Abstract
Polyunsaturated fatty acids (PUFAs) exert several important functions across organ systems. During winter, hiberna-
tors divert PUFAs from oxidation, retaining them in their tissues and membranes, to ensure proper body functions at
low body temperature. PUFAs are also precursors of eicosanoids with pro- and anti-inflammatory properties. This
study investigated seasonal changes in eicosanoid metabolism of free-ranging brown bears (Ursus arctos). By using
a lipidomic approach, we assessed (1) levels of specific omega-3 and omega-6 fatty acids involved in the eicosanoid
cascade and (2) concentrations of eicosanoids in skeletal muscle and blood plasma of winter hibernating and summer
active bears. We observed significant seasonal changes in the specific omega-3 and omega-6 precursors. We also
found significant seasonal alterations of eicosanoid levels in both tissues. Concentrations of pro-inflammatory eicos-
anoids, such as thromboxane B2, 5-hydroxyeicosatetraenoic acid (HETE), and 15-HETE and 18-HETE, were signif-
icantly lower in muscle and/or plasma of hibernating bears compared to summer-active animals. Further, plasma and
muscle levels of 5,6-epoxyeicosatrienoic acid (EET), as well as muscle concentration of 8,9-EET, tended to be lower
in bears during winter hibernation vs. summer. We also found lower plasma levels of anti-inflammatory eicosanoids,
such as 15dPGJ2 and PGE3, in bears during winter hibernation. Despite of the limited changes in omega-3 and
omega-6 precursors, plasma and muscle concentrations of the products of all pathways decreased significantly, or
remained unchanged, independent of their pro- or anti-inflammatory properties. These findings suggest that hiberna-
tion in bears is associated with a depressed state of the eicosanoid cascade.

Keywords Hibernation .Metabolism . Fatty acids . Prostaglandins . Leukotriene . Thromboxane

Stéphane Blanc and Chantal Simon contributed equally to this work.

Communicated by: Fritz Geiser

* Sylvain Giroud
sylvain.giroud@vetmeduni.ac.at

1 Department of Integrative Biology and Evolution, Research Institute
of Wildlife Ecology, University of Veterinary Medicine,
Savoyenstraße 1, 1160 Vienna, Austria

2 Department of Forestry and Wildlife Management, Inland Norway
University of Applied Sciences, NO-2480 Koppang, Norway

3 University of Strasbourg, IPHC, 23 rue Becquerel,
67087 Strasbourg, France

4 CNRS, UMR7178, 67087 Strasbourg, France

5 MetaToul-LIPIDOMIQUE Core Facility, MetaboHUB, Inserm
U1048, Toulouse, France

6 CNES Paris, 2 PlaceMaurice Quentin, 75039 Cedex 01 Paris, France
7 Department of Wildlife, Fish and Environmental Studies, Swedish

University of Agricultural Sciences, SE-90183 Umeå, Sweden
8 Faculty of Environmental Sciences and Natural Resource

Management, Norwegian University of Life Sciences, PO Box 5003,
NO-1432 Ås, Norway

9 Norwegian Institute for Nature Research,
NO-7485 Trondheim, Norway

10 CARMEN, INSERM U1060 / University of Lyon / INRA U1235,
Oullins, France

The Science of Nature (2018) 105: 58
https://doi.org/10.1007/s00114-018-1583-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00114-018-1583-8&domain=pdf
http://orcid.org/0000-0001-6621-7462
mailto:sylvain.giroud@vetmeduni.ac.at


Introduction

To meet energy demands during winter, hibernators rely on
body fat stores that they have accumulated during the previous
summer (Geiser and Kenagy 1993). Fatty acids are mobilized
in a coordinated way: during lipolysis, shorter-chain fatty acids
and unsaturated fatty acids are released first (Connor et al.
1996; Raclot 2003). Nevertheless, polyunsaturated fatty acids
(PUFAs), notably those of the omega-6 series, accumulate in
white adipose tissue (WAT) of many hibernators, suggesting
selective retention of these PUFAs, instead of metabolization.
This selective mobilization of fatty acids may indicate physio-
logical roles of PUFAs alternative to fuel metabolism.

