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Abstract

In this paper we aim at modeling stochastic transition rates of state
processes in life insurance by using generalized Cox processes. A feature of
our non-Gaussian model is that it can be used to capture "regime switching”
effects of data which may be due to regulatory changes in insurance markets
or external ”shocks” caused e.g. by an economical crisis, natural disasters or
epidemics. We propose a method how to estimate the unknown parameters
of our model for stochastic transition rates from insurance data by using
non-linear filtering techniques for Lévy processes. As a result we also obtain
an explicit formula for the unnormalized density of a filtering problem with
singular coefficients.
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1 Introduction

An important challenge in the risk analysis and risk management of life in-
surance companies worldwide has been the accurate modeling of transition
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rates as e.g. mortality rates or disability transition rates in the calcula-
tion of insurance premiums. Compared to financial risk of technical interest
rates longevity risk e.g. , which is due to increasing life expectancy of policy
holders and pensioners, is a source of insurance risk, which has been system-
atically underestimated for many years. A reason for the negligence of this
type of risk in the insurance business has also been due to the use of deter-
ministic models for mortality rates as e.g. the classical Gompertz-Makeham
model. The latter models however, which cannot capture the uncertainty of
the future dynamics of mortality rates, have led to a miscalculation of insur-
ance premiums with respect to defined-benefit pension plans and annuities,
from which many insurance companies have suffered substantial losses.

In order to overcome the deficiencies of deterministic models for transi-
tion rates, there have been various attempts in the literature in recent years
to describe the dynamics of future transition rates rates by using stochastic
models. See e.g.the models of Lee, Carter [?] or Cairns, Blake, Dowd [?] in
the case of mortality rates.

In this paper we want to study a non-Gaussian stochastic model for
stochastic transition rates, which allows for the modeling of "regime switch-
ing” effects of data or more precisely ”regime switching” effects of the jump
behaviour or the tails of the distribution of data which may be due to differ-
ent types of influence factors as e.g. regulatory changes in insurance markets
or external ”"shocks” caused by a financial or political crisis, natural disasters
or epidemics.

To be more specific, we consider in the following a cadlag stochastic
process Z;, 0 <t < T with a finite state space S on some probability space
(Q, F, P), which is used as a model for the state of the insured dynamically
in time. Further, we denote by N;i(t) the process which counts the number
of transitions from state 7 to k of the state process Z;,0 < ¢ < T in the time
interval (0,¢]. In a regular insurance model with a Markovian state process
it is well known that

t
Nig(t) — / 1 (8)ds,0 < 1 < T
0

is a P-martingale with respect to the natural filtration {.FtZ where

}0<t<T’
i (8) is the transition rate at time s with respect to a transition from i to
j. See e.g. [?].
One of the deficiencies of such a model as mentioned is that the deter-
ministic transition rates may not capture the actual future transition rates.
Therefore it is reasonable to assume a stochastic model for the transition

rates p;(t),0 <t <T:



In the sequel, let p;;(t,2),0 < t < T be the transition rate at time
t of an insured aged x years with respect to a transition from state i to
state j, 1,5 € S. In particular, the state space S of the insured in the
case of a permanent disability insurance consists of the states x ("alive”), ¢
(”permanently disabled”) and 1 ("dead”).

In order to estimate stochastic transition rates from insurance data one
may think of p;;.(¢,2),0 <t < T as a result of a ”parametrization” of the
deterministic transition rates by means of an unknown ”parametrization
process” X;,0 <t <T.

More precisely, if S = {x, ¢, 1} one could assume that

toltr) = YV 4107

(5) (6)
ni(t,x) = poglt,z) =Y 4107 0
where Y; = (Yt(l), ceey Yt(6)), 0 <t < T is a generalized Cox process given by

dY, = h(t, X;)dt + dB) +/

SNy (dt, ds)
RG

and Xy,0 <t < T the unknown ”parametrization process” modeled by the
stochastic differential equation (SDE)

dX; = b(Xy)dt + o(X;)dBX (1)

for Borel functions h,b and o, where B} € RS, B} ¢ R? are independent
Brownian motions and where N is the jump measure of a ”generalized Cox
process” with a predictable compensator 1 given by

p(dt, ds,w) = A(t, Xy, ¢)dtv(ds) (2)

for a Lévy measure v and a Borel function A.

More generally, we may assume in this paper that stochastic transition
rates p(t,x),0 <t < T,i,k € S are described by a stochastic Gompertz-
Makeham model GM (r, s) given by

pi(t, ) = By (t, ) + exp(h5 (¢, x)), (3)

where hiljf (t,z), h?,’:(t, x) are time-dependent stochastic polynomials of de-
gree r and s, respectively, that is

r

hil].;r(ta SL‘) _ Z Y;(l)xl
=0



and i
h?,f(t,x) _ Zyt(r+1+l)xz
1=0

for all i,k € S.
In order to estimate the unknown ” parametrization” process X, 0 <t <
T from (indirectly) observed insurance data

Y, =, v v vty o< < T, (4)

where * denotes transposition, one can apply non-linear filtering techniques
for Lévy processes as proposed in [?] to the signal process X; € R", 0 <t < T
and the observation process Y; e R™,0<t<T:

dX; = b(X;)dt + o(X;)dB;*, (5)

dY, = h(t, X,)dt + dBY + / SNy (dt, ds), (6)
where m =1+ s+ 2.
Using the latter non-Gaussian filtering framework, we want to model
stochastic transition rates, which are subject to regime switching effects of
insurance data. In modeling this phenomenon one could e.g. assume that

the ”parametrization” process X;,0 <t < T is described by

dX; = b(X;)dt 4 dB;X, (7)

where the drift coefficient b : R® — R" is a discontinuous vector field. An
example of such a discontinuous vector field is

_Joa iz >
b(t, z) = { as else

Here the vectors a1, as € R™ stand for the different regime switching states
the parametrization process X; will assume, if it exceeds a certain threshold
T at time ¢, that is || X;|| > 7, or not.

Another example of such a drift coefficient in the case n = 1, which
exhibits the feature of mean-reversion in connection with regime switching

effects is ( )
_Jaby—=x) ,ifx>T1
blx) = { a(by — ) else

for a,b1,b2 > 0. In this case the parametrization process X; may be inter-
preted as a mean-reverting process with a mean reversion coefficients a and
different long-run average levels by, by depending on the threshold 7.



The parameters a, b1, b2 and the threshold 7 in the above examples are
a priori unknown and will be estimated from insurance data by using non-
linear filtering techniques.

The non-linear filtering problem for our model is to find the least square
estimate to the (possibly transformed) signal process X; at time ¢, given
the history of the observation process up to time ¢, that is to determine the
conditional expectation

Blf(X:) |F],

where f is a given Borel function and where Y is the c—algebra, generated
by {Y5,0 <s <t}.

One of the objectives of this paper is the derivation of an explicit rep-
resentation of the unnormalized conditional density with respect to the op-
timal filter of the filter problem (??) and (??), when the drift coefficient b
in (??) is merely (bounded and) Borel measurable. In solving this problem,
we explicitly construct a (weak) solution to a stochastic partial differential
equation given by the Duncan-Mortensen-Zakai or shortly Zakai equation for
the conditional unnormalized density, which can be regarded as a weak so-
lution to a stochastic Fokker-Planck equation with singular coefficients. See
[?] in the deterministic case. Our method relies on a representation formula
of the unnormalized conditional density found in [?] in the case of regular
coefficients and finite Lévy measures, which we want to invoke in connec-
tion with an approximation argument and local time techniques. As a result
we give an explicit representation of the unnormalized conditional density
associated with the least square estimate of the unknown parametrization
process X; of the generalized Cox process (??) in our model for the dynam-
ics of stochastic transition rates. In contrast to [?] we do not require in this
paper that b is regular in the sense of Lipschitz continuity or that the Lévy
measure v in (77) is finite.

We remark that non-linear filtering has been intensively studied in the
literature since the 1960’s. See e.g. Lipster and Shiryaev [?], Kallianpur
[?], Fleming and Rishel [?], Xiong [?] and the references therein. See also
the innovation approach for the conditional density of the filter process by
Fujisaki, Kallianpur and Kunita (see e.g.[?]). As for solutions of the Zakai
equation in the Gaussian case we refer the reader to Zakai [?], Gyongy,
Krylov [?], [?], Pardoux [?], [?], Kunita [?]. See also [?], [?] or the works
[?], [?], which give a generalization of results in [?], [?] to the non-Gaussian
case.

