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Abstract
1.	 Sustainable harvest management implies an ability to control harvest rates. This is 
challenging in systems that have limited control of resources and resource users, 
which is often the case in small game harvest management. The difference between 
management strategies and actual harvest bag size (i.e. implementation uncer-
tainty) may be substantial, but few studies have explored this.

2.	 We investigated how different management strategies and ecosystem variables af-
fected realised harvest of willow ptarmigan (Lagopus lagopus L.) among nine inde-
pendently managed, state-owned hunting areas in Central and South Norway 
during 2008–2015. First, we focused our empirical analysis around three response 
variables of interest: hunting bag (scaled by area), hunting effort (number of hunting 
days scaled by area) and hunter efficiency (shot birds per hunting day). Akaike infor-
mation criteria (AIC) guided model selection among candidate GLMMs. Then, we 
used model-averaged parameter estimating from the statistical models in numerical 
simulations to explore risk of overharvest due to implementation uncertainty.

3.	 The most parsimonious model explaining hunting bag included total allowable catch 
(TAC) and willow ptarmigan density. Hunting effort was explained by number of per-
mits sold and type of quota (daily vs. weekly quota). The most parsimonious model 
describing hunter efficiency only included the effect of willow ptarmigan density.

4.	 Our results show that managers have only partial control over harvest rates in this 
system, and that hunters were relatively more efficient and harvest rates higher at 
low densities. This effect was present for all management strategy scenarios, 
including when managers adjusted TAC according to population estimates from 
monitoring programmes.

5.	 Synthesis and applications. Quantifying risk of unsustainable harvest rates under dif-
ferent scenarios enables managers to make informed decisions, when dealing with 
competing objectives of harvest opportunities and sustainability. The substantial 
risk of high harvest rates at low densities reported here should encourage frequent 
use of threshold strategies. This study is one of the first approaches for quantifying 
implementation uncertainty in small game harvest, and shows how estimates from 
empirical analyses could be used to quantify risk of overharvest.
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provided the original work is properly cited.
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1  | INTRODUCTION

Research into the difference between management strategies and 
actual harvest bag, commonly termed “implementation uncertainty” 
(Christensen, 1997) or “partial controllability” (sensu Williams, 2001), is 
rare in terrestrial systems (Milner-Gulland et al., 2010). To date, most 
studies investigating the link between management decisions and 
harvest rates do not address the issue of implementation uncertainty, 
although imperfect information often leads to a gap between imple-
mented regulations and desired outcome (Deroba & Bence, 2008). 
Furthermore, studies of implementation uncertainty have often focused 
on to what extent resource users comply with control rules (Bunnefeld, 
Hoshino, & Milner-Gulland, 2011), but other forms of implementation 
uncertainty may be of greater concern in many systems. For example, 
in management of large carnivores, an important aspect of implemen-
tation uncertainty is when hunters fail to obtain the set quota, hence 
management targets of removal are not met (Bischof et al., 2012). In the 
case of recreational small game harvest, the objective is often to avoid 
overexploitation while still providing hunting opportunities to the pub-
lic. Implementation of harvest regulations is often unpredictable in small 
game harvest systems, such as for greater sage-grouse Centrocercus 
urophasianus (Connelly, Reese, Garton, & Commons-Kemner, 2003), 
greater prairie-chicken Tympanuchus cupido (Powell, Taylor, Lusk, & 
Matthews, 2011) or waterfowl (U.S. Fish and Wildlife Service, 2016).

A framework that has proven to be particularly useful (e.g. 
Edwards, Bunnefeld, Balme, & Milner-Gulland, 2014) when there are 
multiple uncertainties associated with elements in the management 
cycle is management strategy evaluation (MSE). Management strat-
egy evaluation enables comparison of alternative management strate-
gies using numerical simulations, while incorporating lack of accurate 
knowledge (Milner-Gulland & Shea, 2017; Milner-Gulland et al., 2010). 
Here we investigate an essential part of the MSE framework—the path 
between management decisions and actual harvest, and explore how 
implementation uncertainty affects the managers’ potential to con-
trol offtake. We use willow ptarmigan (Lagopus lagopus L.) as a model 
species for exploring the drivers of small game harvest rates. Willow 
ptarmigan is a medium-sized tetraonid (Pedersen & Karlsen, 2007). 
Harvest of the species is a highly relevant topic at a Fennoscandian 
scale, resulting from a >10-year decrease in abundance throughout 
the area (Kålås, Husby, Nilsen, & Vang, 2014; Lehikoinen, Green, 
Husby, Kålås, & Lindström, 2014). It was recently listed as near threat-
ened (NT) in the Norwegian Red List of Species (Henriksen & Hilmo, 
2015). Globally willow ptarmigan is listed as least concern (LC), but 
decreasing population trends have been reported, especially in Europe 
(BirdLife International 2016). As high harvest mortality is mostly addi-
tive to natural mortality (found by Pedersen et al., 2004; Sandercock, 
Nilsen, Brøseth, & Pedersen, 2011 for a 30% harvest mortality), an 

important conservation issue is to understand how management strat-
egies affect actual harvest offtake. The objectives of this study were to 
explore this connection by:

1.	 Empirical evaluation of the role of management strategies and 
natural ecosystem parameters (not under management control) 
on observed harvest bag records, using data from state-owned 
land in Norway where several common harvest strategies for 
willow ptarmigan are applied. As management strategies and 
ecosystem parameters may affect harvest bags indirectly, through 
either increased hunting effort or higher hunter efficiency, we 
used two complementary approaches for our analyses to widen 
our understanding of the system.

2.	 Modelling implementation uncertainty by quantifying risk of exploi-
tation above specific harvesting thresholds, under different harvest 
decision scenarios and population states, with estimates from the 
empirical evaluations. The actual harvest decision scenarios are 
chosen from the empirical data, and we aim to identify applied 
constant and proportional management strategies.

This study shows a method for including implementation uncertainty 
in a management strategy evaluation (MSE), by quantifying risks of high 
harvest rates under different management strategies and game densities.

2  | MATERIALS AND METHODS

2.1 | Study area and period

The study area consists of management units (MUs) that independently 
manage state-owned land in Central and South Norway (locally termed 
“fjellstyrer”). These are required by law to provide hunting opportunities 
to the public (https://lovdata.no/lov/1975-06-06-31), while still ensur-
ing sustainable harvest management (https://lovdata.no/lov/2009-06-
19-100). In the context of this study, we collected data from MUs that 
registered population estimates of willow ptarmigan through a com-
mon web portal (Hønsefuglportalen, http://honsefugl.nina.no; Nilsen, 
Pedersen, & Vang, 2013). From a total of 23 MUs that are currently 
using this common e-infrastructure, 16 provided data on management 
decisions and harvest bags for this study. From these 16 MUs, 10 MUs 
provided data on all variables central for our analyses. One of the 10 
MUs was excluded from analyses because there were only data from 
a single year. In total, 43 observations across nine MUs from 2008 to 
2015 were used as a basis for our analyses. Spatial distribution and 
number of observations in different years are reported in Figure S1.

Because the majority of the birds are shot early in the hunting sea-
son (Kastdalen, 1992; supported by raw data in this study), we based our 
analyses on data from the first weeks of the hunting season. MUs usually 
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implement stronger restrictions and collect more precise harvest data in 
the first period of the harvest season, usually lasting ca. 3 weeks. Harvest 
was performed as walked-up hunting with shotguns, with or without use 
of pointing dogs. Most MUs include areas that are not suitable for wil-
low ptarmigan (e.g. forested lowlands or high alpine areas; Pedersen & 
Karlsen, 2007). We thus adjusted the area of each MU to reflect habitat 
relevant for willow ptarmigan better (see Appendix S1).

2.2 | Harvest and management strategy data

Harvest bag statistics and information about variables expected to 
have an impact on harvest bags were collected from all MUs having 
access to such information (cf. Table 1 for a complete overview of vari-
ables, and Appendix S1 for additional information about the method). 
Not all hunters reported back to the managers after their hunt, but 
managers keep control of hunting reports on an individual (i.e. hunting 
permit) basis. To estimate total number of hunting days and harvest 
bags, respectively, we divided the reported numbers for each year and 
MU by the reporting rate (i.e. proportion of hunters that reported their 
hunt: mean across years and MUs 71%, range: 37%–100%) for the 
given MU in a given year. In addition to management decisions that 
were reported directly by the MUs, i.e. number of purchased permits, 
season start, type of quota (daily bag limit, periodic bag limit, combi-
nation of both) and season length, we also estimated the composite 
variable TAC (defined as total allowable catch per km2). Total allowable 
catch (TAC) incorporates the two main strategies managers apply to 
restrict harvest: restricting effort and restricting bag size. For periodic 
quotas, TAC = number of permits sold × quota size, while for daily quo-
tas, TAC = number of hunting days in permits sold × quota size. For the 
combination quotas, TAC was calculated similarly to period quotas, as 
this represented the maximum possible catch in these two cases.

