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This thesis focuses on the primary challenges to ungulate management in the 21st 
century: multiple land uses that provide food subsidies, predator recolonization, 
climate change, and monitoring population trends of wide-ranging animals. I focus 
on the feeding ecology and spatio-temporal patterns of the largest circumboreal 
herbivore, the moose (Alces alces). 

The thesis objectives were to evaluate: 1) how browsing was influenced in areas with 
high predation risk, such as areas close to roads and with wolves (Canis lupus), 
in accordance with a landscape of fear; 2) whether ungulate-adapted forestry can 
be used to mitigate and reduce browsing damage; 3) if there was variation in the 
intensity of landscape use of moose, in response to variable winters; 4) sources of 
error associated with a common monitoring method for cervids.

I found that roads are a major driver of moose browsing ecology, with a greater 
effect than wolf occurrence alone. Browsing occurrence was nearly double in 
young forests along low-traffic roadsides, relative to forests older and younger than 
5–20 years, which could exacerbate moose-forestry conflicts. I also found prom-
ising effects of ungulate-adapted logging to alleviate browsing damage, although 
monitoring over a longer period would likely show greater differences. I found that 
snow depth and winter temperature influenced intensity of use of the landscape by 
moose, with temperatures above 0°C showing a decline in intensity of use. And last, 
I found evidence that the detection errors associated with fecal pellet group counts 
were larger than previously thought.

This thesis advanced our knowledge of the effects of human disturbance on moose 
ecology. It highlights that humans are an important provider of forage via land 
use changes, and that milder winters may disproportionately affect Scandinavia’s 
southern moose populations compared to northern populations. I provide practical 
suggestions to address detection errors to improve monitoring.



Ph.d.-avhandlinger i anvendt økologi og bioteknologi 
PhD Dissertations in Applied Ecology and Biotechnology

No. 1 - 2021 Kauê de Sousa: Agrobiodiversity and climate adaptation: Insights for risk management in  
smallscale farming

No. 2 - 2021 Gjermund Gomo: The Vertebrate Scavenger Community Along a Boreal Forest-Alpine Gradient:  
The Importance of Ungulate Management, Small Rodent Cycles and Winter Climate 

No. 3 - 2021 Ana Maria Peris Tamayo: Adaptive radiation of Arctic charr (Salvelinus alpinus) in three Norwegian 
lakes - niche segregation, phenotypic and genetic variation

No. 4 - 2021 Anne Elizabeth Loosen: Spatial ecology of moose (Alces alces) in a dynamic world



 

 

Anne Elizabeth Loosen 

Spatial ecology of moose (Alces alces) in  

a dynamic world 

 

PhD Thesis 

2021 

Faculty of Applied Ecology, Agricultural Sciences and Biotechnology 

 



Printed by: Flisa Trykkeri A/S 

Place of publication: Elverum 

Cover photos: Troy Malish, Colourbox 

© Anne Elizabeth Loosen (2021) 

Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway 

University of Applied Sciences (INN), Department of Forestry and Wildlife Management, 

Evenstad, Norway. 

This material is protected by copyright law. Without explicit authorisation, reproduction is only 

allowed in so far it is permitted by law or by agreement with a collecting society. 

PhD Thesis in Applied Ecology and Biotechnology no.23

ISBN printed version: 978-82-8380-266-5

ISBN digital version: 978-82-8380-267-2

ISSN printed version: 2703-819X

ISSN digital version: 2703-8181



Author contact 

Anne Elizabeth Loosen 

Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural 

Sciences and Biotechnology, 2480 Koppang, Norway 

E-mail: annie.loosen@gmail.com

Primary supervisor 

Karen Marie Mathisen 

Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural 

Sciences and Biotechnology, 2480 Koppang, Norway 

Co-supervisors 

Olivier Devineau 

Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural 

Sciences and Biotechnology, 2480 Koppang, Norway 

Barbara Zimmermann 

Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural 

Sciences and Biotechnology, 2480 Koppang, Norway 

Joris P.G.M. Cromsigt 

Swedish University of Agricultural Sciences, Department of Wildlife, Fish and 

Environmental Studies, Skogsmarksgränd, 901 83 Umeå, Sweden 

Centre for African Conservation Ecology, Department of Zoology, PO Box 77000, Nelson 

Mandela University, Port Elizabeth 6031, South Africa 

Copernicus Institute of Sustainable Development, Utrecht University, 3584CS Utrecht, the 

Netherlands 





i 

Sammendrag 

Denne avhandlingen tar for seg noen av de viktigste utfordringene for hovdyrforvaltning i det 

21. århundre: arealbruk som bidrar til økt fôrproduksjon, rekolonisering av naturlige

predatorer, klimaendringer og utfordringer ved overvåkning av bestander som beveger seg 

over store områder. Mer spesifikt så har jeg fokusert på beiteøkologi og variasjoner i 

habitatbruk i tid og rom hos elg (Alces alces), vår største herbivor med sirkumboreal 

utbredelse.   

Problemstillingene i avhandlingen var å 1) evaluere hvordan områder med høy 

predasjonsrisiko, som innenfor ulverevir og nær veier, påvirker beitetrykk fra elg, i tråd med 

teorier om «fryktens landskap»; 2) evaluere om elgtilpasset skogbruk kan brukes til å redusere 

konflikter rundt beiteskader; 3) evaluere variasjonen i elgens bruk av ulike områder med 

varierende vintre over en nord-sør gradient; 4) evaluere kilder til usikkerhet og feil i 

overvåkningsmetoder av hjortevilt og faktorer som påvirker oppdagbarhet. Jeg brukte data på 

beitetrykk og møkktellinger samlet inn i felt i en gradient fra nord til sør i Norge og Sverige, 

til å svare på disse problemstillingene.  

Jeg fant at små og store veier var en viktig faktor for å forklare variasjon i elgens beiteøkologi 

i boreale skoglandskaper, og veier hadde større effekt enn tilstedeværelse av ulv. 

Sannsynligheten for at elgen beitet nær skogsbilveier, var nesten dobbelt så høy i ungskog, 

sammenlignet med skogtyper som var eldre eller yngre enn 5-20 år. Et økt beitetrykk nær 

skogsbilveier kan forverre konflikten rundt beiteskader. Jeg fant også lovende tendenser til at 

elgtilpasset avvirkning (tilrettelegging av hogstavfall) kan redusere beiteskader. Men her er 

det også behov for studier over lenger tid. Jeg fant at snødybde og vintertemperatur påvirket 

elgens brukt av ulike områder, elgen brukte områder med lav temperatur mer enn områder 

med høy temperatur (over 0°C) om vinteren. Jeg fant også at lav oppdagbarhet under 

elgmøkktellinger, og forskjeller mellom frivillige observatører, kan underestimere tetthet av 

elg.  

I denne avhandlingen har jeg vist viktigheten av menneskelig forstyrrelser, at menneskelig 

arealbruk påvirker fôrtilgangen til hjortevilt, og at milde vintre kan påvirke de sørlig og 

nordlige elgbestandene i Skandinavia ulikt. Jeg har også vist at det er betydelig usikkerhet i 

overvåkningsdata, og foreslår løsninger for å håndtere observasjonsfeil som kan bidra til å 

forbedre overvåkingen i fremtiden.  
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Abstract 

This thesis focuses on some of the primary challenges to ungulate management in the 21st 

century: multiple land uses that provide food subsidies, predator recolonization, climate 

change, and challenges researchers and managers are faced with when monitoring population 

trends of wide-ranging animals. Specifically, I focus on the feeding ecology and spatial and 

temporal patterns of the largest circumboreal herbivore, the moose (Alces alces).  

The thesis objectives were to: 1) evaluate how browsing was influenced in areas with high 

predation risk, such as where wolves (Canis lupus) are present and areas close to roads, in 

accordance with a landscape of fear; 2) evaluate if ungulate-adapted forestry can be a human-

wildlife conflict mitigation measure to reduce browsing damage; 3) evaluate if there was 

variation in the intensity of use of moose, in response to variable winters and across a large 

latitudinal gradient; 4) evaluate sources of error associated with a common deer monitoring 

method. To meet these objectives, I used field-collected data across a latitudinal gradient in 

Norway and Sweden, primarily via browsing data and fecal pellet group counts.  

I found roads were a major driver of moose browsing ecology within the boreal forest 

landscape, with seemingly greater effects than wolf occurrence alone. Browsing occurrence 

was nearly double in young forests along low-traffic roadsides, relative to forests older and 

young than 5–20 years. This represents an increased browsing risk that could exacerbate the 

moose-forestry conflict in Scandinavia. I also found promising effects of ungulate-adapted 

logging to alleviate browsing damage, though I expect that increased monitoring over time 

could show greater differences. I found that snow depth and winter temperature influenced 

intensity of use of the landscape, with temperatures above 0°C showing a decline in intensity 

of use. And last, I found detection errors associated with fecal pellet group counts were 

largely than previously thought and likely underestimates of moose density and abundance. 

This thesis advanced our knowledge of the effects of human disturbances, that humans are an 

important provider of forage to an abundant large browser via land use changes, and milder 

winters may disproportionately affect Scandinavia’s southern moose populations compared to 

northern populations. This thesis acknowledges that monitoring data are not perfect, and I 

provide practical solutions to address detection errors to improve future monitoring programs.  
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Preface  

 

“Every value I’ve ever held is being questioned, and I’m loving it.” 

- Maurice Moss  
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Introduction 

Humans represent 36% of all mammalian biomass on the globe (Bar-On et al. 2018) and are 

the primary driver of global environmental change (Rockström et al. 2009). This has wide-

reaching consequences, from the induction of global warming to the start of the world’s sixth 

mass extinction (Barnosky et al. 2011). The end of the Holocene (11,650 ybp–1950’s) and 

start of the Anthropocene (1950’s–present) has seen the decline of many large-bodied 

mammals such as large herbivores and carnivores (Ripple et al. 2015, Malhi et al. 2016, 

Linnell et al. 2020).  

In contrast to these declines, in some cases, the densities of modern ungulates (i.e., hooved 

mammals) have surpassed historical densities (Linnell et al. 2020). The high densities of 

certain ungulate species can be attributed to the synergistic effects of natural predator 

extinctions or population reductions and intensified agriculture and forestry providing food 

subsidies (Apollonio et al. 2010). Conflicting demands of wild ungulates and human interests 

can intensify human-wildlife conflicts.  

This thesis focuses on some of the primary challenges to ungulate management in the 21st 

century: multiple land uses that provide food subsidies, predator recolonization, climate 

change, and the precision of monitoring data collected by multiple observers. In the 

following, I provide background information on these challenges in a global and regional 

context. Specifically, this thesis focuses on the feeding ecology and spatio-temporal patterns 

of the largest circumboreal herbivore, the moose (Alces alces). 

Human land use  

The boreal forest is one of the world’s largest biomes, spreading across northern latitudes in 

Asia, Europe, and North America with the majority of the boreal forests occurring in Russia 

(60%) and Canada (28%) (Brandt et al. 2013). Boreal forests are dynamic systems that are 

naturally driven by fire, windstorms, mammalian herbivory, insect outbreaks, and the 

subsequent interactions of these various drivers (Brandt et al. 2013). For example, wildfires 

can be stand-replacing agents of change that influence forest structure, biodiversity, 

productivity, and species composition (Weber and Flannigan 1997). Despite being generally 

of poor productivity, the goods and services provided by boreal forests make them highly 

valuable for provisioning timber, pulp wood, fresh water, minerals, and wild-harvested food, 

as well as regulating climate, flood, and disease (Brandt et al. 2013).  
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But, a global human population of 7.8 billion people places a heavy resource extraction 

pressure on even remote boreal ecosystems, with about two-thirds of boreal forests under 

some form of land management, primarily for wood and timber production (Gauthier et al. 

2015). This has led to the loss of mature and old growth forests, and the proliferation of young 

and mid-age forest stands (i.e., contiguous area of trees that are uniform in species 

composition, structure, and age), which are often low in biodiversity and provide a smaller set 

of ecosystem services. This also represents a shift from boreal forest structure and diversity 

being determined by natural drivers such as fire, to anthropogenic drivers such as commercial 

forestry. The situation in the boreal is likely to become more dire as boreal biomes are 

undergoing the most rapid land use change second only to the tropics (Soja et al. 2007, 

Hansen et al. 2013).    

Scale 

Boreal forests are dynamic, where processes operate at several spatial and temporal scales. 

Indeed, spatial scale is a critical component to most ecological questions (Johnson 1980, Senft 

et al. 1987, Boyce 2006). A foraging ungulate, for example, moves within its geographical 

range (1st order), establishes a home range (2nd order), and within that home range may make 

seasonal movements, selecting feeding patches (3rd order), individual plants and parts of the 

plant to eat (4th order; Johnson 1980). Finding the scale at which wildlife behaviors operate 

has been a primary research topic in ecology for the past decades and remains relevant today.  

Indirect effects of predator recolonizations  

Throughout the 19th and 20th centuries, many countries eradicated top predators. In North 

America, the removal of bears (Ursid spp.), big cats, and wolves (Canis lupus) symbolized 

the ‘taming’ of the landscape. Throughout the world, it was, and still is, common to place 

bounties on predators to incentivize the public to eradicate carnivores. This loss of carnivores 

has resulted in devastating direct and indirect effects: large carnivores remain threatened 

globally (Ripple et al. 2014) and some ungulate densities have surpassed historical levels. 

Indeed, humans are the top super-predator (Worm 2015, Smith et al. 2017, Mysterud et al. 

2020) and today many ungulate and predator populations are regulated via legal harvest. 

However, social tolerance for predators is slowly changing as seen with the recovery of 

wolves (Boyce 2018). In Europe, for example, there are now an estimated 17,000 wolves 

(Linnell et al. 2020).  
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Top predators can have direct, lethal consequences (consumptive effects; Figure 1) to prey 

(Gasaway et al. 1992, Messier 1994). But prey can also perceive predation risk and 

increasingly, the behavioral effects of predation risk are shown to influence a variety of prey 

behaviors such as foraging in space and time, vigilance, patch use, diet, and habitat selection 

(Brown and Kotler 2004, Winnie and Creel 2007, LaManna and Martin 2016). This is 

commonly termed the ‘landscape of fear’, which is defined as the spatial variation in prey 

perception of predation risk (Gaynor et al. 2019) (Figure 1).  

 

Figure 1. A diagram illustrating the limiting potential of consumptive and fear effects of 

predation on prey populations; 1) under no predation, prey can select higher quality habitat, 

forage at higher rates and have lower stress levels which leads to higher reproduction, 

survival and densities. 2) In the presence of predators, prey suffer higher mortality in high 

quality habitat and 3) increased fear of predators can result in prey moving to poorer habitat 

to avoid predators, or increased vigilance and chronic stress levels resulting in higher 

starvation and/or reduced reproductive output. The net result is reduced prey abundance 

through decreased survival and reproduction. Figure and caption text is adapted from Peers 

et al. 2018 and is reused with permission by John Wiley and Sons.  
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Climate change 

Climate change is a threat to biodiversity and ecosystems across the globe (Parmesan et al. 

2003). Changing temperatures and precipitation patterns can increase the phenological 

mismatch between plants and their consumers at multiple trophic levels (Kudo and Ida 2013), 

can cause shifts in habitat use to accommodate a changing thermal or food landscape (Post 

and Stenseth 2011, van Beest and Milner 2013, Jennewein et al. 2020), and can even result in 

altered distribution ranges.  

For cold climate adapted species, climate change represents a particular challenge. Moose 

(Alces alces), for example, are a cold climate adapted ungulate species with a global northern 

distribution (Hundertmark 2016). During winter, moose enter a period of hypometabolism to 

reduce energy expenditure during a food-limited time of the year (Græsli et al. 2020b). When 

winter temperatures increase (e.g., > -5°C), moose can go into thermal stress (Renecker and 

Hudson 1986), which can lead to decreased feeding rates to decrease body temperature 

(rumination can increase body temperature), or a shift to cooler microhabitats such as mature 

forests where canopy cover acts a thermal buffer. At larger spatio-temporal scales, climate 

change will interact with forestry, for example shifting which species can grow when and 

where, and with forage quality, shifting what forage is available for ungulates. This shift is 

already occurring with the global “greening” (Boisvenue and Running 2006, Zhu et al. 2016).     

Challenges with monitoring data 

To manage populations that are subject to the changes described above, we need reliable 

monitoring data. Methods to calculate density and abundance, for example, have a long 

history in ecology, such as census counts and distance sampling or capture-mark-recapture 

methods when the entire population cannot be censused (Witmer 2005). However, calculating 

density and abundance is expensive, especially for wide-ranging, cryptic, or low-density 

populations (Woodruff et al. 2018). Instead, population or activity indices are often used 

whereby indirect observations (e.g., track surveys, pellet counts, food removal) are assumed 

to be proportional to density or abundance. Too often, population indices are used without 

validation steps to identify sources of error or bias (Witmer 2005). As well, there is an 

increased reliance on volunteer-collected data. 

Scientific data is increasingly being collected by citizen scientists. Citizen science, the 

involvement of citizens in scientific research and knowledge production (Cretois et al. 2020), 

allow researchers and managers to collect data across spatio-temporal domains that would 
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otherwise be too costly to collect (Tulloch et al. 2013, Buesching et al. 2014, Cretois et al. 

2020). This is a growing field because of the availability of ‘free’ labor. Yet, these data have 

trade-offs such as observer bias as a result of (in)experience, the ease of implementing the 

sampling regime, and the spatial bias of data (i.e., clustering of data around urban areas or in 

parks and protected areas; Geldmann et al. 2016). There is new emphasis on validating the 

quality of citizen science data (Clare et al. 2019, Cretois et al. 2020) but this step is not 

universally applied and not enough is done to quantify potential biases. 

Moose in Scandinavia: The role of land use, predator recolonization, 

climate change, and monitoring challenges 

The primary challenges outlined above are important to Scandinavian moose management, 

which are outlined below.  

Human land use  

The Scandinavian peninsula, particularly in Sweden, is characterized by widespread and 

intensive commercial forestry. Until the mid-20th century, selective logging was the primary 

timber removal method (Berg et al. 2008). Industrialization of commercial forestry in the 

1960’s and 70’s changed this, with clearcuts increasing the land surface area affected by 

timber removal. Forestry has replaced natural disturbances (e.g., fires, windstorms) as the 

primary driver of land use change. Forestry has thus influenced the age structure of boreal 

forests in Scandinavia: at the turn of the 20th century older forests dominated, but more 

recently younger forests dominate (Östlund et al. 1997). This had direct and indirect effects 

on ungulates. For example, the industrialization of forestry changed the foraging landscape as 

young pine thrived in newly created clearcuts, and pioneering species like silver birch (Betula 

pendula), downy birch (Betula pubescens), rowan (Sorbus aucuparia), aspen (Populus 

tremula) were systematically removed. This increase in forage availability, as well as a shift 

in moose harvest strategy via sparing of reproductive females, contributed to an increase in 

moose density in the 1980’s and 1990’s, resulting in some of the highest moose densities 

across the globe (Lavsund et al. 2003, Jensen et al. 2020). This is a large shift from the early 

1900’s in Scandinavia when moose were relatively rare (Figure 2; Dressel et al. 2020). Now 

the modern management situation in Scandinavia is defined by human-driven land use 

change, and high ungulate densities which are regulated via human hunting. 

Along with high moose densities, however, comes abundant moose-forestry conflicts. 

Browsing damage is a primary management issue in Scandinavia (Lavsund et al. 2003). 
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Economic losses because of intensive browsing and subsequent browsing damage have 

resulted in conflicts between forest owners, who prioritize timber production, and moose 

hunters, who harvest on average 115,000 moose annually in Norway and Sweden. Efforts to 

reduce browsing intensity usually involve reducing ungulate densities but the effectiveness of 

this measure depends on the temporal and spatial scale. If management areas are smaller than 

an ungulate population, source/sink dynamics, seasonal migration, and compensatory 

behaviors (e.g., increased fecundity) will counteract intended management goals. I define a 

population as a group of individuals of one species that occupy a specific area, and where 

gene flow occurs between individuals (Begon et al. 1996). Other measures to mitigate the 

negative effects of intensive browsing previously included supplementary and diversionary 

feeding (van Beest et al. 2010, Mathisen et al. 2014). However, due to the detection of novel 

diseases in Scandinavia, supplementary feeding becomes a riskier management action. For 

example, chronic wasting disease was detected in Norway’s wild ungulates (Stokstad 2017) 

and the intentional feeding of ungulates was recently banned (Mysterud et al. 2019).  

 

Figure 2. The number of harvested moose by year in Norway. Data were downloaded from 

Statistics Norway.  
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Predator recolonization 

By the mid-20th century, wolves were functionally extinct in the Scandinavian. With legal 

protection in 1966 and 1972 in Sweden and Norway, respectively, wolves began to move 

south and west from Russia. The first reproductions were documented in the 1970’s and 80’s, 

signaling the slow return of wolves to Scandinavia (Wabakken et al. 2001). Today, wolves 

number around 400 (credible intervals 392–412) with 310 individuals in Sweden and 91 

individuals in Norway (estimates for autumn 2017; Bischof et al. 2019). Poaching and active 

management via hunting and culling are the primary mortality factors for wolves (Liberg et al. 

2020). Wolves prey on neonate moose calves in the spring and early summer, and moose are 

the main prey of wolves throughout the year (Swenson et al. 2007, Sand et al. 2008, 

Zimmermann et al. 2015). Like wolves, brown bears (Ursus arctos) have also recolonized 

Scandinavia after near extinction (Swenson et al. 1995). Bears prey on neonate moose calves 

in early summer but are not active during winter months (Swenson et al. 2007). Wolverines 

(Gulo gulo) and Eurasian lynx (Lynx lynx) also occur in our study area but they rarely prey on 

moose. Because this thesis focuses on the winter season, I focus on wolves only. 

Climate change 

In Scandinavia, snow cover duration is projected to decrease by 30–40% by 2050 (Callaghan 

et al. 2011), the growing period is increasing (Kohler et al. 2006), and surface warming is 

widely documented (Harris et al. 2003). Warming effects are expected to have greater 

temperature and precipitation increases during winter compared to summer (Post and Stenseth 

2011). Indeed, plant community effects are already being seen: shrubs are expanding 

northward and upwards in elevation (Bret-Harte et al. 2002, Hallinger et al. 2010, Elmendorf 

et al. 2012) which could expand moose foods into alpine and northern latitudes, leading to an 

ecological opportunity for moose in Scandinavia. However, winter warming events can 

damage shrubs resulting in reduced summer growth (Bokhorst et al. 2009). Of concern, winter 

warming events are projected to nearly double in northern Scandinavia into the 21st century 

(Vikhamar-Schuler et al. 2016).  

Climate-induced effects on ungulates are already seen in Scandinavia. Warm winter 

temperatures have been linked with ungulate population declines and reduced body size (Post 

and Stenseth 2011). For moose, ambient temperatures drive fine-scale habitat selection, and 

moose must sometimes choose between thermoregulation and forage accessibility (Van Beest 

et al. 2012), thus providing limitations on individual fitness. Interspecific interactions between 
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expanding ranges of less cold-tolerant ungulates (e.g., fallow deer [Dama dama]) are expected 

to bring novel interactions, particularly regarding disease, which could have negative 

consequences to moose. Warming winters in Scandinavia could thus have deleterious fitness 

and demographic consequences to moose. 