The main objective of this paper is to introduce a model for the dynamics



of stochastic transition rates which is able to describe "regime switching”
effects of the jump or tail distribution behaviour of e.g. observed mortality
rates or transition rates in disability insurance by using the generalized Cox
process (?7) in the framework of non-linear filtering for Lévy processes,
where the signal process, that is the parametrization process X; of (77) is
modeled by a SDE with singular coefficients.

A popular model for stochastic transition rates in the case of mortality
rates was proposed by Lee, Carter [?]. In this discrete-time model the error
terms are Gaussian distributed. A generalization of the Lee-Carter model
is the Gaussian two-factor stochastic mortality model by Cairns, Blake and
Dowd [?], which is used to describe the different behaviours of mortality
rates at lower and higher ages. Reasons for the success of these models
in life insurance is the simplicity of their implementation and their predic-
tion reliability in forecasting mortality rates under ”usual” circumstances.
However, a disadvantage of these models is that they cannot capture e.g.
the observed skewness and (semi-) heavy tailed innovation distributions of
data coming from cohort effects or short term catastrophic events as e.g. the
Tsunami in 2004. In recent years there have been therefore several attempts
to tackle this problem in the literature. In order to model heavy-tailed dis-
tributions of mortality data Giacometti et al. [?] generalized the Lee-Carter
model by modeling the distributional behaviour of the error terms by in-
finitely divisible distributions in the case of Normal Inverse Gaussian laws.
Another model in this direction, which is based on non-Gaussian distribu-
tions for error terms in the framework of [?], is the paper of Wang et al.
[?]. See also the approach in [?] based on Markov regime switching models
or [?], where the authors employ jump diffusions to describe age-adjusted
mortality rates.

Contrary to our model (??) and (??), however, the above mentioned
models cannot be used to model the rather complex phenomenon of the
occurrence of changing types of jumps or types of heavy-tailedness of dis-
tributions of real data as a result of different types of ”external” shocks.
The reason for this is that these models are finite-dimensional models (in
discrete time). Our model can be regarded as an infinite dimensional model
for stochastic transition rates, since one of the unknown parameters is given
by the parametrization process X;,0 < ¢t < T. In this paper we use the
powerful tool of non-linear filtering for Lévy processes to efficiently estimate
this process from constantly updated observations. Therefore we may expect
that our approach is more flexible than those mentioned and also suitable for
the modeling of other types of stochastic transition rates beyond mortality
rates.



Our paper is organized as follows:

In Section 2 we introduce the framework of our paper and derive an
explicit representation of the unnormalized conditional density associated
with the least square estimate of the parametrization process X;,0 <t < T
by constructing an explicit (weak) solution of a Zakai equation with singular
coefficients. Further, we study the regularity of the obtained solution. Using
the results of Section 2, we finally want to discuss in Section 3 various
specifications of our model and its implementation in life insurance based
on Monte-Carlo simulation.

2 Framework and Main Results

In this Section we want to introduce the mathematical framework of our
general model for stochastic transition rates and to discuss the estimation
of the unknown parameters or parameter processes of the the model from
constantly updated observations in connection with a non-linear filtering
problem for Lévy processes. In solving this problem we derive an explicit
representation of the optimal filter of the filtering problem by constructing a
(weak) LP—solution of the Zakai equation for the unnormalized conditional
density of the filter process with initial Lévy noise and singular coefficients.

In what follows we consider a Lévy process Ly € R™,0 <t < T, that is
a stochastically continuous process with stationary independent increments
starting in zero defined on a filtered complete probability space

Q5 F,7) AF Yocesr

where {F}} -, is a 7" —augmented filtration generated by L..

We may here assume from now on that L;,0 < t < T is a cadlag process,
that is a process, whose paths are right continuous paths and have existing
left limits.

By the Lévy-Itd theorem the Lévy process Ly = (Lgl), ceey Lgm)), 0<t<
T can be uniquely decomposed as

t+
L(Z Z asz + bt + / / 211{||Z‘|>1}N(d8 dz)

t+
/ / Z11{||ZH<1}N(CZS dz)



for 0 <t < T,i=1,.,m, where B, = (B")1c,c; € RLO < t <
T is a Brownian motion, (ak)i<i<m,i<k<i € R™ (b;)1<i<m € R™ and
N(ds,dz) = N(ds,dz) — dsv(dz) the compensated Poisson random measure
associated with the Lévy process L.. Here v is a o—finite measure on the
Borel sets B(R{"), R{' := R™ \ {0}, referred to as Lévy measure, which
satisfies the integrability condition

/ LA || v(d2) < oo
d

Rg

for the Euclidean norm ||-||. See e.g. [?] or [?] for more information on Lévy
processes.

In what follows we want to estimate the unknown ”parametrization”
process X;,0 < ¢t < T from the observed insurance data (??) by analyzing
the non-linear filtering problem

dX; = b(Xy)dt + o(X;)dB}, (8)

m

dY; = h(t, X;)dt + dBY + / ¢N)\(dt, ds), 9)

for the signal process Xy € R™ and the observation process Y; € R™, 0 <t <
T,n,m € N on a complete probability space (2, F, ) , where the Brownian
motion B} € R™ is independent of the Brownian motion B;¥ € R™ and the
integer valued random measure Ny, whose predictable compensator 1 with
respect to a augmented filtration F = {F;},.,.1 (generated by BX, BY | N,)
is given by o

p(dt, ds,w) = A(t, X¢, )dtv(ds) (10)

for the Lévy measure v of Ly € R™ and a Borel function A. Further the
initial condition Xy in (?7?) is a random variable, which is independent of
B{, B} and N.

In order to guarantee a unique strong solution to the system (??) and
(?7), we require for the time being that the continuous coefficients b : R” —
R o :R" — R™" h:[0,T] x R — R™ and A : [0,T] x R x Rj* — R
fulfill a linear growth and Lipschitz condition, that is

Hb(w)H+IIff(w)HJth(t,w)HJr/M(t,fvx)!f/(dC)SC(1+HUCH) (11)
Rp



and

16(z) = bWl + llo(z) = ()]l + [A(t, 2) = h(t, y)||

|b(z
/|)\ (t,x,6) = A(t, y, )| v(ds) (12)

< CHfC—yII

for all z,y,t and a constant C' < oo, where ||-|| stands for a vector or matrix
norm.

For the convenience of the reader we now want to give a derivation of the
Zakai equation for the unnormalized filter of the non-linear filtering problem
(7?), (?7). See e.g. [?] or [?] in the case of Wiener noise driven obervation
processes.

For this purpose denote by m; : Q x B(R™) — [0, 00) the regular con-
ditional probability measure of the signal process X; given the o—algebra
FY, generated by {Y,,0 < s < t} and the null sets A'. Then

E[f(Xe) |[F] = (7. f)
for all f € Cb(]R”) (space of bounded continuous functions), where (7, f) :=
fRn x)my(w, dx).

Suppose that the function A : [0, 7] x R" x Rj* — R is strictly positive
and consider the density process

Ay = exp{lzj;/ot—hi(s, ydBYt — = / [h(s, Xs)||* ds
+/Ot/m—log)\(S,Xsﬁ)N)\(dS’dg)_‘_/O /m()\(s,XS,§)—1)d8u(d§)},
(13)

for0 < ¢t < T, where BY = (BY'', ..., BY¥™)* and h(t,z) = (hi(t,z), ..., hm(t, z))*
(* transposition). Further, assume that

E[Ar] =1. (14)



Remark 1 Using stopping time localization of Doleans-Dade exponentials,
one obtains e.g. the following sufficient conditions for (77):

t
sup E| exp(6 / (s, X,)|2 ds

0<t<T

—|—4/ /m (1-— (s, Xs,6))A(s, Xs,6)dsv(ds) (15)

/ /m (1 =A7%(s, X, ))A(S,Xs,c)dsu(dg)] < 00

/ /m (s, Xoc) - 1>A<s,xs,<>\y<d<>ds]

S — 1% 2 S (0. ]
/0 (/Bnl(k( , Xo, <) — 1)| v(ds)) d] <

+F

E /[)T/z)n IA(s, X5, ¢) log)\(s,Xs,g)|d31/(dg)] < 00 (17)

An example which satisfies the conditions (7?), (?7) and (??) in the case
m =1 is given by

v(ds) = ¢(<)ds, (18)
where .
- ' <1
_ |§‘1+a ) Zf ’C‘ —
#() { 0 else

for a € (0,1) as well as h is a bounded Borel measurable function and

A(s, @) = exp(¥(z) |<]) (19)
for a bounded and continuous function ¥ : R — R.