2.3 | Ecosystem data

Estimates of population density for each MU each year for willow ptar-
migan were based on line transect data, with field procedures following 
distance sampling methods (Thomas et al., 2010). In August each year, 
volunteer personnel used trained pointing dogs to search both sides of 
the transect line, and recorded cluster size (i.e. ptarmigan covey size) 
and perpendicular distances to observed birds. This procedure has 
been shown to be a suitable technique, respecting the assumptions of 
the distance sampling method (Pedersen, Steen, Kastdalen, Svendsen, 
& Brøseth, 1999; see also Appendix S1). The total dataset (n = 3,020 
observations) was analysed in R version 3.2.3 (R Core Team, 2015) 
using function “ds” in package “Distance” (Miller, 2015). To estimate 
number of chicks per female willow ptarmigan, we made the assump-
tion that the sex ratio in the populations is equal and that all broods are 
accompanied by two adults. This last assumption was made to reduce 
potential biases caused by wrongly classifying juveniles as adults (E.B. 
Nilsen, pers. com). Based on these data, number of chicks per female 
(hereafter “production”) was estimated using generalised linear models 
(GLMs) assuming a binomial error structure, following the procedure 
outlined in Kvasnes, Pedersen, Storaas, and Nilsen (2014).

It has previously been reported that hunting efficiency is lower 
in dense (i.e. forested) habitats compared to open habitats (Pedersen 
et al., 1999). To address this finding, we calculated the proportion of 
birch forest within suitable willow ptarmigan habitat for each MU 
(Appendix S1) and included this as an index for hunting efficiency in 
the models.

Weather conditions may also affect hunting effort, performance of 
hunters or dogs, or behaviour and/or habitat use by the game species. 
Based on data from The Norwegian Meteorological Institute (publicly 

TABLE  1 Parameters used to explore the relationship between 
harvest, management strategies and ecosystem characteristics

Parameter
Excl. from 
modela Description (unit)

Responses

Harvest bag 2a, 2b Number of bagged birds per km2 
suitable habitat, scaled by hunter 
response rate

Hunting effort (also 
predictor)

2b Number of hunting days per km2 
suitable habitat, scaled by hunter 
response rate

Hunter efficiency 1, 2a Number of bagged birds per 
hunting day, scaled by hunter 
response rate

Predictors: management decisions

Permits sold 2b Number of permits sold per km2 
suitable habitat

Length of prime 
season

2b Number of days hunters are 
distributed on

Season start Categorical: (1) Season opening 10 
September , or (2) postponed (i.e. 
5–10 days later)

Quota type Categorical: (1) Day quota, (2) 
period quota or (3) a combination 
of the two

TAC (total allowable 
catch per km2)

Function of (1) number of hunting 
days in permits sold × daily quota, 
or (2) number of permits 
sold × period quota, both per km2 
suitable habitat

Predictors: ecosystem characteristics

Willow ptarmigan 
density

Number of birds per km2

Willow ptarmigan 
production

Number of chicks per female, 
assuming equal sex ratio and 
brood sizes >2

Habitat structure 2a Proportion of highland birch forest 
in suitable terrain

Precipitation Daily average precipitation (mm) for 
available hunting days in each area

Temperature Daily average temperature (○C) for 
available hunting days in each area

a“Exclusion from model” indicates parameters not included in analyses for 
a given model.
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available from http://eklima.met.no), we used weather variables measured 
locally, as recommended by Frederiksen, Lebreton, Pradel, Choquet, and 
Gimenez (2014). We chose the closest weather stations providing daily 
registrations of precipitation (mean 2.2 stations, range 1–3) and tempera-
ture (mean 1.2 stations, range 1–2), using the arithmetic average of the 
stations for each MU and year. A total of 21 stations with a mean distance 
of 8.2 km (range 3.2–21.7) from the MU borders were used.

2.4 | Empirical evaluation

We used two separate paths for analysing observed harvest related 
to management strategies and ecosystem parameters (Figure 1); one 
where we analysed harvest bag (defined as bagged birds per km2) 
as response (model 1), and another where we analysed harvest as a 
function of hunting effort (model 2a) and hunter efficiency (model 
2b). Defining hunting effort as hunting days per km2 and hunter ef-
ficiency as bagged birds per hunting day (commonly known as catch-
per-unit-effort, CPUE), we used the relationship hunting days per 
km2 × bagged birds per hunting day = bagged birds per km2 to explore 
alternative paths to actual harvest rates.

Initial inspection of residuals indicated temporal (year) and spatial 
(MU) dependencies when fitting the full model (Zuur, leno, Walker, 
Saveliev, & Smith, 2009). Thus, to account for pseudoreplication, we 
opted to use mixed models (Zuur et al., 2009), fitting random inter-
cepts for MUs and year (package “lme4”, Bates, Mächler, Bolker, & 
Walker, 2015). When using models that accounted for this depen-
dency, no further temporal (ACF; autocorrelation function) or spatial 
(Moran’s I; package “lctools”, Kalogirou, 2016) autocorrelation was 

evident. Response variables were based on count data and thus as-
sumed to follow Poisson or negative binomial distributions. After con-
structing generalised linear mixed effects models (GLMMs) assuming 
the data followed a Poisson distribution, assessment of model re-
siduals from the full models revealed overdispersion for all response 
variables. Thus, we used negative binomial mixed models (Zuur et al., 
2009) to model effects of predictors conditional on group character-
istics. Because the size of areas (models 1 and 2a) and time (model 
2b) differed, we used the scale parameter (area or time) as an offset, 
following the recommendation by e.g. Zuur et al. (2009).