Challenges with monitoring data 

Ungulates are wide-ranging and the data needed to monitor and manage them can be 

demanding. A simple and ‘cheap’ method to monitor ungulate populations is via fecal pellet 

group counts (Neff 1968). Pellet groups are counted at fixed transects or plots, and their 

relative abundance is monitored over time. This method is widely used in Scandinavia. For 

example, in central Sweden, pellet group counts (hereafter, pellet counts) are used to 

supplement observed moose (‘sett elg’) to help set moose harvest quotas (Bergström et al. 

2011). For research, pellet counts are used to estimate relative and absolute density and 

abundance to relate to relevant research questions (Månsson et al. 2011, Edenius et al. 2015, 

Zimmermann et al. 2015, Pfeffer et al. 2018). Without known detection errors or habitat 

biases, estimates based on pellet counts could underestimate density or be biased in certain 

habitat types. Additionally, many projects rely on volunteers or inexperienced students to 

collect annual data, which potentially injects additional unknown sources of error.  

Thesis objectives 

My thesis addressed the following research objectives. 

Forestry has created a high-density network of secondary roads. Roads can contribute to a 

‘landscape of fear’ (Laundré et al. 2001) and there is often a trade-off between predation risk 

and food supply (Schmitz 2005) and ungulate prey move to vegetative cover in response to 

predators (Mysterud and Østbye 1999, Creel et al. 2005). Thus, we can expect that the spatial 

effects of predators on ungulate browsing patterns will be altered due to predator movements. 

In paper one, I asked: was moose browsing reduced in areas with high predation risk, such 

as where wolves were present and areas close to roads, in accordance with a landscape of 

fear? Was the tradeoff between risk and foraging modified by forage value?  

At each stage of intervention in commercial forestry, actions are taken to optimize timber or 

pulp production. Here I investigated if ‘ungulate-adapted forestry’ can be an additional step 

added to optimize ungulate forage availability. I tested two methods which increase forage 

availability as part of ‘ungulate-adapted forestry’: ungulate-adapted slash piles (short-term 



 9  

 

increases) and intensive soil scarification (long-term increases). In paper two, I asked: can 

ungulate-adapted forestry alter moose browsing ecology and forest damage?  

Temperatures are increasing at a faster rate at higher latitudes (Trenberth et al. 2007) and the 

boreal forest is among the most threatened biomes in response to climate and land use change. 

We know little about how wildlife in the boreal forest are responding to this change, 

particularly large herbivores. In paper three, I asked: does ambient temperature, snow depth, 

and forest type drive moose intensity of use across a latitudinal gradient and over time? 

For harvested species, monitoring data are particularly important to assess population trends, 

yet evaluation of the quality of monitoring methods and data are rare. In paper four, I asked: 

What were the detection probabilities of a common moose density index and what were the 

primary variables leading to detection errors? 

Methods and results 

Study area 

The studies in this thesis occurred across a large latitudinal gradient in Norway and Sweden 

(Figure 3), with elevation ranging from 1–725 m above sea level. The area generally 

experiences cold, snowy winters and short, cool summers, though winters are less severe in 

the south relative to the north. Human density also follows a north-south gradient, with 

southern areas more densely populated relative to the north. Land cover is dominated by 

boreal forests in the north, and hemiboreal forests in the south (Ahti et al. 1968), both of 

which are managed for timber and pulp production. Production forests typically undergo one 

or two thinning events to optimize commercial tree densities. Mature trees are harvested in 

clearcuts, resulting in a mosaic of even-aged patches or stands of trees (Axelsson and Östlund 

2001, Rytter et al. 2014). Regeneration occurs from planted trees or naturally from seed trees. 

Secondary road density is higher (mean road density 8.5 km/km2) than primary road density 

(mean road density 2.7 km/km2; Sweden road data from lantmateriet.se; Norway data from 

geonorge.no). Road density is higher in the south.   

Common tree species include Scots pine (Pinus sylvestris), silver birch, downy birch, Norway 

spruce (Picea abies), grey alder (Alnus incana), black alder (Alnus glutinosa), rowan, goat 

willow (Salix caprea), and aspen. The dwarf-shrub layer is typically dominated by heather 

(Calluna vulgaris), bilberry (Vaccinium myrtillus), and other Ericaceous species. In boggy 

areas, Sphagnum spp. mosses are dominant (Moen et al. 1998). Generally, rowan, aspen, and 
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willow are highly selected by moose but are rare relative to Scots pine and birch (Shipley et 

al. 1998, Månsson et al. 2007). Scots pine is a primary food source for moose during winter 

due to its high abundance whereas spruce is more chemically defended and is rare in moose 

diets (Cederlund et al. 1980). 

Data structure 

The data for this thesis were collected during five projects in two countries (Figure 3), span 

over two decades (1997–2019), and use similar field methods. In Norway, data originated 

form the project ‘Skog og elg’ (Forest and Moose). In Sweden, the projects included ‘Vilt och 

Skog’ (Game and Forest), ‘Swedish Infrastructure for Ecosystem Science’ (SITES), 

‘Fortlöpande Miljöanalys Vilt (FoMa Vilt; Continuous Environmental Analysis of Game)’ 

and ‘Beyond Moose’ (Figure 3). ‘Beyond Moose’ was largely an extension of the project 

‘FoMa Vilt’ so we refer only to ‘Beyond Moose’ for simplicity. The ‘Forest and Moose’ 

project adapted their methods from the Swedish methods so data between countries could be 

compared. Methods used in ‘Beyond Moose’ and ‘FoMa Vilt’ were adapted from the ‘Game 

and Forest’ project.  

Within each project, technicians collected browsing data and deer pellet count data in the 

spring at systematically placed quadrats (500 x 500 m or 1000 x 1000 m) at 12 sites (Figure 

3). Pellet count data have been shown to represent moose habitat use (Månsson et al. 2011), 

and I use the terms ‘habitat use’ (papers one to three) or ‘intensity of use’ (paper four) 

throughout the thesis. Additionally, because pellet counts are conducted in the spring, they 

represent winter-time use (i.e., from leaf-fall to snowmelt). Along each quadrat border, four 

circular plots (100 m2 each) were positioned every 100 or 200 meters.  

The papers included in this thesis cover different spatial extents, from all sites in Norway and 

Sweden (paper three), all sites except Grimsö (paper one), to only Norwegian sites (papers 

two and four). We include different aspects of ungulate ecology in each paper.  
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Figure 3. Map of A) study sites in Norway and Sweden (n = 12) and B) the nested design, 

where plots are nested within quadrats. Site numbers in the table correspond to site numbers 

in map A.  

Methodology and results: Papers 1–4 

Paper 1: Roads, forestry, and wolves interact to drive moose browsing behavior  

Methods 

For this analysis, I used moose pellet groups counts and browsing pressure at all sites except 

Grimsö (site number 9; Figure 3). I used the number of pellet groups to represent the time 

animal(s) spent in a plot (Månsson et al. 2011) and term this ‘habitat use’. I created also the 

probability of wolf territory and wolf territory presence variables based on snow tracking 

data, scat/DNA collection, and occasional VHF/GPS tracking (Liberg et al. 2012, Wabakken 

et al. 2018).  

I modeled the presence of browsed trees (browsing occurrence) as well as browsing pressure 

(ratio of browsed to available shoots per tree) for four browse species: Scots pine, silver birch, 
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downy birch, rowan. I expected moose would browse in areas close to secondary roads due to 

increased forage quantity and quality. However, because wolves use secondary roads, I 

expected ungulate browsing occurrence and pressure would decrease close to secondary roads 

when the probability of wolf territory occurrence was high; I expected highly selected tree 

species to be of greatest value to ungulates; hence ungulates would accept greater risk to 

attain them relative to species of lower selectivity. Thus, we expected a weaker effect of roads 

and wolves when ungulates browse highly selected species, relative to less selected ones. We 

refer to ‘quality’ as an index based on food selection ranks following Shipley et al. (1998; 

rowan > silver birch > downy birch ≥ Scots pine).  

Results 

I found browsing patterns, and their respective drivers, varied by tree species (Figure 4). Wolf 

territory presence and probability were positively related to an increase in browsing 

occurrence and pressure for all species. For rowan, the two-way interaction of secondary 

roads : wolf presence showed that browsing occurrence increased further from secondary 

roads when wolf territories were present, whereas the opposite occurred when wolf territories 

were absent (Figure 5). For Scots pine, browsing occurrence was twice as high in young 

forests relative to non-young forests and decreased with distance from secondary roads. I also 

found that browsing occurrence decreased closer to primary roads but increased closer to 

secondary roads. There are many secondary roads in Scandinavia, and even more to be built. I 

assert that forest and wildlife managers need to consider how an increasing network of 

secondary roads facilitates intensive moose browsing. 
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Figure 4. Forest-plots of model-averaged main effect coefficients from browsing occurrence 

models. Reference categories for binary variables (wolf presence, young forest) are 0. Models 

were fit with data from Norway and Sweden (2008–2019). Bars represent 95% confidence 

intervals. 
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Figure 5. Prediction plot for the interaction secondary road : wolf from the top-ranked rowan 

browsing occurrence model. Wolf territory absence = 0 and presence = 1. Low road values 

(in meters) are close to secondary roads while high values are far from secondary roads. 

Models were fit with data from Norway and Sweden (2008–2019). Ribbons represent 95% 

confidence intervals. 

 

Paper 2: Ungulate-adapted forestry shows promise for alleviating pine browsing damage 

Methods 

Formal evaluations of human-wildlife conflict mitigation methods are lacking, especially 

testing the scale at which mitigation measures are relevant to wildlife. I tested the effect of 

two mitigation measures on moose browsing behavior and damage to Scots pine: 1) ungulate-

adapted slash piles, which included only Scots pine, (Figure 6) created during felling to 

increase short-term forage availability and 2) intensified soil scarification to increase long-

term forage availability (collectively, ‘ungulate-adapted forestry’). I evaluated the effects of 

ungulate-adapted slash piles and intensified scarification on the density of undamaged Scots 

pine, moose bite diameters, browsing pressure, and moose fecal pellet density. To assess the 

effect of spatial scale, I created 250 m, 500 m, and 1000-m radius buffers centered on each 

plot at only the Norway sites (site numbers 4, 6, 7; Figure 3). 
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Figure 6. Overview of the experimental study design in paper two. The four response 

variables (bite diameter, browsing pressure, density of undamaged pine, moose habitat use) 

are pictured at center. The conventional and ungulate-adapted logging and scarification 

treatments, which occurred at varying distances from plot centers, are featured at left and 

right. Illustration by Heidi Loosen (loosenstudio.net).  

 

Results  

I found that ungulate-adapted logging increased the density of undamaged pines, as compared 

to no and conventional logging (Figure 7). I found that logging in general led to smaller bite 

diameters. I also found that plots near conventional logging had higher browsing pressure, 

whereas browsing pressure near ungulate-adapted logging was similar to unlogged stands. For 

scarification, density of undamaged pine increased when the ungulate-adapted stand aged 

whereas undamaged pine decreased as conventional scarification stands aged. Browsing 

pressure showed a response at the smallest spatial scale only for ungulate-adapted soil 

scarification. Peak moose habitat use near conventional and ungulate-adapted scarified stands 

differed by stand age and distance from scarification. The overall effects of ungulate-adapted 

forestry were most pronounced at the smallest spatial scale (250 m). My results support 
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‘ungulate-adapted’ forestry as a practical solution to mitigate browsing damage but 

uncertainty in some of our estimates suggest further research on the area treated is needed. 

 

 

Figure 7. Posterior probability distributions for presence of conventional (top) and ungulate-

adapted logging (bottom) across four response variables. Posteriors are from 250-m buffer 

models. Highest density intervals (HDI) are drawn at 90 (orange) and 100% (red). Models 

were fit with data from Norway (2011–2019).  

 

Paper 3: Twenty-three years of monitoring reveal disparate winter conditions between 

northern and southern moose populations in Scandinavia 

Methods 

I explored trends in two decades (1997–2019) of winter pellet count data. Specifically, I 

tested the forest maturity hypothesis, whereby mature forests give moose the behavioral 

flexibility to rest and dissipate heat when ambient temperatures are warm, and avoid deeper 

snow in open areas. I used data from all sites (Figure 3) to explore if temperature, snow depth, 

and forest type drive moose intensity of use across a latitudinal gradient. Work by Månsson et 

al. (2011) showed that pellet counts can be an unbiased representative of moose habitat use 
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when compared with moose GPS collar data. For my study, I adopted similar terminology but 

utilized ‘intensity of use’ instead as we were not exclusively evaluating habitat. I created 

annually and spatially varying snow depth and winter temperature covariates and associated 

these with pellet count data at the quadrat scale (Figure 3). I also extracted moose harvest 

density the year prior to pellet counts as a proxy for moose density. The tendency to migrate 

(Singh et al. 2012, Allen et al. 2016), snow depth, and temperature are correlated with 

latitude. As such, I split the data into northern and southern moose populations to understand 

how weather influences annual variation in moose intensity of use.  

Results  

I found snow depth and winter temperature varied by year for northern and southern moose 

populations. Mean winter temperatures increased over time for both groups, while mean snow 

depth declined over time only for southern moose populations (Figure 8). For northern and 

southern populations, I found increases in the intensity of use in response to increasing snow 

depths, until 20 cm, after which intensity of use declined (Figure 9). Similarly, intensity of use 

declined as temperatures increased, particularly around 0°C (Figure 9). For the interaction of 

young forests and temperature, only southern populations showed strong patterns; when the 

proportion of young forest was high, these quadrats were used more than areas with no or 

minimal young forest, regardless of temperature. A similar pattern could be seen for the 

interaction of snow depth and young forests; the intensity of use increased with increasing 

snow depths at a greater rate when the proportion of young forests was high. I suggest that 

southern populations may currently be more dependent on thermal cover to withstand to a 

changing thermal landscape, whereas northern populations might be more flexible in their 

response to climate change, as they can adjust the timing and duration of migration. However, 

other studies notes that migration may become a less common strategy for Scandinavian 

moose as the environment become less seasonal (i.e., smaller differences between winter and 

summer), more akin to current southern moose population conditions (Allen et al. 2016). 
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Figure 8. Trends for mean winter temperatures (top) and mean snow depth (bottom) in 

Scandinavia. The blue and green lines represent data for northern and southern moose 

populations, respectively. The dotted grey line is a linear trend line. Data were from 1997–

2019. 
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Figure 9. Partial effects of snow depth and temperature on intensity of use for northern (top 

row) and southern (bottom row) moose populations. Partial effects are the isolated effects of 

one particular predictor on the response. Dotted lines represent 95% confidence intervals. 

Hatching (rug) on the x axis represents observed data. 

 

Paper 4: The importance of evaluating standard monitoring methods: Observer bias and 

detection probabilities for moose pellet group surveys  

Methods 

At a subset of long-term monitoring plots in Norway, I quantified moose pellet group 

detection errors in Norway using single and dependent double observer survey methods 

(Jenkins and Manly 2008, Riddle et al. 2010, Powell and Gale 2015). For dependent double 

surveys, technicians worked in pairs and switched primary and secondary observer roles at 

every other survey plot. The primary observer surveyed the plot, calling out and pointing to 
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observed moose pellet groups. The secondary observer silently recorded observations. I 

recorded field variables that could influence detection errors, such as observer experience, 

weather, and field layer types.  

Results 

We completed 16% (n = 325) of our long-term monitoring plot as double observer surveys. At 

these plots, the primary and secondary observers detected the same number of pellet groups in 

97% (n = 290) of the plots. However, when pellets were present (e.g., combined observer 

count > 0) the secondary observer saw additional pellets 42% (n = 40) of the time. Detection 

probabilities increased with search time and varied by prior observer experience in the field 

(Figure 10). Detection probabilities were highest for the least and most experienced observers 

(Figure 10). My results highlight the uncertainties with a standard monitoring method, and I 

recommend research and management projects complete a subset of plots as double observer 

surveys to identify and quantify error uncertainties. 

 

Figure 10. Prediction plots for the effect of A) the time searched in each plot; B) prior 

observer field experience. Models were fit with data from Norway (2019–2020).  
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Bringing it all together: A unified discussion  

The objectives of this thesis were to evaluate 1) if moose respond to the wolves and roads in 

accordance with the landscape of fear; 2) if ungulate-adapted forestry can alter moose 

browsing ecology and forest damage; 3) if ambient winter temperature, snow, and forest type 

influences moose intensity of use across a latitudinal gradient; and 4) evaluate standard moose 

monitoring methods. The following discussion attempts to tie these themes and my research 

findings together.  

Land use 

Land use changes are projected to be a primary driver of biodiversity loss in the coming 

decades, with the boreal biome being among the most at-risk across the globe (IPCC 2007). 

Commercial forestry, one type of land-use change, is a major economy across the boreal. 

Forage availability, which is highly influenced via different land-use practices, has a strong 

influence on moose habitat use. Results from my thesis support this. In paper one, I found that 

browsing occurrence increased closer to secondary roads but decreased closer to primary 

roads, which might be due to an increased forage availability along secondary roads. Young 

forests near secondary roads had a browsing occurrence twice as high for Scots pine, 

compared to other forest ages. In paper two, I found that an increase in forage availability 

through ungulate-adapted logging increased the density of undamaged stems, decreased 

habitat use, and decreased browsing pressure on Scots pine.  

I showed that forage availability is a strong behavioral driver for moose. This contrasts, 

however, with how moose are managed, which is primarily via previous years’ hunting 

statistics to mitigate browsing damage levels (Figure 11). Forage availability is often a 

primary driver of browsing damage whereby with more available food, browsing damage 

(generally) declines (Pfeffer et al. 2021). If management goals are to maintain high densities 

of moose for hunting, there should be enough high-quality, natural forage (i.e., the food on the 

landscape: foodscape) to sustain the high forage demands. A first step to accomplish this 

would be to monitor foodscape indices and include this in moose management, instead of 

hunting and browsing damage data only. I propose it is better to manage the ultimate 

(foodscape), rather than the proximate (browsing damage), drivers for mitigating moose-

forestry conflicts (Figure 11). There is currently no system for this in Norway. Sweden uses 

‘foodpro’ (forage prognosis in forestry) but is not well implemented into the management 

system. This could be improved across both countries.  
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Figure 11. Illustration of the proximate and ultimate drivers of browsing damage. In the grey 

box, humans directly mediate ungulate densities via hunting. Ungulate browsing may result in 

browsing damage. I suggest focus should shift to management of food quality and availability 

(i.e. the foodscape), as this is the ultimate driver of browsing damage (green box). Humans 

regulate the foodscape via changes in land use (e.g., clearcutting). Increased forage 

availability generally reduces browsing damage. Note there are two-way arrows since 

ungulates can shape their foodscape, as well as respond to it. Similarly, humans regulate 

ungulate densities, but ungulates can influence humans (e.g., disease, human-wildlife 

conflicts). 

While young forests provide high quantities of browse for large browsers like moose, this is a 

catch-22, as the young forests may then become hot spots for browsing damage. However, 

there is emerging support for diet complementarity (Simpson et al. 2012, Felton et al. 2016, 

2020, Nielsen et al. 2017) where a balanced diet intake of carbohydrates, fiber, and proteins, 

thus not just quantity, determine fitness. For example, Felton et al. (2020) found that moose 

calf diets rich in deciduous trees (i.e., higher quality) were associated with higher body mass 

than a diet dominated by conifers. More research is needed on how the entire food landscape, 

not just the commercially valuable species, influences moose behavior and fitness.    

Historically, one common method to deal with insufficient quantities of natural forage was to 

provide supplemental food (Geisser and Reyer 2004, Sorensen et al. 2013, Jones et al. 2014, 

Mathisen et al. 2014, Milner et al. 2014). Diversionary feeding was also used to move animals 
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away from sensitive areas, such as young forests, high traffic roads, or agricultural fields (van 

Beest et al. 2010, Rogers 2011, Arnold et al. 2018). This type of feeding is increasingly risky, 

because it promotes concentrated feeding in space and time. Thus, the risk of disease transfer 

among ungulates is increased (Mysterud et al. 2019). It is important to distinguish between 

historically common supplementary feeding programs (silage in Norway, silage and sugar 

beets in Sweden) versus using natural forage in ungulate-adapted forestry. In paper three, I 

found that ungulate-adapted logging increased the density of undamaged pines. Because 

ungulate-adapted slash piles provide natural forage in a dispersed manner, the propensity for 

individuals to congregate is reduced. Ungulate-adapted forestry may be a possible mitigation 

measure but needs more research to be implemented at larger scales prior.   

Mitigating human-wildlife conflicts is challenging since measures do not often occur at large 

enough spatial and temporal extents (i.e., not big enough, not long enough) (Serrouya et al. 

2019). In paper two, while I found hints of a positive effect of our mitigation measures, I 

suspect our study suffered from this same issue. The possibility of completing an experiment 

at a larger spatio-temporal extent is only possible with increased collaboration across sectors 

(research, landowners, forestry, wildlife managers), particularly across administrative and 

international boundaries. The negative effects of intensive browsing will likely become 

exacerbated as less cold climate tolerant species move north, increasing competition for 

forage (Spitzer et al. 2020). This necessitates that wildlife research and management shift 

from a single species approach (Simberloff 1997), as has been tradition in Scandinavia, 

towards a multi-species approach (i.e., thinking ‘beyond moose’).  

Predator recolonization 

Predators can have direct (i.e., mortality) and indirect effects on their prey. This thesis 

focused on behaviorally mediated indirect effects of recolonizing wolves on moose, their 

primary prey. I found that moose browsing occurrence increased with an increasing 

probability of wolf territory occurrence, similar to previous research (van Beeck Calkoen et 

al. 2018, Ausilio et al. 2021). This counter-intuitive finding could be explained by the fact that 

wolves align their territories to areas of higher moose densities, or human hunters compensate 

for wolf presence by reducing moose offtake (Wikenros et al. 2015). Both explanations would 

result in an associated increase in moose density within wolf territories, which could explain 

an increased browsing occurrence by moose.  
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In my research, I primarily detected context-specific behavioral responses of moose to 

wolves. For example, negative behavioral effects of moose to wolves were only seen away 

from young forests and secondary roads (Scots pine browsing only). There could be several 

reasons for finding only context specific responses to wolves. Researchers have suggested that 

moose may be “naïve” to wolves as predators (Berger et al. 2001, Sand et al. 2006, Nicholson 

et al. 2014, Månsson et al. 2017). In North America, wolves were never extirpated from the 

moose’s distribution, or only for short periods (e.g., 40–50 years), whereas moose in 

Scandinavia have lived without or with very low populations of large carnivores for 120–150 

years. Because of this carnivore-free period, moose could have relaxed their aggressive anti-

predator response in favor of a flee response (Berger et al. 2001, Sand et al. 2006).  

Another explanation for only finding context-specific responses could be as result of the 

disproportionately large effect of humans on moose mortality. Indeed, annual moose offtake 

by hunters in wolf territories in Scandinavia is 2.4–3.5 times higher than that from wolves 

(Zimmermann et al. 2019). Further, moose are hunted with dogs in Scandinavia. Hunting dogs 

bark at moose, and hunters are more successful at shooting moose that stand their ground, 

which is an advantageous anti-predator response to wolves. However, it is the fleeing moose 

that often escape human hunters and may be favored in selection. Further, moose that were 

experimentally hunted with dogs increased resting time after encounters with dogs, thus 

decreasing time available for foraging, implying a fitness consequence for moose that escaped 

harvest (Græsli et al. 2020a).  