Define now the probability measure m with Radon-Nikodym derivative
on (Q,F; ) given by
dm

i p—
du]-'t t

and require that

/d 2] v(dz) < oo (20)
RO

10



Then by Girsanov’s theorem and the uniqueness of semimartigale charac-
teristics (see e.g. [?]), the observation process Y;,0 < ¢ < T becomes a
Lévy process being independent of the signal process under the new prob-
ability measure . More precisely, the system (?7), (??7) has the following
representation under 7 :

dX; = b(Xy)dt+ o(Xy)dB;*
dYy = dBy+dLy, (21)

where Y. is a Lévy process independent of X. with
t
Bp:Bf—/X—M&XQM&0<t<T
0

the Gaussian part and

t
Lt:// ¢N(ds, ds)
0 JRE

the jump component with respect the Poisson random measure N (ds, ds) :=
N (ds, ds) with compensator dsv(ds).

Since Y. is a Lévy process under 7, we also observe that the (augmented)
filtration FtY , 0 <t < T is right-continuous.

The so called unnormalized filter (¥y,-),0 <t < T is a stochastic process
taking values in the space of finite Borel measures on R”, and is given by
the Kallianpur-Striebel-formula, which is a consequence of Bayes’ rule:

Theorem 2 The optimal filter w; has the representation

(U, f)

<7Tt,f> = <‘I’t,1>

with
(U4, f) = Ex|Zof(Xy) | F) )

for all f € Cp(R™), where E; denotes the espectation with respect to m and

11



where

Zt = At_l

m t ) 1 t
_ exp{Z/ h,-(s,Xs)dB;2/ (s, Xo)|2 ds
=10 0
t
[ oa(s. XN (ds,do)
0 Jrm

t
L A YO ) TS
0 JRg
for 0 <t <T under .
Remark 3 We mention the fact that
Eq[¢|F] = Exl¢|A]
for all Fy—measurable & with Er[|£|] < oo, where

A= \/ Fr.

0<t<T

See Proposition 3.15 in [?].

We also need the following Lemmata for the derivation of the Zakai
equation:

Lemma 4 Let f € C;°(R™) (space of smooth functions on R™ with bounded
partial derivatives). Assume that the coefficients b,o in (77), (7?7) are
bounded and that

T T
exp <496/ Hh(s,Xs)||2ds+/
0 0

T
+32 /
0

FE ds

/Rm(l — X*2(s, X4(6),<))v(ds)

d)] <o,

(/OT (/m llog A(r, X,(8), )| y(dg))kdr> ] < 0, (24)

/Rm(l — (s, X5(0),¢))v(ds)

E

0

12



forallj=1,2,4,8 k=1,2,3 and

/ /m — A (s, X(0),5)| v(ds)ds]

PRI (026 X002

< 0.

(25)

Then there exists a cadlag modification of the unnormalized filter (V., f) .

Proof. See Appendix. m

Remark 5 An example satisfying the assumptions (?77)-(??) in Lemma 77
1s given by Remark ?77.

Lemma 6 Consider F—predictable processes ay, By, 7:(+),0 < t < T such
that

T
Eﬂ[/0 (el + 18,ds] < oo,

T
E”[/o / P dsv(ac)) < o

t t
Eﬂ[/ asds |7 ] —/ Elas |FY ] ds
0 0

t t
Eﬂ[/ 6,dB, | Y] =/ Eq[8, |FY] dB

/ / v,(S)N (ds, ds) |fY / Er[vs(s ‘.FY] (ds,ds)
m Rnl

t
EW[/ BB |F] =0
0

Proof. The proof is essentially based on the independence of the incre-
ments of the process Y;,0 < ¢t < T under 7 and can be e.g. found in [?] or
[?] in the case of Brownian motion. m

Then

Using the latter auxiliary result, we obtain the following Zakai equation
for the unnormalized filter of the non-linear filtering problem (?77?), (?7?):

13



Theorem 7 Assume the conditions of Lemma 7?7 and require that

sup E7THZS()‘(5a X87g) - 1)’p] < o0 (26)
0<s<T

for all ¢ and some p > 1. Then the unnormalized filter (Vy,-),0 <t <T is
a cadlag FY —adapted solution to the Zakai equation, that is to the SPDE

t

W f) = (Vo f)+ /0 (W, L£f) ds + /0 (W, f-h*(s,))dB,  (27)

t o~
+/ <\Ijs—7f : ()‘(37 ’7§) - 1)> N(d57d§)
0
for all f € D C C((R™) (space of compactly supported infinitely often

differentiable functions of R™), where D is a (countable) dense subset of
L?(R™) and L the generator of the diffusion process X. given by

L) =3 Y oo s +Zb (28)

7,0=1
with o(x) = (045(2))1<i j<n and b(z) = (b1 (x), ..., by(x))* and where N(ds, d<)

1s the compensated Poisson random measure associated with the Lévy process
Y;,0<t<T underm.

Proof. It follows from It6’s Lemma for f € C°((R") that

f(X3) = f(Xo) /Ef ds+/ V*F( X,)dBX,

where V* denotes the transposed gradient. On the other hand we know that
the process Z;,0 <t < T in Theorem 77 satisfies the SDE

Zt_1+Z/ Zshi(s, X,)dBi+ // (s, X5,5)—1)N(ds, ds). (29)

So using integration by parts, we obtain that

¢ t

0 0

m ¢ .
+;/0 Zsf(Xs)hi(s, Xs)dB;

+/0 /81 Zs— f(Xs)(A(s, Xs,) — 1)N(ds, ds).

14



The conditional expectation with respect to .7-"tY applied to the latter equa-
tion combined with Lemma 7?7 then gives

(U f) = <‘1’0,f>+E7r[/0 ZLF(X)ds | 7]

+Eq| /0 2.9 (X ) (X)dBY 7]

+ ﬁ:;E[ /0 2o (X, hi(s, X)dB, 7]

] /O / | 2o fOE) N6 Xar ) = DN, 49|77
- <\110,f)+/0 (\I!S,£f>ds+;/0 (Ug, f - hils,-)) dB;

t ~
+ /0 / (e ] o0 = 1) N, ),

where we used Lemma 77, Remark 77, the continuity of the paths of X;,0 <
t < T, the continuity of A and (??) in connection with uniform integrability
under the measure 7. ®

Remark 8 The condition (??) in Theorem 7?7 holds, if e.g.

sup Er[ZP] < o0
0<s<T
and
sup FEr[|A(s, Xs,6) — 1P < C
0<s<T

for all ¢, some constant C with pr < 2, %—i—% =1,r,q > 1 are satisfied. The
latter conditions are e.g. covered by the conditions Bl — B6 in the paper
later on.

In addition to the conditions (??), (??) let us from now on also require
that the drift coefficient b is bounded and o = Id (identity).

Using the independence of the increments of the observation process Y.
under m and the probability density of the signal process X;, which ex-
ists in this case, our assumptions on b, h, A and v imply that there is an
FY —adapted process ®(t,-),0 < t < T, called unnormalized conditional
density, such that

(Uy, ) = flz)®(t,x)dz,0 <t <T
Rn

15



for all f € Cp(R™). Hence we can recast the Zakai equation (??) in terms
of the unnormalized density and find that ®(¢,-),0 < ¢ < T satisfies a
stochastic Fokker-Planck-equation, that is the SPDE

di®(t,x) = L'P(s,z)dt+ (30)
O(t,x)h*(s,x)dBy —|—/ (™, z)(A(s, x,¢) — 1)N(dt, ds)

(I)(()? l‘) - po(ﬂf),

where £* is the adjoint operator of the generator £ of X; and where py(z)
is the probability density of X, in a weak sense, that is ® € L7 ([0,T] x
R™; L2(92)) is F} —adapted process, which solves the equation

/n O(t,x) f(z)dz (31)

_ /Rnpo(x)f(m)dq:Jr/Ot/nq)(s,x)ﬁf(x)dmds
+/t/ (s, 2)h* (s, 2) f (x)dzd B,

//m/n (A(s,x,¢) — 1) f(x)dzN(ds,ds),0 <t < T

for all f € C°((R™).