To avoid overparameterisation (given a total sample size n = 43), 
we restricted the set of candidate models to include models with ≤3 
fixed effects, in addition to the random intercepts (see above). The 
variables TAC and hunting effort (when used as a predictor) are directly 
affected by the other management decisions, thus they are not in-
cluded simultaneously with other management variables in any model. 
Some predictors were correlated and thus are not included simulta-
neously in models to avoid affecting parameter estimates (Zuur, Ieno, 
& Elphick, 2010), including density with production, season starting 
time with temperature and season length, and number of permits sold 
with habitat structure. A Pearson correlation of 0.6 (Graham, 2003) 
between continuous predictors was used as a collinearity threshold. 
For categorical variables, correlated predictors were identified through 
boxplots. All models not including correlated variable pairs were in-
cluded in the model set. The most parsimonious models were selected 
using Akaike information criterion (Akaike, 1973) corrected for small 
sample sizes (AICc; package “AICcmodavg”, Mazerolle, 2016). Model fit 
was examined by inspecting residuals vs. fitted values and confirming 

F IGURE  1 Schematic structure of predictors (top line) used for empirical analyses, and the two alternative paths for applying the estimates 
with standard errors from the results in implementation model simulations
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normal distribution of random effects. Furthermore, we performed 
model-averaging (Grueber, Nakagawa, Laws, & Jamieson, 2011) to give 
weighted estimates and relative importance of all predictor variables. 
Models were averaged over the set of models within 95% confidence 
of cumulative AICc weight, using the “zero method” where parameter 
estimates and standard errors are set to zero when absent in a model 
(Burnham & Anderson, 2002). To obtain model-averaged estimates for 
the levels of categorical variables (that might not be present in all mod-
els in the candidate set), we first used the sum-contrast in the original 
model-averaging procedure. Then, we used the delta method (package 
“car”, Fox & Weisberg, 2011) to obtain proper estimates of level-based 
intercepts. Continuous variables were centred on their means to facil-
itate interpretation.

To identify whether different willow ptarmigan densities lead to 
a response in management decisions, we performed a Spearman cor-
relation test on density vs. the management decisions with highest 

relative importance, on subsets of all MUs. A positive correlation 
value above 0.5 was used as a criterion for a more than random 
positive relationship between the parameters. The two groups (pro-
portional and constant strategy) were analysed separately to reveal 
strength of the relationship with density (as input for the simulated 
strategies), using linear models with Gaussian error distribution.

2.5 | Simulating harvest rates

Partly based on the statistical analyses described above, we performed 

numerical simulations to assess effects of implementation uncertainty 

on realised harvest rates and risk of overharvest. Following the logic 

governing the statistical models, we used two structurally differ-

ent pathways between collected data and implementation models 

(Figure 1) and modelled a range of scenarios. The endpoints of our 

Model Par AICc ΔAICc AICc weight

(1)

Density + TAC 6 541.92 0.00 0.29

Density + TAC + temperature 7 542.08 0.15 0.27

Density + TAC + precipitation 7 542.12 0.20 0.26

Density + TAC + habitat 7 544.73 2.81 0.07

Density + quota type + temperature 8 545.65 3.73 0.04

Null 4 594.91 52.99 0.00

(2a)

Permits sold + quota type + temperature 8 548.29 0.00 0.49

Permits sold + quota type + density 8 550.05 1.76 0.20

Permits sold + quota type + production 8 550.89 2.60 0.13

Permits sold + quota type + precipitation 8 552.30 4.01 0.07

Permits sold + quota type + season start 8 552.85 4.56 0.05

Null 4 615.73 67.44 0.00

(2b)

Density 5 556.41 0.00 0.27

Density + habitat 6 558.33 1.92 0.10

Density + TAC 6 558.39 1.98 0.10

Density + precipitation 6 558.79 2.38 0.08

Density + season start 6 558.91 2.50 0.08

Density + temperature 6 559.01 2.60 0.07

Density + TAC + habitat 7 560.17 3.75 0.04

Density + habitat + precipitation 7 560.75 4.34 0.03

Density + TAC + precipitation 7 560.77 4.36 0.03

Density + quota type 7 560.96 4.55 0.03

Density + TAC + temperature 7 561.06 4.65 0.03

Density + habitat + temperature 7 561.17 4.76 0.03

Season start + density + habitat 7 561.18 4.77 0.03

Season start + density + precipitation 7 561.23 4.82 0.02

Null 4 582.80 26.39 0.00

TAC, total allowable catch per km2.