One implication is related to adaptation to low body tem-
perature (Tb) during torpor. When fed diets containing plant
oils that are rich in omega-6 PUFAs, heterotherms exhibit a
higher propensity to use torpor, lengthen torpor bout duration,
lower minimal Tb, and thus increase their energy savings
(Bruns et al. 2000; Florant et al. 1993; Frank 1992; Geiser
and Kenagy 1987; Geiser and Kenagy 1993; Thorp et al.
1994). Heterotherms also seem to prepare tissues for a life at
low Tb independently of the dietary uptake of PUFAs. For
instance, deer mice (Peromyscus maniculatus) have been
found to increase the amount of omega-6 PUFAs in leg muscle
when exposed to short photoperiod (Geiser et al. 2007), and
alpine marmots (Marmota marmota) transfer omega-6 PUFAs
fromWAT to heart and liver phospholipids (PLs) at a high rate
shortly before hibernation (Arnold et al. 2011). In hibernators,
these changes in lipid composition are expected to ensure
proper body functions at low Tb during torpor, possibly
through the maintenance of lipid fluidity (Aloia and Raison
1989; Sinensky 1974; Tiku et al. 1996) and/or the regulation
of membrane proteins by specific lipids (see also Arnold et al.
2015 for review; Giroud et al. 2013; Ruf and Arnold 2008).

Another reason for diverting PUFAs from β-oxidation
might be that some omega-6 and omega-3 fatty acids from
membrane PL are the precursor pools that serve as substrates
for the enzymes of the eicosanoid cascade in most tissues.
Typically, eicosanoids derived from omega-6 precursors, such
as arachidonic acid (20:4ω6), exert pro-inflammatory effects,
whereas those derived from omega-3 fatty acids have anti-
inflammatory properties (Fig. 1) (Schmitz and Ecker 2008).
Beyond their roles in inflammatory processes (Levick et al.
2007; Node et al. 1999; Node et al. 2001), eicosanoids also
exert complex functions over many other bodily systems, such
as thermoregulation (Prendergast et al. 2002; Ruan et al. 2008;
Ueno et al. 1982) and the cardiovascular system (Hoebel and
Graier 1998; Levick et al. 2007; Rzigalinski et al. 1999). For
instance, series-2-prostaglandins that are derived from one of
the cyclooxygenase pathways exert contrasting functions on
thermoregulation in hibernators. Prostaglandin D2 (PGD2)
elicits hypothermia (Ueno et al. 1982), whereas the infusion
of prostaglandin E2 (PGE2) has been shown to cause arousal

from hibernation concomitant with fever in Golden-mantled
ground squirrels, Callospermophilus lateralis (Prendergast
et al. 2002). Although most physiological functions are down-
regulated during hibernation, hibernators are capable of main-
taining the integrity of key organs and important tissues. For
instance, cardiovascular function and brain integrity are pre-
served (Andrews 2007; Johansson 1996; Magariños et al.
2006; von der Ohe et al. 2006; von der Ohe et al. 2007;
Wang et al. 2002), loss of muscle mass and strength are min-
imized (Harlow et al. 2001; Lohuis et al. 2007; Mahlert et al.
2018), and bone structure is maintained (Mahlert et al. 2018;
McGee-Lawrence et al. 2015). Given the large influence of
eicosanoids, characterizing the seasonal changes of eicosa-
noid levels in hibernators is of great interest for determining
whether eicosanoidmetabolismmight play a role in regulating
these physiological processes.

To date and to our knowledge, only one study has investi-
gated eicosanoid metabolism in relation to hibernation under
free-living conditions (Arnold et al. 2012). This is of major
importance since laboratory diets fail to reflect natural diet
selection of free-living animals that, as reported above, con-
strain hibernation physiology and phenology. Further, this one
study was conducted in alpine and yellow-bellied marmots,
which are typical hibernators (of less than 10 kg). Here, we
present a unique dataset from a large (more than 10 kg) hiber-
nator, the free-ranging brown bear (Ursus arctos), studied in
its natural environment. The data are unique since the
Scandinavian Brown Bear Research Project, we are part of,
is the only team that has the experience of capturing free-
living hibernating bears. Although bears hibernate at Tb re-
duced by only few degrees, i.e. from ~ 37 °C in euthermia to ~
33 °C in torpor (Evans et al. 2016), ursids can still reduce their
metabolism during hibernation down to 25% of basal rates
(Tøien et al. 2011). In particular, hibernating bears reach min-
imum specific metabolic rate that lies within the same range of
those occurring in small hibernators (Heldmaier et al. 2004;
Ruf and Geiser 2015). BThis implies that bears use the entire
mammalian scope of metabolic inhibition,^ i.e., suppression
of metabolism, during torpor (Heldmaier 2011). In this study,
we aimed at investigating the cascade of eicosanoids in bears
during winter hibernation and the summer active period, along
with the seasonal changes of omega-3 and omega-6 fatty acid
pathways, i.e., lipoxygenase, cytochrome P450, and cycloox-
ygenase, involved in the eicosanoid cascade.