In fact, it was shown in [?] that the Zakai equation for the unnormalized
density (??7) has a unique strong solution ®(¢,z) to (??) in LP(u),p > 1,
which is twice continuously differentiable in x, under the following conditions

Al : The Lévy measure v is bounded.

A2 :  The drift coefficient b is contained in Cg A(RM).

A3 : The initial condition pg in (??) is positive and belongs to
C§+ﬁ (Rn) _

A4 . The intensity rate A is strictly positive and A(+,+,<) €
C;’z(R+ x R™)N CQ+B(R+ x R™) uniformly in .

. a n n
A5 Za—wibi € C2(R™ N C*ARM).

A6 : The observation function h is contained in
CrP(Ry x R™) N O (R, x R™).
AT ¢ A, 0<t<Tin (??) is a martingale,
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where Cll;T(RJ,_ x R%) is the space of I-times in ¢ € (0,00) and r-times in
z € R? continuously differentiable, whose partial derivatives are bounded
and have continuous extensions to Ry x R? (Ry := [0,00)). The space
C™B(U) denotes the space of functions in C"(U) with all partial derivatives
up to order r being Holder continuous of order 8 € (0, 1).

Moreover, the strong solution ® to (?7) has the following explicit repre-
sentation:

O(t, z,w) .
x * n t 8 .
= ElpoX <9))e}<p(—; /0 o bi(XI(0)ds)
T

exp{ T_th (S,Xs—(T—t)(9))st(w) / Hh 5 X2 t H

T ~
+/Tt/mlog()\(s,X:_(T_t)(H),g))N(ds,dg,w)

. 0
+ /Tt /m(log()\(s, X2y (0),6) = (\(5, X2 7y (0),6) — 1))dsv(ds)}]

where X7(0) = X3"(0),0 < s < T, is the solution to the time-homogeneous
SDE
dX; = —b(X])dt + dB;, X} = v € R? (33)

for a Brownian motion B*, defined on an auxiliary probability space (0, IC, ).

In order to capture "regime switching effects” in the framework of our
model for the stochastic transition rates p,(t,z),0 < ¢t < T in (??) and
in view of Monte Carlo simulation techniques with respect to such transi-
tion rates, we now want to extend the representation of ® (??7) under the
conditions A1 — A7 to the case, when the drift coefficent b of the signal
process is merely bounded and measurable. In addition, we aim at relaxing
the condition A1 of compound Poisson Lévy measures v in (?7?) to that of
finite-variation Lévy measures v satisfying (??). Furthermore, we will show
that such a ® solves the Zakai equation (??) in the weak sense.

To this end we need to recall the concept of stochastic integration over
the plane with respect to Brownian local time. See [?]:

Consider elementary functions fa :[0,1] x R —R given by

fA(S,I') = Z fUX(s] s]+1]( ) (:731,171_,_1]( ) (34)

(sj,xi)EA

17



where (2)1<;<,, » (fi)1<j<n.1<j<m 2re finite sequences of real numbers, (s;); <<,
a partition of [0,1] and A = {(s;,2;),1 <i<n,1 <j<m}. Denote by
{L(t, ) }o<t<1 zer the local time of a 1—dimensional Brownian motion B.
Then the integral of integration of fa with respect to L is defined as

/Ol/RfA(s,x)L(ds,dm) (35)

= Y fi(L(sjersmirn) = L(sj,@ign) — Lsjin, @) + Lsj, @)
(sj,xi)EA

The latter integral can be generalized to integrands of the Banach space
(H,||-]]) of measurable functions f endowed with the norm

i = 2( [ [wemren- 28)382@)1/2 (30)

dsdx
+ /0 /R (5, ) exp(—;gs —

If f is such that f(¢,-) is locally square integrable and f(¢,-) continuous
in t as a map from [0, 7] to L? (R), then f € H and

loc

/Ot/Rf(s,x)L(ds,dx), 0<t<T
|

for 0 <t < T. Further, if f(¢,x) is differentiable in z, then

//fsaz (ds, dx) /fsB ds, 0<t<T,

where f’(s,x) denotes the derivative in z. See [?].
Assume now that B, = (Bt(l), - Bgn)> ,0 <t < T is aBrownian motion,

whose components Bgi) are defined on probability spaces (2, Fi, p;), @ =
1,...,n. In what follows we denote by

exists as well as

/ f(s,z)L(ds, dx)
0 JR

| <z

Bi=BY, . .BYY:=Br_,, 0<t<T, (37)
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the time-reversed Brownian motion. The process Et(l) satisfies for each i =

1,...,d the equation

~C =) | T thl)
Bg):B§)+Wt()—/O T—sds’ 0<t<T, ace., (38)

where I/[N/t<i), 0 <t < T are independent p;-Brownian motions with respect
to the filtrations .7-",53(2) generated by B.(Z), i=1,..,n. See [?].

Using the relation (??) one obtains the following decomposition of local
time-space integrals (see [?]):

t
/ /fi(s,a:)Li(ds,dx) (39)
0 Jr
t — . — . T AN T~ .
— [ fsBOABY & [ T - s B
0 T—t
T . BW
_ (T — (i)y =5
- fi(T' — s, B, )T = Sds,

0<t<T, ae. for f € H,i=1,...,n. Here L;(t,x) is the local time of BY
on (Q,p;), i =1,...,n.

In the sequel we also need the following auxiliary result (see also [?]):

Lemma 9 Let B;,0 <t <T be a 1—dimensional Brownian motion. Then
T
B
E [exp <k‘/ ‘;‘dt)] < 00
0

Proof. See Appendix. m

for all k > 0.
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Let us now assume that the following conditions are satisfied

B1

B2

B3

B4

B5

B6

and

The Lévy measure v fulfills condition (?7).

The drift coefficient b is Borel measurable and bounded.
The initial condition pg in (??) is positive and belongs to
CIHP(RM).

The intensity rate X is strictly positive and A(, -, <) €
02’2(R+ x R") N C?*P (R, x R™) uniformly in .

The observation function h is contained in

CrP (R4 x R™) N OB (R, x R™).

A satisfies (7?)-(?77), (?7)-(?7)

and the following integrability conditions

T —

ilégE[exp@OO{/O /gl\()\(s,Bs,g)—ll (40)
max ' (s B% ) —1|dsv

s /o/gn‘“ (s, BZ.<) — 1] dsw(d<)})

n=1

< o0

T ‘ 8
sup E / / |log )\(s,Bf,g)‘zdsy(dg) < 00, (41)
xelU 0 o

for all i = 1,2,4,8 and all bounded U C R".

We mention that condition B2 implies the the existence of a unique
strong solution X* to the the SDE (?7). See e.g. [?].

We obtain the following existence result for weak solutions of a singular
stochastic Fokker-Planck equation driven by Lévy noise, that is the SPDE
(??) with the adjoint operator £* of the generator £ of X, for merely
bounded and measurable drift coefficients b : R* — R:

Theorem 10 Suppose that the conditions B1—B6 hold. Then there exists a
weak solution ® to the SPDE (??7), which is given in law by the unnormalized
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density and takes the explicit form

O(t,x,w) (42)

T * R 1 T RT 2
expl [ (s By O)dBw) — 5 [ nts Be o) ds
T—t T—t

T ~
[ 0RO BE (60 )N (ds.dsv)

T— 0

T _
+ /T y / 6n(log(A(SaBZ”—(T—%)(&)‘))

T
~OMa B gy (0).9) = D)dsv(do}E( [ (B (0))aB)

where Ey denotes the expectation with respect to the product measure 9 =
fg X e X gy wz‘thAB.(z) is a Brownian motion on (4, p;), i = 1,...,n, BE(0) :=
x + B(0) and Bf(0) := x+ B(0). Further,

t
e[ (B 0B,
0
t B B 1 t B 9
— exp( | v BEO)BO) - 5 [ |WB ) d.0<e<T
0 0
1s the Doleans-Dade exponential.

Proof. The proof is based on the explicit representation for the unnor-

malized density ® in (??) and an approximation argument with respect to
the function b and the Lévy measure v.

Consider a sequence of Borel sets U,,r > 1 of R{* with U,  Rf such
that v(U,) < oo for all r. Define the compound Poisson Lévy measures v,
by

ve(B) = /B 15, (s)v(ds),

where 14 is the indicator function of a set A. In the sequel we denote by
N, (ds,ds) the Poisson random measure associated with the Lévy measure
Ve, 7 2> 1.
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Let us also choose functions b" € C°(R™), r > 1 such that
15 (@)l < M < o
for a constant M and all x,r as well as
b"(z) — b(x) a.e.

for r — o0.