Climate change 

We are seeing a poleward shift in wildlife distributions and shifting movement patterns in 

response to a changing climate and resource distributions (Parmesan et al. 2003, Hickling et 

al. 2006). Chen et al. (2011) found a poleward shift of a diversity of taxonomic groups at a 

median rate of 16.9 kilometers per decade. In Scandinavia, we are seeing a poleward shift of 

red deer (Cervus elaphus) and fallow deer, as winters become warmer and less snowy. This 

increase in species complexity has resulted in increased interspecific competition for forage 

such as Vaccinium spp., resulting in a more pine-dominant diet for moose. This could 

exacerbate browsing damage on young pine forests (Spitzer et al. 2020). Results from paper 

three support findings of Spitzer et al. (2020) where moose intensity of use of young forests 

was higher in southern Scandinavia, relative to northern populations, which we speculate 

could be driven by increased competition from smaller deer.  
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I found snow depths for northern populations were more than four times higher than southern 

populations, and snow depths saw a decrease over time for southern, but not northern, 

populations (Figure 8). I also found that southern moose populations experienced very warm 

mean winter temperatures, which increased over time (Figure 8). Previous research on captive 

moose indicated that -5C initiated thermal stress for moose in winter. While my study 

supports recent findings by Thompson et al. (2020) that previous thermal threshold for moose 

was likely overestimated. Though we cannot link our pellet data to moose fitness 

consequences, my findings indicate that the winter weather differences between northern and 

southern populations might become even greater, leading to possible demographic 

consequences to southern moose populations. Climate change will create opportunities for 

some species, and dead ends for other species. Future research may be on triaging certain 

species for management (Gilbert et al. 2020). 

Monitoring challenges 

Reliable monitoring data are important, particularly for highly valued species such as moose. 

While counting individual specimens, for example, is thought to be a simple exercise, it is 

perhaps not as simple as it seems (Elphick 2008). For example, Prater (1979) found observers 

counting birds from photographs (i.e., true values known) consistently overestimated when 

counting small groups of birds but underestimated when counting large groups. Pellet counts, 

a common method for monitoring deer density and population trends, often underestimate 

density because pellets go undetected due to vegetation and insufficient survey efforts 

(MacKenzie and Kendall 2002, Buesching et al. 2014).  

We completed a subset of long-term monitoring plots as dependent double observer surveys 

to quantify sources of potential errors. Even though nearly half of the observers did not have 

prior field experience, similar to citizen science projects, the use of two observers allowed us 

to quantify detection probabilities. For example, I found that when pellets were detected by 

the primary observer, the secondary observer saw additional pellets 42% of the time. This has 

direct management consequences. In central Sweden (Svealand), pellet counts are used to 

supplement observed moose (‘sett elg’) to help set moose harvest quotas (Bergström et al. 

2011). If we indeed underestimate moose density via pellet counts, harvest quotas may be 

lower than populations can sustain, resulting in a mismatch between actual densities and 

management goals.  
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The keen reader might suggest that the findings from paper four negate findings from the 

previous three papers, which rely heavily on pellet counts. Papers one to three use pellet 

counts as an index of use, which is a relative measure, rather than an index of abundance or 

density. In this way, I was ‘conservative’ in the application of pellet counts since pellet decay, 

defecation rates, in addition to detection errors, can influence density and abundance. The 

bigger question is if I found habitat biases that could result in erroneous conclusions about 

habitat use. The results from double observer surveys were inconclusive (i.e., many 

overlapping confidence intervals) as to how detection probabilities varied by habitat type (for 

more details see paper four). I hope continued data collection via double observer surveys in 

ours, and other projects, elucidates the connection between habitat bias and detection errors.    

Management recommendations  

The motivation for much of this thesis stemmed from wildlife and land management issues. 

There are several recommendations I can make:   

• I showed roads can exacerbate browsing intensity, especially for Scots pine in young 

forests. Forest managers could mitigate this by increasing species diversity in young 

forest stands close to roads, particularly in areas without wolves. 

• Develop a method to monitor the foodscape, and test how to use it in moose 

management.  

• Monitoring data should be verified with quality checks such as double-observer 

surveys, and understand the sources of error especially when there are many 

(volunteer) observers.  

• Certain stands that are heavily browsed and unlikely to be released out of browsing 

height could be sacrificed as “browsing lawns” (similar to grazing lawns; 

McNaughton 1984) or “browsing traps” (Bråthen et al. 2017) (Figure 12). These 

stands could also be manipulated to improve biodiversity, rather than for timber 

production. In accordance with reducing disease transfer risk (Mysterud et al. 2019), 

these types of stands should be large and dispersed to not cause individuals to 

congregate. While I can imagine this is not an economically feasible approach for 

small forest owners, larger ‘owners’ (Sveaskog, Statskog) could experiment with this 

approach. 

• Management can make bigger and bolder moves (Serrouya et al. 2019) to use 

management as real-life experiments. Often, too little is done and only for a short 
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period. I showed in paper two that ungulate-adapted logging could alleviate some of 

the negative effects of intensive browsing. However, our results suggest that more 

experimentation over a larger area, and over longer time periods, needs to be done.  

• More coordinated management and research across borders, particularly international 

borders. Our study stands out because it utilized data from both Norway and Sweden. 

But more can be done. We can look to other coordinated management, such as polar 

bears managed by the U.S. and Russia (107th Congress 2002) and transfrontier 

conservation areas in southern Africa (Munthali 2007), for examples. 

 

Figure 12. As browsing pressure increases, stands may experience a state shift from ‘browse 

escape’, where browse species (e.g., Scots pine) grow beyond moose browsing height (>3 m), 

to ‘browse trap’, where browse species remain below browsing height. These areas can also 

be managed for improved biodiversity. Left photo credit Annie Loosen, right photo credit 

Floris Smeets. Figure adapted from Bråthen et al. 2017. 
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Future directions 

• This thesis utilized population-level data only, meaning I did not uniquely identify 

individual moose from pellet counts. While this gives a population ‘average’ and 

covers a large spatial extent, it is important to understand individual variation within 

populations (Prokopenko et al. 2016). For example, I recommend exploring the 

hypotheses in papers one, two and three with GPS collar data.  

• More research on how a high-density network of secondary roads influences wildlife 

in Scandinavia. For example, wind energy development is increasing in Norway and 

Sweden, but we know little about the multi-scale effects of the turbines and access 

roads (e.g., habitat fragmentation) on ungulate ecology in Scandinavia.  

• Wildlife studies often use satellite-based proxies of food (e.g., Normalized Difference 

Vegetation Index; NDVI) (Pettorelli et al. 2011) to understand wildlife behaviors. 

However, these proxies do not work well in boreal systems with dense tree canopies. 

Future research should focus on creating fine spatio-temporal scale foodscape models 

incorporating field-collected browsing data, remote sensing data (Kastdalen 2019, 

Duparc et al. 2020) and fine scale LiDAR data, which can improve estimates of 

understory cover, which is most important for ungulates (Latifi et al. 2016).  

• Browsing pressure can influence standing timber stock. However, longer-term effects 

of browsing and commercial forestry need to be considered in Scandinavia. For 

example, how does intensive browsing influence nutrient flows of carbon, nitrogen, 

and phosphorus? Other studies have shown that large and mega-herbivores can move 

nutrients against gradients in grazing ‘hot spots’, for example (Le Roux et al. 2020). 

These will have longer term influences than reduced forage availability or standing 

timber, particularly in the face of climate change.  
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Abstract. As wild ungulate densities increase across Europe and North America, plant–herbivore inter-
actions are increasingly important from ecological and economic perspectives. These interactions are par-
ticularly significant where agriculture and forestry occur and where intensive grazing and browsing by
wild ungulates can result in economic losses to growing crops and trees. We studied plant–herbivore inter-
actions in a moose (Alces alces)-dominant system where forestry is a primary economy, the primary and
secondary road networks are extensive, and wolves (Canis lupus) are recolonizing. Wolves and humans use
low-traffic, secondary roads, yet roadsides provide high-quality and quantity browse for moose. Foraging
theory predicts that moose will respond to riskier landscapes by selecting habitats that reduce predation
risk, sacrificing feeding time or food quality. As food becomes limiting, however, animals will accept
higher predation risk in search of food. We predicted that road avoidance behavior would be strongest
within wolf territories. In areas without wolves, moose should select roadsides for their high forage avail-
ability. To test these predictions, we measured moose browsing and counted pellet groups as a proxy for
habitat use each spring in Norway and Sweden between 2008 and 2018, in areas with and without wolves
and at different distances from primary and secondary roads. We used generalized linear mixed models to
evaluate drivers of the probability of browsing occurrence and browsing pressure. We found that browsing
occurrence increased closer to secondary roads but decreased closer to primary roads. We also found
browsing patterns to vary among tree species. For Scots pine (Pinus sylvestris), the browsing occurrence
was two times higher in young forests relative to non-young forests and decreased further from secondary
roads. Wolf territory presence and probability had neutral or positive effect on browsing occurrence and
pressure for all species. However, wolf territory presence had negative effects on browsing occurrence and
pressure when interacting with secondary roads, young forest, or snow cover. We showed that roads can
influence browsing patterns in Norway and Sweden. However, further research is needed, particularly in
the face of continued infrastructure development in Scandinavia.
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INTRODUCTION

Predation can have direct, lethal consequences
to prey density and abundance (Gasaway et al.
1992, Messier 1994). Prey can also perceive pre-
dation risk from predators such as large carni-
vores and humans. Increasingly, behavioral
effects of predation risk are shown to influence a
variety of prey behaviors such as foraging, vigi-
lance, patch use, diet, and habitat selection
(Brown and Kotler 2004, Winnie and Creel 2007,
LaManna and Martin 2016). For prey, there is
often a trade-off between predation risk and food
supply (Schmitz 2005) and ungulate prey move
to vegetative cover in response to predators
(Mysterud and Østbye 1999, Creel et al. 2005).
Thus, we can expect that the spatial effects of
predators on ungulate browsing patterns will be
altered due to predator movements (behaviorally
mediated trophic cascades; Schmitz et al. 1997).

Predators like wolves (Canis lupus) can con-
tribute to the landscape of fear (Beyer et al. 2007,
Ripple and Beschta 2012, Kuijper et al. 2013), par-
ticularly in protected areas (Hern�andez and
Laundr�e 2005). However, large carnivores have
become threatened globally (Ripple et al. 2014)
and humans have a disproportionately large
effect (direct and indirect) on wildlife behavior
and mortality outside of protected areas. Cascad-
ing effects from predators on prey and plant–her-
bivore interactions (i.e., trophic cascades) have
been documented in protected areas (Kuijper
et al. 2013). Beyond the boundaries of protected
areas, however, humans are the primary mortal-
ity factor and long histories of human-managed
systems have resulted in reduced spatial land-
scape heterogeneity (Kuijper et al. 2016). Trophic
cascades appear more difficult to elucidate out-
side protected areas (van Beeck Calkoen et al.
2018), which could have consequences to preda-
tor/prey relationships.

The trade-off between predation avoidance
and foraging has long been recognized (Sih 1980,
McNamara and Houston 1987). Predation and
foraging are dynamic processes that vary in time
and space, and their effects are context and scale-
dependent (Oates et al. 2019). The risk allocation
hypothesis states that predation risk and food
availability interact: under food-limited condi-
tions, animals will lose fat faster and enter risky
areas earlier than in areas with abundant food

(Lima and Bednekoff 1999). Thus, as available
food declines, animals will accept a higher pre-
dation risk in search of food (Sinclair and Arcese
1995). For browsing and grazing ungulates, how-
ever, only a small fraction of plant biomass is
palatable and easily digested, and there is often a
trade-off between food quantity and quality (Fel-
ton et al. 2018). Optimal foraging theory predicts
that a foraging ungulate aims to maximize net
energy consumption (Pyke et al. 1977). Conse-
quently, food items with high nutrient or energy
concentration or digestibility (i.e., high quality)
would be of greater value to food-limited ungu-
lates relative to low-quality food items. Seasonal
constraints such as winter snow cover can drive
changes in food availability, which can be popu-
lation bottlenecks (Nordengren et al. 2003, Wie-
gand et al. 2008, Coltrane and Barboza 2010).
Snow can also increase wolf predation risk
because wolves have light foot loads relative to
many ungulates, so they are able to catch ungu-
late prey easier in deep snow (Fuller 1991, Mech
et al. 2001). As a result, we can expect ungulates
to accept higher predation risk to obtain higher-
quality items or seasonally during periods of
food limitation.
Roads are among the most pervasive forms of

human disturbance on the globe (Fahrig and
Rytwinski 2009). Roads can increase habitat frag-
mentation, reduce gene flow, change species
composition, facilitate the spread of invasive and
exotic species, and increase wildlife mortality
due to vehicle collisions (Pauchard and Alaback
2004, Fahrig and Rytwinski 2009, Holderegger
and Di Giulio 2010). For ungulates, roads can
also alter predator–prey relationships by increas-
ing predator movements, encounter rates with
prey, and prey vigilance levels (Eriksen et al.
2009, Dickie et al. 2017). High-traffic road sides
also increase mortality risk from vehicle colli-
sions (Seiler 2005, Laurian et al. 2008a, Eldegard
et al. 2012). Thus, roads can contribute to a land-
scape of fear (Laundr�e et al. 2001), which is
defined as the spatial variation in prey percep-
tion of predation risk (Gaynor et al. 2019). Yet,
roads and road sides are attractive to ungulates
because they can provide a human-shield from
predators (Berger 2007), create nutrient pools
(Laurian et al. 2008b), reduce movement costs
especially during winter (Parker et al. 1984), and
increase access to high-quality food such as
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young, deciduous trees (Bowman et al. 2010).
Because roads represent a trade-off between pre-
dation risk and food, we used primary (high-traf-
fic, generally paved roads) and secondary roads
(low-traffic, gravel roads) to test the risk alloca-
tion hypothesis. We predicted that, in areas with
wolves, moose should avoid secondary roads
under conditions where food is not limiting. In
areas without wolves, moose should select road-
sides for their high forage availability. Primary
roads should be avoided due to collision risks.

We tested these predictions using a predator–
ungulate–forest system in Sweden and south-
central Norway where moose (Alces alces) are the
dominant browsers, wolves are recolonizing por-
tions of their former range (Wabakken et al.
2001), and commercial forestry is the primary
land use. Forestry is the primary driver of land-
scape change in Scandinavia (Swedish Forest
Agency 2014), and forest access roads occur at
high densities (Sand et al. 2006a). Humans are
the primary cause of annual moose mortality
during a fall hunt (Sæther et al. 1996, Stubsjøen
et al. 2000) but moose are the primary prey of
wolves year-round (Sand et al. 2008, Wikenros
et al. 2009). Interestingly, previous studies have
not found a cascading effect of wolves through
affecting moose browsing behavior (Nicholson
et al. 2014, Wikenros et al. 2016, M�ansson et al.
2017).

Moose can damage young commercial trees in
the form of apical shoot browsing, bark browsing
and rubbing, and stem breakage, which can neg-
atively affect tree growth and morphology
(Danell et al. 1994, Bergstr€om and Danell 1995,
Wallgren et al. 2013). Browsing damage is largely
concentrated during winter when moose may
congregate, food availability is reduced, and
winter diets are dominated by young Scots pine
(Pinus sylvestris). Browsing damage has resulted
in conflicts between forest owners, who want to
sell commercial timber, and moose hunters, who
harvest over 115,000 moose annually in Norway
and Sweden combined (harvest data from www.
ssb.no and www.algdata.se). Here, we investi-
gate how forestry, predators, and roads influence
moose browsing behavior, which could have
consequences to moose-forestry conflicts.

We aimed to answer two research questions:
(1) Is moose browsing reduced in areas with high
predation risk, such as where wolves are present

and areas close to primary roads, in accordance
with a landscape of fear? (2) Is the trade-off
between risk and foraging modified by forage
value, that is, tree species of different selectivity?
We used browsing selectivity rankings from pre-
vious literature (Shipley et al. 1998) as a proxy
for food quality, and as the basis for our predic-
tions (below) on browsing pressure and occur-
rence. Previous research has suggested that fine-
scale evaluation may reveal a behavioral
response by moose to recolonizing wolves
(Nicholson et al. 2014). We thus evaluated these
questions at the tree level, which corresponds to
the fine-scale food selection an animal makes
within a foraging patch and represents the fourth
order of selection in the hierarchy of selection
processes (Johnson 1980). Moose may browse
one or two shoots on a tree and continue search-
ing until they find a suitable tree to feed on
(Shipley et al. 1998). Thus, we modeled the pres-
ence of browsed trees (browsing occurrence) as
well as browsing pressure (ratio of browsed to
available shoots per tree). We predicted the fol-
lowing: (P1) Moose will browse in areas close to
secondary roads due to increased forage quantity
and quality. However, because wolves use sec-
ondary roads, we expect ungulate browsing
occurrence and pressure to decrease close to sec-
ondary roads when the probability of wolf terri-
tory occurrence is high; (P2) primary roads offer
foraging opportunities but they represent an
increased mortality risk. Thus, we expect that
ungulates will avoid primary roads and brows-
ing occurrence and pressure will decrease closer
to primary roads; (P3) we expect browsing occur-
rence and pressure will increase with increasing
snow coverage as the field layer and shrubs are
concealed; (P4) we expect highly selected tree
species to be of greatest value to ungulates;
hence, ungulates would accept greater risk to
attain them relative to species of lower selectivity.
Thus, we expect a weaker effect of roads and
wolves when ungulates browse highly selected
species, relative to less selected ones.

METHODS

Study area
Our study area lies between 57.0°–66.4° N and

12.2°–22.2° E in Norway and Sweden (hereafter,
Scandinavia; Fig. 1), with elevation ranging from
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1 to 725 m above sea level. The area experiences
cold, snowy winters (January average tempera-
ture �1.9°C; average snow depth 0.2 m; Swedish
Meteorological and Hydrological Institute) and
short, cool summers, though winters are less sev-
ere in the south relative to the north. Land cover
is dominated by boreal and hemiboreal forests
(Ahti et al. 1968), which are managed for timber
and pulp production. Production forests, which
are largely coniferous, typically undergo one or
two thinning events to optimize commercial tree
densities. Mature trees are harvested in clear-cuts
up to 1000 ha, resulting in a mosaic of even-aged
patches or stands of trees (Axelsson and €Ostlund
2001, Rytter et al. 2014). Regeneration occurs
from planted trees or naturally from seed trees.
Forestry has created a high-density network of
secondary roads (mean road density 8.5 km/
km2) whereas primary roads are less common
(mean road density 2.7 km/km2; Sweden road
data from www.lantmateriet.se; Norway data
from www.geonorge.no). Road density is higher
in the south (Fig. 1).

Common tree species include Scots pine, silver
birch (Betula pendula), downy birch (Betula pubes-
cens), Norway spruce (Picea abies), gray alder
(Alnus incana), black alder (Alnus glutinosa),
rowan (Sorbus aucuparia), goat willow (Salix
caprea), and aspen (Populus tremula). The dwarf-
shrub layer is typically dominated by heather
(Calluna vulgaris), bilberry (Vaccinium myrtillus),
and other Ericaceous species. In boggy areas,
Sphagnum spp. mosses are dominant (Moen
et al. 1998). Generally, rowan, aspen, and willow
are highly selected by moose but are rare relative
to Scots pine and birch (Shipley et al. 1998,
M�ansson et al. 2007). Scots pine is a primary food
source for moose during winter due to its high
abundance whereas spruce is more chemically
defended and is rare in moose diets (Cederlund
et al. 1980).

Since the industrialization of forest manage-
ment in the 1960s, combined with changes in
moose harvest strategies, moose densities peaked
in the 1980s and 1990s with local winter densities
of 5–6 individuals per km2 (Lavsund et al. 2003).
Average annual moose densities have since
decreased and vary across our study area (0.50–
2.6 moose/km2; Sand et al. 2006b, Mattisson et al.
2013, Zimmermann et al. 2015, Pfeffer et al.
2018). Moose typically migrate from high-

elevation mountainous areas to low-elevation
valley bottoms to over-winter, where snow
depths are reduced (Sweanor and Sandegren
1988, Bunnefeld et al. 2011, Singh et al. 2012).
Assemblages of other ungulates vary across our
study area. Roe deer (Capreolus capreolus), fallow
deer (Dama dama), and red deer (Cervus elaphus)
have higher densities in the south and along the
coast (based on hunting statistics; www.algdata.
se and www.viltdata.se). Carnivores include
wolves, brown bears (Ursus arctos), wolverines
(Gulo gulo), and Eurasian lynx (Lynx lynx).
Wolves and bears prey on neonate calves in the
spring and early summer, and moose are the
main prey of wolves throughout the year (Swen-
son et al. 2007, Sand et al. 2008, Zimmermann
et al. 2015). Wolf density in Scandinavia is lower
(0.154 wolves/100 km2; 95% credible intervals
0.151–0.159; Bischof et al. 2019) than in North
America (0.3–5.4 wolves/100 km2; Mech and Bar-
ber-Meyer 2015), yet wolf hunting success of
moose is substantially higher in Scandinavia
than in North America (Sand et al. 2006).

Data collection
Our data were collected during four projects:

Forest and Moose (2012, 2015, and 2018) in Nor-
way, and Vilt och Skog (2008–2009, 2011), For-
tl€opande Milj€oanalys (2012–2015), and Beyond
Moose (2015–2018) in Sweden. All projects had
common methods for counting ungulate pellet
groups and assessing browsing at fixed monitor-
ing plots. We systematically placed quadrats
(500 9 500 m or 1000 9 1000 m) at 11 sites
(Fig. 1). Within sites, quadrats were placed at
minimum 1 km and maximum 3 km apart.
Along each quadrat’s border, we placed 16 circu-
lar plots every 100 m (Norway and Sweden) or
200 m (Sweden; Fig. 1).
Browsing surveys.—We assessed browsing from

circular plots in the spring. Starting with the tree
closest to the plot center, we identified the tree
species, and counted the number of browsed and
unbrowsed shoots from the previous growing
season. We defined a shoot as woody tissue
>1 cm long. We considered shoots <1 cm to be
unavailable to moose because they are too small
for processing. The number of available shoots is
the sum of browsed and unbrowsed shoots. We
registered browsing from the current winter sea-
son where browsed shoots were still wet with
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resin, and the wood had not died or become gray
(Ball and Dahlgren 2002). We restricted our anal-
ysis to trees ≥30 cm and ≤3 m tall to be consis-
tent with field protocols across projects. The
lower height represented average winter snow
levels below which trees were not available for
browsing during winter. The upper height repre-
sented the maximum browsing height for moose
(Nichols et al. 2015). For the Forest and Moose
project, we assessed browsing on up to 10 trees
per species in 50-m2 plots. For Swedish projects,
we assessed browsing on one tree per species in
100-m2 plots. In both cases, we chose trees closest
to the plot center. The four common tree species
to all project protocols were rowan, downy birch,
silver birch, and Scots pine.