Material and methods

Study area

The study area encompassed about 21,000 km2 in south-
central Sweden (61°N, 15°E). The topography in this region
is rolling hills, with < 10% above 750 m above sea level. The
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area is forested and dominated by Scots pine (Pinus sylvestris
L.) and Norway spruce (Picea abies H. Karst). The area is
heavily used by the forestry industry, with 8% of the land in
recent clear-cuts and 40% of the trees under 35 years of age
(Moe et al. 2007). The human population is low, but there is an
extensive network of forestry roads and some paved roads.
The area is heavily used by hunters with dogs, not only during
the moose (Alces alces) hunting season in September and
October but also during the bear hunting season, which begins
on 21 August and ends when the quota of 200–300 bears is
filled, usually mid- to late September (Swenson et al. 2017).
The total population estimate for Sweden was 2968–3667
brown bears in 2008 (Kindberg et al. 2011). This hunting
period can overlap with the pre-denning period [usually from
early-October to early-December] that is characterized by an
accumulation of energy reserves and den site selection, essen-
tial for the success of winter hibernation (Evans et al. 2016).
Bears enter the den when snow comes and ambient tempera-
ture falls down to 0 °C, whereas termination of denning seems
to be determined by physiological cues (Evans et al. 2016). In
the southern area, denning of male brown bears lasts on aver-
age for 161 days (end-October to start-April) and duration of
their denning decreases with increasing age and body mass
(Manchi and Swenson 2005). Males emerge from dens earlier

than females, whose denning period is influenced by their
reproductive status, i.e., pregnant females stay the longest
time in their dens (Manchi and Swenson 2005). Most den
abandonments occurred early in the denning season; a recent
study documented that 22% of bears changed dens during
winter and only 4% after mid-December (Sahlén et al. 2015).

Animals and sample collection

Brown bears have been captured annually by the
Scandinavian Brown Bear Research Project and fitted with
neck collars, which included a global positioning system
(GPS), dual-axis motion sensors (to monitor activity), very-
high-frequency (VHF) transmitters, and a global system for
mobile communication (GSM) modem (Vectronic Arospace
GmbH, Berlin, Germany). As a backup to relocate bears if the
collar malfunctioned, VHF transmitters were implanted into
the abdomen (Telonics, Inc., Mesa, Arizona, USA) (Arnemo
and Evans 2017). GPS positions were recorded every 30 min.
Bears that were the offspring of marked females were follow-
ed from birth; otherwise, age was determined by counting the
annuli of a cross-section of the premolar roots (Matson et al.
1993). All captures and subsequent interventions carried out
on the animals were approved by the Ethical Committee on

Fig. 1 Simplified eicosanoid metabolic pathways from omega-3 and
omega-6 fatty acids. The fatty acid precursors (orange), i.e., linolenic acid
(18:3 ω3) and linoleic acid (18:2 ω6), are converted into
eicosapentaenoic acid (EPA, 20:5ω3) and dihomo-γ-linolenic acid
(DGLA, 20:3ω6), respectively. DGLA is further converted into arachi-
donic acid (AA, 20:4 ω6). The free EPA, DGLA, and AA (green) are
then acted upon by the primary metabolic enzymes, i.e., cyclooxygenase
(BCOX^), lipoxygenase (BLOX^), and cytochrome P450 (BCYP^), and

converted to numerous bioactive compounds involved in pro-
inflammatory (red) and anti-inflammatory (blue) processes. Directions
of changes of the fatty acid precursors and various eicosanoid molecules
measured in muscle tissue (BM^) or blood plasma (BP^) of bears in this
study are indicated by upward and downward arrows or by horizontal
arrows when no significant changes occurred. Question marks (B?^) refer
to non-detectable concentrations
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Animal Experiments, Uppsala, Sweden (application no. C47/
9) and the Swedish Environmental Protection Agency.
Further, all experiments were performed in accordance with
relevant guidelines and regulations.