In the following let us denote by @, the unique (strong) solution to the
SPDE (??) with respect to the drift coefficent b” and by X", 0 <t < T
the strong solution to the SDE

dX;]" = —b"(X;")dt + dB}, X" = x € R" (43)

for all r.

In what follows let € U for a bounded set U C R™.

Using Girsanov’s theorem and the explicit representation of ®, in (?7)
for b="b" and v = v, based on the condition B6 we find that

D, (t,x,w) (44)

B ex ; tir BY s
= Bl (B O) ew({ || 5B
T 1 (T - 9
exp{ | (s, B O)aB) — 5 [ [nis By )] s
T ~
[ / 108(A(5, BE 7y (6),5) N (ds, ds, )

/Tt/mbg (5. By (0),)

T _ —
(5 BT g1y (8),) — 1))dswn(de) }E( /0 (7 (B2(60)))"dBy)).

If we apply (?2) to B™ on (€, ;) for

fis,2)
= bj(x1 +
+

Ti—1

B (1), ..

§ )(Wifl)a Z,%; + Bﬁ"*” (wz’+1)7 ey Ty + Bgn) (Wn))
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then we get that

D, (t,x,w) (45)
= ex [ <@>+/T by (BZ(0))dw
= Bl (B O e[ oEOaBY < [
T r (DT §§Z)
- [ wBzo) s

/Tt/mlog (s, By_(7—1)(0),<))
T —
~(As BEr(0).6) = s (de)E( [~ (BE6)dB).
Then it follows from the mean value theorem that
E[((I)T(ta I’,W) - @(tvwaw))2]
_ 1 2
= Blloo(Br 005 + 13 + 157 ( [ explly + 705 + 15 + ) ),
0

where F is an expectation with respect to a probability measure under which
Y. associated with the bounded and measurable drift coefficient b is the Lévy
process of the type in (?7) and where

Io =151 +15o+ 1j3

with
=3 / b (B2(0))dB) + / b (B2(0))dIT
i=1 70

T—t
T R R ()
- / b (B (0)) 22— ds),
Tt T—s
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Boim [ w6 By @B~ 3 [t B o) a

. Z{ / (b7 (B2(0)) — bi(BZ(60)))dBY) + / (b1(B2(6)) — bi(BE(6)))d v

T—t

T Agi)
- /T t<b2<B§<e>> bi(B2(6)) ——ds),
T -~ ~
/ [ 1085, By (6), ) (Vs s, ) — N{ds, ds,)
T—t ]R
T
+/T/m log(A(s, B 7_y(6),))

NS, BE 1y (9, 6) — 1) (v (ds) — v(de))
- [ L 080 B 0,610 () ~ 1)V s s
/Tt (0805, B 1(0):9)
A B2 g (0),6) = 1)1, (6) = Ddsw(ds),
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T

jr / (W (BE9))* — (b(BE(6))))dBs
0
-3 [ @zl - Jszen|a

It follows from the boundedness of the probability density py and Holder’s
inequality that

(@, (t,2,0) — O(t,2,0))? < CJ1J3
for a constant C' < oo, where

Ji = Bl + 13 + 15)''?,

1
Jp = (/ Elexp(4(I§ + r(I} + I + I)))]dr) /2.
0
Using Burkholder’s inequality, we find that

Ji
Ki(E [IITI 2+ BN+ BN

Z{E / (b (BE(6)) — bi(B2(6)))"ds] /2

IA

IN

T
+E[/T_t(b§(3§(6)) — bi(Bf(Q)))4ds]1/2

+E( /T Tt

T _
E[(/T_t/m((log()\(s’Bf—(T—t)(0)7§)))2(1Ur(g) ) dew(de))]

BO| /(T — s))ds)*]"/?}

b (B2(6)) — bi( B2 (6)| (

T
+E[/T t/m((log(A(S’Bl’_ (6),90) (1o, () — 1)) dsw(de)] />

/Tt/m‘log (s, B —(r-)(0):6)) = (A(s, (Tt)(e) s)—1))
J(1y, (s) = D] dsv(ds))*]"/?

g T DRT DT 4 1/2
+EL [ (@) - bz

T > 2 — 2
+E[/O (6" (B @D — [[b(Bz(9))]")*ds]'/?)
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for constants K7, Ko < co. Since

(| "BV spasy) < o

T—t

for all [ > 1 (see Lemma ??) and since by assumption

E

(/TT_t/m(log()\(s’Bf_(T_t)(G),§)))2d81/(dg))2] < o0,

E

(/TTt /m ‘108}()\(8, By (9)7§))’ + ‘/\(S, BY (7_p(0),5) — 1‘ dSV(dg))4]
< o0

it follows from dominated convergence that
Ji — 0 for r — o0.

Further, we obtain by Holder’s inequality that
1
Jy = (/0 Elexp(4(Ig + 7(I] + I + I3))))dr) /2
1
< ([ Blewp(2u1g, ) Elexp(2113,)) *Elexp 241 )]
0

Elexp(67I])]Y6 E[exp(6715)]"° Elexp(6715)]/5dr) /2.

Using localization applied to Doleans-Dade exponentials combined with Lemma
7?7 once more, we get that

Elexp(241,1)]

IN

T — 2
Elexp(K / o (B2 (0))]|? ds)]2/3

T A~/
Blesp(ty [ [BO| /(7 = 9)ds))?

T

IN

KsE[exp(Ko / /(T — s))ds)]l/g‘

’ B
T—t

s

IN

Ky <o
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for constants K;,i = 1,...,4. On the other hand, repeated use of a localiza-
tion argument with respect to Doleans-Dade exponentials yields

Elexp(241; )] (46)

T
< E[exp(1128/ |n(s, BY)||* ds
0

T
—|—48/ / ‘1 — (s, BE, g)’ dsv(ds)
0 JR§

T
+ / / 1= X5, BZ,6)| ds(ds))] /2
0 m
o 0

Similarly to the above estimates we see from our assumptions that

Elexp(241 )]

IN

T
E[exp(K/O 17 (B) || ds)] /2

< M < oo,

Elexp(6717)]

IN

T 5 = 2
E[exp(K1/0 b7 (B2(8)) — b(B (6)) || ds)]*/?

T
70

s

Elexp(J / /(T — 5))ds)]

T—t ‘

< C< oo,

Elexp(6713)] (47)

< exp24// 11— (s, BY,<)| dsv(d)

//m — \2(s, B, 6)| dsv(ds))]M/?

< R< o
and

Elexp(6713)]

IN

T rp||2 pTy |2 1/2
Elexp(K /0 (167 (B[ + |[o(B2) ) ds)]

< H<oo.
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Altogether, we obtain that for all bounded sets U C R" :

sup  E[(®,(t,z) — ®(t,x))*] — 0 (48)
0<t<T,zeU

for r — oo.
Denote by L, the differential operator in (??) for b = b". Then, using
the Ito-isometry, relation (??) implies that

/ B0 f()dr — [ @12 f()dr,

-
/Ot/nq)r(3>$)£rf(:v)d:vds — /Ot/n@(s,x)ﬁf(x)dxds,

/Ot/n<I>r(s,x)h*(s,x)f(x)dxd38 — /Ot/n@(s,x)h*(s,x)f(x)ddes
and

/Ot/gl /ncI)m(s,a:)(/\(s,a:,g)—1)f(x)dx]\~fr(ds,d§)
- [ g ) [ s 0)\s,,0) = D)1y, ()N (ds.de)
. /Ot/én /n@(s,x)(A(s,x,g)—1)f(x)dxﬁ(ds,dg)

for 1 — oo in L%(Q) uniformly in ¢ for all f € C®(R"). Thus ® €
L2 ([0, T) x R™; L*(9)) is an adapted process, which solves the SPDE (?7)
in a weak sense.