Pellet counts.—Because browsing pressure is
highly correlated with animal abundance, we

counted ungulate pellet groups (Neff 1968) in
100-m2 circular plots during late spring. We used
the number of pellet groups to represent the time
animal(s) spent in a plot which M�ansson et al.
(2007) identified as an unbiased estimator of
habitat use. Pellet counts occurred at the same
plot center as browsing surveys. Although we
were primarily interested in moose habitat use,
we counted pellets for all ungulate species pre-
sent. We identified ungulate species by morpho-
logical characteristics of the pellets and the
number of pellets per group (Spitzer et al. 2019).
To register a pellet group, >50% of the group
needed to fall within the plot (Norway) or the
center of the group was within the plot (Sweden).
A minimum number of 20 moose pellets were
required to register pellets as a group. We distin-
guished between fresh (current winter) and old

Fig. 1. Our study included 11 sites across a gradient of human-use, predator occurrence (left), and forestry
activities (right) in Norway and Sweden. At right, 16 plots lie along the quadrat boundary. Wolf distribution data
were derived from annual monitoring surveys (Wabakken et al. 2018). Secondary road density units are km/km2.
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(prior to current winter) pellets. Typically, winter
pellets were brown, in pellet form, and posi-
tioned on top of leaf litter and forest debris. Sum-
mer pellets were often in patty form, had leaf
litter on top of pellets, or had mold or fungus
growth (Zimmermann et al. 2015). For this analy-
sis, we were only interested in winter pellets,
which corresponded to winter browsing.

Wolf data.—Wolves in Scandinavia have been
monitored annually with snow tracking, scat/
DNA collection, and occasional VHF/GPS track-
ing (Liberg et al. 2012, Wabakken et al. 2018),
with the goal to monitor reproduction events
and breeding pairs. Despite extensive tracking
efforts (mean km tracked annually = 3011.2 km;
SD 1394.8; Milleret et al. 2017), data per territory
were sparse for the spatio-temporal extent of our
study (3–21 individual wolves collared each year
in Sweden and Norway). Because home range
estimators are biased at low spatial and temporal
sampling (Burgman and Fox 2003, B€orger et al.
2006, Mattisson et al. 2013), territory centers and
boundaries were inestimable or unreliable for
most packs (Appendix S1: Figs. S1, S2, S3). We
instead used all available data to compute a cen-
troid point location for each territory and year.
We then used that centroid to rebuild the pack’s
territory by buffering each annual centroid by
18 km, which is the average radius of a wolf ter-
ritory (1000 km2) in Scandinavia (Mattisson et al.
2013). Because territory size is influenced by prey
density, population density, intra- and interspeci-
fic competition, and habitat characteristics
(McNab 1963, Mattisson et al. 2013, Allen et al.
2016), we accounted for density-dependence by
not allowing territory boundaries to overlap (see
description in Appendix S1). We created a wolf
territory presence variable (Table 1), which was
the presence of a wolf territory created from the
above steps (Appendix S1: Fig. S4).

Due to limited tracking data, however, there
was uncertainty in the territory boundary (see
Milleret et al. 2017 for details). Therefore, we cre-
ated a second wolf variable (probability of wolf
territory occurrence; Table 1) by assigning a
decreasing probability of territory occurrence as
distance from the centroid increased. We used a
probability because we were more confident that
the areas closer to the centroid contained a wolf
territory, compared to the areas far from a cen-
troid. We assumed a parabolic decrease in

probability of wolf territory occurrence from the
centroid to the buffer edge (Appendix S1: Fig. S2,
S3). The probability stayed high in the first 9-km
radius from the centroid but uncertainty
increased further out. We based this assumption
on the non-linear use of their territory by wolves,
where they concentrate on a small core area and
use the rest of the territory less intensely (Ciucci
et al. 1997, Zimmermann et al. 2019). For exam-
ple, Ciucci et al. (1997) found core territory use
represented only 15% of the MCP home range.
We extracted raster values (probability values 0–
1) for each plot in each study year in Norway
and Sweden at a 1000-m resolution, which repre-
sents a coarse-scale variable. Areas outside a
wolf territory were assigned a null probability.
Both wolf variables (wolf territory presence,
probability of wolf territory occurrence) were cal-
culated for the winter prior to browsing surveys
from 08/2007 to 08/2017. Wolf territory presence
was described previously in Milleret et al. (2017).
Both wolf variables are described in full in
Appendix S1.
Environmental data.—We extracted additional

spatial data known to influence moose habitat use
and selection (Table 1). We expected the number
of days with snow coverage to correlate with win-
ter severity (Foster et al. 1982), which would influ-
ence food availability and predation risk. The
spatial coverage of weather stations was insuffi-
cient to interpolate snow depth for our study area,
so we calculated the number of days per year per
plot with snow cover from the Normalized Differ-
ence Snow Index from MODIS (500 m; Hall et al.
2006). The spatial resolution of the snow cover
variable matches the quadrat, and we interpret
this variable as such. We extracted elevation
because it is negatively correlated with productiv-
ity (Danell et al. 1991b). We extracted percent
canopy cover because open areas increase preda-
tion risk by wolves (Creel et al. 2005, Gervasi et al.
2013) and human hunters (Lone et al. 2014) but
often provide the most food resources (Mysterud
and Østbye 1999). Young forests provide high
quantity and quality food for moose (Wallgren
et al. 2013). We created a binary young forest (5–
20 yr old) variable based on field-collected data in
Norway, and national forest inventory data in
Sweden. We included the presence of downy and
silver birch, Scots pine, and rowan in the plot, as
we could expect the presence of other browse
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species could alter browsing behavior (Danell
et al. 1991a). Last, we calculated the distance to
roads in meters as the Euclidian distance to near-
est primary and secondary roads. See Table 1 for
variable details. Spatial extractions were done in
ArcMap version 10.3.1 (Environmental Systems
Research Institute 2011).

STATISTICAL ANALYSIS

Browsing occurrence
We modeled tree browsing occurrence with a

logistic regression (0, unbrowsed; 1, browsed) sep-
arately for the four species: silver birch, downy
birch, rowan, and Scots pine. It was important to
separate browse species because forage mass dif-
fers between species. For example, Scots pine in
winter has up to 20 times the mass of the other
browse species (Shipley et al. 1998). It is difficult to

define forage quality based on a single metric of
digestibility, nutrient content, or defense com-
pounds (Bergstr€om and Danell 1987). Instead, we
refer to quality as an index based on food selection
ranks following Shipley et al. (1998; rowan > silver
birch > downy birch ≥ Scots pine).
We included the presence of other palatable

species, elevation, canopy cover, and moose pel-
let group counts in all candidate models. We
refer to these as “base model covariates.” We
then added up to three variables per model
related to our research questions (young forest,
secondary road, primary road, wolf) as additive
or interactive terms, resulting in 25 candidate
models (Table 2). Hereafter, we refer to moose
pellet group counts as “habitat use” (see defini-
tion above in pellet counts subsection). To
account for differences in study design structure
and sampling years, we included two random

Table 1. Explanatory variables used in browsing occurrence and browsing pressure models.

Variable Abbreviated name Units Scale Data source

Base model covariates
Available shoots Available Number of browsed

and unbrowsed shoots
Tree field collected

Downy birch presence Downy birch Presence (1)/absence (0)
of downy birch

Plot field collected

Silver birch presence Silver birch Presence (1)/absence (0)
of silver birch

Plot field collected

Scots pine presence Pine Presence (1)/absence (0)
of Scots pine

Plot field collected

Rowan presence Rowan Presence (1)/absence (0)
of rowan

Plot field collected

Moose pellet group
counts

Moose Number of moose
pellet groups

Plot field collected

Canopy cover Canopy 0 (no forest)–1
(full canopy)

25 m Copernicus Land
Monitoring Service

Elevation Elevation m 25 m Copernicus Land
Monitoring Service

Hypothesis-driven
covariates
Euclidian distance to
nearest primary road

Primary road m Vector† National road inventory
(SWE: Lantm€ateriet; NOR: Geonorge)

Euclidian distance to
nearest secondary road

Secondary road m Vector National road inventory
(SWE: Lantm€ateriet; NOR: Geonorge)

Young forest Young forest Presence (1)/absence (0)
of young forest

Vector SWE: Swedish Forest Agency
(Skogsstyrelsen); NOR: field collected

Snow cover Snow Number of snow
days/year

500 m MODIS (Hall et al. 2006)

Probability of wolf
territory occurrence

Wolf probability 0 (low probability)–1
(high probability)

1000 m Wabakken et al. 2018

Presence of wolf territory Wolf presence Presence (1)/absence (0)
of wolf territory

1000 m Wabakken et al. 2018

† Vectors are spatial features that represent points, polygons, or lines. The spatial resolution is defined by the precision of
the x, y coordinates, but the original resolution of these coordinates is often not preserved.
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intercepts: plot nested within site (site/plot) and
year. We mean-centered and scaled continuous
predictor variables to SD = 2 so scaled coeffi-
cients from continuous variables are comparable
to unscaled binary predictor coefficients (Gelman
and Hill 2006). We checked for collinearity using
Pearson correlation coefficients. All values > 0.7
were considered correlated and were not
included in the same model (Dormann et al.
2013).

We used generalized linear mixed models
(GLMM) with a binomial family (logit link) in
package glmmTMB (Brooks et al. 2017). We used
Akaike information criteria (AIC) to identify the
most parsimonious model(s) and model-

averaged parameter effect sizes based on AIC
weights (Burnham et al. 2011) using the modavg
function in package AICcmodavg (Mazerolle
2019). We excluded models with interaction
terms from model averaging (Cade 2015). Predic-
tion curves were created from top-ranked models
only. We evaluated model fit by visualizing the
scaled residuals simulated from the fitted model
with package DHARMa (Hartig 2020). All analy-
ses were completed in program R version 3.6.1
(R Core Team 2018). We report results by tree
species in the ranked order of selectivity.

Browsing pressure
We modeled browsing pressure by using the

number of browsed shoots per tree as our
response variable and the log-transformed num-
ber of available shoots per tree as an offset. We
used zero-inflated negative binomial models
(logit link binomial, log-link count) with the iden-
tical fixed (Table 1) and random effect variables
as the model for browsing occurrence for the con-
ditional count and zero-inflated process models.
The zero-inflation formula describes the probabil-
ity of excess zeros (Brooks et al. 2017), which dif-
fers from the logistic regression. We followed the
same variable standardizing, model fitting, selec-
tion, averaging, and diagnostics described above
for browsing occurrence models. We did not
include an offset for the binomial model.

RESULTS

From 2012 to 2018, we visited 51,527 plots to
count pellet groups and assess browsing. Most
plots (78%) had no pellets present (median = 0).
On average, moose pellet group counts were
highest among ungulate species (mean = 0.004,
SE = 5.9e-05) but pellet counts varied strongly
by site (Appendix S1: Fig. S5). Fallow deer were
present in our study area, but inconsistencies in
field data collection across years resulted in an
excess of NA values. Because roe deer and red
deer detections were constrained to three sites,
and model fitting was difficult, moose were the
only ungulate species included as explanatory
variables. Distances from plots to the nearest sec-
ondary (min = 0 m, max = 2248 m) and primary
roads (min = 1 m, max = 5929 m) varied. Across
years, 17% of plots on average intersected with
wolf territories.

Table 2. Candidate models for evaluating browsing
occurrence and browsing pressure.

Model number Description

1 Young forest 9 wolf probability
2 Young forest + wolf probability
3 Young forest 9 secondary road
4 Young forest + secondary road
5 Young forest + primary road
6 Wolf probability 9 secondary road
7 Wolf probability + secondary road
8 Wolf probability + primary road
9 Snow 9 secondary road
10 Snow + secondary road
11 Snow + primary road
12 Snow 9 wolf probability
13 Snow + wolf probability
14 Wolf probability 9 secondary road 9

young forest
15 Wolf probability 9 secondary road 9

snow
16 Young forest 9 wolf presence
17 Young forest + wolf presence
18 Wolf presence 9 secondary road
19 Wolf presence + secondary road
20 Wolf presence + primary road
21 Snow 9 wolf presence
22 Snow + wolf presence
23 Wolf presence 9 secondary road 9

young forest
24 Wolf presence 9 secondary road 9 snow
25 Null model (base model covariates only)

Notes: Browsing occurrence is the probability of a tree
being browsed (0, unbrowsed; 1, browsed). Browsing pres-
sure is the number of browsed shoots per tree with the log-
transformed number of available shoots as an offset. In addi-
tion to the listed variables below, all models included base
model covariates moose pellet groups, elevation, canopy
cover, and the presence of other palatable species. See Table 1
for variable definitions.
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We recorded 29,314 individual tree measure-
ments. Deciduous species occurred less fre-
quently in plots than Scots pine (in order of
selectivity): rowan (14%; n = 4,235), silver birch
(13%; n = 3,740), downy birch (37%; n = 10,800),
and Scots pine (36%; n = 10,539). Overall brows-
ing pressure was low (mean = 0.06; SD = 0.18).
Mean browsing pressure was highest for rowan
(Fig. 2). Minimum and maximum distance to
nearest secondary and primary roads did not
vary substantially between species: rowan (sec-
ondary 1–2040 m; primary 1–5700 m), downy
birch (secondary 1–2248; primary 0–5928 m), sil-
ver birch (secondary 1–1869; primary 4–5578 m),
and Scots pine (secondary 0–2248 m; primary 1–
5794 m).

Statistical analysis
Rowan.—The top-ranked browsing occurrence

model included the interaction snow:wolf pres-
ence:secondary road and was 2.7 times more
supported by the data (based on AIC weights)
than the next-ranked model (Appendix S1:
Table S1). The interaction showed that with a
higher number of snow days and wolf territory
presence, browsing occurrence increased further

from secondary roads. With lower snow cover-
age days and wolf territory presence, browsing
occurrence decreased further from secondary
roads. The two-way interaction of secondary
roads:wolf presence showed that browsing
occurrence increased further from secondary
roads when wolf territories were present,
whereas the opposite occurred when wolf territo-
ries were absent (Fig. 3). Model-averaged param-
eter estimates indicated that moose habitat use
(b = 0.33; 95% CI = 0.19, 0.47), wolf territory
presence (b = 0.23; 95% CI = �0.12, 0.59; Fig. 4),
presence of silver birch (b = 0.17; 95%
CI = �0.01, 0.34), and secondary roads
(b = �0.11, 95% CI = �0.27, 0.06; Figs. 4, 5) had
a positive effect on browsing occurrence on
rowan. The presence of Scots pine (b = �0.17;
95% CI = �0.34, �0.01), elevation (b = �0.46;
95% CI = �0.83, �0.09), and distance to primary
road (b = 0.21; 95% CI = 0.04, 0.37; Figs. 4, 5)
had a negative effect on rowan browsing occur-
rence. Rowan browsing occurrence was 2.3 times
higher and 1.5 lower along secondary and pri-
mary roadsides, respectively, relative to the max-
imum distance from each road type (Fig. 5). For
all models, no variables were correlated above |
0.7|. All correlation coefficients are presented in
Appendix S1: Fig. S6.
There were no clear top models for rowan

browsing pressure (Appendix S1: Table S2).
Model-averaged parameter estimates showed
moose habitat use had a positive effect
(b = 0.19; 95% CI = 0.10, 0.28) and downy
birch presence (b = �0.14; 95% CI = �0.25,
�0.03) had a negative effect on rowan brows-
ing pressure.
Silver birch.—For silver birch browsing occur-

rence, there were no clear top models
(Appendix S1: Table S1). Model-averaged param-
eter estimates indicated a positive effect of moose
habitat use (b = 1.03; 95% CI = 0.83, 1.23) and
secondary roads (b = �0.12; 95% CI = �0.28,
0.05; Figs. 4, 5), and a negative effect of primary
roads (b = 0.20; 95% CI = 0.02, 0.37; Figs. 4, 5)
and downy birch presence (b = �0.27; 95%
CI = �0.44, �0.10) on browsing occurrence.
Browsing occurrence was 1.26 times higher at the
highest probability of wolf territory occurrence
relative to a zero probability. Silver birch brows-
ing occurrence was 1.4 times higher and 1.6 times
lower along secondary and primary roadsides,

Fig. 2. Bar chart showing mean browsing pressure
across all tree species for Norway and Sweden (2008–
2018). We calculated browsing pressure as the number
of browsed shoots divided by the number of available
shoots per individual tree. For visualization, we
excluded unbrowsed trees. Bars represent standard
error.
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respectively, relative to the maximum distance
from each road type (Fig. 5).

For silver birch browsing pressure, the top
model was 2.6 times more likely than the second-
ranked model (Appendix S1: Table S2). Model-
averaged parameter estimates indicated a strong
positive effect of moose habitat use (b = 0.15;
95% CI = 0.05, 0.24) and a negative effect of
young forests (Fig. 6) on browsing pressure.

Downy birch.—The top downy birch browsing
occurrence model was 2.3 times more likely than
the next-ranked model (Appendix S1: Table S1).
This model contained the additive terms young
forest and primary roads. Model-averaged
parameter estimates indicated a positive effect of
moose habitat use (b = 0.47; 95% CI = 0.37, 0.57)
and secondary roads (b = �0.03, 95%
CI = �0.17, 0.11; Figs. 4, 5), but a negative effect
of primary roads (b = 0.22; 95% CI = 0.09, 0.34;
Figs. 4, 5) and elevation (b = �0.54; 95%
CI = �0.89, �0.20) on browsing occurrence.
Browsing occurrence was 1.37 times higher at the
highest probability of wolf territory occurrence

relative to a zero probability. Downy birch
browsing occurrence was 1.1 higher and 1.8
times lower along secondary and primary road-
sides, respectively, relative to the maximum dis-
tance from each road type (Fig. 5).
There were no clear top models for downy

birch browsing pressure (Appendix S1: Table S2).
Model-averaged covariates included negative
effect of elevation (b = �0.46; 95% CI = �0.71,
�0.20) and Scots pine presence (b = �0.11; 95%
CI = �0.25, 0.04) on browsing pressure.
Scots pine.—The top Scots pine browsing occur-

rence model was two times more likely than the
second-ranked model (Appendix S1: Table S1).
This model included interaction terms young for-
est:secondary road where browsing occurrence
was higher in young forests but declined further
from secondary roads. Outside young forests,
browsing occurrence on Scots pine was
lower and the road effect was dampened
(Appendix S2: Fig. S4). Model-averaged parame-
ter estimates showed a positive effect of moose
habitat use (b = 0.77; 95% CI = 0.67, 0.87), the
presence of young forest (b = 0.49; 95%
CI = 0.30, 0.69; Fig. 4), silver birch (b = 0.38; 95%
CI = 0.24, 0.51), and downy birch (b = 0.42; 95%
CI = 0.29, 0.54) on Scots pine browsing occur-
rence (Fig. 4). Browsing occurrence increased
closer to secondary roads (b = �0.22; 95%
CI = �0.36, �0.08) but decreased closer to pri-
mary roads (b = 0.19; 95% CI = 0.06, 0.31;
Figs. 4, 5). Pine browsing occurrence was 1.6
times higher and 1.9 times lower along sec-
ondary and primary roadsides, respectively, rela-
tive to the maximum distance from each road
type (Fig. 5).
The top browsing pressure model was 10 times

more likely than the second-ranked model
(Appendix S1: Table S2). This model included the
interaction of wolf presence:secondary road:
young forest. Browsing pressure outside wolf
territories was relatively unchanged whether
close to or far from secondary roads, or in young
forests or not. Inside wolf territories, browsing
pressure decreased in young forests when fur-
ther from secondary roads. Browsing pressure
increased further from secondary roads when
outside young forests (Fig. 7). Model-averaged
parameter estimates showed a positive effect of
the presence of silver birch (b = 0.14; 95%
CI = 0.002, 0.29) and a negative effect of

Fig. 3. Predictive plot for the interaction secondary
road:wolf from the top-ranked rowan browsing occur-
rence model. Wolf territory absence = 0 and pres-
ence = 1. Low road values (in meters) are close to
secondary roads, while high values are far from sec-
ondary roads. Predictions were from the top-ranked
browsing occurrence model. Data are from Norway
and Sweden from 2008 to 2018. Ribbons represent 95%
confidence intervals.
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elevation (b = �0.58; 95% CI = �0.92, �0.24) on
Scots pine browsing pressure.

DISCUSSION

We tested the importance of roads, young for-
ests, and wolves on moose browsing occurrence

and browsing pressure at a fine spatial scale and
large spatial extent. Primary and secondary
roads were important explanatory variables for
moose browsing occurrence and pressure on all
tree species. Generally, for all tree species, brows-
ing occurrence and pressure decreased close to
primary roads but browsing occurrence

Fig. 4. Forest plots of model-averaged main effect coefficients from browsing occurrence models. Estimates
are from binomial models. Reference categories for binary variables (wolf presence, young forest) are 0. Bars rep-
resent 95% confidence intervals.
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increased close to secondary roads (P1, P2). We
also found a neutral to positive effect of wolf ter-
ritory presence and probability on browsing
occurrence and pressure. However, wolf effects
became negative when they interacted with food
and risk variables like snow cover, distance to
roads, and presence of young forest (P1). We
found little support for days with snow cover
increasing browsing occurrence and pressure
(P3) and tree species with differing selectivity
rankings explaining differences in road and wolf
effects (P4).

Our results showed reduced browsing occur-
rence close to primary roads and increased
browsing occurrence close to secondary roads, as
expected. Primary roads can increase chances of
moose-vehicle collisions and are barriers to
moose migration (Ball et al. 2001, Seiler et al.
2003), with vehicle speed, traffic volume, and
fencing being primary deterrents (Seiler 2005).
For all tree species, we found browsing

occurrence was 1.6–1.9 times lower along pri-
mary roadsides relative to the furthest point
from primary roads. This supports a behavioral
response from moose to avoid risky primary
roads. Indeed, road avoidance behavior results
in indirect habitat loss, which can often be a big-
ger driver than direct habitat loss (Dwinnell et al.
2019). This can reduce nutritional carrying capac-
ity, reduce fitness, and lead to population decli-
nes (McLoughlin et al. 2006). While
Scandinavian moose densities are among the
highest in the world (Lavsund et al. 2003), little
emphasis is placed on the fitness consequences
of road development in Scandinavia.
In contrast to the response to primary roads,

we found browsing occurrence was 1.1–2.3 times
higher along secondary roadsides relative to the
furthest point from the road. Moose could use
secondary roads for travel but often these linear
features are perceived as risky, especially when
predators are present (Dickie et al. 2020), so we

Fig. 5. Predictive plots for the relationship between browsing occurrence and distance to secondary (yellow
line) and primary roads (green line) for all four tree species. Low road values (in meters) are close to roads, while
high values are far from roads. Plots are from highest ranked models that contain secondary and primary roads
for each species. See Appendix S1: Table S1 for model rankings. Data are from Norway and Sweden from 2008 to
2018. Ribbons represent 95% confidence intervals.
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would expect some degree of road avoidance
behavior. A more plausible explanation for the
positive effect of secondary roads is that roads
change an herbivore’s food landscapes without
adding the burden of high vehicle traffic. For
example, roadside mowing and ditching can
increase plant diversity, specifically birch density

(Zieli�nska et al. 2013, Jakobsson et al. 2018). For-
ests in Scandinavia are typically low in structural
and species diversity because deciduous tree
densities are reduced during pre-commercial
thinning. Roads and clear-cuts offer one of the
few disturbance events to stimulate early succes-
sional deciduous tree growth. We could thus

Fig. 6. Forest plots of model-averaged main effect coefficients from browsing pressure models. Estimates are
from the conditional part of zero-inflated negative binomial models. Reference categories for binary variables are
0. Bars represent 95% confidence intervals.
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expect a relationship between roads and decidu-
ous tree density, which could positively influence
browsing occurrence and pressure. This is a
plausible explanation for the positive main effect
of secondary roads, though we could not detect
any trend between tree density and distance to
roads in Norway (Appendix S1: Fig. S7). Tree
density data were not available for Sweden.