Ten bears (3 males, 7 females, 2–4 years old, 21–58 kg)
were used for this study. Males and females had similar body
mass in summer (t = 0.58, p = 0.60) as well as during winter
(t = 0.90, p = 0.41). All bears hibernated alone and were cap-
tured during winter hibernation in February 2011 and 2012 by
darting them in their den, as previously described (Arnemo
and Evans 2017; Evans et al. 2012). Once anesthetized, we
took each of the bears out of the den (during winter) and
placed them on an insulated blanket. The same individuals
(22–72 kg) were recaptured, when active (Tb ~ 38 °C) in
June 2011 and 2012, by darting from a helicopter (Arnemo
and Evans 2017; Fahlman et al. 2011). The same samples
were taken from these bears during both seasons. Sufficient
quantities from the muscle tissue (vastus lateralis) biopsies
were available from 7 bears in summer and 7 bears in winter,
including 4 bears (1 male, 3 females) that were captured and
sampled in both seasons. Sufficient amount from blood sam-
ples were available from 10 bears in summer and 9 bears in
winter, including 9 bears (3 males, 6 females) with paired
blood samples. Blood samples were centrifuged at 3500 rpm
for 15min at 5 °C. Plasma and muscle tissue were snap-frozen
and stored at − 80 °C for subsequent lipidomics analyses.

Total FAME analysis

We extracted lipids from 1 mg of muscle and 10 μl of plasma
by using a procedure described by Bligh and Dyer (Bligh and
Dyer 1959) in dichloromethane/methanol/water (2.5:2.5:2.1,
v/v/v), in the presence of the internal standards glyceryl
triheptadecanoate (2 μg). Lipid extracts were hydrolyzed in
KOH (0.5 M in methanol) at 50 °C for 30 min and
transmethylated in boron trifluoride methanol solution 14%
(SIGMA, 1 ml) and heptane (1 ml) at 80 °C for 1 h. After
adding water (1 ml) to the crude extract, fatty acid methyl esters
(FAMEs) were extracted with heptane (3 ml), evaporated to
dryness, and dissolved in ethyl acetate (20 μl). FAMEs (1 μl)
were analyzed by gas-liquid chromatography (Lillington et al.
1981) on a Clarus 600 Perkin Elmer system using a Famewax
RESTEK fused silica capillary columns (30 m × 0.32 mm i.d.,
0.25 μm film thickness). Oven temperature was programmed
from 110 to 220 °C at a rate of 2 °C per min, and the carrier gas
was hydrogen (0.5 bar). The injector and the detector temper-
atures were set to 225 and 245 °C, respectively.

Oxylipin quantification

For extraction, each frozen tissue was crushed with a FastPrep
®-24 Instrument (MP Biomedical) in 1 ml of HBSS

(Invitrogen). After 2 crush cycles (6.5 m/s, 30 s), 10 μl were
withdrawn for protein quantification.

Homogenate (the equivalent of 10 mg of muscle) or 100 μl
of plasma were withdrawn for oxylipins analyses, and the
final volume was completed to 900 μl with HBSS. Three
hundred microliters of cold methanol and 5 μL of internal
standard (Deuterium labeled compounds) were added. After
centrifugation at 900 g for 15 min at 4 °C, supernatants were
transferred into 2 ml 96-well deep plates and diluted in H2O to
2 ml. Samples were then submitted to solid-phase extraction
(SPE) using a HRX 96-well plate (50 mg/well, Macherey
Nagel) pretreated with MeOH (2 ml) and equilibrated with
10% MeOH (2 ml). After sample application, the extraction
plate was washed with 10%MeOH (2 ml). After drying under
aspiration, lipid mediators were eluted with 2 ml of MeOH.
Prior to LC-MS/MS analysis, samples were evaporated under
nitrogen gas and reconstituted in 10μl onMeOH. LC-MS/MS
analyses were performed as previously described (Le Faouder
et al. 2013). Briefly, lipid mediators were separated on a
ZorBAX SB-C18 column (2.1 mm, 50 mm, 1.8 μm)
(Agilent Technologies) using Agilent 1290 Infinity HPLC
system (Technologies) coupled to an ESI-triple quadruple
G6460 mass spectrometer (Agilent Technologies). Data were
acquired in multiple reaction monitoring (MRM) mode with
optimized conditions (ion optics and collision energy). Peak