Consider now the unique strong solutions X;,0 < ¢ < T, r > 1 of the
SDE for the signal process (77)

dX] =b"(X})dt +dB;*, X} =«

and denote by Y;",0 < ¢ < T the corresponding oberservation process.
It is known that
X — X for r — o0

in L2(Q) for all t. See e.g. [?].
Denote by Z7, m,. the Doleans-Dade exponentials and probability mea-
sures in (??) with respect to b" and v,, r > 0, where we set by := b, vy := v,
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Z. =279 m, := m. Since X' is independent of Y under 7,, we find by
means of Girsanov’s theorem applied to the signal process that

Er, (2 f(X]) |F ] ()

= ex Y t‘s_”‘“ i’rw—lt s, BY % ds
= Blesp(y [ o, BEOMBY (@)~ [t B0
—i—/ot/mlog/\(s,Bf(@),g)lU,,(g)Nr(ds,dg,w)
t
[ 0= As B O (dsw(d)}

— T — —
f(ff?é’”(@))r‘i(/0 (b"(B$(0)))"dBs)]

m.—a.e. and therefore y—a.e., where B and N" are the Brownian motion
and Poisson random measure under 7,, respectively.
Let g be a bounded Lipschitz function on R. Then

E[(9(Br, 12 f(X7) |7 )]

_ ex - t.siI i—l t s, BY 23
- BBl | s BEonaBi— 5 [ s, Bz0)|a
N /0 t / log A(s, BE(0), )10 ()N (ds, ds)
N / / (1= A(s, BE(O), )1, (<)dsv(ds) }

— T —
F(BE6))E( /0 (b (B2 (6)))*dBy)))

where 7* is a probability measure under which B. is a Brownian motion inde-
pendent of a Poisson random measure N associated with the Lévy measure
v. By using the same reasoning as above, one sees that

Eul(9(Er, 127 F(XD) |F )] — Eul(9(Bx[Zif (X0) | F])]
for r — oo. Hence
Er (20 F(XD) |FY] — ExlZuf(X0) |7

for r — oo in distribution. Similarly, by employing the representation (?77?),
we have that

Er [Z J(XD|F] — | f@)®(t,2)de

R”

r
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for 1 — oo in distribution for all f € C°(R™).

On the other hand, since X; possesses a probability density, we also
know that there exists an unnormalized density ® of the corresponding filter
problem. So we obtain that

Eu[(9(Ex[Zof(X3) |[FY])]

/f d(t, z)dz)] = /f O(t, z)dz)]

for all bounded Lipschitz functions g and f € C°(R™). If we now choose f
such that

1 y—=x

f@) = Zn(=5)

for a standard mollifier and € > 0, then we find for € ™\, 0 that
E,[(9(2(t,2))] = Eu[(9(®(t,2))]

r—a.e. Hence, separability implies that for all ¢

D(t,z) Y (¢, 2)
r—a.e. N

Our next result, which pertains to the regularity of solutions ® given by
(??) in the case of discontinuous drift coefficients b : R — R, requires the
following additional condition:

' B P 16
Bal [ (s, B2 00) — h(s, B0 [ s )
T
+/0 /om |log(A(s, B (6). <)) — log(A(s, B¥2(8),<))|" v(ds)ds
T
+(A /671 |10g()\(s,B§1 (9)’g)) — log()\(s’B;CQ (0)7g))|47/(d§)d8)2
T
/0 / |log(A(s, BS1(6),5)) — log()\(s,Bga(Q)’gm? v(ds)ds)?

T
+(/ /m ’log()\(S,Bfl(G),g)) —log(A(s, Bff(T_t)(a)jg))‘ dSV(dg))S
/ / A BEH(9):6) = Als, Bi(6), )| dsv(de))7]

< C |x1—x2\ +|x1—:c2])
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for all z1,z2 € R, where C' is a constant.
We obtain the following regularity result:
Theorem 11 Retain the conditions of Theorem 77 and suppose that (77)
holds. Further, assume that the drift coefficient b in (7?) is a step function
of the form
,
b([l?) = Zgil(ai,bi](x)vx €R,

i=1
where £;,a;,b; e Rye=1,...,7.
Then for allt a modification of the weak solution ®(t,-) to the SPDE (77) in

Theorem ?? is locally Hélder continuous with exponent o for all v € (0,1/4).

Proof. Using relation (??), we see that ® can be written as

O(t, z,w) = Ey[po(Bf (9))1 ()],

where
= eX t B S
)= expl [ [ o) 2™ (ds.d)
T 1 (T - 9
| B g@)aBe) — 5 [ w8z g0 as
T ~
[ 10805 By 0).6) Vs
T
[ ] e B2 (0).9)
T
~sBE g (0).) = D)@} | ~bBE0))aB)
Hence,

E[(®(t,x1,w) — D(t, xg,w))4] (50)
< CE[Ey[(po(BF*(0)) — po(B*(0)))*(I(z1))*
+(I (1) — I(x2))"))
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for a constant C. On the other hand, it follows from the mean value theorem
and Holder’s inequality that

E[Ey[(I(x1) — I(x2))]]
< CE[E[((Ii(z1) — I(22))® + (Io(21) — La(2))® + (Is(z1) — Is(x2))%)]]

BIFSL [ exp(Stia(en) + Ien) + Ioe)

N

+r(L(ey) — L(22) + Io(21) — Ta(x2) + Iy(1) — I3(22))))dr)]]2,

= [ [ oL as. ),

where

/.
T D —
+/Tt /R log(A(s, By_(p_4(8),5)) = (A(s, B_(7_y (0),5) — 1))dsv(ds)

and

T T
h(w)i= [ -WBO)B. ~ 5 [ (G(E0) ds

Using the above notation, we have that
B[By[((I3(z1) — I3(22))"]]

T T
< cml([ WBP OB, - [ WB0)iB)
T T
LBy /0 (b(BZ1(6)))2ds — /O (b(B2= (6)))ds)*).

Further , it follows from the Tanaka formula and our assumptions on the
drift coefficient b that

—Zfl T,b; —x)— L(T,a; — x)) Zfz {(BS = b))~ = (Bf —a;)" } ae.
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where (a)” := min(0,a), a € R.So
T T
Eyl( /0 b(B™ (6))dB, — /0 b(B22(0))dB,)

< O &P AB[(L(T, bi — 21) — L(T, bi — 22))"]
i=1
+Eg[(L(T, a; — 21) — L(T, a; — x2))"]
+Eg[((BS* —bi)” — (B2 = b;)7)"
+Ey (B —a;)” — (B —a;)7)°]}-
On the other hand, it is well known that

Eg[(L(t1,21) — L(t2, 22))] < Cop{|ts — to|' + (|21 — 22|}

for a constant C, r. See e.g. [?]. Thus

D=

T T
O W O
0 0
< OO IGIN (o1 — 2o + |1 — 2",
i=1
Further, we also see from the occupation time formula that

T T
Eqs[(/o (b(BZ“’l(@)))st—/o (b(B£2(6)))ds)"]

= Eﬂ[(/R(b(y))zL(ﬂ y —x1)dy — /R(b(y))QL(T, y — 2)dy)°]

= Eﬂ[(/R(b(y))Q(L(T, y— 1) = L(T,y — 22))dy)"]

CyEy| /R (b)) (L(T,y — 21) — L(T,y — 2))%dy]

(51)

for a constant C} depending on the compact support of the function b.

Therefore, we see from (?7) that

T T L
By / (b(B=(9)))%ds — /0 (b(B=(0)))%ds)"]
Col /R (b)) Es[(L(T,y — 1) — L(T,y — 22)))dy)

c( /R (b()) 0 dy)’? a1 — .

NI

IN

IN
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The latter yields

E[E[((Is(a1) — I(22)*]]2 < OfJay — @af* + a1 — a2}

Since

:/O /Rb(y)LB”(ds,dy) S 6Lt b — ) — Litas — )
=1

by definition (see ?77), we can employ the same reasoning as above and obtain
that

E[E[((Ii(a1) — L(22))™]]2 < C a1 — 2.

