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Abstract

The purpose of this paper is to examine empirically the partially irreversible
decisions to shutdown, startup, and abandon existing production assets under
cash flow uncertainty and regulatory uncertainty. We use detailed informa-
tion for 1,121 individual electric power generators located in the U.S. for the
period 2001–2009 and find strong evidence of real options effects. We find
that both profitability uncertainty and regulatory uncertainty decrease the
probability of shutdown. Regulatory uncertainty also decreases the probabil-
ity of startup, but we find that cash flow uncertainty increases the probability
of startup, especially for large generators.

Keywords: Regulatory uncertainty, real options, retail competition,
stranded costs, investment decisions.
JEL: D81, E22, G31, L51, L94, Q41.

1. Introduction

The theory of real options predicts that, in the face of irreversible switch-
ing costs and uncertain cash flows, major changes in assets are subject to
hysteresis, and can be structured as options.1 A significant source of uncer-
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tainty of particular interest to corporate decision makers is uncertainty about
current and future policies and regulations. We study the effects of regula-
tory uncertainty on managers’ decisions to shutdown, startup, and abandon
(collectively status changes) existing production assets. We conduct our tests
using detailed information for 1,121 individual electric power generators. To
the best of our knowledge this is the first paper to study the effects of regu-
latory uncertainty on the decisions to shutdown, startup, and abandon.

The paper most closely related to ours is Moel and Tufano (2002) who
evaluate empirically the predictions of the Brennan and Schwartz (1985) real
options model by examining the shutdown and startup decisions for 285 gold
mine properties during the 1988–1997 time period.2 Our work differs from
Moel and Tufano (2002) in important ways. In addition to having a much
larger and richer data set, we focus on the effects of regulatory uncertainty,
while Moel and Tufano (2002) consider only cash flow uncertainty due to
fluctuating gold prices. Also, we examine the option to abandon.

The setting for our study is deregulation in retail electricity markets in
the United States. Retail electricity prices vary greatly across individual
states and these differences have implications for the competitive positions
of firms in electricity-intensive industries. As a result some states have de-
cided to allow retail electricity customers to select their suppliers, i.e., to
introduce retail competition. Uncertainty about retail competition implies
uncertainty about the values of existing assets. Real options theory suggests
that uncertainty should delay investment decisions while managers wait for
more information. We therefore expect that the presence of regulatory un-
certainty should decrease the probability of status changes.

We find that regulatory uncertainty reduces the probability of both star-
tups and shutdowns. We find no effect of regulatory uncertainty on the
decision to abandon a generator. We believe this is because the generators in
our sample which were abandoned were relatively old, small, and inefficient.

We also study the effects of cash flow uncertainty. An electric power
generator comprises a series of call options written on the spark spread.3

2Fleten and Näsäkkälä (2010) consider investments in new gas-fired generators under
uncertain electricity and natural gas prices. They conclude that operating flexibility and
the abandonment option interact such that their joint value is less than their separate
values, and that operating flexibility significantly impacts the value and decision to build
a generator.

3The spark spread is the difference between the value of electricity and the cost of the
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Spark spread volatility (our measure of cash flow uncertainty) thus has two
effects on the decision to make a status change. First, increased uncertainty
increases the value of waiting for more information as in a traditional real op-
tions framework. We refer to this as the information effect. Second, because
a plant is itself an option on the spark spread, increased volatility increases
the option value of the plant. We refer to this as the option value effect.

Both the information effect and the option value effect imply that cash
flow uncertainty should reduce the probability of shutdown and abandon-
ment. We confirm both in our data using formal hypothesis tests. That is,
cash flow uncertainty reduces the probability of shutting down an operating
generator, and, cash flow uncertainty reduces the probability of abandoning
a generator which was previously shutdown.

The effect of cash flow uncertainty on the startup decision is less clear.
Consider a generator which was previously shutdown. The information effect
should make it less probable that the generator will be restarted. But the
option value effect should make it more probable that the generator will be
restarted. Similar to Lund (2005), the overall effect of increased uncertainty
on the decision to restart an electric power generator is ambiguous.4

We find that cash flow uncertainty increases the probability of startup,
particularly for large generators. That is, our results provide evidence that
the option value effect dominates the information effect.

2. Regulatory Uncertainty

The introduction of retail competition allows end-users to choose electric-
ity suppliers.5 The prospect of competition at the retail level leaves utilities
in the position of possibly losing (or gaining) customers. If the utility loses
some of its existing customers when retail competition is implemented, then
a generator which was profitable in the regulated world might no longer be
needed. Such a generator is referred to as a stranded asset and the associated

fuel required to generate it.
4Lund (2005) demonstrates that, while increased uncertainty increases the trigger level

for investment, it also increases the probability that the level will be reached. He concludes
that the sign of the effect of uncertainty on the decision to invest in ambiguous.

5An excellent overview of retail deregulation of electricity markets can be found in
Joskow (2008).
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costs are referred to as stranded costs.6

The decision to introduce retail competition is in the purview of the
individual State Utility Commissions. The U.S. Energy Information Admin-
istration publishes a time line and descriptive summary of state-level retail
competition activities. This information, supplemented by information avail-
able from state utility commissions, allows the construction of a state-level
retail competition index.7 The index is a discrete variable taking on values
from 1 to 5, which correspond to:

1. no activity,
2. investigation underway,
3. competition recommended,
4. law passed requiring retail competition, and,
5. competition implemented.

The index measures the level of regulation. Our interest is in uncertainty.
When the competition index takes a value of two, there is uncertainty about
whether the state will implement retail competition and therefore uncertainty
about the recovery of stranded costs. When the index takes a value of three,
there is uncertainty about the specific form retail competition and stranded
cost recovery ultimately will take. We define a regulatory uncertainty indi-
cator variable which takes a value of one when the competition index above
is equal to either two or three, and which takes a value of zero otherwise.8

REGUNCERTs,t = 1 if, for state s in year t, the competition

index equals 2 or 3, and,

= 0 otherwise. (1)

6According to the FERC (see the Code of Federal Regulations, 18 CFR 35.26) “Retail
stranded cost means any legitimate, prudent and verifiable cost incurred by a public utility
to provide service to a retail customer that subsequently becomes, in whole or in part an
unbundled retail transmission services customer of that public utility.” In our context,
the customer ceases to purchase electricity from the utility, but still uses the utility’s
transmission system to deliver the electricity. Thus one or more generators may become
stranded assets.

7A similar index was developed independently by Delmas and Tokat (2005).
8For robustness we also repeated the regression analyses below with a modified version

of the regulatory uncertainty indicator. The modified version of the indicator variable is
set equal to zero for any state which is in the bottom 25% of retail electricity prices. Our
results are unchanged.
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Craig and Savage (2013) find that, in order for the effects of restructur-
ing to take effect, a generator needs to be subject to competition at both
the wholesale and retail level. Our sample includes only those generators
which are located in states which have active Regional Transmission Organi-
zations (RTOs) and therefore already have wholesale markets. Uncertainty
surrounding retail competition should then be relevant for decision makers
at such generators.

Consistent with real options theory, we expect managers to be less likely
to shutdown, startup, and abandon existing generators when there is un-
certainty about the introduction of retail competition and the recovery of
stranded costs.9 In the empirical analyses below we formally test these hy-
potheses.

3. Data

Our primary data sources are the Energy Information Administration,
NYMEX, the U.S. Environmental Protection Agency, and wholesale elec-
tricity market system operators. Interest rate data come from the U.S.
Federal Reserve Bank. Table 1 presents summary statistics for generator-
specific variables in our sample, while Table 2 presents summary statistics
for macroeconomic, real options, and firm-specific variables.