Fig. 2 Summer and winter levels of specific omega-3 fatty acids involved
in the eicosanoid metabolism. Levels ofα-linolenic acid (B18:3ω3^) and
eicosapentaenoic acid (B20:5 ω3^) were assessed in muscle tissue
(Bmuscle^) and blood plasma (Bplasma^) from winter-hibernating
(Bwinter^) and summer-active (Bsummer^) brown bears. Fatty acid levels
are means ± SE. Significant differences between winter and summer
levels are denoted by an asterisk (*p < 0.05)
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detection, integration, and quantitative analysis were carried
out usingMass Hunter Quantitative analysis software (Agilent
Technologies) based on calibration lines built with commer-
cially available eicosanoid standards (Cayman Chemicals).

Statistical analyses

Lipidomics analyses identified and quantified total fatty acids
of the omega-3 (linolenic acid 18:3ω3 and eicosapentaenoic
acid 20:5ω3) and omega-6 (linoleic acid 18:2ω6, dihomo-γ-
linolenic acid 20:3ω6, arachidonic acid 20:4ω6) families, as
well as free eicosanoids with pro-inflammatory agents, i.e.,
epoxyeicosatrienoic acids (B5,6-EET,^ B8,9-EET,^ B14,15-
EET^), leukotriene b4 (BLTb4^), hydroxyeicosatetraenoic ac-
id (B5-15-8-HETE^), thromboxane B2 (BTxB2^), prostaglan-
dins (BPGA1,^ BPGE2,^ BPGF2a^), and anti-inflammatory ac-
tions, i.e., prostaglandin E3 (BPGE3^), 15-deoxy-D-12, 14-
prostagladin J2 (B15d-PGJ2^), and 6 keto prostaglandin F1a
(B6kPGF1a^). Figure 1 provides further details concerning
metabolic pathways of eicosanoids derived from the omega-
3 and omega-6 fatty acids.

Data analyses were carried out using SAS 9.4 (SAS
Institute, Inc., Cary, North Carolina). Standardized residuals

from statistical models were tested for normality using
Kolmogorov-Smirnov tests. We used linear mixed-effects
models (LMMs) accounting for repeated measurements
among animals to test for the effect of season (fixed variable)
on the different omega-3 and omega-6 free fatty acids, and on
eicosanoids (predicted variable). Analyses were performed
using (1) all available samples and (2) only paired samples
(9 for plasma and 4 for muscle). As the analysis with paired
samples was more conservative, only results of the second
analysis (2) are presented. Values are means ± SE.

Results

Omega-3 and omega-6 fatty acids

We found significantly lower plasma levels of linolenic acid
(18:3 ω3) and eicosapentaenoic acid (20:5ω3) in hibernating
bears during winter compared to summer active animals
(Fig. 2). Conversely, levels of linoleic acid (18:2 ω6),
dihomo-γ-linolenic acid (20:3 ω6), but not arachidonic acid
(20:4 ω6), were significantly higher in blood plasma of bears
in winter hibernation than during the summer active season
(Fig. 3). No significant winter-summer differences were detect-
ed in muscle tissue for any of those fatty acids (Figs. 2 and 3).