While secondary roadsides can offer food sub-
sidies and easy travel routes, they also represent
a spatial mortality risk to moose because they are
also used by predators and humans. This could
result in temporal or spatial road avoidance
under certain situations (Mathisen et al. 2018).
Indeed, we found rowan browsing occurrence
increased further from secondary roads where
wolf territories were present (Fig. 3), which sug-
gests that secondary roadsides could be per-
ceived as risky when predators are present.
Globally and locally, roads increase the distance
and speed at which wolves travel (Zimmermann
et al. 2014, Dickie et al. 2017); in Scandinavia,
wolves travel almost twice as fast on roads ver-
sus off roads. This could increase detection rates
of prey and motivate moose to spend time away
from roads despite roadsides offering attractive

foods. Additionally, multi-predator systems (in-
cluding humans as predators) could have con-
trasting, additive, or multiplicative effects on the
ungulate prey. For example, Lone et al. (2014)
found that roe deer predation risk was greatest
in rugged terrain where lynx and human hunters
overlapped, creating areas of additive predation
risk. Similarly, because secondary roads are used
by wolves and humans, they could also be areas
of additive (or additional) moose predation risk.
While browsing occurrence increased close to

secondary roads for most tree species (except
downy birch; Fig. 4), young forests intensified
the positive effect of secondary roads for Scots
pine (Fig. 7). For the commercially valuable Scots
pine, the presence of young forest stands along-
side secondary roads nearly doubled Scots pine
browsing occurrence (P = 0.20) compared with a
recently clear-cut, or forests older than 20 yr
(P = 0.11; Appendix S2: Fig. S4). Much of Scandi-
navia’s productive areas are used for agriculture
and forestry. During winter, young pine forests
are selected by moose for the abundance of high
quantity and quality foods. However, intensive
browsing can lead to a delay in stand maturity,
irregular growth, or tree death (Wallgren et al.

Fig. 7. Predictive plot for the interaction between secondary road:young forest:wolf territory presence from
the top Scots pine browsing pressure model. Low road values (in meters) are close to secondary roads, while
high values are far from secondary roads. Young forest presence = 1 and absence = 0. Data are from Norway
and Sweden from 2008 to 2018. Ribbons represent 95% confidence intervals.
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2013, Herfindal et al. 2015). This is the center of
the conflict between forest owners who want
commercially valuable timber, and moose hun-
ters, who want to sustain high harvest rates.
Many forest roads in Scandinavia are being
upgraded to allow for larger machinery (Flisberg
et al. 2014), and new roads are being built for
access to wind turbines, a growing energy source
in Scandinavia (IEA Wind TCP 2018). While
overall browsing occurrence along roadsides was
low, the high-density secondary road network in
Scandinavia could be facilitating intensive moose
browsing. This could have long-term conse-
quences to forestry and moose-forestry conflicts
by intensifying moose browsing along roadsides.

Our browsing pressure estimates were compa-
rable to previous Scandinavian studies. For
example, browsing pressure estimates 1–10 km
from supplemental feeding stations (where they
did not find effects of feeding stations) from
Mathisen et al. (2014) were 44% for rowan (2
SE = 9.0; 1.5 times higher than our average), 34%
for silver birch (2 SE = 9.0; 1.3 times higher than
our average), 27% for downy birch (2 SE = 6.0;
1.3 times higher than our average), and 33% for
Scots pine (2 SE = 7.0; 1.2 times higher than our
average). For both their study and ours, rowan
experienced the highest browsing pressure
(Fig. 2). Rowan is highly selected by moose, and
high browsing impacts on rowan may have
strong negative effects on plant and animal bio-
diversity (Shipley et al. 1998, M�ansson et al.
2007). Indeed, Speed et al. (2013a, b) found height
growth was restricted when 20–45% of rowan
shoots and 30% of Scots pine shoots were
browsed. For our study, 42% (n = 740) of Scots
pine measured had ≥30% of shoots browsed. For
rowan, 89% (n = 1,077) had ≥20% of shoots
browsed and 57% (n = 691) had ≥45% of shoots
browsed. We note the effect of browsing pressure
on individual tree growth and development
depends on many factors such as site productiv-
ity, tree species, or predation pressure, which
make browsing pressure estimates difficult to
generalize and compare. While our study was
designed to quantify changes in moose brows-
ing, and not changes in the plant community in
relation to the presence of wolves, we recom-
mend future research in Scandinavia to focus on
the cascading effects of carnivores on plant bio-
mass or recruitment.

Browsing occurrence and pressure represent
different aspects of ungulate ecology but are
poorly differentiated in the browsing literature.
Given the data and our models, we found much
clearer signals for browsing occurrence relative
to browsing pressure. According to Shipley et al.
(1998), moose utilize only 20% of available bites
along a foraging path, taking only one or two
bites per tree. In this case, we can think of brows-
ing occurrence as one of many steps in the forage
selection process: First, the moose needs to be
present, then it encounters a tree, takes a bite or
two, but may later reject the tree from further
browsing. In contrast, browsing pressure reflects
that moose have sampled the tree and chose to
continue feeding on it. Browsing pressure is per-
haps the more ecologically meaningful metric, as
we can estimate the amount of forage removed
from a tree/patch/landscape. However, browsing
pressure had a low signal-to-noise ratio in our
study. There were multiple potential sources of
variation, including differences in tree morphol-
ogy or uncertainty in our count estimates. For
example, maximum counts for the number of
browsed and available shoots reached 250 and
1028, respectively. These are high values, and
although we used clicker-counters, human error
likely contributed to some of this unknown error.
For example, Prater (1979) found observers
counting birds from photographs (i.e., true val-
ues known) consistently overestimated when
counting small groups of birds but underesti-
mated when counting large groups. For counting
shoots on a tree, this could result in the system-
atic underestimation of the number of shoots on
larger trees and overestimation of smaller trees.
Shoot counting could be improved by using dou-
ble observer surveys to quantify and correct for
the uncertainty (Morrison 2016). Feedback ses-
sions where all technicians count the same tree
and learn from the group average could also be
useful (Wintle et al. 2013).
Similar to Ausilio (2018) and van Beeck Calk-

oen et al. (2018), we found browsing occurrence
increased with increasing probability of wolf ter-
ritory occurrence (Fig. 4): For downy and silver
birch, browsing occurrence was 1.37 and 1.26
times higher at the highest probability of wolf
territory occurrence relative to a zero probability.
This counterintuitive finding could result from
wolves and moose being displaced by humans to
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less productive areas, which results in high wolf-
utilization areas having lower tree densities, or
wolves aligning their territories with areas of
higher moose densities. Unlike previous studies,
however, we found that for rowan, browsing
occurrence decreased close to secondary roads
when wolf territories were present and the num-
ber of snow days were high. With a lot of snow,
wolves may be more likely to use forest roads;
alternatively, it may be easier for moose to move
in the forest rather than on unplowed forest
roads with deep snow. Similarly, browsing pres-
sure was three times higher away from sec-
ondary roads when wolves were present and
browsing occurred in clear-cut, or forests older
than 20 yr. In contrast, browsing pressure was
1.4 times higher close to secondary roads when
browsing occurred in young forests and wolves
were present (Fig. 7). This finding lends tentative
support for the risk allocation hypothesis that
given roads represent a mortality risk, as we
have shown above, moose are still attracted to
roadsides when food sources are abundant.
However, moose are less willing to accept this
level of risk if the food reward is diminished, as
is typically the case in mature forests. We note
the high uncertainty with these estimates and are
cautious in our interpretation.

Overall, however, wolf effects were lower than
we expected. Part of this uncertainty could be
because the wolf territory variable represents a
coarser resolution (500 and 1000 m) than all other
variables. At finer spatial resolutions, we would
expect a stronger effect with reduced uncertainty.
Another explanation for uncertain wolf effects is
that our dataset is biased toward areas without
wolves, so an excess of zeros in our wolf variables
could mask underlying patterns. Post hoc, we ran
browsing occurrence and pressure models with
data only from sites within wolf distribution.
Wolf effects become stronger (Appendix S2:
Figs. S1, S2) but most other variables increased in
uncertainty. Important interactions, such as the
interaction of wolf territory presence and distance
to secondary roads, remained present but esti-
mates became more uncertain (Appendix S2:
Figs. S3, S4). See Appendix S2 for post hoc
results.

Our results of weak wolf effects are consistent
with other European studies where the effects
of wolves have been more difficult to elucidate

than in North America, possibly because of
reduced landscape heterogeneity and dampened
effects of predators relative to the effects of
humans (Schmidt and Kuijper 2015). In Scandi-
navia, previous research has also suggested that
moose may be na€ıve to wolves as predators.
Sand et al. (2006) found wolf hunting success of
moose to be 2–9 times higher in Scandinavia rel-
ative to North America, which they argue is an
artifact of mortality contributions from humans
(high) and large carnivores (low). In North
America, wolves were never extirpated from the
moose’s distribution (or only for short periods;
e.g., 40–50 yr) whereas moose in Scandinavia
have lived without large carnivores for 120–
150 yr. Because of this carnivore-free period,
Sand et al. (2006) and others (Berger et al. 2001)
argue that moose have relaxed their aggressive
anti-predator response in favor of a flee
response. Last, another possible reason for a
weak wolf effect could be because moose are
widely hunted with dogs in Scandinavia. Hunt-
ing dogs bark at moose, and hunters are more
successful at shooting moose that stand their
ground, which is an advantageous anti-predator
response to wolves. However, it is the fleeing
moose that often escape human hunters and
may thus be favored in selection. Hunting is a
widely popular activity in Scandinavia with
almost 115,000 moose shot annually, so human
hunters potentially exert a stronger selection
pressure relative to wolves.
To conclude, we found browsing occurrence

and pressure effects varied by tree species. We
found neutral to positive effects of wolves. Wolf
effects became more certain and positive when
they interacted with other factors such as snow
cover, young forests, and roads. Whether these
effects are large enough to shape tree recruitment
or community patterns remains unknown. We
found browsing occurrence increased close to
secondary roads but decreased close to primary
roads. The presence of young forests near sec-
ondary roads nearly doubled moose browsing
occurrence for Scots pine, which could have con-
sequences for moose-forestry conflicts. There are
many secondary roads in Scandinavia, and even
more to be built. We assert that forest and wild-
life managers need to consider how an increasing
network of secondary roads facilitates intensive
moose browsing.
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A B S T R A C T   

High densities of ungulates can increase human-wildlife conflicts. Where forestry is an important economy, 
intensive browsing can lead to browsing damage, resulting in volume losses, poor stand regeneration, and 
reduced timber quality. The forestry industry thus looks for practical, long-term measures to mitigate browsing 
damage. We tested the effect of two mitigation measures on moose (Alces alces) browsing behaviour and damage 
to Scots pine (Pinus sylvetris): (1) ungulate-adapted slash piles (i.e., palatable species only) created during felling 
to increase short-term food availability and (2) intensified soil scarification to increase long-term food avail
ability (collectively, ‘ungulate-adapted forestry’). Our study occurred in southern Norway where we established 
fixed vegetation and moose faecal pellet plots at varying distances from conventional and ungulate-adapted slash 
piles and scarified stands. We evaluated the effects of ungulate-adapted slash piles and intensified scarification 
on the density of undamaged Scots pine, moose bite diameters, browsing pressure, and moose faecal pellet 
density. To assess the effect of spatial scale, we created 250 m, 500 m, and 1000-m radius buffers centered on 
each plot. We found that ungulate-adapted logging near our plots increased the density of undamaged pines, as 
compared to no and conventional logging. We found that logging in general led to smaller bite diameters. We 
also found that plots near conventional logging had higher browsing pressure, whereas browsing pressure near 
ungulate-adapted logging was similar to unlogged stands. For scarification, density of undamaged pine increased 
when the ungulate-adapted stand aged whereas undamaged pine decreased as conventional scarification stands 
aged. Browsing pressure showed a response at the smallest spatial scale only for ungulate-adapted scarification. 
Peak moose habitat use near conventional and ungulate-adapted scarified stands differed by stand age and 
distance from scarification. The overall effects of ungulate-adapted forestry were most pronounced at the 
smallest spatial scale (250 m). Our results support ‘ungulate-adapted’ forestry as a practical solution to mitigate 
browsing damage but uncertainty in some of our estimates suggest further research on the area treated is needed.   

1. Introduction 

Food subsidies from agriculture and forestry, selective ungulate 
harvests, and loss of large carnivores have resulted in an increase in 
certain wild ungulate species’ distribution, abundance, and density 
(Apollonio et al. 2010). An increase in ungulate densities represents a 
challenge economically (Putman 1996, Putman et al. 2011) because 
ungulates are often the main drivers of plant population dynamics, 
forest structure, and ecosystem processes (Danell et al. 2003, Ross et al. 

2016, Speed et al. 2019). Intensive browsing can reduce forest regen
eration or cause shifts in plant species composition (Gill 1992, Rooney 
and Waller 2003, Schütz et al. 2003). As a result, forest owners and 
forestry planners look for practical, long-term measures to mitigate 
consequences of intensive browsing. 

Measures to mitigate browsing damage include intentional feeding of 
ungulates away from critical areas such as young forest stands (diver
sionary feeding; Geisser and Reyer 2004), intentional feeding to increase 
food availability (supplemental feeding; Milner et al. 2014), 
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exclusionary fences or deterrents, and/or changes to ungulate harvest 
strategies (Putman et al. 2011). The efficacy of each method is scale and 
context dependent (Boyce et al. 2017). Further, measures are often 
difficult to successfully implement because they are costly, ungulates 
cross jurisdictional boundaries, and researchers often work at fine 
spatial scales (Hobbs 2003) whereas wildlife management occurs at 
broader scales (Weisberg and Bugmann 2003), thus creating a mismatch 
between wildlife movement and management boundaries (Meisingset 
et al. 2018). 

Spatial scale is a critical component to most ecological questions 
because resource selection occurs at different hierarchical orders, or 
scales (Johnson 1980, Senft et al. 1987, Boyce 2006) yet studies linking 
hierarchical scales of foraging to mitigation measures are rare. A 
foraging ungulate, for example, moves within its geographical range (1st 
order), establishes a home range (2nd order), and within that home 
range may make seasonal movements, selecting feeding patches (3rd 
order), individual plants and which parts of the plant to eat (4th order; 
Johnson 1980). Similarly, mitigation measures can operate at multiple 
spatial scales: coarse scales, where seasonal ungulate movements are 
altered by winter feeding stations (Jones et al. 2014), or fine scales, 
where resident ungulates are diverted away from high-traffic roads 
during winter (Milner et al. 2014). However, the scale at which un
gulates respond to resources depends on multiple factors including 
temporal scale, physiology, life history traits, and habitat (Gaillard et al. 
2010). 

Northern latitudes experience strong seasonality in ungulate food 
availability and habitat conditions (Dussault et al. 2005), and functional 
responses to food availability and food quality are scale dependent. 
Moose (Alces alces), for example, the largest member of the deer family 
(Cervidae), select for abundant browse irrespective of quality at large 
spatial scales, but select for higher quality browse at finer scales (van 
Beest et al. 2010b). However, experimental increases in food availability 
do not necessarily increase food consumption (Edenius et al. 2014) and 
large scale selection could constrain available forage at a finer spatial 
scale (Wilmshurst et al. 1999). 

Our study system is in the boreal forests of Scandinavia where 
forestry is a primary economy, moose have a high recreational and 
economical value, and moose-forestry conflicts are abundant (Lavsund 
et al. 2003). Industrialization of commercial forestry in the 1960s, 
combined with concurrent changes in moose harvest strategies, caused 
local moose densities to spike in the 1980s and 1990s (e.g., local winter 
densities of 5–6 moose per km2; Lavsund et al. 2003, Speed et al. 2019). 
While moose densities have slowly declined over the past twenty years 
(Speed et al. 2019), as has food availability (Milner et al. 2013), moose 
continue to negatively affect tree growth and survival by browsing the 
bark or apical shoot, or by breaking the tree stem. Subsequent tissue 
damage and changes to growth morphology can reduce the economic 
value of growing trees and forest stands, resulting in what is commonly 
termed ‘browsing damage’ (Hörnberg 2001, Lavsund et al. 2003). In this 
study, we instead focus on the density of undamaged trees, as it is the 
density of unaffected trees that result in adequate stand regeneration 
rather than the damaged trees. We considered a tree ‘undamaged’ if the 
tree did not have top-shoot browsing, bark browsing, main stem 
breakage, or if <60% of a tree’s shoots have been browsed (Hårstad 
2008). In Scandinavia, browsing damage is primarily applied to Scots 
pine (Pinus sylvestris) and Norway spruce (Picea abies) because they hold 
commercial value. Scots pine is a primary moose food in winter and 
browsing damage most commonly occurs in young Scots pine forests 
(5–20 years old) during winter when food is limited and where moose 
congregate at lower elevations (van Beest et al. 2010b). 

Economic losses as a result of browsing damage have resulted in 
conflicts between forest owners, who prioritize timber production, and 
moose hunters, who harvest on average 196,000 moose annually in 
Norway and Sweden (for study years 2011/12–2014/15; public data 
from www.ssb.no and www.älgdata.se). Wildlife managers have used 
moose population reduction via harvest as the primary strategy to 

decrease intensive moose browsing. However, since young pine forests 
are highly selected by moose, moose population reduction does not 
consistently reduce browsing damage (Reimoser and Gossow 1996). 
Diversionary or supplemental feeding (typically with silage) are other 
mitigation strategies, but feeding wild ungulates was recently banned in 
Norway due to the detection of chronic wasting disease (Stokstad 2017). 
Managers thus need to be creative in designing alternative, effective, 
long-term mitigation strategies in Scandinavia. 

One mitigation strategy that has been minimally studied is the 
modification of conventional forestry practices during felling and site 
preparation to increase available forage. Branches and tree stems <5 cm 
in diameter from felled trees are left on site because they have low 
commercial value (Månsson et al. 2010). Conventional logging uses 
some of the branches as “slash mats” to reduce the compaction of un
derlying vegetation and soils from the heavy machinery. However, 
branches are crushed and become inaccessible to moose after snowfall, 
and shoots no longer have the biting resistance necessary for browsers 
because they are not attached to a tree (Månsson et al. 2010). A single 
mature Scots pine in Sweden holds on average 29 kg dry weight of 
moose forage (Månsson et al. 2010), yet only about 5% of potential 
forage remains available after the trees are felled and cleaned for 
hauling. Heikkilä and Härkönen (2000) found that residual Scots pine 
tree-tops raised above the snow, what we term ungulate-adapted slash 
piles, were utilized four times more than treetops lying on the ground. 
Machine operators can thus create ungulate-adapted slash piles with 
palatable species (e.g., Scots pine, birch; Shipley et al. 1998). This 
contrasts with traditional slash piles that include all felled species. 
Despite the increase in food availability, the use of ungulate-adapted 
slash piles (hereafter, slash piles) have not clearly mitigated browsing 
damage and require further research (Heikkilä and Härkönen 2000, 
Edenius et al. 2014). 

In addition to slash piles, soil scarification is a common site prepa
ration method in Scandinavia whereby the top organic layer is over
turned to expose mineral soil, with the aim to improve seed 
establishment and increase soil temperature (Örlander et al. 1996, 
Béland et al. 2000, Berg et al. 2008). An increase in soil scarification 
intensity can increase Scots pine seedling establishment (Saursaunet 
et al. 2018), thus increasing Scots pine density and food availability 
when trees are within browsing height and before stand thinning 
(Örlander et al. 1996). While soil scarification can have many delete
rious ecological effects (Atlegrim and Sjöberg 1996a, Örlander et al. 
1996), previous research in our study area found pine seedling density 
increased with mineral soil exposure (Saursaunet et al. 2018). Thus, 
intensive scarification could increase food availability during early-to- 
mid successional stages, creating a forage-rich landscape and reducing 
browsing damage via resource dilution (Tscharntke et al. 2012). 

At each stage of intervention in commercial forestry, actions are 
taken to optimize timber or pulp production, as described above. We 
propose ‘ungulate-adapted forestry’ be an additional step added to this 
process to optimize ungulate forage production. Here, we test two 
methods that can be part of ‘ungulate-adapted forestry’: ungulate- 
adapted slash piles and intensive scarification. Our objective was to 
examine if ungulate-adapted forestry via slash piles and intensified soil 
scarification can alter ungulate browsing ecology and forest damage 
(Fig. 1). We tested if conventional and ungulate-adapted forestry influ
enced: (1) browsing damage; (2) moose habitat use; (3) bite size; (4) 
browsing pressure near treatment stands; and (5) whether these changes 
were similar at different spatial scales. Long-term monitoring plots were 
placed at varying distances from stands that were logged and scarified, 
rather than placed directly in logged and scarified stands. Current work 
(Mathisen et al. unpublished results) addressed the within-stand 
changes whereas our study investigated responses outside the stands. 

Rarely is browsing damage connected to browsing ecology in the 
literature, yet it could explain many of the mechanisms influencing 
damage. For example, browsing damage could depend on the abundance 
of preferred species in the same plot. We expected a diversionary effect 
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of the experiment to lead moose away from young stands, but also a 
supplementary effect to increase overall food availability, both leading 
to a decrease in browsing on Scots pine in the studied stands. We focused 
our analyses on Scots pine since it is a bulk winter food for moose in 
Scandinavia and has high economic value (Shipley et al. 1998). Our data 
were collected at the plot scale, which corresponds to the patch selection 
scale in hierarchical forage selection (3rd order; Herfindal et al. 2015), 
and at the tree and shoot scale, which corresponds to food selection (4th 
order; Senft et al. 1987). 

Research suggests that pine damage decreases with an increase in 
pine forage availability (Bergqvist et al. 2014, Herfindal et al. 2015, 
Pfeffer et al. 2021). We thus hypothesized the density of undamaged 
pine stems would be higher in the areas close to slash piles (H1). Bite 
size, which is an index of forage intake (Gordon 2003), can reflect 
available forage. For example, moose select larger bites as browse 
density and quality decline, and as distance between patches increases 
(Vivas and Sæther 1987, Shipley and Spalinger 1995, Shipley et al. 
1998). Large bites require less handling time per unit biomass 
consumed, but result in a greater intake of fiber, which increases 
mastication, rumination, and digestion time. Small bites have less fiber, 
but require greater handling time per unit biomass consumed (Palo et al. 
1992, Shipley 2007). Thus, bite size is a trade-off between food intake 
and quality. Because ungulate-adapted forestry increases availability of 
Scots pine (Mathisen et al. unpublished results), we hypothesized bite 
size to decrease near ungulate-adapted stands due to increased food 
availability (H2). 

We hypothesized ungulate-adapted forestry would decrease 
browsing pressure (H3) because of the increase in alternative forage via 
slash piles and intensive scarification (Månsson et al. 2010, Edenius 
et al. 2014). Further, we assumed that consuming pine shoots from 
concentrated slash piles would be more efficient than browsing on 
dispersed trees. We hypothesized ungulate-adapted forestry to increase 

habitat use (H4) because of the creation of a forage-rich landscape and 
spill-over effects on surrounding stands, as was found with moose 
habitat use close to supplemental feeding stations (Gundersen et al. 
2004, van Beest et al. 2010a). Based on research from supplemental 
feeding stations in Norway (van Beest et al. 2010a, Mathisen et al. 
2014), we hypothesized stronger effects at smaller spatial scales for all 
response variables (H5). 

