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Summary

The chirps package provides functionalities for reproducible analysis in R (R Core Team,
2020) using the CHIRPS (Funk et al., 2015) data. CHIRPS is daily precipitation data set
developed by the Climate Hazards Group (Funk et al., 2015) for high resolution precipitation
gridded data. Spanning 50◦ S to 50◦ N (and all longitudes) and ranging from 1981 to near-
present (normally with a 45 day lag), CHIRPS incorporates 0.05 arc-degree resolution satellite
imagery, and in-situ station data to create gridded precipitation time series for trend analysis
and seasonal drought monitoring (Funk et al., 2015). Additionally, the package provides the
API client for the IMERG (Huffman et al., 2014) and ESI (SERVIR Global, 2019a) data. The
Integrated Multi-satelliE Retrievals for GPM (IMERG) data provides near-real time global
observations of rainfall at 0.5 arc-degree resolution, which can be used to estimate total
rainfall accumulation from storm systems and quantify the intensity of rainfall and flood
impacts from tropical cyclones and other storm systems. IMERG is a daily precipitation
dataset available from 2015 to near-present. The evaporative stress index (ESI) data describes
temporal anomalies in evapotranspiration produced weekly at 0.25 arc-degree resolution for
the entire globe (Anderson et al., 2011). The ESI data is based on satellite observations of
land surface temperature, which are used to estimate water loss due to evapotranspiration
(the sum of evaporation and plant transpiration from the Earth’s land and ocean surface to
the atmosphere). The ESI data is available from 2001 to near-present. When using these
data sets in publications please cite Funk et al. (2015) for CHIRPS, Huffman et al. (2014)
for IMERG and SERVIR Global (2019a) for ESI.

Implementation

Four main functions are provided, get_chirps(), get_imerg(), get_esi() and precip_in
dices(). The get_chirps() function provides access to CHIRPS data via the ClimateSERV
API Client (SERVIR Global, 2019b) with methods to handle objects of class ‘data.frame’,
‘geojson’ and ‘sf’ via the package methods (R Core Team, 2020). To accept the query,
ClimateSERV requires a geojson object of type ‘Polygon’ (one single polygon per request).
Using the package sf (Pebesma, 2018) internally, the input provided in get_chirps() is
transformed into a list of polygons with a small buffer area (0.0001 arc-sec by default) around
the point and transformed into a list of geojson strings. chirps uses crul (Chamberlain, 2019)
to interface with ClimateSERV API. The query returns a JSON object parsed to jsonlite
(Ooms, 2014) to obtain the data frame for the time series required. get_chirps() returns a
data.frame, which also inherits the classes ‘chirps’ and ‘chirps_df’, where each id represents
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the index for the rows in the in-putted ‘object’. The function get_imerg() returns the
precipitation data from the IMERG data set. The function works with the same parameters
described for get_chirps() and also inherits the classes ‘chirps’ and ‘chirps_df’. The function
get_esi() returns the evaporative stress index (ESI) data (Anderson et al., 2011), and works
similarly to get_chirps() returning a data.frame which inherit the class ‘chirps_df’. Users
providing objects of class ‘sf’ and ‘geojson’ in get_chirps(), get_imerg() and get_esi()
can also choose to return an object with the same class as the object provided using the
arguments ‘as.sf = TRUE’ or ‘as.geojson = TRUE’. With the function precip_indices
() users can assess how the precipitation changes across the requested time series using
precipitation variability indices (Aguilar et al., 2005), computed using stats (R Core Team,
2020), the main input is an object of class ‘chirps’. Extended documentation is provided with
examples on how to increase the buffer area and draw quadrants for the geojson polygon using
sf (Pebesma, 2018).

Application: a case study in the Tapajós National Forest

The Tapajós National Forest is a protected area in the Brazilian Amazon. Located within
the coordinates -55.4◦ and -54.8◦ E and -4.1◦ and -2.7◦ S with ~ 527,400 ha of multiple
Amazonian ecosystems. We take twenty random points across its area to get the precipitation
from Jan-2008 to Dec-2018 using get_chirps(). We use an object of class ‘sf’ which is
passed to the method get_chirps.sf(). Then, we compute the precipitation indices for the
time series with intervals of 30 days using precip_indices().

library("chirps")
library("sf")

data("tapajos", package = "chirps")
set.seed(1234)
tp <- st_sample(tapajos, 20)
tp <- st_as_sf(tp)

dt <- get_chirps(tp, dates = c("2008-01-01","2018-01-31"))

p_ind <- precip_indices(dt, timeseries = TRUE, intervals = 30)

We selected four indices for the visualization using tidyverse (Wickham et al., 2019). Plots
were ensembled together using gridExtra (Auguie, 2017). Here we see how these indices are
changing across the time series (Figure 1). In this quick assessment, we note an increasing
extent of consecutive dry days (MLDS) across the time series, with also a decrease in the
number of consecutive rainy days (MLWS), which stays above the historical average for MLDS
and bellow the historical average for MLWS. The trends also show a decrease in the total
rainfall in the 30-days intervals, staying below the average after 2014. Finally, we note a
decrease in maximum consecutive 5-days precipitation, which also stays bellow the historical
average.
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Figure 1: Trends in precipitation variability across the Tapajós National Forest, Brazil, for the period
of 01-Jan-2010 to 31-Dec-2018 with four precipitation indices. MLDS, maximum length of consecutive
dry days (days), MLWS, maximum length of consecutive wet days (days), Rtotal, total precipitation
(mm), Rx5day, maximum consecutive 5-days precipitation (mm). Red lines indicates the historical
mean of each index in the time series. Blue line indicates the smoothed trends in each index using
the ’loess’ method.

Other applications and conclusion

Deriving precipitation indices that can be obtained from CHIRPS proved to be an excellent
approach to evaluate the climate variability using precipitation data (de Sousa et al., 2018) and
the effects of climate change on a continental analysis (Aguilar et al., 2005). Additionally,
these indices can be used to register specific effects of climate variability on crop varietal
performance. In crop modelling, Kehel, Crossa, & Reynolds (2016) applied this to assess the
interactions of wheat varieties with the environment, showing how severe drought, assessed
with the maximum length of dry spell (MLDS), can affect the plant development and the yield.
These indices can also be useful to improve variety recommendation for climate adaptation in
marginal production environments (van Etten et al., 2019).
Overall, CHIRPS data can be used in many applications and currently has over 800 citations
from studies using this tool. Many applications are the field of agriculture, hydrologic mod-
elling and drought monitoring, but also some studies using this in disease control programs
(e.g. Thomson et al. (2017), Horn et al. (2018)). The chirps package aims to make it
possible for researchers in these fields to implement this tool into a replicable and reproducible
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workflow in R.
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