Fig. 3 Summer and winter levels of specific omega-6 fatty acids involved
in the eicosanoid metabolism. Levels of α-linoleic acid (‘18:2 ω6’),
dihomo-γ-linolenic acid (‘20:3 ω6’), and arachidonic acid (‘20:4 ω6’)
were assessed in muscle tissue (muscle) and blood plasma (plasma) from
winter-hibernating (winter) and summer-active (summer) brown bears.
Fatty acid levels are means ± SE. Significant differences between winter
and summer levels are denoted by an asterisk (*p < 0.05). BND^ refers to
non-detectable concentrations

Fig. 4 Summer and winter levels of eicosanoids with pro-inflammatory
effects. Levels of thromboxane B2 (BTxB2^) and 5-, 15-, and 8-
hydroxyeicosatetraenoic acids (B5-HETE’,^ B15-HETE,^ B8-HETE^)
weremeasured inmuscle tissue (muscle) and blood plasma (plasma) from
winter-hibernating (winter) and summer-active (summer) brown bears.
Eicosanoid levels are means ± SE. Significant differences between winter
and summer levels are denoted by an asterisk (*p < 0.05)
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Pro-inflammatory eicosanoids

We found lower level of TxB2 in muscle tissue of hibernating
bears compared to the summer active animals, whereas TxB2
plasma levels remained unchanged between seasons (Fig. 4).
Further, levels of 5-HETE, 8-HETE, and 15-HETE were sig-
nificantly lower in muscle tissues of bears in winter hiberna-
tion than during the summer active period (Fig. 4). Also, bears
showed lower plasma levels of 15-HETE, but not of 5-HETE
and 8-HETE, in winter hibernation than during the summer
(Fig. 4). Both plasma and muscle levels of 5,6 EET, as well as
muscle concentration of 8,9 EET, showed non-significant ten-
dencies to be lower in hibernating bears than in active animals
during summer (Table 1). However, we found no significant
seasonal changes in other pro-inflammatory eicosanoids, such
as 5-oxo-ETE, LTb4, PGA1, PGE2, PGF2a, and 14,15 EET in
muscle tissue and blood plasma of bears (Table 1).

Anti-inflammatory eicosanoids

Levels of 15dPGJ2 and PGE3 were either unchanged or non-
detectable in muscle tissue (Fig. 5). Plasma levels of 15dPGJ2

and PGE3 were significantly lower in winter-hibernating bears
compared to summer-active animals (Fig. 5). We found no
significant seasonal differences in 6kPGF1a in muscle and
blood plasma of bears (Table 1).

Discussion

In this study, concentrations of the eicosanoids derived from
all three pathways were significantly reduced, or remained
unchanged, in blood plasma and muscle tissue of free-living
bears during winter hibernation compared to the summer ac-
tive season. Further, those changes were independent of the
pro- or anti-inflammatory properties of the eicosanoids. We
also observed significant seasonal changes, although of limit-
ed amplitude, in specific omega-3 and omega-6 fatty acids
involved in eicosanoid metabolism.

Previous studies on hibernators have reported seasonal
changes in levels of some prostaglandins, such as PGD2 and
PGE2, in the brain of alpine marmots (Arnold et al. 2012) and
Asian Chipmunk, Eutamias sibiricus (Takahata et al. 1996).
Specifically, PGD2 concentration increases during winter

Table 1 Summer and winter
levels of eicosanoids with pro-
inflammatory and anti-
inflammatory effects in winter-
hibernating and summer-active
brown bears. Eicosanoid concen-
trations are means ± standard er-
rors and correspond to pg mg−1 of
muscle tissue or pg ml−1 of blood
plasma. ND refers to non-
detectable concentrations

Tissues Effect Variables Concentrations P values

Summer Winter

Muscle

Pro-inflammatory

5-oxo-ETE 4300.01 ± 1559.18 2660.50 ± 1275.52 0.171

LTb4 ND ND ND

PGA1 6.31 ± 3.54 0.01 ± 0.01 0.233

PGE2 9.70 ± 2.51 6.13 ± 1.83 0.502

PGF2a 17.39 ± 5.38 8.35 ± 2.19 0.345

5,6 EET 117.95 ± 32.48 42.63 ± 19.40 0.093

8,9 EET 522.58 ± 112.08 195.99 ± 47.59 0.079

14,15 EET 126.79 ± 53.17 36.99 ± 27.97 0.110

Anti-inflammatory

6kPGF1a 61.91 ± 15.80 42.30 ± 7.85 0.925

Plasma

Pro-inflammatory

5-oxo-ETE 4790.60 ± 1098.86 10,027.09 ± 2952.30 0.230

LTb4 169.22 ± 13.58 153.81 ± 8.27 0.216

PGA1 ND ND ND

PGE2 111.85 ± 29.11 100.04 ± 22.24 0.984

PGF2a ND ND ND

5,6 EET 566.36 ± 111.89 407.02 ± 81.23 0.093

8,9 EET ND ND ND

14,15 EET ND ND ND

Anti-inflammatory

6kPGF1a 363.66 ± 138.24 374.17 ± 39.31 0.930
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when animals lower Tb while entering hibernation, and PGE2