The main data source for this paper is Form 860 collected and dissemi-
nated by the Energy Information Administration (hereafter EIA), the statis-
tical arm of the U.S. Department of Energy. Form 860 contains detailed data
for nearly every generator in the United States, both existing and planned.

We consider generators from three major wholesale electricity markets -
Pennsylvania-New Jersey-Maryland (PJM), the New England Independent
System Operator (ISO-NE), and the New York Independent System Oper-
ator (NYISO) - for the 2001–2009 time period.10 The choice of areas and
sample period is driven by (i) the availability of electricity price data and (ii)

9Reinelt and Keith (2007) study regulatory uncertainty and its effect on the social cost
of carbon abatement. Linnerud et al. (2014) examine climate policy and find that the
investment decisions of professional investors are consistent with a real options model, but
that smaller, relatively unsophisticated investors ignore the value of optimal timing.

10Specifically, we include generators located in Connecticut, Delaware, Illinois, Indiana,
Kentucky, Maine, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, New
York, North Carolina, Ohio, Pennsylvania, Rhode Island, Tennessee, Vermont, Virginia,
Washington D.C., and West Virginia.
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significant changes in Form 860 beginning in 2001. We focus on “peaking”
generators as these should be more subject to the factors expected to influ-
ence shutdown, startup, and abandonment decisions.11 The final data set
contains 8,189 generator-year observations on 1,121 individual generators.

3.1. Status Change Definitions

For our purposes, the key variable from EIA Form 860 is the “status” of
the generator. The relevant status codes are

• OP - operating,

• SB - standby, and,

• RE - retired.

A generator which has status code OP is available for operation. A gen-
erator which has status code SB has been shutdown, or mothballed.12 A
generator which has status RE has been abandoned, or retired, and cannot
return to service.

Consider a generator which is operating (status OP) in the current year.
Next year, the generator may either continue to operate (remain in status
OP) or move to standby (SB).13 We define a “shutdown” to be movement
from status OP in year t to status SB in year t + 1.14 Table 3 documents
the occurrence of shutdowns by year in our sample. For example, of the 832
generators which were operating in 2004, 820 continued to operate in 2005

11We retain only simple cycle combustion turbines (CT). The fuel type is either low
sulfur fuel oil (DFO), i.e., EIA fuel types DFO, FO1, FO2, or FO4, or natural gas
(NG). Baseload technologies, such a coal-fired and nuclear generators, operate more-or-
less continuously for the duration of their useful lives.

12The EIA provides variable definitions in a Layout file accompanying the EIA 860 data.
The 2000 Layout file (status code SB is not defined in the Layout file for the 2001 and
2002 years) defines SB as “Cold Standby (Reserve): deactivated (mothballed), in long-term
storage and cannot be made available for service in a short period of time, usually requires
three to six months to reactivate.”

13While it is possible to move directly from status OP (operating) to status RE (retired),
such moves are rare and often driven by other circumstances, such as catastrophic failure.

14It is conceivable that the status of a generator could change more than once per year.
The annual frequency of our data is not fine enough to observe such changes. Our results
therefore provide a lower bound on the exercise of managerial flexibility. We thank Afzal
Siddiqui for pointing this out.
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while 12 were shutdown. For the full sample there are a total of 76 instances
of shutdown versus 6,539 instances of a operating generator remaining in
operating mode.

Consider a generator which was previously shutdown, i.e., a generator
which is on standby (SB) in the current year. Next year the generator may
either startup (move to status OP), remain shutdown (SB), or be abandoned
(move to status RE). We define a “startup” to be movement from status
SB in year t to status OP in year t + 1. We define an “abandonment” to
be movement from status SB in year t to status RE in year t + 1. Table
4 documents occurrences of these alternatives by year in our sample. For
example, of the 188 generators which were on standby in 2004, 153 were still
on standby in 2005, 22 were started up, and 13 were abandoned. For the
entire sample, there are a total of 184 instances of startup and 78 instances
of abandonment.

3.2. Future Profitability

We use projected reserve margin as our proxy for expected future prof-
itability. Reserve margin for region k and year t (RMk,t) is defined to be

RMk,t ≡ (Ck,t −Dk,t)/Dk,t, (2)

where Ck,t is the year t capacity in region k and Dk,t is the year t peak demand
in region k, both measured in MW.15 The raw data come from NERC’s 2009
Electricity Supply and Demand (ES&D) database.

Because electricity cannot be stored, available supply (i.e., capacity) must
always exceed contemporaneous demand in order to prevent blackouts. Lack
of storability implies that, when demand approaches available supply, elec-
tricity prices increase at an increasing rate.16 The lower is the reserve margin,
the less excess capacity there is in the system, and the higher are wholesale
electricity prices. Projected reserve margin therefore acts as an (inverse)
proxy for expected future profitability of the generator. Low reserve margins
imply high future profitability and vice versa.17

15For planning purposes, target reserve margin values range from 15% to 20%. Table 2
shows that the mean reserve margin observed in our sample is 19.8%. The minimum and
maximum observed reserve margins are 11.5% and 30.1%, respectively.

16See, for example, Bessembinder and Lemmon (2002) or Mount et al. (2006).
17There are other channels through which generators can earn income. Spinning reserve
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3.3. Portfolio Effects

The decision to shutdown, startup, and/or abandon an electric power
generator may depend on the size of the firm. A firm which owns a large
amount of capacity may be able to reassign workers when it makes the de-
cision to shutdown or abandon an existing generator, whereas a smaller firm
may be forced to layoff workers. As pointed out by Moel and Tufano (2002),
large firms have greater opportunity to subsidize less profitable generators.
We use two measures of firm size, the total capacity owned by the firm and
the total number of generators owned by the firm. The summary statistics
in Table 2 show that there is a great deal of variation in the size of the firms
in our sample. The mean number of generators owned by each firm in our
sample is 15.5, however there are 27 firms which own only one generator.

3.4. Generator Efficiency

Kovenock and Phillips (1997) emphasize the importance of controlling for
generator efficiency in investment and abandonment decisions. The efficiency
of an electric power generator is measured by its heat rate. The heat rate of
generator i, HRi, is the amount of fuel, measured in millions of British ther-
mal units (MMBtu), required to generate one unit of electricity, measured
in megawatt hours (MWh). A lower number indicates greater efficiency.

We use two sources for heat rate data. Our primary source is the Con-
tinuous Emissions Monitoring Systems (CEMS) data from the U.S. Environ-
mental Protection Agency. CEMS data are available for 631 of the 1,121
generators in our sample. Heat rate data were included in Form 860 for
1990-1995. These data are available for 312 generators for which no CEMS
data are available. Heat rates for the remaining 178 generators are estimated
based on the age and size of the generator. Details are in Appendix A.

refers to generators which are synchronized with the system but are not operating at full
capacity. These generators can be ramped up significantly (within 10 minutes) if needed,
e.g., when another generator suffers a forced (unexpected) outage. The generators in our
study may sometimes be providing spinning reserve (though we have no way of knowing
if and/or when), but they are more likely to be providing Non-Synchronous-Reserve, or
NSR. A generator which is not synchronized to the system (which usually means it is
offline) but which can be started quickly and produce output within 10 minutes is said to
provide NSR. Until the year 2012 NSR was not compensated in PJM. Capacity markets,
such as the Reliability Pricing Mechanism in PJM which came into existence 2007, were
in their infancy at the end of our sample. We repeat the regressions below omitting years
after 2007 with no material effect on the results.
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For ease of interpretation, we convert heat rates into energy conversion
efficiencies. Heat rates have units of MMBtu

MWh
. Both MMBtu and MWh

measure energy. There are 3.41275 MMBtu in one MWh. We convert heat
rate into conversion efficiency as

EFFi =
3.41275

HRi

∗ 100% (3)

where EFFi is the conversion efficiency of generator i which has heat rate
HRi. For example, a generator with a heat rate of 10 MMBtu/MWh has
a conversion efficiency of 34.1%. Summary statistics for efficiency (in %) are
presented in Table 1.