TABLE  2 AICc model selection tables. 
Top models within cumulative 
weight = 0.95 and null models from 
empirical analyses, where (1) models 
harvest bag, (2a) hunting effort and (2b) 
hunter efficiency. Full AICc model selection 
tables are available in Table S2
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simulations were harvest rates emerging from different harvest deci-

sions and state variables. Importantly, we were here not modelling the 

impact of different harvest rates on the population state dynamics. In 

general, our simulation model consisted of four submodels that were 

linked in the following way:

1.	 Population state model: First, we generated a true value for the 
population density (willow ptarmigan per km2) in time t, by taking 
random draws from a uniform distribution between 2 and 25 
(covering the range of densities in our dataset). This state variable 

(Xt) was the input variable for the observation model, but its 
value will not be known to the managers (see below).

2.	 Observation model: Based on the true population density (Xt), we 
simulated a system where managers are monitoring the population 
state. In our simulations, we assumed that the managers had access 
to unbiased density estimates and that the precision resembled the 
precision in the distance sampling density estimates reported here. 
Across all years and areas, the median coefficient of variation (CV) 
was estimated at 0.23. The observation model thus generated ran-
dom draws (Dt) based on a Gaussian distribution with mean = Xt and 
standard deviation = CV × Xt. The estimated density emerging from 
the observation model (Dt) is the input for the harvest decision model, 
and will be available to managers in contrast to the true state (Xt).

3.	 Management decision model: Based on the information available to 
them, the managers make decisions about harvest regulations. 
Following our statistical analysis and the range of the empirical 
data, we identified five relevant scenarios corresponding to model 
3a (Figure 1) and six to model 3b.

4.	 Implementation model: The management decisions affect realised 
harvest rate following the relationships revealed by the statistical 
models. For each scenario, we simulated harvest rates under the range 
of true population states, where model-averaged estimates and stand-
ard errors from the empirical analyses were used to replicate model 
uncertainty. Only estimates of parameters with substantial relative 
importance were included, using a threshold of 0.8 as guidance for 
suggesting high importance, while the remaining parameters were 
kept at their means. All simulations were replicated 10,000 times.

We were not interested in exploring the effects of harvest rates on 
willow ptarmigan demography and population dynamics. To illustrate 
how our approach could be extended to assess this feedback, being part 
of a full MSE model (Figure S2), we replaced the random number gen-
erator (see point 1 above) with a population model including feedback 
from the system (see Figure S3 for a simple example), and simulated the 
process across 100 time steps.

Sandercock et al. (2011) found that harvest of 15% of the popula-
tion was at least partially compensated by a decrease in natural mortal-
ity, while 30% harvest lead to super-additive mortality in study areas in 
Norway. We apply these two harvest rate levels in the context of our 
study and here define “overharvest” as the excess of these levels. The 
quantitative output from our simulations was thus used to estimate the 
risk of exploitation above harvest rates of 15% and 30% for the man-
agement strategies tested, given the uncertainties. As a validation for 
the simulation exercise, different values for uncertainties in the obser-
vation model and implementation model were applied to investigate 
robustness to changes in population estimate precision, and to vulner-
ability to underestimation of errors in the implementation models.

3  | RESULTS

Initial habitat analyses revealed that on average 70.3% (range 28.3%–
92.3%) of the MU areas are suitable habitat for willow ptarmigan, 

TABLE  3 Model-averaged parameter estimates and relative 
importance of parameters based on AICc weights of all models within 
cumulative weight = 0.95, where non-present parameters are given 
the value zero. Categorical parameters are compared to overall mean 
instead of to one factor level and continuous parameters are centred 
on their means

Parameter
Relative  
importance

Model-averaged 
estimate ± SE (log)

(1)

 (Intercept) 0.180 ± 0.159

Density 1.00 0.031 ± 0.007

TAC 0.95 0.058 ± 0.014

Temperature 0.33 0.017 ± 0.032

Precipitation 0.28 0.009 ± 0.017

Habitat 0.08 -­0.069 ± 1.040

Quota type (1) 0.05a 0.018 ± 0.083

Quota type (2) 0.05a 0.006 ± 0.036

(2a)

(Intercept) 0.594 ± 0.067

Quota type (1) 1.00a 0.205 ± 0.049

Quota type (2) 1.00a 0.030 ± 0.085

Permits sold 1.00 1.140 ± 0.144

Temperature 0.52 0.022 ± 0.024

Density 0.22 0.003 ± 0.005

Production 0.14 0.008 ± 0.021

Precipitation 0.07 0.002 ± 0.009

Season start (1) 0.05 0.005 ± 0.023

(2b)