levels are higher during the summer active season when Tb is
elevated compared to winter. In the present study, however,
we did not find seasonal alterations of any of these eicosanoids
in bears that, in contrast to deep hibernators, reduce their Tb by
only few degrees during winter hibernation, which constitutes
the main specificity of the bear hibernation phenotype. This
might therefore explain the lack of significant changes in
levels of these prostaglandins, the implications of which for
hibernation clearly need further studies. Instead, in bears dur-
ing hibernation compared to summer, we found significant
lower plasma levels of other prostaglandins, i.e., 15dPGJ2 (a
dehydration metabolite of PGD2) and PGE3, and a reduced
muscle concentration of thromboxane (TxB2), all of which are
known for their regulatory role in inflammation (see Fig. 1 for
pro- or anti-inflammatory roles). Interestingly, seasonal varia-
tions of anti-inflammatory non-eicosanoid molecules, such as
haptoglobin, were reported in European brown bears, with
plasma levels being highest during hibernation compared to
other times of the year (Mominoki et al. 2005). This supports
the hypothesis that inflammation is an important and central
process regulated by several actors during winter hibernation.
Among eicosanoids, 15dPGJ2 activates both PPARα and γ
(Kliewer et al. 1997; Krey et al. 1997; Li et al. 2005), which in
turn inhibit nuclear factor κB and thus several inflammatory

processes (Poynter and Daynes 1998; Ricote et al. 1999).
Furthermore, the series-3 prostaglandins, PGE3 and PGI3,
both of which are derived from eicosapentaenoic acid (20:5
ω3), have anti-arrhythmic effects and counteract the activat-
ing influences of PGI2 and PGE2 on cardiac function (Li et al.
1997). Also, TxB2, produced from arachidonic acid
(20:4ω6), is a potent vasoconstrictor and platelet activator.
Eicosapentaenoic acid-derived prostaglandins, such as
PGE3, have been shown to inhibit TxB2-mediated platelet
aggregation and promote vasodilatation (Weber et al. 1986).
During months of fasting and immobilization, hibernating
bears are protected from thrombotic complications andmuscle
wasting (for review, see Stenvinkel et al. 2018). Such phe-
nomena are also known to occur in small hibernators (de
Vrij et al. 2014; Mahlert et al. 2018), although their patterns
of eicosanoids change differ from the one of the bears in this
study. The understanding of such phenomena therefore clearly
deserves further studies. In respect to hibernating bears, ani-
mals tolerate extended periods of low heart rate without de-
veloping thromboembolic events or cardiac dilatation. The
protection against vascular disease may be due to changes in
the coagulation pathways, which are under the regulation of
oxylipins such as prostaglandins (for review, see Caligiuri
et al. 2017). Also, black bears are able to retain muscle integ-
rity and to completely spare their muscle cell number or size
and strength throughout winter dormancy (Harlow et al. 2001;
Lohuis et al. 2007). In our study, levels of prostaglandins in
muscle were not reduced, as those of other eicosanoids, but
instead unchanged in bears during winter compared to sum-
mer. Maintaining levels of prostaglandins in muscle during
winter similar to those in summer can likely contribute to
the mechanisms ofmuscle sparing in bears during hibernation.
Indeed, supplementation with arachidonic acid (20:4 ω6)
leads to increased size and protein content of C2C12
myotubes, an effect mediated by enhanced cyclooxygenase
activity and prostaglandin synthesis, leading specifically to
augmented secretion of PGF2a and PGE2 (Markworth and
Cameron-Smith 2012). Therefore, the results of this study
suggest that reduced levels of some eicosanoids ensure the
functioning of the heart and cardiovascular system in hiber-
nating bears and that maintaining relatively high levels of
prostaglandins in winter contributes to the maintenance of
the muscle integrity of bears during hibernation.