2. Methods 

2.1. Study area 

Our study area lies between 60.8◦–61.4◦N and 12.2◦–12.7◦E in 
Innlandet County (Fig. 2; Fig. S1). Elevation ranges from 265 to 750 m 
above sea level. The area experiences cold, snowy winters (mean 
January temperature 2011–2018: − 9.3 ◦C; Norwegian Meteorological 
Institute) and short, cool summers. Land cover is dominated by boreal 
forests, which are managed for timber and pulp production. Production 
forests, which are largely coniferous, typically undergo one pre- 
commercial thinning at 10–20 years to remove competing deciduous 
shrubs and trees. Stands undergo 1–2 thinning events at 40–50 years and 
70–80 years to optimize commercial tree density. All time estimates are 
dependent on site productivity. Natural regeneration from seed trees is 
most common for pine, whilst spruce are often planted. 

Common tree species include Scots pine, silver birch (Betula pen
dula), downy birch (Betula pubescens), Norway spruce, grey alder (Alnus 
incana), rowan (Sorbus aucuparia), goat willow (Salix caprea), and aspen 
(Populus tremula). The shrub layer is dominated by bilberry (Vaccinium 
myrtillus), heather (Calluna vulgaris), and other Ericaceous dwarf shrubs. 
In boggy areas, Sphagnum spp. mosses are dominant. Generally, rowan, 
aspen, and willow (Salix spp.; RAW) are rare relative to Scots pine and 
birch, and are highly selected by moose (Shipley et al. 1998, Månsson 

Fig. 1. Overview of the experimental study design. The four response variables (bite diameter, browsing pressure, density of undamaged pine, moose habitat use) are 
pictured at center. The conventional and ungulate-adapted logging and scarification treatments, which occurred at varying distances from plot centers, are featured 
at left and right. Response variables are described in Sections 2.4.2–2.4.5 and in Table 2. Illustration by Heidi Loosen (loosenstudio.net). 
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et al. 2007). Still, Scots pine is a primary food source for moose during 
winter due to its high abundance whereas spruce are well-defended 
chemically and rare in moose diets (Cederlund et al. 1980). 

In winter, moose typically migrate from summer ranges in high- 
elevation mountainous areas to low-elevation valley bottoms where 
snow depths are reduced (Sweanor and Sandegren 1988, Bunnefeld 
et al. 2011, Singh et al. 2012). Roe deer (Capreolus capreolus) and red 
deer (Cervus elaphus) are present in our study area but occur at low 
densities. Large carnivores include wolves (Canis lupus), brown bears 
(Ursus arctos), wolverines (Gulo gulo), and Eurasian lynx (Lynx lynx). 
Wolves and bears prey on neonate calves in the spring and early sum
mer, and moose are the main prey of wolves throughout the year 
(Swenson et al. 2007, Sand et al. 2008, Zimmermann et al. 2015). 
However, annual moose offtake by hunters, which only occurs in the 
autumn, is 2.4–3.5 times higher than that from wolves, where predation 
occurs year-round (Zimmermann et al. 2019). 

2.2. Forestry activities 

Our study had three forestry activity levels; no forestry actions, 
conventional forestry, and ungulate-adapted forestry. Conventional 
stands had conventional logging (no slash piles) and low intensity soil 
scarification (see Section 2.2.2). Ungulate-adapted stands had ungulate- 
adapted logging (ungulate-adapted slash piles) and high intensity soil 
scarification (see Section 2.2.2). 

2.2.1. Logging 
Conventional logging does not make residual forest materials avail

able for moose. In ungulate-adapted stands, harvester operators created 
slash piles from discarded Scots pine branches and tree-tops (stem di
ameters <5 cm) (Fig. 1). From November to March between 2012 and 
2015, slash piles were created during felling. Slash piles varied in size 
and frequency by stand, particularly with available forage. In our study 
area slash piles doubled the amount of Scots pine biomass available, on 

average, compared to conventional logging (Mathisen et al. unpublished 
results). Harvester time spent in conventional and ungulate-adapted 
logging stands did not differ (Mathisen et al. unpublished results). 
Ungulate-adapted logging occurred in 46 stands (268 ha) while 32 
stands (204 ha) received conventional logging (Table S1). While we 
aimed for an equal number of conventional and ungulate-adapted 
stands, previous research has shown that many factors influenced 
when, where, and why small private Norwegian landowners harvested 
timber (Bashir et al. 2020) and these may not align with forest research 
goals. 

Logging occurred at varying distances to plot centers (Fig. 2). To 
assess how spatial scale influenced our response variables, we created 
250 m, 500 m, and 1000-m radius buffers centered on each monitoring 
plot in ArcMap (Environmental Systems Research Institute 2011). We 
limited our distance to 1000 m to reflect the maximum distance at which 
feeding stations have an effect on browsing and moose density in Nor
way (Mathisen et al. 2014). For each buffer size we created three unique 
logging variables: (1) a 4-level factor with 4 treatment levels (absence of 
logging, presence of conventional logging, presence of ungulate-adapted 
logging, and presence of both conventional and ungulate-adapted log
ging), (2) the area (m2) with conventional logging; and (3) the area (m2) 
with ungulate-adapted logging. All variables refer to logging that 
occurred the winter prior to spring data collection. See Table 1 for 
details. 

2.2.2. Scarification 
Scarification occurred during the summer from 2011 to 2014, one to 

two years after logging. Ungulate-adapted scarification occurred in 22 
stands (306 ha) while 47 stands received conventional scarification 
(390 ha; Table S1). Conventional scarification practices in Norway 
typically expose 13–20% mineral soil to improve seedling regeneration 
(Øyen 2002). We classified 0–20% mineral soil exposure as low intensity 
(conventional) and >20% as high intensity (ungulate-adapted) (Øyen 
2002). 

Fig. 2. Map of forestry activities from 2011 
to 2015 at one of our three study sites 
(Gravberget). Scarification occurred from 
2011 to 2014 and logging occurred from 
2012 to 2015. Scarification occurred one to 
two years after logging. Only winter log
ging stands are pictured here. Inset map 
shows our study area (white rectangle) in 
southern Norway. Each site contained 
20–22 quadrats. Each quadrat contained 16 
plots (grey circle). At each plot we 
measured the density of undamaged pine, 
browsing pressure, bite diameters, and 
moose pellet groups. See Fig. S2 for a map 
of all study sites.   
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Using the same buffer sizes as for logging, we created six scarification 
variables for each buffer size: variables (1) and (2) were 5-level factor 
variables indicating no scarification or the presence of 1–4 year old 
(time since scarification) conventional and ungulate-adapted scarifica
tion; variables (3) and (4) represented the area with ungulate-adapted 
scarification 1–2 and 3–4 years old in each buffer; and variables (5) 
and (6) represented the area with conventional scarification 1–2 and 
3–4 years old in each buffer (Table 1). For the area scarified variables, 
we grouped stands by age because we would expect younger stands to 
have lower browsing biomass relative to older scarification stands. 

2.3. Plots 

We established long-term plots at varying distances from conven
tional and ungulate-adapted stands where we counted moose pellet 
groups and measured browsing metrics. We had three unique sites (site 
area: Gravberget = 47.4 km2; Ljørdalen = 55.6 km2; Plassen = 38.7 km2; 
Fig. 2). Sites were on average 30 km apart (SD = 17.8; Fig. S1). Within 
each of the three sites, we systematically placed 20–21 quadrats of 500 
× 500 m. Along each quadrat border, we placed four circular plots every 
100 m, resulting in 16 plots per quadrat (Fig. 2). 

2.3.1. Pellet counts 
We counted ungulate pellet groups (Neff 1968) in 100-m2 circular 

plots during late spring each year from 2012 to 2015. Pellet groups 
represent habitat use, or the time animal(s) spent in a plot (Månsson 
et al. 2007). Although moose were the dominant browser, we counted 
pellets for all ungulates present. We identified ungulate species by 
morphological characteristics of the pellets (Spitzer et al. 2019). To 
include a pellet group in our counts, >50% of the pellets from an indi
vidual group had to fall within the plot. Only piles with ≥20 pellets for 
moose and red deer, and ≥10 pellets for roe deer were counted. We 
visually distinguished between current winter and old (prior to winter) 
pellets. Typically, winter pellets were brown, in pellet form, and posi
tioned on top of leaf litter and forest debris, while summer pellets were 
often in patty form, had leaf litter on top, or had mold or fungus growth 
(Zimmermann et al. 2015). We counted only current winter pellets, 
which corresponded to the winter browsing period. Pellets were 
removed from the plot each spring to avoid double counting the 
following year, except for the year prior to the start of our study. 

2.3.2. Browsing surveys 
In 2012 and 2015, we assessed browsing from the same plot centers 

as those where we conducted pellet counts but used 50-m2 plots. We 
identified the tree species and counted the number of browsed and 
unbrowsed shoots from the previous growing season. A shoot was 
defined as live, woody growth ≥1 cm long. We registered browsing from 
only the current winter season (i.e., “fresh”) where browsed shoots were 
still wet with resin and the wood had not died nor become grey (Ball and 
Dahlgren 2002). We counted browsed and unbrowsed shoots between 
30 cm and 3 m above ground. The lower height represents average snow 
depth, below which trees are not available for browsing during winter, 
and the upper height represents the maximum browsing height for 
moose (Nichols et al. 2015). We counted browsed and unbrowsed shoots 
on up to 10 trees per species, working from the plot center to the edge in 
a spiral pattern. On each browsed tree, we used digital and manual 
calipers to measure twig diameter (to the nearest 0.1 mm) just below the 
bite for up to five bite diameters. When >5 browsed shoots were present, 
which was rare, technicians closed their eyes and grabbed shoots to 
measure. We also assessed browsing damage but only in young forests 
(cutting class 2; Table 2). See Table 2 for a summary of field 
measurements. 

2.4. Statistical analysis 

We used four response variables: density of undamaged Scots pine, 
bite diameters, browsing pressure, and moose habitat use (Fig. 1, 
Table 2). Browsing response variables were for Scots pine only. Un
damaged pine were assessed only in young forests whereas the other 
three response variables represent forests of all age classes. 

2.4.1. Model fitting 
Model formulation differed by response variable. We defined a priori 

models using hierarchical regression models in a Bayesian framework 
(Gelman et al. 2013a). We fit presence of treatment (logging and scar
ification) and area of treatment in different models, resulting in four 
models per response variable per buffer size (48 models total). All log
ging and scarification models included additional habitat variables 
which were standard across each response variable (Tables 3 and 4). We 
fit logging and scarification models separately due to different expected 
temporal responses. With logging, we would expect slash piles to offer 
food only during the winter of logging and thus included data from all 

Table 1 
Forestry variables used for modeling. Each variable was extracted using 250, 500, and 1000-m buffers, which were centered on each plot. Scarification age refers to 
time since scarification (in years).  

Variable Description 

Logging type 4-level factor indicating the presence of logging in buffered areas 
0: no logging 
1: conventional logging 
2: ungulate-adapted logging 
3: both conventional and ungulate-adapted logging 

Area conventional logged Area (m2) within each buffer size that had conventional logging 
Area ungulate-adapted logged Area (m2) within each buffer size that had ungulate-adapted logging 
Conventional scarification age 5-level factor indicating the presence of conventional scarification age in buffered areas 

0: no scarification 
1: 1-year old scarification stand 
2: 2-year old scarification stand 
3: 3-year old scarification stand 
4: 4-year old scarification stand 

Ungulate-adapted scarification age 5-level factor indicating the presence of ungulate-adapted scarification age in buffered areas 
0: no scarification 
1: 1-year old scarification stand 
2: 2-year old scarification stand 
3: 3-year old scarification stand 
4: 4-year old scarification stand 

Area conventional scarification 1–2 yr Area (m2) within buffers containing 1–2-year-old conventional scarification stands 
Area conventional scarification 3–4 yr Area (m2) within buffers containing 3–4-year-old 
Area ungulate-adapted scarification 1–2 yr Area (m2) within buffers containing 1–2-year-old ungulate-adapted scarification stands 
Area ungulate-adapted scarification 3–4 yr Area (m2) within buffers containing 1–2-year-old conventional scarification stands  
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years. In contrast, scarification offers increasing amounts of food with 
age. We therefore used browsing data only for 2015 for scarification 
models, since we would not expect sufficient regrowth to occur shortly 
after scarification. 

All continuous predictor variables were mean-centered and scaled to 
one standard deviation. We did not include correlated (Pearson r > | 
0.7|) variables in the same models (Dormann et al. 2013). We included 
spline-based smoothers (k = 5) on all continuous variables, as we ex
pected non-linear responses. 

We built hierarchical models (Tables 3 and 4) by including different 
spatial scales (shoot, tree, plot; Table 2) in different sub-models 
(Szewczyk and McCain 2019). For example, we included variables 
measured at the tree-level as ‘fixed effects’ (population level) and var
iables measured at the plot level as ‘random effects’ (group level). For 
model fitting, we used weakly informative (default) priors on all pa
rameters (Appendix III) and randomly generated initial values. We fit all 
models using package brms (Bürkner 2017, 2018) which uses the Stan 
programming language (Stan Development Team 2018). We ran 4 
chains with 2000 iterations with 1000 warmup each, which resulted in 
4000 posterior samples. We checked parameter convergence by visual 
inspection of the chains and with the Gelman-Rubin diagnostic (Gelman 
et al. 2013a). We evaluated model fit of the top model with posterior 
predictive checks. 

Our interests with model fitting were two-fold: first, we wanted to 
compare conditional effects of logging and scarification across buffer 
sizes to identify scale-specific responses. We thus interpret all models. 
Second, we did model selection to identify the scale explaining the most 
variation for each response variable. We did separate model selection for 
logging and scarification models since the datasets were different. We 
determined the most parsimonious model using Watanabe-Akaike in
formation criterion (WAIC) weights. WAIC weights (wi) can be inter
preted similar to the more familiar Akaike information criterion (AIC) as 
the relative support for the model, given the data (Gelman et al. 2013a). 
WAIC is appropriate for Bayesian approaches as it averages over the 
posterior distribution rather than conditioning on a point estimate 
(Gelman et al. 2013b). All models were fit in program R version 3.6.1 (R 
Core Team 2018). 

2.4.2. Density of undamaged pines 
The number of undamaged pine trees per 50 m2 was calculated as: 

yi =
ai

bi
× ci  

where aiis the number of undamaged pine assessed in plot i (field pro
tocols capped this at 10), bi is the number of pine assessed (capped at 
10), and ciis the total count of pine. This measurement is used to assess 
national forest regeneration regulations (Regulation of Sustainable 
Forestry: https://lovdata.no/dokument/SF/forskrift/2006–06-07–593). 
We excluded trees >10 m to be consistent with the definition of a young 
forest (Table 2). 

We used a gamma distribution yi Gamma(ni, α) with a log link where 
ni are the combination of predictor variables for each plot-level obser
vation i and α is the shape parameter. We added 1e-5 to our response 
variable, as zeros were present (Zuur et al. 2009). We included fixed 
effect variables collected at the plot level: moose pellet counts, available 
shoots summed, birch density, and RAW density (Tables 3 and 4). Year 
was included as a fixed effect parameter because it had only two levels 
(2012, 2015) and would be difficult to estimate variance if included as a 
random effect. Pine density was excluded as a predictor variable as it 
was included in the response. To account for the nested sampling design, 
our grouping structure was an intercept of quadrat nested within site 
(Tables 3 and 4). 

2.4.3. Bite diameter 
We used a gaussian distribution gaussian(μf , σ) with an identity link 

where μf is the linear combination of predictors for the tree-level 
observation f andσis standard deviation. A gaussian is appropriate to 
use on strictly positive values when the tail of the distribution has a low 
likelihood of overlapping zero, which is the case for bite diameters (Zuur 
et al. 2009). For fixed effect variables collected at the tree level, we 
included year, tree height, number of browsed shoots, number of 
unbrowsed shoots, damage presence, and accumulated browsing (Ta
bles 3 and 4). Moose and pine density were collected at the plot scale and 
were used as slope terms, with the plot as the intercept. Because bite 
sizes are a trade-off between food intake and quality, we expected bite 

Table 2 
Field measurements used for modeling. The plot area was 50 m2 for browsing variables and 100 m2 for pellets. All variables were measured in each plot, except 
undamaged pine, which was assessed only in young forests (cutting class two). Response variables are indicated with a ‘Y’.  

Variable Description Scale 
measured 

Response 
variable 

Bite diameters Diameter (mm) of Scots pine shoot measured below the point of browsing Shoot Y 
Browsed Number of browsed shoots per tree Tree  
Unbrowsed Number of unbrowsed shoots per tree Tree  
Browsing pressure Number browsed shoots per tree / number available shoots per tree Tree Y 
Accumulated 

browsing 
Measure of how the growth form of a tree has been affected by browsing during its lifetime Tree  
0: no old browsing 
1: old browsing visible but growth form not changed 
2: old browsing visible and growth form of tree changed. Examples include crooked stem or increased branching likely 
caused by one browsing event 
3: old browsing visible and growth form strongly changed by repeated browsing 

Height Height of the tree above ground (m) Tree  
Undamaged pine Binary variable indicating Scots pine damage (0) / non-damage per plot (1) Tree  
Undamaged pine sum Number of undamaged Scots pine per plot Plot Y 
Pine density Number of Scots pine per plot Plot  
Moose Number of moose pellet groups per plot Plot Y 
Birch density Number of birch (B. pubescens and B. pendula) per plot Plot  
RAW density Number of rowan, aspen, willow per plot Plot  
Available shoots 

summed 
Number of available (browsed + unbrowsed) Scots pine shoots summed per plot Plot  

Cutting class 6-level factor of forest maturity Stand  
1: clear cut; no regeneration 
2: visible regeneration, tree height <10 m 
3: tree height >10 m 
4: forest mature for logging, 55–75 years depending on productivity 
5: old growth forest. Could include dead trees, deadwood 
0: Non-commercial forest, open, tree crowns do not touch  
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sizes to increase where habitat use was high and decrease with 
increasing pine density. We included quadrat and tree ID separately as 
intercepts. We included a unique tree identifier as we have repeated 
measures per tree (Tables 3 and 4). 

2.4.4. Browsing pressure 
We restricted analyses to Scots pine <10 m to be consistent with the 

density of undamaged pine analysis (nremoved = 70; ntotal = 8067) and 
excluded trees where the number of available shoots was zero (i.e., no 
browse available; n = 2735 removed). We used a beta regression 
yf beta(μf ,φ)with an identity link forφ and a logit link for uf where f is 
the tree-level observation. We transformed the response variable to 

exclude zero and one: 

yadjusted =
(bptree*(n − 1)+0.5)

n  

where n is the number of observations (Smithson and Verkuilen 2006, 
Cribari-Neto and Zeileis 2010). We initially modeled browsing pressure 
with a binomial distribution, but the extreme tail led to poor model 
convergence and fit. We used a nested grouping structure to account for 
the design and repeated measures of multiple trees per plot. We included 
moose pellet counts and pine density as random slopes. Candidate 
models are presented in Tables 3 and 4. 

Table 3 
Candidate logging models for the four response variables density of undamaged pines, bite diameters, browsing pressure, and moose habitat use. Each model was run 
with 250-m, 500-m, and 1000-m buffer data. Subscripts refer to the level at which data were collected (i = plot, site = j, k = quadrat, f = tree). For random effect 
variables, values on the left of the | are used as slope terms and values on the right are intercept terms. Nested random effect terms are represented by /. Variables are 
defined in Tables 1 and 2.  

Response variable Model 
number 

Years Population level forestry variables Population level habitat variables Group 

Density of 
undamaged stems 

1 2012, 2015 logging typei yeari, moosei, available shoots summedi, 
birchi, RAWi 

1 | siteij / quadratijk  

2 2012, 2015 area ungulate-adapted loggedi, area 
conventional loggedi 

yeari, moosei, available shoots summedi, 
birchi, RAWi 

1 | siteij / quadratijk 

Bite diameters 1 2012, 2015 logging typef yearf, heightf, browsedf, unbrowsedf, 
undamagedf, accumulated browsingf 

moosei, pinei | ploti 1 | siteij / 
quadratijk 1 | treeIDf  

2 2012, 2015 area ungulate-adapted loggedf, area 
conventional loggedf 

yearf, heightf, browsedf, unbrowsedf, 
undamagedf, accumulated browsingf 

moosei, pinei | ploti 1 | siteij / 
quadratijk 1 | treeIDf 

Browsing pressure 1 2012, 2015 logging typef yearf, heightf, speciesf, undamagedf, 
accumulated browsingf 

moosei, pinei | ploti 1 | siteij / 
quadratijk  

2 2012, 2015 area ungulate-adapted loggedf, area 
conventional loggedf 

yearf, heightf, speciesf, undamagedf, 
accumulated browsingf 

moosei, pinei | ploti 1 | siteij / 
quadratijk 

Habitat use 1 2012–2015 logging typei yeari, cutting classi, pinei, birchi, RAWi 1 | siteij / quadratijk  

2 2012–2015 area ungulate-adapted loggedi, area 
conventional loggedi 

yeari, cutting classi, pinei, birchi, RAWi 1 | siteij / quadratijk  

Table 4 
Candidate scarification models for response variables density of undamaged pines, bite diameters, browsing pressure, and moose habitat use. Each model was run with 
250-m, 500-m, and 1000-m buffer data. Subscripts refer to level at which data were collected (i = plot, site = j, k = quadrat, f = tree). For random effect variables, 
values on the left of the | are used as slope terms and values on the right are intercept terms. Nested random effect terms are represented by /. Variables are defined in 
Table 1.  