(Intercept) −0.507 ± 0.133

Density 1.00 0.055 ± 0.008

Habitat 0.24 −0.683 ± 1.924

TAC 0.21 0.002 ± 0.005

Precipitation 0.18 −0.003 ± 0.012

Season start (1) 0.13 0.006 ± 0.042

Temperature 0.13 0.001 ± 0.011

Quota type (1) 0.03a 0.002 ± 0.019

Quota type (2) 0.03a −0.003 ± 0.028

TAC, total allowable catch per km2.
aCategorical parameters get one value for all levels.
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resulting in an effective size range of the study areas of 113.7 to 
1,058.0 km2 (mean 473.4 km2). Mean proportion of forested habitat 
within MU areas was 10.4% (range 2.9–17.2), the rest being bogs, 
heathland or other open areas. Estimated population densities for wil-
low ptarmigan ranged from 4.1 to 29.0 willow ptarmigan per km2, with 
mean density 12.1. Numbers of chicks per female were between 2.0 
and 6.1, averaging at 3.5 (mean CV = 14.1%).

3.1 | Empirical analyses

Model selection guided by AICc (Table 2 and Table S2) and the model-
averaging procedure indicated that the most parsimonious model 
describing harvest bag (model 1) included TAC and willow ptarmigan 
density (Table 3). These variables had substantially higher relative im-
portance than other variables. Both TAC and density were positively 
related to harvest bags, and the combined effects indicate that a low 
TAC at higher densities gives harvest bags comparable to a high TAC 
at lower densities (Figure 2a). If TAC is set at a high level (third quartile 
in this study; TAC = 11.5), harvest bags at five birds per km2 is 57% 
higher than if TAC was set at a low level (first quartile; TAC = 3.7).

Both number of permits sold (scaled by km2) and type of quota 
were important predictors of hunting effort (Tables 2 and 3; model 2a). 
In general, daily quotas resulted in higher hunting effort than period 
quotas, when the number of permits sold was the same (Figure 2b).

Ptarmigan density was the main predictor of hunter efficiency and, 
based on the most parsimonious model, hunters clearly responded 
with higher efficiency with increasing density (Table 3). However, the 
slope of the relationship indicates that hunters were relatively more 
efficient at lower densities, as an increase in density was not met with 
a proportional increase in catch per hunting day across the range of 
densities observed here (Figure 2c). Unaveraged parameter estimates 

from the most parsimonious models are made available for the readers 
in Table S3, in case they are needed in e.g. meta-analyses.

The Spearman correlation test relating willow ptarmigan density to 
management decisions from the most parsimonious models identified 
for model 1 (harvest bag), three MUs in a group that adapted their TAC 
in relation to density estimates. The selection was confirmed by visual 
inspection of paired line plots of TAC and density through the years. 
TAC was modelled as a function of density to reveal how the manag-
ers responded to different population states. For the proportional TAC 
strategy group, the model with density was better than the alternative 
intercept-only model (ΔAICc = 4.62, AICc weight = 0.91, slope ± SE: 
0.624 ± 0.216, r2 = 0.34). For the other group, the intercept-only 
model (i.e. a constant TAC disregarding density) best described the 
management strategy (ΔAICc = 2.59, AICc weight = 0.79, inter-
cept ± SE: 8.917 ± 1.296). There were no indications of groups with 
proportional versus constant management strategies for the other 
models (i.e. model 2a describing hunting effort and 2b describing 
hunter efficiency).

3.2 | Simulations

Implementation uncertainty under the first pathway (model 3a; 
Figure 1) was explored through simulating harvest rates under five dif-
ferent scenarios: the proportional TAC strategy (with estimates from 
the model TAC ~ density above) and four representative constant TAC 
scenarios (TAC equal to 5, 10, 15 and 20, and SE standardised to 1.5 
for all runs). The proportional strategy had a fairly constant harvest 
rate along medium and high density values, but this increased notably 
as densities decreased (Figure 3). At five birds per km2, although no 
risk of exceeding the 30% threshold, there was a 49.7% risk of harvest 
rates above the 15% level (cf. Table 4). A constant TAC of 10, slightly 

F IGURE  2 Results of empirical analyses, where (a) shows harvest bag (model 1) in relation to willow ptarmigan density and TAC (total 
allowable catch per km2). The relationship is plotted with three selected values (first, second and third quartile in the data) of TAC as examples, 
to visualise harvest bag at various densities, conditional on a level of TAC. Insert in upper left corner shows raw data observations. (b) Displays 
hunting effort (model 2a) as a function of sold hunting permits per km2 and quota type. The upper line predicts the hunting effort with daily bag 
limits, lower line with period quotas. The two observations with quotas that are combinations of the others are not included in the predictions. 
Hunter efficiency (model 2b) in relation to willow ptarmigan density is shown in (c). For standard errors, cf. Table 3
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above average in the data, showed an 5.1% risk of harvest above at 
the highest level and 93.9% at the 15% level when density dropped 
to five birds per km2.