In the present study, we also found significant alterations of
eicosanoids derived from the lipoxygenase and cytochrome
P450 pathways. Muscle concentrations of (5-, 8-, 15-) HETEs
and plasma levels of 15-HETE were significantly lower in bears
in winter hibernation compared to the summer active period.
Furthermore, 5,6-EET levels in plasma and muscle, although
not statistically significant, tended to be lower in hibernating
bears than in active animals during summer. HETEs are known
to act on gene expression through the regulation of PPARs. For
instance, 8-HETE interacts preferentially with the α-isoform of

Fig. 5 Summer and winter levels of eicosanoids with anti-inflammatory
effects. Levels of 15-prostagladin J2 (B15dPGJ2^) and prostaglandin E3
(BPGE3^) were measured in muscle tissue (muscle) and blood plasma
(plasma) from winter-hibernating (winter) and summer-active (summer)
brown bears. Eicosanoid levels are means ± SE. Significant differences
between winter and summer levels are denoted by an asterisk
(**p < 0.01). ND refers to non-detectable concentrations

Sci Nat (2018) 105: 58 Page 7 of 10 58



PPARs [PPARα] (Kliewer et al. 1997), which are key players in
the much larger picture of energy homeostasis, in lipid metabo-
lism, in adipogenesis, in cell cycle regulation, and in the inflam-
matory responses (Kliewer and Willson 1998; Latruffe and
Vamecq 1997; Schoonjans et al. 1996). The eicosanoid EETs,
which also are derived from arachidonic acid, have been shown
to have effects on cardiomyocyte function. For instance, 8,9-EET
inhibits cardiac Na+ channels and produces a hyperpolarization
shift in the steady-state membrane potential (Lee et al. 1999).
Also, 11,12-EET can have direct inhibitory effects on cardiac
L-type Ca2+ channels reconstituted into planar lipid bilayers
(Chen et al. 1999). Another study (Xiao et al. 2004), however,
reported the opposite effect of 11,12-EET that accelerated Ca2+

current, through increased cAMP-dependent phosphorylation of
Ca2+ channels, when applied to a cardiac ventricular preparation.
Taken together, these studies suggest that EETs can positively or
negatively modulate the activity of Ca2+ channels depending on
the cellular energy requirements. Given the fact that the activity
level of ion channels is one of the main determinants of the
resting metabolic rate of living organisms (Rolfe and Brown
1997; Smith et al. 2013), the inhibitory effects of EETs might
contribute to the reduction of metabolic rate that occurs in prep-
aration and during hibernation. Similarly, effects of EETs on
specific ion [Na+] channels can contribute to the stabilization of
the cardiac potential, hence to the reduction of heart rate variabil-
ity of the animals while entering into torpor. In brown bears, it
has been recently reported that heart rate variability, a proxy of
sympathetic nervous system activity, drops dramatically once the
bear enters the den (Evans et al. 2016), suggesting the occurrence
of metabolic suppression linked with denning in bears.
Hibernators rely on both a temperature effect, i.e., Arrhenius
effect, and metabolic suppression to reduce their metabolic rate
during hibernation (Geiser 2004). Large hibernators, such as
bears, rely to a larger extent on active metabolic suppression than
passive body cooling to achieve depressed metabolism during
hibernation (Heldmaier 2011; Tøien et al. 2011). Hence, EET
eicosanoids might likely be involved in regulating heart rate
and function at low metabolic level during hibernation in bears.

Conclusion

In this unique study on free-living hibernating bears, we ob-
served significant seasonal changes in the omega-3 and
omega-6 pathways at the origin of the eicosanoid cascade.
Concentrations of the products of the lipoxygenase, cyto-
chrome P450, and cyclooxygenase pathways decreased sig-
nificantly, or remained unchanged, in blood plasma and mus-
cle tissue of bears during winter hibernation compared to the
summer active period. These changes were independent of the
pro- or anti-inflammatory properties of the eicosanoids. Taken
together, these findings suggest that hibernation in a large
mammal is associated with a depressed state of the eicosanoid
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cascade. Whether this plays a role in the various sparing abil-
ities of hibernating bears or simply reflects the hypometabolic
state associated with hibernation remains to be determined.
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