Further, it follows from Burkholder’s inequality in connection with the as-
sumptions (??), (??) and the inequality (??) that

E[Eg[(Iz(x1) — I2(x2))])

< CEy| / ' (s, B2(9)) — h(s, B22(0))||'° ds
//m}log s, BY(6),5)) — log(A(s, B(0),5))|" v(ds)ds
+ / / Jlos(A(s, B1(6),5)) — log(A(s, B (6),)) " v(ds)ds)’
[ L, o835 B2 (01,69 g3 (s, B2 ), viac) )
W o806, B2 9.60) = Tog 06, B2y 01, ) asvia)
( Y D6 B0 = A6, B0, o0

T — ES 16
T / [b(B7 (6)) — b(B7(6))|'° ds]
0
< Oz — 2o + |21 — 22[%)

for a constant C.
Finally, using the same arguments as in the proof of Theorem 77, our

34



assumptions imply that

1
sup  E[Ey] /O exp(8(11(z1) + I (21) + Is(x1)

T1,x2€U XU

+7(l(z1) — Ii(z2) + Lo(21) — Lo(x2) + I3(21) — I3(22))))d7)]]
< M<oo

N

for bounded sets U C R, where M is a constant depending on U.
Altogether, we see from the above estimates that

E[(®(t, 21, w) — B(t, 12, w))!] < C'|zy — 2]

for all 1,22 on bounded intervals U C R with a constant C' depending on
U.

So it follows from Kolmogorov’s Lemma that for all ¢ there is a continuous
modification of ®(¢,-), which is locally Hélder continuous with exponent «
for all « € (0,1/4). m

Remark 12 An example which fulfills the assumptions of Theorem 77 is
given by (?7), (?7) in the case of a truncated a—stable Lévy process with
€ (0,1), when ¥ € C3(R) and h = 0.

3 The Model

As mentioned in the introduction of this paper, we aim at modeling stochas-
tic transition rates p;;(t,x),0 < t < T for states i,k € S of the insured by
the following stochastic Gompertz-Makeham model GM (r, s) given by

/Lik(ta :E) = hz‘llf(tv :‘C) + exp(h?,’:(t, l’)), (52)

where hil,’: (t,z), h?,f(t, x) are time-dependent stochastic polynomials of de-
gree r and s, respectively, that is

hy () =y
=0
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and i
h?,f(t,x) _ Zyt(r+1+l)xz
1=0

for all i,k € S.
Here the coefficients of the polynomials

Y, =@,y vyt o< < (53)

are described by a generalized Cox process given by

dY, = h(t, X,)dt + dBY + / SNy (dt, ds), (54)
where m = r 4+ s + 2 and where the integer valued random measure N has
a F—predictable compensator of the form

fi(dt, de,w) = A(t, X, <)dt(ds)

for a Lévy measure v associated with a Lévy process L; € R™ and a Borel
function A. Further, the process X,0 < ¢ < T is the strong solution to the
SDE

dX; = b(Xy)dt + o(X;)dB}Y, (55)

where the Brownian motion B} € R" is independent of the Brownian motion
B;i¥ € R™ and the integer valued random measure Ny. Here the initial value
X is supposed to be square integrable and to be independent of BX, BY
N.

An important feature of our model is the unknown ”parametrization”
process X;,0 <t < T, which we use to describe the occurrence of changing
types of jumps or types of heavy-tailedness of distributions of real data.
The phenomenon of (semi-) heavy tailedness- as mentioned- may arise from
data with cohort effects in mortality modeling or short term catastrophic
events as e.g. earthquakes. However, the "regime switch” itself between
different types of jumps, which may be of long-term nature and due to
regulatory changes in the insurance branch or political decisions with a long-
term impact on the economy, is modeled by the process X;,0 <t < T. In
order to capture the "regime switching” effects of data, we may assume that
X:,0 <t < T is the strong solution to a SDE with singular drift coefficient
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given by

dX, = b(X,)dt + dBX

dXt = dﬁ:o ’}/0 :al ,
dZt:O 7ZO = a
XO = (550,%7 ZO)* (S R3l
where
b(x) = (56)
ay L if ||(z1, ., x)*|| > 7
b(x1, . 2r, ar, a5) = { L ||
as else

for X; 1= (Xt(l), . Xt(l))* and a ”critical” threshold 7 > 0. Here, the vectors
ai,az € R! can be interpreted as the different ”regime switching” states of
the jump intensity of the generalized Cox process Y;,0 < ¢ < T in (?77),

depending on whether ’X’t > T or not.

A natural generalization of the model (??) to the case of multiple ”"regime
switching” states ay, ...,a, € R is the following

b(x) =b(x1,..., 1,01, ..., ap) = Zailri(iﬂl, ey X1), (57)
i=1

where {T';};=1,., is a partition of R.

An alternative model to the above ones, which is able capture long-term
effects of data, is given by the following "regime switching” mean-reversion
model

axt = b(X,)dt + dBX
dx? =0, X = a
dx, =% ax¥ =0,xP =v | (58)
dx\V =0, x5 = by
dx¥ =0, x =1

where

for a mean reversion coefficient ¢ > 0 and long-run average levels by, by > 0,
depending on a ”critical” threshold 7 > 0.
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We mention that a unique strong solution to (??) exists. See also [?],
where the authors consider the latter model in connection with a regime
switching short rate model in finance.

In our model (??), (?7) we may e.g. choose the observation function
h in (??) to be a constant. In this case the process Y;,0 < ¢t < T can be
regarded as a Lévy process with a Lévy measure v ”parametrized” by the
process X¢,0 <t <T.

The unknown process X;,0 < ¢ < T or more generally f(X:),0<t<T
for Borel functions f can be estimated from (indirectly and under optimiza-
tion constraints unique) observed insurance data Y;,0 < ¢ < T by means of
the optimal filter

(me, f) = E[f(Xe) |[F],0<t<T. (59)

Using the Kallianpur-Striebel formula in Theorem 7?7 under the condition
(??) , we may also write (?7) as

(W, f)
(T, f) = (0, 1) (60)

with
(U, f) = Ex[Z1f(Xy) ‘]:ty]

for all f € Cy(R™), where Z;,0 < ¢t < T is the Doleans-Dade exponential
(?77?).

Principally, we could now use Monte-Carlo techniques in connection with
Theorem ?? to simulate the unnormalized conditional density (??) and to
compute the optimal filter by means of (?7).

An alternative method to the latter one, which we want to discuss in this
Section, is the Monte-Carlo method directly applied to the unnormalized
filter (¥y,),0<t<T.

In fact, we have the following result in the case of Lipschitz continuous
coefficients b, 0, h and A :

Proposition 13 Assume that the functions b,o,h and A are bounded and
satisfy the conditions (?7), (7). In addition, require (?7), (?7) and (?7)
hold. Let X},0 <t < T,i>1 be a sequence of i.i.d. copies of the solution
X, 0<t<T to (?7?) on our probability space, being independent of Y;,0 <
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t < T, and denote by Z},0 <t < T the stochastic exponential in (??) based
on X},0<t<T foralli>1. Let f € Cy(R"). Then

l
1 i i
MU(f) =5 Y Zif(XD) = (Wi f) = Ex[Zof (X)) [F)] ace. (61)
for all t. Moreover, for all t there exists a constant C' < oo such that

E(M() — (W0, )] < 1C11712 (62)
foralll > 1.

Proof. Since X. is independent of Y. under 7, we can represent (¥, f)
as

(e, f) (W) (63)
= ex - t i\S iw —1 t S 2 S
= Ealen() /O hils, Xs(0))dB(w) — 5 /O (s, X,)[2d

t
[ o X.(0), N (ds. de.w)
0 JRE

<[ (A X0 ) LX),

where Ey denotes the expectation with respect to X4(0),0 < s < T on a sep-
arate probability space. Using the latter in connection with an expectation
E,, in the direction of the other probability space, we get that

Ex[(M'(f) = (¥t f))?]

= Eu[Es[(M'(f) — (T4, £))?]]
l

= Bl Bl (ZF(XD) — (W 1))

=1
— Bl Y Bol(Zi0 (X)) (¥, )
=1
= SEEZ X ~ (1))
2
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It follows from the conditions (?7?), (??) and (??) that there is a constant
depending on the sizes of h and A such that

EW[(Zt)2] <C.