Under implementation model 3b (Figure 1), we explored harvest 
rates at different constant effort strategies only, combining the mod-
els for hunting effort and hunter efficiency. We selected three rep-
resentative scenarios of permits sold per km2 (i.e. 0.5, 0.75 and 1.0) 
within each of the two main quota types. Daily quotas overall gave 
higher harvest rates (Figure 4), with a 36.5% risk of harvest above the 
15% level at five birds per km2 and 0.5 permits sold per km2 (Table 5). 
Risk rapidly increased with increasing number of permits sold. For pe-
riod quotas, there was still substantial risk (68.6%) of overshooting the 
15% level at lower densities with 1.0 permits sold.

Comparing the performance of the proportional TAC model under 
assumptions of different uncertainties in the observation model (using 
the upper and lower 90% interval values, CV = 0.43 and 0.15), demon-
strated fairly high robustness to observation uncertainty (Table S4). 
Assuming increased parameter uncertainties in the implementation 
models did, as expected, affect the risk of harvest above the tested 
thresholds, but had little effect on predicted harvest rate means.

4  | DISCUSSION

Resource managers use a number of strategies to avoid excessive har-
vest of small game populations, such as limiting the number of hunting 
permits available, setting daily bag limits or shortening the hunting sea-
son (Kurki & Putaala, 2010). However, without knowledge about the 
effect of such control efforts, managers have no real control of harvest 
offtake even if they implement limitations. The results from our study 
clearly indicate that both ecosystem parameters, especially willow 
ptarmigan density, and management procedures are affecting actual 
harvest. The most parsimonious model for harvest bag (model 1) in-
cluded both TAC and willow ptarmigan density. As TAC is a function of 
permits sold and quota size, managers may adjust one or both of these 
parameters to approach the desired harvest level. However, often a 
large proportion of permits for small game hunting in this study and 
elsewhere (e.g. Kurki & Putaala, 2010) is sold before population sur-
veys are obtained. This leaves less flexibility to react to current popula-
tion states with a change in TAC. Furthermore, even if managers use a 
proportional TAC strategy, the general trend in the simulations implies 
that due to implementation uncertainty the risk of overharvest is still 
present when densities are low. An additional matter to consider is that 
we used data from the first weeks of the hunting season. Although the 

F IGURE  3 Simulations of five TAC strategy scenarios. The plots 
show harvest rate in relation to willow ptarmigan density under a 
proportional TAC strategy, where the management adjusts TAC (total 
allowable catch per km2) in relation to the observed density, and 
four constant TAC strategy scenarios. Simulated values (n = 10,000) 
are shown as grey dots. Black line is the line for the same simulation 
without uncertainty in any parameters, representing mean values 
along the x-axis over an infinite number of simulations



     |  9Journal of Applied EcologyERIKSEN et al.

TABLE  4 TAC strategy harvest. Harvest rate means and risks of harvest rates above two specified levels (15% and 30%) for simulated 
scenarios within the TAC strategies (model 1). Means and risks are presented for three levels of willow ptarmigan density, where the values are 
calculated over the range ± 1 of the density level (e.g. 4–6 for density 5)

TAC strategy

Density 5 ± 1 Density 10 ± 1 Density 15 ± 1

HR mean (SD) RHR >0.15 RHR >0.30 HR mean (SD) RHR >0.15 RHR >0.30 HR mean (SD)
RHR 
>0.15

RHR 
>0.30

Proportional 
TAC

0.153 (0.034) 49.7% 0.0% 0.106 (0.020) 2.6% 0.0% 0.100 (0.028) 2.7% 0.0%

Constant 
TAC = 5

0.163 (0.035) 61.8% 0.1% 0.093 (0.018) 0.7% 0.0% 0.072 (0.014) 0.0% 0.0%

Constant 
TAC = 10

0.214 (0.047) 93.9% 5.1% 0.125 (0.025) 14.3% 0.0% 0.097 (0.019) 1.5% 0.0%

Constant 
TAC = 15

0.291 (0.071) 100.0% 38.4% 0.168 (0.036) 68.8% 0.1% 0.131 (0.027) 19.8% 0.0%

Constant 
TAC = 20

0.393 (0.111) 100.0% 79.2% 0.227 (0.062) 94.5% 11.5% 0.177 (0.047) 69.3% 1.3%

HR, harvest rate; SD, standard deviation; RHR, simulated risk of harvest rates above specified levels; TAC, total allowable catch per km2.

F IGURE  4 Simulations of six effort strategy scenarios. The plots show harvest rate in relation to willow ptarmigan density, given the quota 
sizes in the study, for day and period quota scenarios with 0.5, 0.75 and 1.0 permits sold per km2. Simulated values (n = 10,000) are shown as 
grey dots. Black line is the line for the same simulation without uncertainty in any parameters, representing mean values along the x-axis over an 
infinite number of simulations
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majority of hunting occurs in this period, additional harvest throughout 
the season will increase the harvest rates presented here.