Response variable Model 
number 

Years Population level forestry variables Population level habitat variables Group 

Density of 
undamaged 
stems 

1 2015 ungulate-adapted scarification agef, conventional scarification agef yeari, moosei, available shoots 
summedi, birchi, RAWi 

1 | siteij / quadratijk  

2 2015 area ungulate-adapted scarification 1–2yrf, area conventional 
scarification 1–2yrf, area ungulate-adapted scarification 3–4yrf, 
area conventional scarification 3–4yrf 

yeari, moosei, available shoots 
summedi, birchi, RAWi 

1 | siteij / quadratijk 

Bite diameters 1 2015 ungulate-adapted scarification agef, conventional scarification agef yearf, heightf, browsedf, 
unbrowsedf, undamagedf, 
accumulated browsingf 

moosei, pinei | ploti 1 | 
siteij / quadratijk 1 | 
treeIDf  

2 2015 area ungulate-adapted scarification 1–2yrf, area conventional 
scarification 1–2yrf, area ungulate-adapted scarification 3–4yrf, 
area conventional scarification 3–4yrf 

yearf, heightf, browsedf, 
unbrowsedf, undamagedf, 
accumulated browsingf 

moosei, pinei | ploti 1 | 
siteij / quadratijk 1 | 
treeIDf 

Browsing pressure 1 2015 ungulate-adapted scarification agef, conventional scarification agef yearf, heightf, speciesf, 
undamagedf, accumulated 
browsingf 

moosei, pinei | ploti 1 | 
siteij / quadratijk  

2 2015 area ungulate-adapted scarification 1–2yrf, area conventional 
scarification 1–2yrf, area ungulate-adapted scarification 3–4yrf, 
area conventional scarification 3–4yrf 

yearf, heightf, speciesf, 
undamagedf, accumulated 
browsingf 

moosei, pinei | ploti 1 | 
siteij / quadratijk 

Habitat use 1 2015 ungulate-adapted scarification agef, conventional scarification agef yeari, cutting classi, pinei, birchi, 
RAWi 

1 | siteij / quadratijk  

2 2015 area ungulate-adapted scarification 1–2yrf, area conventional 
scarification 1–2yrf, area ungulate-adapted scarification 3–4yrf, 
area conventional scarification 3–4yrf 

yeari, cutting classi, pinei, birchi, 
RAWi 

1 | siteij / quadratijk  

A.E. Loosen et al.                                                                                                                                                                                                                               



Forest Ecology and Management 482 (2021) 118808

8

2.4.5. Moose habitat use 
We used the number of pellet groups as the response variable, which 

represents the time animal(s) spent in a plot. Månsson et al. (2007) 
identified pellet counts as an unbiased estimator of habitat use. We used 
a Poisson distribution yi Poisson(λi) with a log link, for each plot-level 
observation i. We included five plot-level population variables: year, 
pine density, birch density, and RAW density (Tables 3, 4). We lacked 
tree density data in years 2013 and 2014, when only pellet counts were 
conducted. Rather than excluding 2013 and 2014, which represented 
45% of the full dataset, we imputed missing tree densities separately for 
each species (pine, silver birch, downy birch, rowan, aspen, willow 
spp.). Tree density in Scandinavia does not change substantially be
tween years unless forestry activities occur (Hedwall et al. 2019). We 
used two complementary datasets to identify if a stand had forestry 
activities: (1) field data set (see Table 2) and (2) spatial dataset (i.e., 
boundaries of forestry activities in our study area; see Fig. 2). We used 
multiple imputation as a robust means to impute missing data (Sterne 
et al., 2009; White et al., 2011). Multiple imputation creates several 
imputed data sets based on other variables in the dataset. We created 10 
different datasets (i.e., multiple imputation) and fit models separately to 
each dataset. This practice does have pitfalls (Rubin, 1996) but is 
becoming standard in the field of medicine, for example (Azur et al., 
2011). We used multiple imputation by chained equations using the 
random forest algorithm from package mice (van Buuren and 
Groothuis-Oudshoorn 2011). We compared distributions of the univar
iate and multivariate datasets for each variable to evaluate prediction 

accuracy. Each model was fitted to the 10 datasets separately and pos
teriors were pooled across models. We evaluated sub-model conver
gence via r-hat values. 

3. Results 

3.1. Density of undamaged pine 

We registered browsing damage in 424 young forest plots (Table S2, 
Fig. S3). There were no ungulate-adapted scarification stands older than 
two years within the 250-m buffers. From the hierarchical models, the 
density of undamaged pine was highest near ungulate-adapted logging 
and where both conventional and ungulate-adapted logging occurred, 
regardless of buffer size (Figs. 3 and 4). The area logged had minimal 
effect on the density of undamaged pine (Fig. S4). The most parsimo
nious logging model was logging presence within 1000 m (wi = 0.82). 

Plots near conventional and ungulate-adapted scarification stands 
showed contrasting relationships with the density of undamaged pine: 
plots close to one and four-year-old conventional scarification stands 
had the highest and lowest density of undamaged stems, though we note 
there was high uncertainty (Fig. 3). The area scarified had minimal ef
fects on the density of undamaged pine (Fig. S5). The most parsimonious 
scarification model was scarification presence within 250 m (wi = 1). 
From the top model, an increase in moose habitat use increased the 
density of undamaged pine from 13.9 to 21.2 undamaged pine per 50 m2 

when moose pellet group counts changed from 0.4 to 4.1 (Fig. S6). All 

Fig. 3. Conditional effects of the presence of logging (top row) and scarification (middle and bottom rows) in 1000 m, 500 m, and 250-m buffers on the density of 
undamaged pine per 50 m2. Logging data were from Norway in 2012 and 2015 (n = 424). Scarification data were from 2015 (n = 177). Bars represent 90% credible 
intervals. Scarification age represents time (in years) since scarification. Note the different y-axis limits for the middle row, left panel and lack of scarified stands >2 
years of age in the lower right panel. In the top row of panels, ‘conv’ stands for conventional and ‘ung’ stands for ungulate-adapted logging. 
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logging and scarification models suffered from relatively poor model fit 
for large values of the response (Fig. S7). 

3.2. Bite diameter 

We registered 2620 individual bite diameters on 757 individual Scots 
pine (Table S2, Fig. S8). From the hierarchical models, the presence of 
logging within 250-m buffers decreased bite diameters in the plots (no 

logging = 3.61 mm, 90% CI = 3.34–3.89; conventional logging = 3.24 
mm, 90% CI = 2.67–3.79; ungulate-adapted logging = 3.45 mm, 90% CI 
= 2.94–3.95) (Fig. 4, Fig. S9). Bite diameters were smallest where both 
ungulate-adapted and conventional logging occurred (3.04 mm, 90% CI 
= 2.40–3.67) which suggests that more logging decreased bite di
ameters. The area logged had a negative to neutral effect on bite di
ameters across buffers (Fig. S10). The most parsimonious logging model 
was the area logged within 1000 m (wi = 0.88). From the top model, the 

Fig. 4. Posterior probability distributions for presence of conventional and ungulate-adapted logging across four response variables. Posteriors are from 250-m buffer 
models. Highest density intervals (HDI) are drawn at 90 (orange) and 100% (red). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. Conditional effects of the presence of logging (top row) and scarification age (middle and bottom rows) on browsing pressure. Logging data were collected in 
2012 and 2015 in Norway (n = 5262). Scarification data were from 2015 only (n = 2820). Error bars represent 90% credible intervals. Scarification age represents 
time (in years) since scarification. In the top row, ‘conv’ stands for conventional and ‘ung’ stands for ungulate-adapted logging. 
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presence of ungulate-adapted and conventional logging showed a 
decreasing trend of bite diameters until age four (Fig. S9). Bite diameters 
were largest at intermediate tree heights (Fig. S11), damaged trees had 
larger bites relative to undamaged trees (Fig. S11), and bites were 
largest when accumulated browsing levels were low (accumulated 
browsing 1: 3.92 mm, 90% CI = 3.58–4.30) and smallest when accu
mulated browsing levels were moderate (accumulated browsing 2: 3.58 
mm, 90% CI = 3.27–3.92). 

For scarification analyses, bite diameter data were restricted to 2015 
(n = 1111 bites). From the data, maximum bite diameters were highest 
where scarification did not occur regardless of scarification type 
(Fig. S9). From the hierarchical models, bite diameters did not decrease 
as the scarified stand aged as expected (Fig. S9). The area scarified had 
minimal effects on bite diameters (Fig. S12). The most parsimonious 
scarification model was scarification presence, but weights were split 
among buffer sizes (500 m: wi = 0.30; 1000 m: wi = 0.30; 250 m: wi =

0.20). 

3.3. Browsing pressure 

We assessed browsing pressure on 5252 Scots pine (Table S2, 
Fig. S13). From the hierarchical models, the area with conventional 
logging within 250 m had the highest browsing pressure at intermediate 
stand area treated (4.8 ha). The area with ungulate-adapted logging had 
a weak negative effect on Scots pine browsing pressure (Fig. S14). 
Parameter uncertainty increased as the buffer size decreased. The 
presence of logging had the strongest effect on browsing pressure at 250 

m, where areas near ungulate-adapted logging stands had 27% lower 
browsing pressure than conventional logged stands (Fig. 5). The most 
parsimonious model was the area logged within 250 m (wi = 0.95). 

The area scarified had no apparent effects on browsing pressure, 
except for young ungulate-adapted scarified stands (1–2 years old) 
within 250 and 500 m where browsing pressure spiked at intermediate 
stand area (Fig. S15). The presence of scarification stands had the 
greatest effect at 250 m where browsing pressure was lowest at age one 
(0.06, 90% CI = 0.04–0.10) and highest at age two (0.24, 90% CI =
0.20–0.29) (Fig. 5). The most parsimonious model was the area scarified 
within 250 m (wi = 1). 

3.4. Moose habitat use 

We registered moose pellet groups in 3630 plots (Table S2). Mean 
pellet groups were higher where logging occurred (logging = 0.43, SD =
1.09; no logging = 0.29, SD = 0.77) within 250 m (Fig. S16). From the 
hierarchical models, habitat use within 250 m was 67% lower near 
ungulate-adapted logged stands relative to conventional stands (Figs. 4 
and 6). The area logged had minimal effect on habitat use (Fig. S17). The 
most parsimonious model was logging presence within 250 m (wi =

0.87). From the top model, predicted habitat use was 1.8 times as high in 
young (cutting class two) and mature forests (cutting class five) relative 
to clear cuts (cutting class one), and habitat use peaked with an optimal 
pine density (Fig. S18). 

For scarification models, habitat use declined as the conventional 
scarification stand aged whereas habitat use increased as ungulate- 

Fig. 6. Conditional effects of the presence of logging (top row) and scarification age (middle and bottom rows) on moose pellet counts. Data were collected from 
2012 to 2015. Error bars represent 90% credible intervals. Scarification age represents time (in years) since scarification. Note the different y-axis limits for the upper 
right and center panels. In the top row, ‘conv’ stands for conventional and ‘ung’ stands for ungulate-adapted logging. 
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adapted scarification stand aged (Fig. 6). This effect was most pro
nounced at 1000 m. Moose habitat use decreased with the area of 
ungulate-adapted scarification, with strong non-linearities for plots near 
conventional scarification (Fig. 7). The top model was scarification 
presence within 250 m (wi = 1). 

4. Discussion 

We tested whether ungulate-adapted forestry changed browsing 
damage, bite diameters, browsing pressure, and moose habitat use 
across three spatial scales. For logging, the density of undamaged pine 
increased near ungulate-adapted stands (supporting H1), bite diameters 
increased where logging did not occur (not supporting H2), and 
browsing pressure (supporting H3) and habitat use (supporting H4) 
decreased near ungulate-adapted logged stands. For scarification, re
sults were more equivocal, but habitat use decreased over time near 
conventionally scarified stands but increased near ungulate-adapted 
stands (not supporting H4). Conditional effects of logging and scarifi
cation across response variables were most pronounced at 250 m (H5). 

As expected, the density of undamaged pines was highest near 
ungulate-adapted logging, and where both conventional and ungulate- 
adapted logging occurred, regardless of buffer size (H1). The density 
of undamaged pine in plots was 1.4–1.7 times higher near ungulate- 
adapted relative to conventional logging stands across buffer sizes 
(Fig. 3). The mechanism for the damage decreases near ungulate- 
adapted stands could be explained by the concurrent decrease in 
browsing pressure and habitat use (i.e., pellet counts). A previous stand- 
level analysis found that available forage biomass doubled and mean 

biomass removed was higher in our ungulate-adapted logged stands 
(available biomass: 98 kg per ha) relative to conventional logged stands 
(available biomass 53 kg per ha; Mathisen et al. unpublished results). 
This would suggest that moose were able to maintain intake rates of 
Scots pine from slash piles, while concurrently reducing time spent 
feeding in the surroundings (H4). 

Our results show promise for ungulate-adapted logging as a measure 
to increase the density of undamaged pine stems. Most of our study area 
occurs in forest productivity zones (site index) F6–8 and F11–14 (Astrup 
et al. 2019). According to the National Norwegian Regulation of Sus
tainable Forestry, F11–14 areas should have a minimum of 1900 pines 
per hectare, but 2280 to 4560 are recommended. F6–8 areas should have 
a minimum of 950 pines per hectare, but 1520 to 2470 are recom
mended (https://lovdata.no/dokument/SF/forskrift/2006–06-07–593). 
From our hierarchal models, conventional logging within 250 m 
reduced densities of undamaged pine (2254 pine per ha, 90% CI =
718–9394) outside the recommended range. However, ungulate- 
adapted logging increased densities (3882 pine per ha, 90% CI =
2048–7582) to within the recommended tree density. These results 
show strong support for ungulate-adapted logging as a mitigation 
measure against moose browsing damage. 

While we found that the presence of logging treatments had a posi
tive effect on the density of undamaged pine, the area treated rarely 
affected undamaged pine densities (Fig. S4). It is possible that we did not 
treat large enough areas, as has been suggested by other studies where 
extensive feeding is necessary to see any effects (Putman and Staines 
2004). We suggest however that more research is required. For example, 
we expect forage saturation would occur (e.g., type II functional 

Fig. 7. Conditional effects of area scarified on moose pellet counts by conventional (blue line) and ungulate-adapted (green line) logging. Data were collected in 
Norway, with 3630 plots in 2012 (n = 976), 2013 (n = 670), 2014 (n = 992), and 2015 (n = 992). Grey ribbons represent 90% credible intervals. Scarification age 
(1–2 yr; 3–4 yr) represents time (in years) since scarification. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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response) assuming many new individual moose do not move into the 
study area. Future research should focus on treating a range of stand 
sizes, particularly above our maximum ungulate-adapted logged stand 
size of 57 ha, to identify optimal stand sizes for specific contexts and 
scales. 

We found browsing pressure was 27% lower near ungulate-adapted 
logged stands relative to conventionally logged stands (H3; Fig. 5). This 
was as expected due to the doubling in forage biomass via slash piles 
(Mathisen et al. unpublished results), increased browsing efficiency 
from slash piles versus dispersed trees, and potentially reduced plant 
secondary metabolites of slash contents because most shoots developed 
above moose browsing height. However, chemical responses to 
browsing remains poorly understood; for example, Burney and Jacobs 
(2012) found only one tree species (Thuja plicata) of a multi-species 
study that increased terpene production in response to simulated 
browsing. For unbrowsed trees, secondary metabolites differed by tree 
height and species: Nordengren et al. (2003) found secondary metabo
lites from field-collected tree samples (152–727 cm in height) increased 
with height for willows but decreased for birch. Our generalized un
derstanding of tree chemical defenses in response to browsing remains 
limited. Despite the support of our hypothesis that browsing pressure 
decreased near ungulate-adapted stands, we should expect a two-fold 
decrease in browsing pressure relative to conventional stands if moose 
foraging matched the doubling in forage biomass. Our results did not 
support this. This mismatch could be because food availability is not the 
limiting factor in browsing damage. Our hierarchical models indicated 
food availability had a strong positive effect on the density of undam
aged stems only when food availability was low. When food was highly 
abundant, there was no apparent effect on undamaged pine. 

Another explanation for the mismatch is that slash pile contents are 
of lower quality than shoots available within browsing height, not 
higher quality as we suggested earlier. If this is the case, digestion of 
slash pile contents would take longer, thus limiting intake rates 
(Belovsky 1984). Moose may also require complementary diets (Felton 
et al. 2016, 2020; but see Hjeljord and Histøl 1999), which additional 
pine browse would not facilitate. The complementary diet approach 
contrasts with typical supplementary or diversionary feeding designs, 
where the goal is often to maximize energy intake or assumes that food is 
the limiting agent, without regard to balanced diets. For example, moose 
that eat carrots and potatoes in supplemental feed may be fiber deficient. 
This may increase their propensity to browse tree bark, which is high in 
fiber (Felton et al. 2020). We suggest that diet mixing and alternative 
forage in supplemental feed requires further research. 

Our study design contrasts with many typical supplemental and 
diversionary feeding studies. First, slash piles and scarification stands 
resulted in dispersed resources, rather than few point locations where 
only the most dominant individuals can feed (Ozoga 1972, Putman and 
Staines 2004). Dispersed resources should also decrease time spent at 
the feeding site, as moose could avoid intense competition for resources. 
This would also reduce risk of disease transmission since individuals can 
avoid overcrowding (Mysterud et al. 2019). This is pertinent in Norway, 
where chronic wasting disease was recently detected in moose (Stokstad 
2017). Second, the ‘feed’ in our study is a natural part of a moose’s 
winter diet so the potential for individuals to suffer from pH imbalances 
or insufficient fiber are reduced (Mysterud 2010). This also reduces the 
potential of affecting behavioral traits or ‘natural’ selection of fed in
dividuals or populations (Mysterud 2010). 

As expected, we found logging and scarification effects on browsing 
pressure, and logging effects on moose habitat use, were strongest at the 
smallest spatial scale (250 m; H5). This corresponds to third-order patch 
selection whereby moose adjust movements within their winter home 
range to feed or rest near recently modified stands. Similar feeding 
patterns have been found for white-tailed deer (Odocoileus virginianus) 
(Ozoga and Verme 1970) and migratory moose in Sweden (Sahlsten 
et al. 2010). This makes sense both from a movement and energy 
maximization standpoint. On average, moose move very little while on 

their winter range (on average 2 km per day in winter in Scandinavia; 
Pfeffer et al. 2018). We would thus not expect moose to make long- 
distance winter movements ‘in search’ of our treatment areas; rather, 
they would adjust patch selection from within their seasonal home 
range. From an energy maximization standpoint, moose could feed in 
logged or scarified stands, which are on average quite small in our study 
(133 ha for conventional and ungulate-adapted logging and scarification 
stands) and still be close to resting sites in mature forest stands where 
this is protective cover. Based on our results, we cannot identify at what 
distances moose are influenced by our treatments and therefore cannot 
suggest at which distances ungulate-adapted stands should be placed 
from young forests. To help answer this question, we suggest future 
studies use concurrent GPS-collar data to evaluate multi-scale responses 
to ungulate-adapted forestry. 

One unexpected result was the difference in peak habitat use by time 
since scarification: habitat use near conventional stands increased over 
time whereas habitat use near ungulate-adapted scarified stands 
decreased (Fig. 6). One explanation for this could be that both con
ventional and ungulate-adapted stands attract moose, but because 
ungulate-adapted stands have more forage, moose spend more time in 
the scarified stands. Because there is less forage in conventionally 
scarified stands, moose instead forage more in the surrounding scarified 
stands. Indeed, pioneering trees such as birch, which are attractive 
browse for moose, dominate regrowth in Scandinavian boreal forests 
(Wam et al. 2010). Another explanation for the decrease in habitat use 
over time near ungulate-adapted stands could reflect nutrient loss, 
which is facilitated by intensive mineral soil exposure from ungulate- 
adapted scarification. Nutrient loss could result in a slower regrowth 
period (Bergquist and Örlander 1998, Knudsen 2014). This is supported 
by an analysis in our study area: Saursaunet et al. (2018) found current 
annual growth of Scots pine and downy birch declined as soil scarifi
cation intensity increased. Slower regrowth in ungulate-adapted stands 
could influence not only the biomass available but feeding preferences 
by moose: previous research has shown that moose browsing increases 
as the plant reaches moose chest height (Bobrowski et al. 2015), so older 
stands (e.g., four versus one-year-old stands) may offer not only more 
abundant browse, but that which has lower handling time. 

Despite the possible benefits of soil scarification to increasing un
gulate food availability, it has extensive negative ecological effects: it 
facilitates soil carbon release, intensive site preparation may increase 
nutrient loss and decrease long-term site productivity, and is detrimental 
to understory species like bilberry, which are an important food source 
for herbivores (Atlegrim and Sjöberg 1996b, Jandl et al. 2007, Bergstedt 
et al. 2008, Maillard et al. 2010). Thus, the possible benefits of increased 
food availability of Scots pine must be weighed against the many 
detrimental effects for intensive soil scarification to be justified. For our 
study, we had more ambiguous signals from scarification effects on 
increasing the density of undamaged pine. As such, we recommend 
ungulate-adapted forestry should focus more on creating slash piles 
versus extensive implementation of intensive scarification. 

Regardless of the benefits of feeding as discussed above, there are 
certainly risks associated with supplemental and diversionary feeding. 
Previous research has shown that feeding can change foraging patterns 
(van Beest et al. 2010a), restrict movement (Guillet et al. 1996), change 
the amount of time spent on seasonal ranges (Jones et al. 2014), increase 
the risk of disease transmission (Sorensen et al. 2013), and increase 
population productivity (Milner et al. 2014). A study reviewed by Put
man and Staines (2004) found that the only variable correlated with red 
deer browsing damage was the presence of supplementary feeding: ag
gregations of deer around feeding stations produced high local densities, 
resulting in a significant increase in forest damage. Similarly, Mathisen 
et al (2014) found browsing pressure increased over time, likely due to 
an increase in carrying capacity from supplemental feeding. Feeding 
programs thus often require a simultaneous increase in ungulate harvest 
with concurrent population and forage monitoring. Feeding is also 
associated with a poor mismatch with the timing of migration and plant 
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phenology (Jones et al. 2014): movements of migrating elk that did not 
use winter feed grounds in Wyoming, USA closely matched spring green- 
up. In contrast, fed elk stayed longer on stop-over locations resulting in a 
poor mismatch of green-up and later arrival to summer ranges. Fed elk 
also departed summer ranges early, resulting in fed elk spending nearly a 
month less on summer ranges than unfed elk. Migratory moose in 
Scandinavia (Singh et al. 2012) could display similar patterns, and the 
extended period on winter and transitional ranges could thus intensify 
browsing on the natural forage before winter feeding starts, thus coun
teracting the intended effects of supplemental feeding. 

There are of course challenges in doing large-scale, long-term 
forestry experiments such as coordinating among different land tenures, 
having protocols followed at all levels of operation, and changing timber 
prices which make meeting forestry research goals unrealistic (Bashir 
et al. 2020). For example, we attribute much of our model uncertainties 
to few non-zero data points, meaning less logging and scarification 
occurred than we expected. In total, only 4.72 km2 was logged during 
our study. Other items which researchers may consider in future 
research include how sawmills purchase timber (e.g., continuous supply, 
so forest owners are motivated to log both in the summer and not just the 
winter) as well as reduced costs with logging larger, continuous stands 
rather than more smaller, dispersed stands, which we had hoped for in 
our study. Despite these shortcomings, our data suggest that larger 
logged stands could increase density of undamaged pines. While beyond 
the range of our data, perhaps even larger ungulate-adapted logging 
stands would illicit a stronger positive effect on undamaged pine. While 
large-scale experiments are difficult, they are important since we will 
experience large scale habitat and wildlife range shifts with climate 
change, which will influence wildlife ecology, agriculture, and forestry. 