Relation (??) is a consequence of the strong law of large numbers applied
to (77). m

Since we are interested to apply Proposition 7?7 to our model for stochas-
tic transition rates in the case of discontinuous coefficients b in (??), (?7) or
(??) and o = Id, we may approximate the drift coefficient b by a bounded
Lipschitz continuous function b. To be more precise, using the notation of
the previous Section, we mention that under the conditions (?7)-(?7) we get
for bounded coefficients b that

Ex[Zf(Xy) “Fty] (w)

= Bolesp(y [ mils BEO)aBi) - 5 [ |nts. Bz 0))] s
=1

¢
—i—/ / log \(s, BZ(6),s)N (ds, ds,w)
0 JRg

t _
+/0 /6”(1 — (s, BE(),5))dsv(ds)}
B T

FBEODE( | 0Bz 0) B
Denote by<\I/§, > ,0 <t < T the unnormalized filter associated with b. Then,
using the mean value theorem, we obtain just as in the proof of Theorem
7?7 that

sup Er[((W),-) = (¥}.-))"] (64)

0<t<T

< CE,T[/OT Hb(BZ”) ol

ds

«f ) )| as?

for a constant C depending on the sizes of b, h and A. So, if we approximate
b by b in the sense that

I L

1
(27t)

b(y) — b(y) H4

1
 exp(—[ly — x| /2t)dydt < 2
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for r > 1 sufficiently large, then we see from (??) and (??) that
5 11
E(M(F) ~ (0, )Y < OC + 1) (65)
for all I > 1 and a constant C', where M l’g( f) is the sum in (??) with respect
to b.

We remark that the estimate (??) can also be established in the case
of coefficients b in (??), since in this case one can still apply Girsanov’s
theorem.

Finally, we mention that the paths of Z}0<t<Tand X},0<t<T

with respect to b can be simulated by using Euler-approximation scheme
applied to the SDE’s (??7) and (?7?).

4 Appendix

We collect in this Section some results and proofs which we need in the
maintext of the article.

Lemma 14 Let M;,0 < t < T be stochastically continuous process on
(Q, F,p). Suppose that
BI[M; — M| |M, = M, "] < C [t —u"*

for some constants a,b,C,v >0 and all0 < u < s <t <T. Then M;,0 <
t <T has a cadlag modification.

Proof. See e.g. Theorem 6.4.1 in [?] for a proof. m

Proof of Lemma ??7. Without loss of generality, we consider the case,
when o = Id.
Since X. is independent of Y. under 7, we can represent (¥4, f) as

(e, f) (W) (66)
= eX Y t i\ S iw —1 t S 2 S
= Blew() [ (s X008~ [ Ihts. X P

+/0t/mlog)\(s,Xs(G),g)N(ds,dg,w)
[ 0= A X)) s L (X 0))
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where Fy denotes the expectation with respect to X(6),0 < s < T on a
separate probability space.
Set

-3 hi<s,xs<0>>dB;‘<w>—§ [ s s

//mlogx\sX N(ds, ds,w)
/ /mlog)\ s, X5(0),¢)dsv(ds)
/ / (1 —X(s, Xs(0),¢))dsv(ds).

Using Holder’s inequality we see that

El(Wy, f) = (We, AP H T, ) = (Tu, )]

E[Ey[lexp(1) (f(Xi(0)) — f(Xa(8))) + F(Xs(6))(exp(I;) — exp(1s))|*
lexp(Z:) (f(Xs(0)) — £(Xu(0))) + F(Xu(8))(exp(Is) — exp(L,))[]]

< Ch+ o+ J3+ Jy),

where

Ji o E[Eylexp(21;) exp(21)

( (Xe(8)) — f(Xs(0))*(F(Xs(8)) — f(Xu(9)))*]],
Jo i = E[Bylexp(21;) f(X.(0))?

( (Xe(0)) — f(X5(6)))*(exp(Ls) — exp(Lu))?]],
J3 = ElEg[f(Xs(0))? exp(21;)

( (X5(0)) = f(Xu(0)))*(exp(L) — exp(L))?]],
Ji = E[E[f(Xs(0)* f(Xu(0))?

(exp(Ie) — exp(Ls))* (exp(Ls) — exp(L))?]]:

Using our assumptions we obtain by Holder’s inequality in connection
with the independence of Brownian increments that
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On the other hand, using the mean value theorem and Burkholder’s inequal-
ity we see that

E[(exp(1s) — exp(lu))?]

E( /0 1(15 — 1) exp(Is + 0(I, — 1.))d6)"]

CE[(I, — 1)/

CLEl [ It X an el [ [ OB X 0,5 ()

IN A

+E[(/: /81(1 — A(r, X,(0),<))v(ds)ds)®] /2

+§;E[(/:(hi(r, X,.(0)))%dr)*)'/?

‘f‘E_[/us/Bn(]og)\(T, X,(0),<))8v(ds)dr] /2

+E[( /u ’ /ﬁ(log A(r, X (0), <)) v (ds)dr) 2]/

+E[(/j/6n(1og A(r, X,(6),))%v(ds)dr)4Y?).
So

El(exp(Ls) — exp(lu))"]

T
C{Js —ul* + |s — ul” B[( /0 ( /Rm log A(r, X:(0), 5)v(ds))>dr)*]'/?

IN

T
sl B (0= 20X 0 ey
1 T
sl s =l EI (] Q080 X, (0).) (o) 2ar) 2
1 T
ls=ulf B ([ QoA X,(0).6) wtds) Par)] 2

T
s =ul B (] (oA X, (0).6)wlde) P 2}

C|t—u|i.

IA
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We also see by using Lipschitzianity that
Es[(f(Xe(0) — f(X(0)))*]/* < Ct —ul.
Hence by our assumptions we get that
Jo < Ot —ul'T5

Similarly, we see that
1
J3 <Ot —ul'ts.

Because of the mean value theorem and the independence of increments
of Lévy processes we obtain from our assumptions that

E[Es|(exp(Iy) — exp(Iy))*(exp(ls) — exp(Lu))*]]

1
= E[Eg[(/o (I = Is) exp(Is + 01 (I — 1,,))d61)?

1
(/ (I, — I,) exp(I, + 01(I; — I,))d61)?]]
0

CEﬁ[E[(It - 13)4(13 - IU)4H = CEﬂ[E[(It - 18)4]E[(Is - IU)4H~

IN
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Further, Holder’s and Burkholder’s inequality implies that

E[(Is - IU)4]
CAEL [ htr X0 ar)? + B / oA X))

//ml— (r, X,(6), ¢))v(ds)ds)"]
+ZE / X, (6)))2dr)?

/ / (log M(r, X, ( Yy(ds)dr]
/ /m log A(r, X, (6), €))2w(de)dr)2]}

C{ls = uf> + s — ul® B /0 ( / 1og (1, X,(0), <) (ds))dr)’)

IN

IA

T
sl B (0= 20 X0, + s = uf
5 T
s =SB oA X, (0).0) wlde) )Y

T
sl B[ ([ 0080 X (0).9)w(de) 2]}

0

< |t —ul3 (K + CL(6))

f—a.e., where
L) : = El( /0T< / OB X 0), )P
+El( K / (120 X000, ) )
+2l([ K 0B, X:(0).)) () )

T
B[ (] (0N X 0),9)Pv(d) )]
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Hence

Eﬁ[E[(It - 18)4]E[(Is - Iu)4]]
|t — ul3 Eg(K + CL(6))?]
Clt— u\% .

T
K+ BB ([ Tom\ X, 0).)w(ae) )]

IN

IN

T

BB (] (0= A X0).6))wts) Pas) )
T

BB ([ QoA X,(0), ) wlde) P2

T
Bl [ ([ 0080 X, (0).9)w(de) P 2.
Altogether, it follows that

E[(@y, f) — (W, AP (T, ) — (T, ] < CJt — 05

for a constant C' < oo depending on f, which gives the proof in connection
with Lemma 77. =

Proof of Lemma 7?. It follows from (?7?) that

/0 t /R sqn(x) L(ds, dx)
t

T o T B
= / sgn(Bs)dBs —l—/ sgn(Bs)dWs —/ sgn(Bs) ——ds
0 T—t T—t T—s
' T ’ES
= / sgn(Bs)dBs +/ sgn(Bs)dWs —/ ds,
0 T—t T+ T —s
where
() = 1 ,ifx >0
SIMT) = 21 else
Since

¢ t
/ / sgn(z)L(ds,dx) = —2|By| + 2/ sgn(Bs)dBs
0 JR 0
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by means of Tanaka’s formula, we find that

t B T ’ES
/Mds:/ ds
0o S 7T —s
t

T —
= —/ sgn(Bs)dBs +/ sgn(Bs)dWs + 2 | By .
0 T—t

Using the latter combined with the supermartingale property of Doleans-
Dade exponentials and Holder’s inequality, we get that

T
E[exp(k/o |B;t|dt)}

IN

t T -
Elexp(—3k /0 sgn(Bs)dB,)|"/3 Elexp(3k /T  sgn(B)aW, )

Elexp(6k | By|)]/*
< CT,k < 00

for a constant C7, depending on 7" and k. =
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