3.5. Cash Flow Volatility

The cash flow for a generator is determined by the spark spread, the differ-
ence between the price of electricity and the cost of the fuel used to produce
it. A peaking generator can be viewed as a collection of daily European call
options on the spark spread.

Consider generator i which has heat rate HRi, burns fuel j, and is located
in region k. We calculate the generator-specific spark spread expressed in
units of dollars per megawatt hour ($/MWh), for day n as

SPRDijk,n = P elec
k,n −HRi ∗ P fuel

j,n , (4)

where P elec
k,n is the day n electricity price ($/MWh) in region k and P fuel

j,n is
the day n fuel price ($/MMBtu) for fuel j. Daily spot prices for New York
Harbor No. 2 Oil and NYMEX Henry Hub natural gas are taken from the
EIA website. Electricity prices come from the PJM, ISO-NE, and NYISO
websites.18

Spark spread volatility is then the standard deviation of the daily spark
spread over year t.

SPRDSDijk,t = STDEV T
n=1

(
SPRDijk,n

)
, (5)

where T is the number of days in year t.

18Consistent with our focus on peaking generators, we use electricity prices for the peak
period of the day, defined to be the 16 hour period from hour ending 7 through hour
ending 22. We obtain daily peak prices by taking the simple average of the hourly spot
prices during the peak period.
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3.6. Time Sequence of Data Availability

Consider as an example status changes which take place during the 2005
calendar year and therefore show up in the 2006 Form 860. In the regres-
sions which follow we use only those data which were available as of the end
of 2004 as explanatory variables for status changes (shutdown, startup, or
abandonment) which occur during 2005.

4. Shutdown

In this section we examine the decision to shutdown an operating gen-
erator, i.e., to move from status code OP to status code SB. In the case
of peaking generators such as those in our sample, there are two distinct
shutdown options, one in the short term and one in the longer term.

Tseng and Barz (2002) study the option to shutdown an operating genera-
tor in the short term. That is, they consider hourly fuel prices and electricity
prices, along with operational constraints, to study the option to turn off, or
cycle, an operating generator. Short term cycling of generators is different
than the long term shutdown considered in our paper. A generator which
cycles offline overnight still has status OP. We study the long term option
to mothball, or layup, an exiting generator. When a generator moves from
status OP to status SB, the generator is no longer available to run.

Table 5 presents comparative univariate statistics for generators which
were shutdown and those which continued to operate. The descriptive vari-
ables are divided into four categories - macroeconomic, firm-specific, generator-
specific, and real options, i.e., measures of uncertainty. The last column
presents differences. All of these differences are significant at the 1% or 5%
level.

Beginning with the macro variables, generators tend to shutdown when
projected reserve margins are high. High reserve margins imply low future
profitability. Generators are more likely to be shutdown when expected fu-
ture profitability is low.

We expect interest rates to have a positive relationship with shutdowns.
The higher are interest rates, the lower is the present value of future cash
flows, and the higher should be the probability that a generator will shut-
down. The univariate statistics in Table 5 suggest exactly the opposite -
generators tend to shutdown when interest rates are lower. However, reserve
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margin and interest rates are negatively correlated.19 We believe that, when
considered in isolation, interest rates are simply proxying for reserve margin.
The multivariate analysis below supports this conjecture. When we control
for reserve margin, interest rates and shutdown probabilities are positively
related.

The firm-specific variables are the total capacity (in units of MW) owned
by the firm and the total number of generators owned by the firm. Table
5 indicates that firms which shutdown generators tend to be much smaller
than firms which continue to operate existing generators, as measured both
by total capacity owned and by total number of generators.20

Turning to the generator-specific variables, generators which shutdown
are on average older, less efficient, and smaller than generators which continue
to operate.

Spark spread (cash flow) volatility and the regulatory uncertainty indi-
cator variable are both measures of uncertainty and ought to matter if real
options effects are important. Consistent with real options theory, Table
5 shows that shutdowns are more likely when (i) spark spread volatility is
lower, and, (ii) there is less uncertainty about retail competition and the
recovery of stranded costs. Average spark spread volatility for generators
which shutdown is 31% less than spark spread volatility for generators which
continue to operate.

Of the total generator-year 8,189 observations, 20.5% occur during times
of regulatory uncertainty. Table 5 shows that, of the 76 individual instances
of shutdown in our sample, only one ( 1

76
= 0.013) occurs during a time of

regulatory uncertainty. These univariate statistics provide strong circum-
stantial evidence for the existence of real options effects. Next we turn to a

19Slower economic growth means slower growth in the demand for electricity and there-
fore higher reserve margins. Slower economic growth also tends to reduce interest rates.
In our data the simple correlation coefficient between interest rates and reserve margin is
-0.35.

20We think there are at least two potential explanations for this effect. First, smaller
firms have fewer opportunities to subsidize less profitable generators. Second, and perhaps
more important, many of the small firms in our sample are firms whose primary business is
not electricity generation. These firms do not have the same level of in-house maintenance
expertise as do firms whose primary business is electricity generation. When the generators
owned by these firms age and become relatively less cost effective, it is more costly for
these small firms to undertake the maintenance required to keep the generator operational,
hence they are more likely to shutdown the generator.
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multivariate analysis.

4.1. Binary Logit Regression

Consider generator i which burns fuel j and is located in region k. We
begin our multivariate analysis using a binary logit specification, as follows.

ISBi,t+1 = α + (β1 ∗RMk,t+1) + (β2 ∗ T10t) + (β3 ∗ EFFi) + (β4 ∗ SIZEi)

+(β5 ∗ TOTCAPi,t) + (β6 ∗ SPRDSDijk,t)

+(β7 ∗REGUNCERTs,t), (6)

where

ISBi,t+1 is an indicator variable which takes the value of zero if generator i
was operating in year t and operating in year t + 1, and which takes
a value of one if generator i was operating in year t and shutdown in
year t+ 1,21

RMk,t+1 is the projected reserve margin for region k and year t+ 1,

T10t is the ten year treasury rate for year t,

EFFi is the efficiency of generator i,

SIZEi is the capacity of generator i,

TOTCAPi,t is the year t total capacity owned by the firm which owns
generator i,

SPRDSDijk,t is the standard deviation of year t spark spread for generator
i which burns fuel j and is located in region k, and,

REGUNCERTs,t is an indicator variable which takes a value of one if there
is regulatory uncertainty in state s (in which generator i resides) and
year t, and, a value of zero otherwise.

The last two regressors, SPRDSD and REGUNCERT , are measures of
uncertainty and should matter if plant managers consider real options ef-
fects when making shutdown decisions. Table 6 presents the results. The

21All the generators in this regression were operating (OP) in year t.
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table presents the average marginal effects
(
∂Prob(ISB = 1)/∂x

)
of each in-

dependent (x) variable. For the indicator variable REGUNCERT the ta-
ble presents the change in the probability of a shutdown when the variable
changes from zero to one.

4.2. Individual Regressions
We begin by including each independent variable separately. Each coeffi-

cient is significant and the signs are consistent with the summary statistics in
Table 5. Considering each explanatory variable separately allows us to get a
feel for which is most important. Expected future profitability has the most
explanatory power for the shutdown decision. Among the individual regres-
sions, the RM regression has the greatest psuedo-R2 (14.3%), the greatest
log-likelihood, and the lowest values for both information criteria statistics,
AIC and BIC. The coefficient on RM is positive indicating that generators
are more likely to be shutdown when there is greater excess capacity. As dis-
cussed above, higher reserve margins imply lower wholesale electricity prices
and therefore less valuable generators. Generators tend to shutdown when
expected future profitability is low.