Hunting effort affects total bag size (Caro, Delibes-Mateos, 
Viñuela, López-Lucero, & Arroyo, 2015; this study), and has thus been 
used as a control-tool in harvest management. We found that number 
of permits sold together with quota type best explained hunting effort. 
While the effect of number of permits sold is intuitive, the additional 
effect of quota type was not expected. Through the simulation ex-
ercise, it is clear that the use of day quotas have a notable effect on 
harvest rates and the risk of exceeding the defined levels. Although 
hunting effort could be limited if a hunter filled the period quota be-
fore the hunting permit expired, it is a likely assumption that the ma-
jority of hunters were unable to fill their quotas (Bischof et al., 2012), 
regardless of quota type. We suggest that the lower hunting effort 
associated with period quotas mostly had a behavioural basis, where 
hunters with period quotas might have expected to fill their quota 
within the period, thus holding back on the effort to avoid filling it too 
early. If this suggestion is correct, we believe this behavioural aspect 
could be useful in harvest management in general, as it would provide 
a simple but effective tool for managers to lower harvest rates while 
still providing hunting opportunities.

The modest positive relationship between ptarmigan density 
and harvest bag (model 1), as well as between density and hunter 
efficiency (model 2b), is in line with previous studies of both willow 
ptarmigan and other species (Harley, Myers, & Dunn, 2001; Post 
et al., 2002; Willebrand, Hörnell-Willebrand, & Asmyhr, 2011). The 
increased relative efficiency may be explained by hunters compen-
sating for having few encounters by hunting over longer days at 
low densities (Willebrand et al., 2011), or by the limitation of only 
being able to fire double-barrelled shotguns twice in each shooting 
situation regardless of encountered number of animals (Andersen & 
Kaltenborn, 2013). In addition, if willow ptarmigan select for certain 
types of microhabitat, hunter efficiency would be expected to remain 
fairly stable for experienced hunters when densities are reduced. 
Such density-dependent relative catchability is expected to have det-
rimental effects on animal populations (Pitcher, 1995). In this context, 
a fixed-effort strategy, commonly implemented to limit overharvest 
(Hörnell-Willebrand, 2010), should be used with caution when den-
sities decrease.

Overexploitation of harvested species may lead to continued low 
abundance (Courchamp, Clutton-Brock, & Grenfell, 1999) and even 
population extinctions (Sutherland, 2001). Population declines have 
been linked to lack of controllability in the implementation, and espe-
cially in fisheries, the examples are numerous (see e.g. Deroba & Bence, 
2008). Constant management strategies are particularly problematic 
with regard to overexploitation (Fryxell, Packer, McCann, Solberg, & 
Sæther, 2010). We assume that managers chose a constant TAC model 
from one out of two reasons. They may expect hunting mortality to 
be compensatory, thus not considering population state to be import-
ant. There is an ongoing debate concerning whether tetraonid hunt-
ing mortality is compensatory or additive to natural mortality (see e.g. 
Sandercock et al., 2011; Sedinger, White, Espinosa, Partee, & Braun, 
2010), although there is at any rate likely to be more compensation T
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at high population densities (Péron, 2013). Alternatively, managers 
trust hunters to reduce harvest bags sufficiently with decreasing game 
abundances. This study strongly contradicts the latter aspect, as all 
competing scenarios gave increased harvest rates at lower densities. 
An implication of this is that even managers with conservative con-
stant strategies face high risk of overharvest when population den-
sities are low, unless they apply extremely precautionary strategies 
compromising satisfaction for hunters and objectives for managers 
(Andersen et al., 2008).

4.1 | Management implications

The model developed and presented here, quantifying the ecologi-
cal risks of harvest levels above the selected thresholds, is applicable 
for informed trade-off decisions between ecological and societal sus-
tainability. When risk of high harvest rates is substantial, managers 
defying this risk increase the probability that harvest affects popu-
lation development negatively (Sandercock et al., 2011). This study 
shows that in systems where managers do not have direct control 
over harvest bags, harvest rates typically increase with decreasing 
density. This can be a common feature of systems where detailed 
management of both resources and resource users is challenging, 
such as in small game harvest systems like for red-legged partridge in 
Spain (Díaz-Fernández, Viñuela, & Arroyo, 2012), for European ducks 
(Elmberg et al., 2006) or as in recreational fresh water fishing (Allen, 
Miranda, & Brock, 1998). A consequence is that harvest management 
should implement proportional threshold strategies (Lande, Sæther, & 
Engen, 1997) to avoid unsustainable high harvest rates when popula-
tions decline.
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