Regarding cash flow uncertainty and regulatory uncertainty, we formulate
null (uncertainty has no effect) and alternative (our prior, that uncertainty
reduces the probability of shutdown) hypotheses to be consistent with the
standard real options result that uncertainty should delay investment, as
follows.
H 1: Cash flow uncertainty.

H1o : β6 = 0 (Cash flow uncertainty has no effect on shutdown.)

H1a : β6 < 0 (Cash flow uncertainty decreases the probability of shutdown.)

H 2: Regulatory uncertainty.

H2o : β7 = 0 (Regulatory uncertainty has no effect on shutdown.)

H2a : β7 < 0 (Regulatory uncertainty decreases the probability of shutdown.)

The coefficients for the real options variables SPRDSD (β6 = −1.016)
and REGUNCERT (β7 = −0.014)are negative and significant. We reject
null hypotheses H10 and H20 in favor of the alternatives, each at the 1%
level. Increases in spark spread volatility and regulatory uncertainty each
reduce the probability of shutting down an operating generator.

13



4.3. Full Regression

The last column of Table 6 shows that, with one exception, the insights
gained from the individual regressions continue to hold when all the in-
dependent variables are included in the same regression.22 Most impor-
tantly, the coefficients on SPRDSD (β6 = −0.609) and REGUNCERT
(β7 = −0.012)remain negative and significant. We reject null hypotheses
H10 at the 5% level and H20 at the 1% level. Consistent with our priors,
increases in either spark spread volatility or regulatory uncertainty decrease
the probability of shutting down an operating generator even when we control
for other factors likely to affect the shutdown decision.

Figure 1 plots the probability of shutdown as a function of reserve margin,
based on the regression results from Table 6. The top panel presents the
probability of shutdown for the cases of regulatory uncertainty (blue circles)
and no uncertainty (red squares). At low values of reserve margin (high
future profitability), the probability of shutting down an operating generator
is near zero regardless of the regulatory environment.

At higher values of reserve margin (lower values of future profitability)
the probability of shutting down an operating generator increases dramati-
cally, but only for the case in which there is no regulatory uncertainty. In
the presence of regulatory uncertainty the probability of shutting down an
operating generator is small for any value of reserve margin. Uncertainty
about retail competition and the recovery of stranded costs translates into
uncertainty about generator profitability, hence generator owners are more
hesitant to shutdown operating generators.

The bottom panel of Figure 1 presents the probability of shutting down
an operating generator as a function of reserve margin for three values of
spark spread volatility - $10/MWh (blue circles), $30/MWh (red squares),
and $100/MWh (green triangles).23 When reserve margin is low (future prof-
itability is high), the probability of shutting down an operating generator is
small, irrespective of spark spread volatility. In this case the spark spread
options which comprise the generator are effectively in-the-money and op-
tionality constitutes a relatively small part of the generator’s value, so spark
spread volatility is less important to the shutdown decision.

22The exception is that the sign of T10 changes from negative to positive, consistent
with our priors about the effect of interest rates on the option to shutdown.

23We choose to use $10/MWh, $30/MWh, and $100/MWh in Figure 1 to approximately
represent the minimum, mean, and maximum values observed in our sample. See Table 2.
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When reserve margin is high (future profitability is low), the spark spread
options which comprise the generator are out-of-the-money, optionality is
the main source of the generator’s value, and spark spread volatility is very
important to the shutdown decision. When spark spread volatility is high,
the option value of the generator is correspondingly high and the probability
of shutdown is near zero regardless of reserve margin. When reserve margin
is high and spark spread volatility is low, the options which comprise the
generator are both out-of-the-money and the volatility of the underlying
asset is low, rendering the options nearly worthless. As Table 6 and Figure 1
make clear, these effects are both statistically and economically significant.

5. Startup and Abandonment

In this section we examine the decisions to startup and abandon a genera-
tor which was previously shutdown. Table 7 presents comparative univariate
statistics for generators which are in the shutdown mode in year t and either
(i) remain shutdown (SB), (ii) startup (OP), or (iii) are abandoned (RE) in
year t + 1. For those generators which either startup or are abandoned, the
table presents differences relative to generators which remain shutdown.

5.1. Startup

Consider first generators which startup. Generators tend to startup when
projected reserve margins are low and therefore expected future profitability
is high. Consistent with the discussion above, we expect startups to be more
likely when interest rates are low and therefore the present value of future
cash flows is high. Table 7 shows exactly the opposite - startups tend to
happen when interest rates are high, again reflecting the negative correlation
between interest rates and reserve margin. Table 7 also shows that firms
which restart generators are not significantly different in size than firms for
which generators remain shutdown, as measured by either total capacity
or total number of generators. Generators which startup are on average
younger, more efficient, and larger than generators which remain shutdown.

Important determinants of the decision to shutdown and/or startup a gen-
erator should include the costs involved in doing so. We proxy for startup
costs by calculating the amount of time (in years) that a generator has been
shutdown. The longer a generator has been out of service, the greater should
be the startup cost. In general, the cost to shutdown a generator is small rela-
tive to the cost to restart a generator. The cost to restart varies with the level

15



of maintenance performed while the generator is out of service, and therefore
is a function of managerial priorities. We ignore the cost to shutdown and we
focus on one single technology (simple cycle combustion turbines), thereby
eliminating variation across technology types.24 Generators which startup
have been shutdown for a shorter period of time (1.16 years) than generators
which remain shutdown (2.55 years) indicating that generators which startup
have lower startup costs than generators which remain shutdown.

Turning to the real options variables, Table 7 shows that generators which
startup have higher spark spread volatility than generators which remain
shutdown. While increased cash flow uncertainty increases the value of wait-
ing for more information (information effect), increased cash flow uncertainty
also increases the value of the call options which comprise the generator (op-
tion value effect). The univariate data suggest that the option value effect is
stronger that the information effect for the startup decision, at least in our
sample.

Table 7 also shows that startups tend to occur when there is no regulatory
uncertainty. Of the 184 total instances of startup in our sample, only eight
( 8
184

= 0.043) took place during a time of regulatory uncertainty.

5.2. Abandonment

Next consider generators which are abandoned. The last two columns of
Table 7 show that generators tend to be abandoned when projected reserve
margins are high and expected future profitability therefore is low. Firms
which abandon generators tend to be much (three to four times) larger than
those which do not.

Abandonments take place when spark spread volatility is low and when
there is no regulatory uncertainty. Specifically, spark spread volatility for
generators which are abandoned is 27.5% less than spark spread volatility for
generators which remain shutdown. Only two of the total 78 abandonments
( 2
78

= 0.026) in the sample took place during times of regulatory uncertainty.

5.3. Startup and Abandonment Multinomial Logit Regression

We use a multinomial logit regression to examine startup and abandon-
ment decisions. The advantage of a multinomial logit regression is that it

24A more detailed discussion based upon conversations with industry experts can be
found in Appendix B. We thank Steve Marshall of Lakeland Electric and Paul D. Clark
II of the City of Tallahassee for sharing their insights and experience.
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allows us to consider the startup and abandonment decisions simultaneously.

IOPRE
i,t+1 = α + (β1 ∗RMk,t+1) + (β2 ∗ T10t) + (β3 ∗ EFFi) + (β4 ∗ SIZEi)

+(β5 ∗ TOTCAPi,t) + (β6 ∗ SBTIMEi,t)

+(β7 ∗ SPRDSDijk,t) + (β8 ∗REGUNCERTs,t), (7)

where

IOPRE
i,t+1 is a discrete variable which is equal to zero if generator i was on

standby in year t and operating in year t+1, equal to one if generator i
was on standby both in year t and in year t+1, equal to two if generator
i was on standby in year t and retired in year t+ 1,25

SBTIMEi,t is the length of time, in years, that generator i has been shut-
down as of year t,

and all the other variables are as defined above. The results are presented in
Table 8.26 The table presents the average marginal effects

(
∂Prob(IRE = 1)/∂x

)
of each independent (x) variable. For the indicator variable REGUNCERT
the table presents the change in the probability of an abandonment when the
variable changes from zero to one.

5.3.1. Startup results

We formulate null and alternative hypotheses for the effects of both cash
flow uncertainty and regulatory uncertainty on startup as follows.27

H 3: Cash flow uncertainty - Startup.

H3o : β7 = 0 (Cash flow uncertainty has no effect on startup.)

H3a : β7 > 0 (Cash flow uncertainty increases the probability of startup.)

25All the generators in this regression had been previously shutdown (status SB) in year
t.

26The startup (top panel) and abandonment (middle panel) results in Table 8 are from
one multinomial logit regression. That is, each column in Table 8 reports the outcome of
a single regression, the goodness of fit statistics for which are reported in the lower panel.

27As discussed above, the effect of cash flow volatility on startup is ambiguous. Based
upon the univariate statistics in Table 7, we set the alternative hypothesis H3a such that
β7 > 0.
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H 4: Regulatory uncertainty - Startup.

H4o : β8 = 0 (Regulatory uncertainty has no effect on startup.)

H4a : β8 < 0 (Regulatory uncertainty decreases the probability of startup.)

The top panel of Table 8 presents regression results for startup from
equation (7). As was the case for shutdowns, the individual regressions show
that expected future profitability is the single most important factor driving
startups. The last column presents the results for the full model. The key
drivers of the startup decision are expected future profitability (RM), gen-
erator size (SIZE), startup costs (SBTIME), and regulatory uncertainty
(REGUNCERT ). Startups are more likely when expected future profitabil-
ity is higher, for larger generators, and when startup costs are lower.

In the individual startup regression (top panel of Table 8) the coefficient
on SPRDSD (β7 = 1.725) is positive and significantly different from zero,
again suggesting that the option value effect is stronger than the information
effect. Based on this individual regression we reject H30 at the 1% level. In
the overall regression, the coefficient on spark spread volatility (β7 = 0.613)
is reduced in magnitude from the individual regression and we are able reject
H30 at only the 10% level.

We perform binary logit regression for startup, similar to the full shut-
down regression reported in Section 4, with the sample limited to generators
larger than 25 MW. (Small generators tend to be old and inefficient, thereby
reducing the option value effect.) In order to save space we do not report the
results in a table. In contrast to the results presented in Table 8, the coeffi-
cient on SPRDSD (from the full regression) is β7 = 2.455 and significant at
the 1% level. We reject H30 in favor of the alternative. Cash flow uncertainty
increases the probability of startup. The option value effect dominates the
information effect, at least in our sample.

Also from the top panel of Table 8 we see that the coefficient onREGUNCERT
(β8 = −0.064) is negative. We reject H40 in favor of the alternative at the
1% level. Regulatory uncertainty reduces the probability of starting up a
generator which was previously shutdown.

5.3.2. Abandonment results

We formulate null and alternative hypotheses for the effects of both cash
flow uncertainty and regulatory uncertainty on abandonment as follows.
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H 5: Cash flow uncertainty - Abandonment.

H5o : β7 = 0 (Cash flow uncertainty has no effect on abandonment.)

H5a : β7 < 0 (Cash flow uncertainty decreases the prob. of abandonment.)

H 6: Regulatory uncertainty - Abandonment.

H6o : β8 = 0 (Regulatory uncertainty has no effect on abandonment.)

H6a : β8 < 0 (Regulatory uncertainty decreases the prob. of abandonment.)

The middle panel of Table 8 presents the results for abandonment. The
key drivers of the abandonment decision are generator size (SIZE), firm size
(TOTCAP ), startup cost (SBTIME), and spark spread volatility (SPRDSD).

The coefficient on SPRDSD is negative and significant at the 1% level
in both the individual regression (β7 = −3.229) and the full regression
(β7 = −1.367). We reject H50 in favor of the alternative. Higher spark
spread volatility decreases the probability of abandonment through both the
information effect and the option value effect.

In the full model, regulatory uncertainty is not important for making the
abandonment decision. We cannot reject H60. We speculate that, because
generators which were previously shutdown are “out of the game” already,
abandoning the generator has little effect on the firm’s cash flows. The
prospect of losing customers with the advent of retail competition is therefore
less important for abandonment decisions.

5.3.3. Graphical Representation

Figure 2 plots, on the same graph, the probabilities of startup (OP, red
squares), shutdown (SB, blue circles), and abandonment (RE, green trian-
gles) as a function of reserve margin, based upon the full regression (last
column) in Table 8.

The upper panel presents the cases of regulatory uncertainty (right) and
no uncertainty (left). Comparison of the upper panels shows that the exis-
tence of regulatory uncertainty has little effect on the probability of abandon-
ment. The probability of abandonment (green triangles) is nearly identical
in the upper left and upper right panels.

However, the probability of startup (red squares) is noticeably reduced in
the presence of regulatory uncertainty (upper right panel) relative to the case
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of no uncertainty (upper left panel). When generator owners are uncertain
about retail competition and stranded costs, they delay the decision to restart
generators which may otherwise have restarted.

This result has important implications for regulators. Figure 2 shows that
regulatory uncertainty significantly reduces the probability of startup when
reserve margins are low. This is exactly the time when these generators are
needed for system reliability.

The lower panel of Figure 2 presents the cases of low ($10/MWh, left) and
high ($100/MWh, right) spark spread volatility. Comparison of the lower left
and lower right panels of Figure 2 shows that spark spread volatility has a
significant impact on the probability of abandonment. When spark spread
volatility is low, the option value of the generator is low and the probabil-
ity of abandonment (green triangles) increases as reserve margin increases.
However, when spark spread volatility is high, the option value of the gener-
ator is high and the probability of abandonment is small regardless of reserve
margin. This effect is statistically and economically significant.

6. Conclusions

Our results provide evidence that managers recognize and react to un-
certainty in the regulatory environment in a way which is consistent with
real options theory. Indecision on the part of regulators implies uncertainty
about generator values. In the face of this uncertainty managers make fewer
changes to the status quo.

The effect of cash flow uncertainty on the decision to startup is not clear
a priori. The value of waiting for more information reduces the probability of
startup. We refer to this as the information effect. Because an electric power
generator is itself a call option, increased cash flow volatility increases the
value of the generator. We refer to this as the option value effect. The option
value effect suggests that increased cash flow uncertainty should increase the
probability of startup. Our empirical analysis indicates that, at least in our
sample, the option value effect dominates the information effect, particularly
for large generators.

Importantly, regulatory uncertainty reduces the likelihood of startup when
projected reserve margins are low. This is the time when system reliability
is most threatened. When reserve margins are low, system reliability is in
danger, and regulatory uncertainty makes the problem worse.
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Table 1: Generator Summary Statistics

The table presents summary statistics for the age (to the nearest year), size
(megawatts, MW), and efficiency (%) of generators in the sample. The ages
are calculated based upon the first year a generator appears in the sample.

Age (yrs) Size (MW) Efficiency
NOBS 1,121 1,121 1,121
Mean 18.6 43.1 24.7%
Stdev 14.1 41.0 4.6%
Min 0 0.4 5.4%
Max 60 246.0 41.8%

Table 2: Macro, Real Options, and Firm Summary Statistics

The table presents summary statistics for macroeconomic, real options, and
firm-specific variables. RM is reserve margin. T10 is the ten year treasury
bond rate. SPRDSD is the standard deviation of the spark spread,
expressed in units of $/MWh. REGUNCERT is an indicator variable which
takes the value of one during periods of regulatory uncertainty; see the
discussion in Section 3 for details. TOTCAP is the average (over years)
total capacity owned by the firm, expressed in units of MW. TOTPLT is
the average (over years) total number of generators owned by the firm.

Macro Real Options Firm
RM T10 SPRDSD REGUNCERT TOTCAP TOTPLT

NOBS 24 8 8,189 161 212 212
Mean 19.8% 4.71% $31.19 0.217 1,388 15.5
Stdev 5.3% 0.62% $15.23 0.414 2,984 24.4
Min 11.5% 4.01% $12.07 0 1 1
Max 30.1% 6.03% $187.44 1 21,561 202
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Table 3: Shutdown: Transitions from OP to OP/SB by Year

Number of generators classified as operating (OP) in the from year and
either operating (OP) or shutdown (SB) in the to year.

from year to year OP SB Total
2001 2002 695 2 697
2002 2003 803 1 804
2003 2004 808 43 851
2004 2005 820 12 832
2005 2006 829 16 845
2006 2007 848 0 848
2007 2008 851 2 853
2008 2009 885 0 885

Total 6,539 76 6,615

Table 4: Startup and Abandonment: Transitions from SB to OP/SB/RE by Year

Number of generators classified as shutdown (SB) in the from year and
either operating (OP), shutdown (SB), or retired (RE) in the to year.

from year to year OP SB RE Total
2001 2002 60 221 1 282
2002 2003 47 198 1 246
2003 2004 9 143 49 201
2004 2005 22 153 13 188
2005 2006 1 158 6 165
2006 2007 6 173 0 179
2007 2008 32 139 2 173
2008 2009 7 127 6 140

Total 184 1,312 78 1,574
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Table 5: Shutdown: Univariate Statistics

Conditional on a generator operating in year t, the table presents statistics
for macroeconomic variables, firm-specific variables, generator-specific
variables, and real options variables (i.e., measures of uncertainty) for
generators which continued to operate (did not shutdown, OP) in year t+ 1
and those which shutdown (SB) in year t+ 1.

Type Variable OP SB delta
Macro Reserve Margin (%) 19.1% 26.9% -7.8%∗∗∗

Interest Rate (%) 4.68% 4.49% 0.19%∗∗∗

Firm Total Capacity (MW) 6,210 2,469 3,741∗∗∗

Total Number of generators 56.5 28.4 28.2∗∗∗

Generator Age (years) 21.4 24.4 -3.1∗∗

Efficiency (%) 24.8% 23.4% 1.4%∗∗

Size (MW) 45.1 31.9 13.3∗∗∗

Real Options Spark Spread Stdev ($/MWh) $31.04 $21.37 $9.66∗∗∗

Regulatory Uncertainty Dummy 0.240 0.013 0.227∗∗∗

NOBS 6,539 76

25



T
ab

le
6:

S
h
u

td
ow

n
B

in
a
ry

L
o
g
it

E
st

im
a
ti

o
n

R
es

u
lt

s

C
on

si
d
er

ge
n
er

at
or
i

w
h
ic

h
b
u
rn

s
fu

el
j

an
d

is
lo

ca
te

d
in

re
gi

on
k
.

T
h
e

fu
ll

m
o
d
el

is
gi

ve
n

b
y

I
S
B

i,
t+

1
=

α
+

(β
1
∗
R
M

k
,t
+
1
)

+
(β

2
∗
T

10
t)

+
(β

3
∗
E
F
F
i)

+
(β

4
∗
S
I
Z
E

i)
+

(β
5
∗
T
O
T
C
A
P
i,
t)

+
(β

6
∗
S
P
R
D
S
D

ij
k
,t
)

+
(β

7
∗
R
E
G
U
N
C
E
R
T
s,
t)
.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
I
S
B

i,
t+

1
is

an
in

d
ic

at
or

w
h
ic

h
is

eq
u
al

to
ze

ro
if

ge
n
er

at
or
i

w
as

op
er

at
in

g
b

ot
h

in
ye

ar
t

an
d

in
ye

ar
t

+
1,

an
d

eq
u
al

to
on

e
if

ge
n
er

at
or
i

w
as

op
er

at
in

g
in

ye
ar
t

an
d

sh
u
td

ow
n

in
ye

ar
t

+
1.

R
M

k
,t
+
1

is
th

e
p
ro

je
ct

ed
re

se
rv

e
m

ar
gi

n
fo

r
re

gi
on

k
fo

r
ye

ar
t

+
1.
T

10
t

is
th

e
te

n
ye

ar
tr

ea
su

ry
b

on
d

ra
te

fo
r

ye
ar
t.
E
F
F
i

is
th

e
effi

ci
en

cy
of

ge
n
er

at
or
i.
S
I
Z
E

i
is

th
e

ca
p
ac

it
y

of
ge

n
er

at
or
i.
T
O
T
C
A
P
i,
t

is
th

e
ye

ar
t

to
ta

l
ca

p
ac

it
y

fo
r

th
e

fi
rm

w
h
ic

h
ow

n
s

ge
n
er

at
or
i.
S
P
R
D
S
D

ij
k
,t

is
th

e
st

an
d
ar

d
d
ev

ia
ti

on
of

ye
ar
t

sp
ar

k
sp

re
ad

fo
r

ge
n
er

at
or
i

w
h
ic

h
b
u
rn

s
fu

el
j

an
d

is
lo

ca
te

d
in

re
gi

on
k
.
R
E
G
U
N
C
E
R
T
s,
t

is
an

in
d
ic

at
or

va
ri

ab
le

w
h
ic

h
ta

ke
s

a
va

lu
e

of
on

e
if

th
er

e
is

re
gu

la
to

ry
u
n
ce

rt
ai

n
ty

in
st

at
e
s

(i
n

w
h
ic

h
ge

n
er

at
or
i

re
si

d
es

)
an

d
ye

ar
t,

an
d
,

a
va

lu
e

of
ze

ro
ot

h
er

w
is

e.
T

h
e

ta
b
le

p
re

se
n
ts

th
e

av
er

ag
e

m
ar

gi
n
al

eff
ec

ts
( ∂Pr

ob
(I

S
B

=
1)
/∂
x
) of

ea
ch

in
d
ep

en
d
en

t
(x

)
va

ri
ab

le
.

F
or

th
e

in
d
ic

at
or

va
ri

ab
le
R
E
G
U
N
C
E
R
T

,
th

e
ta

b
le

p
re

se
n
ts

th
e

ch
an

ge
in

th
e

p
ro

b
ab

il
it

y
of

a
sh

u
td

ow
n

w
h
en

th
e

va
ri

ab
le

ch
an

ge
s

fr
om

ze
ro

to
on

e.
∗∗

∗ i
n
d
ic

at
es

si
gn

ifi
ca

n
ce

at
th

e
1%

le
ve

l,
∗∗

at
th

e
5%

le
ve

l,
an

d
∗ a

t
th

e
10

%
le

ve
l.

E
ac

h
re

gr
es

si
on

h
as

6,
51

5
ob

se
rv

at
io

n
s.

R
M

0.
25

2∗
∗∗

0.
23

5∗
∗∗

T
10

-0
.9

02
∗∗

∗
0.

79
9∗

∗

E
F
F

-0
.0

64
∗∗

-0
.0

47
∗

S
I
Z
E

-0
.1

33
∗∗

-0
.0

52
T
O
T
C
A
P

-1
.7

18
∗∗

∗
-1

.4
16

∗∗
∗

S
P
R
D
S
D

-1
.0

16
∗∗

∗
-0

.6
09

∗∗

R
E
G
U
N
C
E
R
T

-0
.0

14
∗∗

∗
-0

.0
12

∗∗
∗

p
se

u
d
o-
R

2
14

.3
%

1.
2%

0.
7%

1.
3%

4.
1%

6.
0%

4.
0%

22
.6

%
L

og
-l

ik
el

ih
o
o
d

-3
55

.8
-4

09
.9

-4
12

.0
-4

09
.8

-3
98

.1
-3

90
.3

-3
98

.4
-3

21
.0

A
IC

71
5.

6
82

3.
8

82
8.

0
82

3.
7

80
0.

1
78

4.
5

80
0.

9
65

8.
1

B
IC

72
9.

2
83

7.
4

84
1.

6
83

7.
2

81
3.

7
79

8.
1

81
4.

5
71

2.
5

26



T
ab

le
7:

S
ta

rt
u

p
a
n

d
A

b
a
n

d
o
n

m
en

t:
U

n
iv

a
ri

a
te

S
ta

ti
st

ic
s

C
on

d
it

io
n
al

on
a

ge
n
er

at
or

b
ei

n
g

sh
u
td

ow
n

in
ye

ar
t,

th
e

ta
b
le

p
re

se
n
ts

st
at

is
ti

cs
fo

r
m

ac
ro

ec
on

om
ic

va
ri

ab
le

s,
fi
rm

-s
p

ec
ifi

c
va

ri
ab

le
s,

ge
n
er

at
or

-s
p

ec
ifi

c
va

ri
ab

le
s,

an
d

re
al

op
ti

on
s

va
ri

ab
le

s
(i

.e
.,

m
ea

su
re

s
of

u
n
ce

rt
ai

n
ty

)
fo

r
ge

n
er

at
or

s
w

h
ic

h
re

m
ai

n
ed

sh
u
td

ow
n

(S
B

)
in

ye
ar
t

+
1,

w
h
ic

h
st

ar
te

d
u
p

(m
ov

ed
to

op
er

at
in

g,
O

P
)

in
ye

ar
t

+
1,

an
d

th
os

e
w

h
ic

h
w

er
e

ab
an

d
on

ed
(r

et
ir

ed
,

R
E

)
in

ye
ar
t

+
1.

F
or

st
ar

tu
p

an
d

ab
an

d
on

m
en

t,
th

e
d
e
lt
a

co
lu

m
n

sh
ow

s
th

e
d
iff

er
en

ce
fr

om
th

e
th

e
ge

n
er

at
or

s
w

h
ic

h
re

m
ai

n
ed

on
st

an
d
b
y.

T
y
p
e

V
a
ri
a
b
le

S
B

O
P

d
e
lt
a

R
E

d
e
lt
a

M
ac

ro
R

es
er

ve
M

ar
gi

n
(%

)
18

.8
%

16
.4

%
2.

4%
∗∗

∗
27

.0
%

-8
.2

%
∗∗

∗

In
te

re
st

R
at

e
(%

)
4.

78
%

5.
13

%
-0

.3
5%

∗∗
∗

4.
51

%
0.

27
%

∗∗
∗

F
ir

m
T

ot
al

C
ap

ac
it

y
(M

W
)

2,
68

6
2,

33
5

35
1

8,
98

2
-6

,2
96

∗∗
∗

T
ot

al
N

u
m

b
er

of
ge

n
er

at
or

s
27

.5
25

.7
1.

8
83

.9
-5

6.
4∗

∗∗

G
en

er
at

or
A

ge
(y

ea
rs

)
23

.8
21

.9
1.

9∗
31

.0
-7

.2
∗∗

∗

E
ffi

ci
en

cy
(%

)
23

.2
%

24
.2

%
-1

.0
%

∗∗
∗

20
.7

%
2.

5%
∗∗

∗

S
iz

e
(M

W
)

31
.6

46
.6

-1
5.

0∗
∗∗

11
.9

19
.8

∗∗
∗

T
im

e
S
h
u
td

ow
n

(y
ea

rs
)

2.
55

1.
16

1.
39

∗∗
∗

2.
55

0.
00

R
ea

l
O

p
ti

on
s

S
p
ar

k
S
p
re

ad
S
td

ev
($

/M
W

h
)

$3
2.

27
$3

6.
10

-$
3.

83
∗∗

∗
$2

3.
39

$8
.8

8∗
∗∗

R
eg

u
la

to
ry

U
n
ce

rt
ai

n
ty

D
u
m

m
y

0.
07

5
0.

04
3

0.
03

1∗
0.

02
6

0.
04

9∗
∗

N
O

B
S

1,
31

2
18

4
78

27



T
ab

le
8:

S
ta

rt
u

p
A

n
d

A
b

a
n

d
o
n

M
u

lt
in

o
m

ia
l

L
o
g
it

E
st

im
a
ti

o
n

R
es

u
lt

s

C
on

si
d
er

ge
n
er

at
or
i

w
h
ic

h
b
u
rn

s
fu

el
j

an
d

is
lo

ca
te

d
in

re
gi

on
k
.

T
h
e

fu
ll

m
o
d
el

is
gi

ve
n

b
y

I
O
P
R
E

i,
t+

1
=

α
+

(β
1
∗
R
M

k
,t
+
1
)

+
(β

2
∗
T

10
t)

+
(β

3
∗
E
F
F
i)

+
(β

4
∗
S
I
Z
E

i)
+

(β
5
∗
T
O
T
C
A
P
i,
t)

+
(β

6
∗
S
B
T
I
M
E

i,
t)

+
(β

7
∗
S
P
R
D
S
D

ij
k
,t
)

+
(β

8
∗
R
E
G
U
N
C
E
R
T
s,
t)
.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
I
O
P
R
E

i,
t+

1
is

a
d
is

cr
et

e
va

ri
ab

le
w

h
ic

h
is

eq
u
al

to
ze

ro
if

ge
n
er

at
or
i

w
as

on
st

an
d
b
y

in
ye

ar
t

an
d

op
er

at
in

g
in

ye
ar
t

+
1,

eq
u
al

to
on

e
if

ge
n
er

at
or
i

w
as

on
st

an
d
b
y

b
ot

h
in

ye
ar
t

an
d

in
ye

ar
t

+
1,

eq
u
al

to
tw

o
if

ge
n
er

at
or
i

w
as

on
st

an
d
b
y

in
ye

ar
t

an
d

re
ti

re
d

in
ye

ar
t

+
1.
R
M

k
,t
+
1

is
th

e
p
ro

je
ct

ed
re

se
rv

e
m

ar
gi

n
fo

r
re

gi
on

k
fo

r
ye

ar
t

+
1.
T

10
t

is
th

e
te

n
ye

ar
tr

ea
su

ry
b

on
d

ra
te

fo
r

ye
ar
t.

E
F
F
i

is
th

e
effi

ci
en

cy
of

ge
n
er

at
or
i.
S
I
Z
E

i
is

th
e

ca
p
ac

it
y

of
ge

n
er

at
or
i.
T
O
T
C
A
P
i,
t

is
th

e
ye

ar
t

to
ta

l
ca

p
ac

it
y

fo
r

th
e

fi
rm

w
h
ic

h
ow

n
s

ge
n
er

at
or
i.
S
B
T
I
M
E

i,
t

is
th

e
le

n
gt

h
of

ti
m

e,
in

ye
ar

s,
th

at
ge

n
er

at
or
i

h
as

b
ee

n
sh

u
td

ow
n

as
of

ye
ar
t.
S
P
R
D
S
D

ij
k
,t

is
th

e
st

an
d
ar

d
d
ev

ia
ti

on
of

ye
ar
t

sp
ar

k
sp

re
ad

fo
r

ge
n
er

at
or
i

w
h
ic

h
b
u
rn

s
fu

el
j

an
d

is
lo

ca
te

d
in

re
gi

on
k
.
R
E
G
U
N
C
E
R
T
s,
t

is
an

in
d
ic

at
or

va
ri

ab
le

w
h
ic

h
ta

ke
s

a
va

lu
e

of
on

e
if

th
er

e
is

re
gu

la
to

ry
u
n
ce

rt
ai

n
ty

in
st

at
e
s

(i
n

w
h
ic

h
ge

n
er

at
or
i

re
si

d
es

)
an

d
ye

ar
t,

an
d
,

a
va

lu
e

of
ze

ro
ot

h
er

w
is

e.
T

h
e

ta
b
le

p
re

se
n
ts

th
e

av
er

ag
e

m
ar

gi
n
al

eff
ec

ts
( ∂Pr

ob
(I

S
B

=
1)
/∂
x
) of

ea
ch

in
d
ep

en
d
en

t
(x

)
va

ri
ab

le
.

F
or

th
e

in
d
ic

at
or

va
ri

ab
le
R
E
G
U
N
C
E
R
T

,
th

e
ta

b
le

p
re

se
n
ts

th
e

ch
an

ge
in

th
e

p
ro

b
ab

il
it

y
of

a
st

ar
tu

p
w

h
en

th
e

va
ri

ab
le

ch
an

ge
s

fr
om

ze
ro

to
on

e.
∗∗

∗ i
n
d
ic

at
es

si
gn

ifi
ca

n
ce

at
th

e
1%

le
ve

l,
∗∗

at
th

e
5%

le
ve

l,
an

d
∗ a

t
th

e
10

%
le

ve
l.

E
ac

h
re

gr
es

si
on

h
as

1,
57

4
ob

se
rv

at
io

n
s.

S
ta

rt
u
p

R
M

-0
.8

35
∗∗

∗
-0

.7
57

∗∗
∗

T
10

7.
76

4∗
∗∗

-2
.1

45
E
F
F

0.
54

2∗
∗

0.
12

1
S
I
Z
E

1.
11

7∗
∗∗

0.
94

7∗
∗∗

T
O
T
C
A
P

-4
.0

64
∗

-6
.1

24
∗∗

S
B
T
I
M
E

-0
.0

39
∗∗

∗
-0

.0
35

∗∗
∗

S
P
R
D
S
D

1.
72

5∗
∗∗

0.
61

3∗

R
E
G
U
N
C
E
R
T

-0
.0

46
∗

-0
.0

64
∗∗

∗

A
b
an

d
on

R
M

1.
05

7∗
∗∗

0.
24

2∗

T
10

-4
.4

69
∗∗

∗
-1

.2
37

E
F
F

-0
.5

88
∗∗

∗
-0

.0
04

S
I
Z
E

-2
.6

64
∗∗

∗
-4

.3
63

∗∗
∗

T
O
T
C
A
P

10
.9

65
∗∗

∗
12

.3
22

∗∗
∗

S
B
T
I
M
E

0.
00

2
0.

01
3∗

∗∗

S
P
R
D
S
D

-3
.2

29
∗∗

∗
-1

.3
67

∗∗
∗

R
E
G
U
N
C
E
R
T

-0
.0

33
∗∗

∗
0.

01
0

p
se

u
d
o-
R

2
9.

6%
3.

6%
1.

9%
4.

4%
7.

8%
4.

6%
2.

7%
0.

3%
29

.0
%

L
og

-l
ik

el
ih

o
o
d

-7
84

.5
-8

36
.9

-8
52

.0
-8

30
.3

-8
00

.8
-8

28
.7

-8
45

.0
-8

65
.3

-6
16

.1
A

IC
1,

57
7

1,
68

2
1,

71
2

1,
66

9
1,

60
9

1,
66

5
1,

69
8

1,
73

9
1,

26
8

B
IC

1,
59

9
1,

70
3

1,
73

4
1,

69
0

1,
63

1
1,

68
7

1,
71

9
1,

76
0

1,
36

5

28



Figure 1: Shutdown Probability

The top panel presents the probability of shutting down an operating generator as
a function for reserve margin for the cases of regulatory uncertainty (blue circles)
and no uncertainty (red squares). The bottom panel presents the probability of
shutting down an operating generator as a function for reserve margin for three
values of spark spread volatility - $10/MWh (blue circles), $30/MWh (red squares),
and $100/MWh (green triangles).
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Figure 2: Startup and Abandonment Probability

For generators which were previously shutdown, the figure present the probability
of startup (OP, red squares), remaining on standby (SB, blue circles), and aban-
donment (RE, green triangles) as a function of reserve margin. The top panel
shows the probabilities for no regulatory uncertainty (left) and regulatory uncer-
tainty (right). The bottom panel shows the probabilities for low spark spread
volatility of ($10/MWh, left) and high spark spread volatility ($100/MWh right).
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Appendix A. Heat Rate Data

Heat rate data are available for 943 of the 1,121 generators in our sam-
ple. In order to estimate the heat rates of the remaining 178 generators, we
calculate mean heat rates by size and in-service year. The heat rate for a
combustion turbine varies (1) inversely with the size of the generator (bigger
machines are more efficient), and (2) directly with the age of the generator
(newer machines are much more efficient). We classify generators into size
and age categories (five of each) and then calculate the average heat rate in
each age-size category based upon the heat rates available from CEMS and
Form 860. We then use these average heat rates for other generators in these
size-age categories.

For example, heat rate data is available for 318 generators which went
into service in the 1970s and with capacity less than 50MW. The average
heat rate for these 318 generators is 16.055 MMBtu/MWh. There are 16
generators which fall into the same size-age category and for which no heat
rate data are available. For those 16 generators we assign the heat rate to
be 16.055 MMBtu/MWh.

Heat rate data is available for 26 generators which went into service in
the 2000s and with capacity in the 100-150 MW range. The mean heat rate
for these 26 generators is 11.880 MMBtu/MWh. There are 5 generators
which fall into the same size-age category and for which no heat rate data
are available. For those 5 generators we assign the heat rate to be 11.880
MMBtu/MWh. And so forth and so on.
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Appendix B. Startup and Shutdown Costs

Most of the problems encountered in restarting a generator are associated
with the control system, i.e., instrumentation, electronic controls, and wiring.
In general these systems do not vary greatly with the size of the generator in
question. Mechanical issues involved in shutdown and restart are primarily
concerned with corrosion. Core preservation requires layup chemicals.28

Restarting a generator begins with checking the control loops. Mainte-
nance personnel attempt to “shoot-the-loop”, i.e., to check that each control
loop is functioning and, if not, to determine where the problem lies. It is com-
mon for systems that were in perfect working order at the time the generator
was shutdown to fail when restart is attempted.

The costs to restart a generator also can vary with corporate culture.
Oftentimes maintenance of shutdown generators has a lower priority than
maintaining operating generators. A willingness to spend money to main-
tain these systems while the generator is shutdown greatly reduces the one
time cost associated with the actual restart. However, management may not
perceive that spending money on a generator which is not currently operat-
ing is a wise investment. The unfortunate (for our purposes) conclusion is
that two generators which are the same size, same age, and located in the
same region can have very different shutdown and startup costs depending
on managerial priorities.

In summary, there is no simple way to estimate the costs associated with
shutting down and restarting a generator based strictly upon the data avail-
able from EIA. Each generator is unique and each firm is unique.

As discussed in the main text, we focus on simple cycle gas turbines
only, thereby eliminating variation across technology types. The control
system issues discussed above should not vary much with the capacity of the
generator.

28For example, the introduction of nitrogen can prevent oxygen from coming into contact
with the core and causing corrosion.
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