4.1. Conclusions 

Our results suggest that ungulate-adapted forestry can reduce 
browsing damage, but more work is needed to determine how the area 
logged can produce detectable effects on browsing damage and at what 
spatial scale we can see moose movement is affected. We found that the 
intensive scarification can reduce browsing damage as the stand ages, 
but this comes at a cost as soil scarification can have strong negative 
effects. We suggest that supplementary feeding should be followed by 
careful population and forage monitoring. Provided that feeding is 
dispersed, natural forage from adapted forestry could be a better alter
native to silage feeding. Future research should focus on whether 
feeding ungulates with mixed forage (e.g., deciduous and coniferous) 
could better account for a complementary diet. 
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Abstract 

Climate change is a threat to biodiversity and ecosystems across the globe. Changing 

temperatures and precipitation patterns can cause wildlife to shift landscape use to accommodate 

a changing thermal or food landscape. We studied landscape use patterns of a cold climate 

adapted species, the moose (Alces alces), in the boreal forests of Scandinavia where snow cover 

duration is projected to decrease by 30–40% by 2050 and winter warming events are projected to 

nearly double into the 21st century. We explored trends of winter moose pellet count data, a proxy 

for intensity of landscape use (hereafter, intensity of use), over two decades (1997–2019). We 

tested if ambient winter temperature, snow depth, and forest type drive moose intensity of use 

across a latitudinal gradient. We tested the ‘forest maturity hypothesis’ in northern and southern 

moose populations in Norway and Sweden, whereby mature forests give moose the behavioral 

flexibility to dissipate heat when ambient temperatures are warm, and to use areas with lower 

snow depths that may otherwise conceal low-growing foods and impede movement. We found 

mean winter temperatures increased over time for northern and southern populations, but mean 

snow depth declined over time only for southern moose populations. For both populations, we 

found intensity of use decreased once snow depths reached 20–30 cm and temperatures exceeded 

0°C, suggesting a shift in landscape use in response to the snow and thermal landscape. In 
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southern populations, moose used areas with a high proportion of young forests regardless of 

temperature. Similarly, the intensity of use increased with increasing snow depths at a greater rate 

when the proportion of young forests (i.e., not mature forests) was high. Our results suggest that 

moose regularly tolerate winter temperatures that exceed those previously thought to initiate 

thermal stress in moose (-5°C). We suggest that northern populations might be more flexible in 

their response to climate change, as they can adjust migration depending on autumn conditions, 

and that southern populations may currently be more dependent on thermal cover to withstand to 

a changing thermal landscape. In a changing climate, wildlife and forest managers must 

emphasize the conservation of high-quality habitats that can sustain moose to support both 

foraging and thermoregulatory requirements.  

Key words 

Alces alces; boreal forest; climate change; deer; habitat; moose; pellets; snow; temperature; 

ungulate. 

Introduction  

Winter can be a nutritional and energetic bottle-neck for many wildlife species (Bowman et al. 

2005, Coltrane and Barboza 2010). At northern latitudes, cold temperatures require sufficient 

body insulation (Scholander et al. 1950) while deep snow often decreases food availability 

(Rominger and Oldemeyer 1990, Hovey and Harestad 1992) and can be energetically costly to 

move through (Parker et al. 1984). Mammalian behavioral strategies to cope with winter are 

diverse, ranging from hibernation, migration, seasonal use of marginal areas (e.g., wind-swept 

ridges and plateaus), reduced movement, and habitat selection for thermal cover or reduced snow 

depth (Mysterud 1999, Mysterud and Østbye 1999, Hall et al. 2016). Understanding how and 

when certain landscapes or habitats are used during this limiting season is critical for wildlife 
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management and conservation, because it is may result in important fitness-related behaviors that 

affect wildlife populations (McLoughlin et al. 2006).  

 Climate change is a pervasive phenomenon causing poleward shifts in wildlife 

distributions and altered movement patterns in response to changing, and sometimes 

unpredictable, resource distributions (Parmesan et al. 2003, Hickling et al. 2006). This poses a 

challenge to wildlife in coping with increased environmental and climatic variation, as well as 

managers tasked with monitoring wildlife movements and population vital rates. The boreal, 

which spreads across high northern latitudes, is one of the world’s largest biomes and has been 

identified as among the most vulnerable ecosystems to climate change, with species extinctions 

and biome shifts (e.g., permafrost melting, increased fire frequency and intensity, insect 

outbreaks) expected (IPCC 2007, Soja et al. 2007). We know little about how wildlife in the 

boreal biome are responding to warmer and more variable winters, particularly large herbivores, 

which can act as a keystone species (Danell et al. 2006). This is especially important because 

large herbivores can alter carbon stores and have a ‘cooling effect’ by constraining shrub and tree 

growth (Leroux et al. 2020, Vuorinen et al. 2020).   

 While climate change is expected to govern terrestrial biodiversity loss, land use change 

is expected to be a similarly important driver of biodiversity loss, especially in boreal forests 

(IPCC 2007). In the 20th century, the industrialization of commercial forestry in the boreal caused 

a shift from selective logging to clearcutting. This meant that many forested regions, which were 

formerly mixed-age and mixed-species forest stands, are now dominated by single-species and 

single-aged stands (Östlund et al. 1997). Today, about two-thirds of boreal forests under some 

form of land management, primarily for wood and timber production (Gauthier et al. 2015), and 

the boreal forest is expected to undergo the most rapid land use change in the coming decades, 
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second only to the tropics (Soja et al. 2007, Hansen et al. 2013). This has direct and indirect 

effects on ungulates. For example, the industrialization of forestry in Scandinavia changed the 

foraging landscape as young pine (Pinus sylvestris) thrived in newly created clearcuts. Scots pine 

is a primary food source for moose during winter (Cederlund et al. 1980). This increase in food 

availability for moose (Alces alces), as well as a shift in hunter harvest strategy via sparing of 

reproductive females, contributed to an increase in moose densities in the 1980’s and 1990’s, 

resulting in some of the highest moose densities across the globe (Lavsund et al. 2003, Jensen et 

al. 2020).  

 Moose, the largest boreal herbivore, are well-adapted to the boreal biome. With an 

average chest height of one meter, large hoof surface area and dew claws which help distribute 

body weight, long winter guard hairs, and a dense undercoat, they are able to adeptly handle 

severe winters (i.e., low temperatures and deep snow; Kelsall 1969, Telfer and Kelsall 1984, 

Renecker and Hudson 1986). Although severe winters can reduce overwinter survival and 

recruitment of young moose (Turner et al. 1994, Hegel et al. 2010), the warmer, highly variable 

winters associated with climate change have been partially attributed to drastic moose population 

declines, particularly across their southern North American distribution (Monteith et al. 2015, 

Hoy et al. 2017, Shively et al. 2019). Variable winters can also result in moose space use shifts.  

For example, shallow snow depths (e.g., 30 cm) can cover low-growing foods like bilberry 

(Vaccinium spp.) whereas snow depths of 40–70 cm can begin to impede moose movement 

(Kelsall 1969, Rounds 1982), thus increasing locomotion costs (Lundmark and Ball 2008). 

Previous work has shown closed-canopy areas hold less snow compared to open areas (Mysterud 

and Østbye 1999) so use of mature forests may be a strategy to find low-growing foods and deal 

with increased locomotion costs. As well, moose often migrate from summer ranges in high-
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elevation mountainous areas to low-elevation valley bottoms in winter where snow depths are 

reduced (Sweanor and Sandegren 1988, Bunnefeld et al. 2011, Singh et al. 2012). Singh et al. 

(2012) found the tendency to migrate was related to variation in snow depth and road density, 

with migration increasing with latitude.  

 In addition to winter snow depth, air temperature can also directly influence moose. 

Thompson et al. (2020) found that in summer, as ambient air temperature increased so did 

respiration rates, which increased metabolic rates and energetic demands. Rumination can 

increase internal body temperature, and reduced intake rates have also been correlated with warm 

air temperatures during the growing season (Shively et al. 2019). This trade-off could result in 

reduced physical condition, and ultimately reduced fitness (Renecker and Hudson 1986, van 

Beest and Milner 2013). This trade-off could also result in the increased use of cooler areas 

within the landscape on warm winter days to increase heat dissipation. For example, young 

forests provide high quantity and quality food (Wallgren et al. 2013) but provide minimal thermal 

cover in winter (Mysterud and Østbye 1999). On warm winter days, moose seek thermal cover in 

mature forests to rest, at the cost of diminished food availability and time spent feeding 

(Mysterud and Østbye 1999, Dussault et al. 2004, Van Beest et al. 2012, Street et al. 2015, 

Ditmer et al. 2018, Arsenault et al. 2019, Jennewein et al. 2020, Thompson et al. 2021). Thus, 

moose may trade-off foraging for resting to mitigate against warm ambient temperatures. 

 Scandinavia is part of the boreal biome and is an ideal study area to evaluate spatial shifts 

of moose in response to changing winters; recent winters have been highly variable and mean 

winter temperature has shown an upward trend (Hallinger et al. 2010). Climate change scenarios 

in Scandinavia predict increasingly warm winter temperatures (smhi.se) and a 30–40% decrease 

in snow cover duration by 2050 (Callaghan et al. 2011). Extrinsic factors such as winter severity 
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(snow depth, air temperature) could also have a strong influence on moose space use, specifically 

local aggregations of moose (Figure 1), and this may vary from year-to-year. The largest impacts 

of climate change to the forestry industry are expected to be felt earliest in boreal systems (IPCC 

2007). This inter-annual variation presents an obstacle to successful forest management and 

mitigation to moose-forestry conflicts remains a knowledge gap.  

 We explored trends in two decades (1997–2019) of moose winter moose pellet count data 

in Norway and Sweden (Neff 1968, Månsson et al. 2011). We then analyzed how weather and 

environmental factors affected these trends. Work by Månsson et al. (2011) showed that pellet 

counts can be an unbiased representative of moose habitat use when compared with moose GPS 

collar data. For our study, we adopted similar terminology but utilized ‘intensity of landscape 

use’ (hereafter, intensity of use) instead as we were not exclusively evaluating habitat. 

Specifically, pellet group counts were a measure of the intensity of use for an entire winter (i.e., 

from leaf-fall to snowmelt; Zimmermann et al. 2015). With these data, we asked if ambient air 

temperature, snow depth, and forest type drive moose intensity of use across a latitudinal 

gradient. We tested the forest maturity hypothesis, whereby mature forests give moose the 

behavioral flexibility to rest and dissipate heat when ambient temperatures are warm, and 

provides areas of reduced snow depth. We predicted: 1) the interaction between temperature and 

young forests will decrease intensity of use in young forests during warm winters, where there is 

low thermal cover (P1); 2) the interaction between snow depth and young forests will decrease 

intensity of use in young forests with deep snow, but increase as snow depth declines (P2). We 

tested our predictions across a latitudinal gradient, which was correlated with snow depth, 

temperature, and migration strategy. Generally, the tendency to migrate increases with latitude 

(Singh et al. 2012, Allen et al. 2016). We also predicted: 3) a dampened response to snow in 
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northern moose populations as result of migration (P3). Late-season snows on moose summer 

ranges could delay moose migration onto their winter range. Thus, thus the link between snow 

depth and intensity of use may be decoupled in northern populations, as we could not accurately 

define summer range conditions. In contrast, southern moose tend to migrate less, so we expected 

a decrease in intensity of use of quadrats with higher snow depths. 

 

Figure 1. Moose, which are typically solitary animals, congregate in a young forest during 

winter in Scandinavia. Photo credit: Jon Martin Arnemo 
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Study area  

Our study area is situated between 57.0° and 66.3° N and 12.2°–22.2° E in Norway and Sweden 

(Figure 2). The area is characterized by cold, snowy winters and short, cool summers. Winters are 

colder and have higher snow depths in the north relative to the south. The landscape is dominated 

by boreal and hemiboreal forests (Ahti et al. 1968), which are managed for timber and pulp 

production. Production forests, which are dominated by coniferous trees, typically undergo 1–2 

pre-commerical thinnings and another 1–2 thinnings to optimize commercial tree density. Mature 

trees are harvested in clear-cuts, resulting in a mosaic of even-aged patches or stands of trees 

(Andren and Angelstam 1993, Axelsson and Östlund 2001, Rytter et al. 2014). Regeneration 

occurs from planted trees or naturally from seed trees. Forestry has created a high-density 

network of low-traffic gravel roads, hereafter called secondary roads. High-traffic paved roads 

(hereafter, primary roads) are less common. Densities of both road types are higher in the south 

relative to the north.  

Common tree species include Scots pine, silver birch (Betula pendula), downy birch (Betula 

pubescens), Norway spruce (Picea abies), grey alder (Alnus incana), black alder (Alnus 

glutinosa), rowan (Sorbus aucuparia), goat willow (Salix caprea), and aspen (Populus tremula). 

The frequency of tree species varies by site. The dwarf-shrub layer is typically dominated by 

heather (Calluna vulgaris), lingonberry (Vaccinium vitis-idaea), bilberry, and other shrubs 

(Ericaceae spp.). In boggy areas, Sphagnum spp. mosses are dominant (Moen et al. 1998). 

Generally, rowan, aspen, and willow are rare relative to Scots pine and birch, and are highly 

selected by moose (Shipley et al. 1998, Månsson et al. 2007). Spruce is rare in moose diets 

(Cederlund et al. 1980).  

The intensification of clear-cut practices in the 1970’s and sex-specific harvest led to an 

increase in moose densities, which peaked in the 1980’s and 1990’s. Local winter densities 
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reached 5–6 moose per km2 (Lavsund et al. 2003, Milner et al. 2013), though numbers have since 

declined. Average annual moose densities vary across our study area (0.50–2.6 moose per km2; 

Sand et al. 2006b, Mattisson et al. 2013, Zimmermann et al. 2015, Pfeffer et al. 2018), as do 

assemblages and abundances of other deer species. Roe deer (Capreolus capreolus), fallow deer 

(Dama dama), and red deer (Cervus elaphus) have higher densities in the south and along the 

coast (based on hunting statistics; älgdata.se and viltdata.se). Carnivores include wolves (Canis 

lupus), brown bears (Ursus arctos), wolverines (Gulo gulo), and Eurasian lynx (Lynx lynx). 

Carnivore and their relative densities and distributions are unevenly distributed across 

Scandinavia (Bischof et al. 2019). Wolves and bears prey on neonate moose calves in the spring 

and early summer, and moose are the main prey of wolves throughout the year (Swenson et al. 

2007, Sand et al. 2008, Zimmermann et al. 2015). Despite this, moose have shown a weak habitat 

selection response to the recolonization of wolves (Sand et al. 2006b, Månsson et al. 2017, van 

Beeck Calkoen et al. 2018). Bears are not active during winter.  

Data 

Pellet data 

Pellet group data were collected during four research project periods between 1997 and 2019. In 

Norway, the ‘Forest and Moose’ project monitored 992 plots annually from 2012–2019 (except 

2016). In Sweden, ‘Vilt och Skog’ monitored 3285 plots annually in 2008, 2009, and 2011, 

‘Beyond Moose’ monitored 2832 plots annually from 2012–2019, and ‘Swedish Infrastructure 

for Ecosystem Science’ monitored 551 plots annually from 1997–2019. For populations 

classified as partially migratory in central and northern Scandinavia (Supplementary information: 

Figure S 3), sites were chosen because they were wintering areas for moose. We assumed each 

site represented a unique moose population, as sites were at a minimum 20 km apart. The 
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combined data resulted in 12 unique sites, spanning 23 years (Figure 2). The area of each site 

varied (min area = 38.7 km2; max area = 1330.0 km2), but all projects used similar methods for 

counting moose pellet groups at fixed monitoring plots, which followed a nested design. Quadrats 

(Norway: 500 x 500 m; Sweden: 1000 x 1000 m) were systematically placed within each site 

(Figure 2). Along each quadrat’s border, circular plots were distributed every 100 meters 

(Norway) or 200 meters (Sweden), resulting in 16 plots per quadrat for all sites except Grimsö, 

where there were up to 23 plots per quadrat.  

 We counted moose pellet groups in 100-m2 circular plots during late spring just after 

snowmelt. Although moose are the dominant browser in most sites, we counted pellets for all 

deer species because the presence of other deer could influence moose space use. We identified 

deer species by morphological characteristics of the pellets and the number of pellets per group 

(Spitzer et al. 2019). To register a pellet group, > 50% of the group needed to fall within the plot 

(Norway) or the center of the group was within the plot (Sweden). A minimum number of 20 

moose pellets were required to register pellets as a group. We distinguished between fresh 

(current winter) and old (prior to current winter) pellets. Typically, winter pellets were brown, in 

pellet form, and positioned on top of leaf litter and forest debris. Summer pellets were often in 

patty form, had leaf litter on top of pellets, or had mold or fungus growth (Zimmermann et al. 

2015). We were only interested in winter pellets for this analysis. Site numbers 4, 6, 7, and 9 

(Figure 2) were cleaned each year to avoid double counting pellet counts the following spring 

(Månsson et al. 2011). 
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Figure 2. Map of A) twelve study sites in Norway and Sweden where we conducted moose pellet 

group counts. Sites colors represents different projects; B) plots nested within quadrats at each 

site, which were placed at varying distances from roads; C) a table listing the site number, site 

name, and latitudinal grouping. Site numbers in the table correspond to numbers mapped in ‘A’.  

  

Weather variables  

We downloaded snow depth and temperature data from all available weather stations in Sweden 

(smhi.se) and eastern Norway (met.no) for the duration of our study. From the point location 

datasets, we extracted mean annual snow depth (cm) and mean annual winter temperature (°C) 

(Table 1). We used winter means, as this matched the temporal resolution of our pellet counts. 

For winter temperature, we defined ‘winter’ as Oct 1–April 30 (Zimmermann et al. 2015). We 
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used co-kriging to create continuous surfaces from the point data. We co-kriged using spatial 

variables elevation (m, 25-m spatial resolution, European Digital Elevation Model, version 1.1), 

latitude, and longitude. This resulted in separate continuous surfaces for snow depth and winter 

temperature for each year from 1997 to 2019. Co-kriging was done in ArcMap version 10.3.1 

(Environmental Systems Research Institute 2011). We validated each kriging model by 

correlating observed with predicted values (Supplementary information: Table S 2).  

Moose harvest density 

Hunter harvest plays a strong role in moose population dynamics, where on average 196,000 

moose are shot each year in Norway and Sweden (statistics for years 2011/12–2014/15 from ssb.no 

and älgdata.se). In Norway, time-lagged hunter harvest data (t – 1 year) is correlated with moose 

density (Ueno et al. 2014). We acknowledge different management objectives could de-couple 

the moose density/ harvest density relationship, but these are the only reliable moose density 

indices available at national extents that are common to both Norway and Sweden. We used the 

number of moose shot per km2 the year prior to pellet counts as a proxy for moose harvest 

density (Tallian et al. 2017). We used moose harvest data from both Norway (ssb.no/en/elgjakt; 

hjortevilt.no/) and Sweden (algdata.se). We first related the average weighted mean harvest 

density to each hunting district (mean area = 150,928 ha, SD = 251,423 ha) in Sweden and the 

municipality in Norway (mean area = 109,838 ha; SD = 110,935). This resulted in spatial data of 

moose harvest densities from 1996–2019. The harvest variable represents a coarse scale process 

(i.e., site scale). To intersect harvest densities with our sites, we created minimum convex 

polygons around the plots at each site to define 12 unique ‘site’ geometries. We then did a spatial 

intersection to relate moose harvest density to our site polygons. Intersections were done in 

program R version 4.0.3 (R Core Team 2020)  

http://www.algdata.se/
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Other covariates 

Secondary roads provide food benefits to moose, but also increase predation risk (Bowman et al. 

2010, Eldegard et al. 2012, Loosen et al. 2021). Thus, secondary roads present a 

foraging/predation tradeoff. We excluded primary roads because they are consistently avoided by 

moose (Seiler et al. 2003, Eldegard et al. 2012, Loosen et al. 2021). We calculated the Euclidian 

distance (m) from the quadrat centroid to the nearest secondary road. Road data were from 

national road inventories (Norway: Geonorge; Sweden: Lantmäteriet). Young forests provide 

abundant winter forage for moose (Shipley et al. 1998), so we created an annually varying ‘young 

forest’ (5–20 years old) variable based on stand maturity data in Norway, which was collected in 

the field, and national forest inventory data in Sweden (Skogsstyrelsen). Because latitude was 

highly correlated with many of our variables, and we expected differing responses by latitude due 

to migration, we created a site-level variable distinguishing between northern and southern moose 

populations. Latitudinal groupings were based on snow depth, temperature, and migration 

strategy (Figure 3). Migration strategies were assigned based on GPS collar data, annual project 

reports, and primary literature. See the Supplementary information for classifications and 

supporting literature (Table S 1). We included the sampling day of the year as this influences the 

accumulation period during which pellets are deposited (Table 1). Spatial extractions of 

covariates were done in either ArcMap and R. Covariates are summarized in Table 1.  

Statistical methods 

Intensity of use  

We tested our hypotheses by looking at moose intensity of use over time. Intensity of use (i.e., 

the number of moose pellet groups per quadrat per year) was our response variable. We 

aggregated the data to the quadrat level, which corresponds to the 3rd order scale, the scale 
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described by Johnson (1980) as the selection of feeding sites within the home range. This scale is 

relevant to forest owners because it can result in large economic losses from intensive browsing. 

Thus, we refer to pellet groups as intensity of use at the quadrat level. We used a Poisson 

distribution with a log link and two offsets: 1) sampling day of year, assuming a longer window 

would allow for more pellet group depositions; 2) the number of plots per quadrat, which varied 

by site. We assumed the higher number of plots per quadrat could result in higher pellet group 

counts. We split our dataset into northern (n = 877) and southern (n = 1490) populations. We did 

this for two reasons: 1) to avoid 3-way interactions, which are difficult to interpret; 2) because we 

expected different responses to snow in northern and southern populations due to migration, as 

explained above. For each dataset, we defined two candidate models using generalized additive 

mixed models (GAMM): 1) temperature * young forest; 2) snow depth * young forest. 

Interactions were included as tensor smoothers, which are recommended if the covariates are in 

different units/scales. For all models, we also included distance to secondary roads, young forest, 

and moose harvest density as smooths (i.e., non-linear functions), as these are known to influence 

moose intensity of use. Variables are described in Table 1.  

 All models included site as a random intercept to account for site-level differences. Thus, 

we discuss within-site, rather than between-site, variation. Because we used moose harvest 

density to account for moose density, and this represents annual changes in a biologically 

meaningful way more so than just ‘year’ (i.e., year was a nuisance variable), we excluded ‘year’ 

as an explicit time predictor variable. Snow depth and temperature were correlated (Pearsons 

correlation coefficient > 0.7) and were not included in the same models. All other variables had 

correlation coefficients < 0.7 (Supplementary information: Table S 3). 

 To account for temporal autocorrelation in our data, we fit each model with an 

autoregressive moving-average model (ARMA) correlation structure. In the autoregressive 
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portion (AR) of the model, the response variable is regressed on previous (lagged) values. The 

length of lag is defined by ‘p’. The moving-average (MA) portion of the model is a defined by 

‘q’, the size of the moving window. We allowed p and q values from range one to three. We 

chose three as the maximum value as this was the maximum duration of most of our study 

projects. Varying p and q values resulted in nine candidate correlation structures. We chose the 

best autocorrelation structure based on AIC values from the linear model component of the 

GAMM. We considered models < 2 AIC apart to be equally supported, and chose the simpler 

(i.e., smaller p and q values) model. From this final model, we evaluated model fit two ways; we 

visualized residual autocorrelation across temporal lags, and we performed a Ljung-Box test 

(Ljung and Box 1978) for examining the null hypothesis of independence of observations, where 

p-values > 0.05 indicated lack of autocorrelation of the time series (i.e., good model fit). We fit 

models with R package ‘mgcv’ (Wood 2011). 
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Figure 3. Violin and boxplots of A) moose pellet group counts per quadrat; B) snow depth; C) 

temperature; D) UTM northing; E) sampling day of the year per quadrat. Data were split into 

northern and southern groups. Data were from Norway and Sweden (1997–2019).  
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Table 1. Covariates included in statistical modeling.  

Covariate Description Temporally 

varying 

Resolution 

Distance to secondary 

roads 

Euclidian distance (m) of the quadrat centroid to the nearest 

secondary road. 

n Quadrat level 

Young forest The proportion of plots within a quadrat that were classified as 

young forest (aged 5–20 year).  

y Quadrat level 

Sampling day of year Mean day of the year that pellet group counts occurred in the 

quadrat. Each year, values started from January 1st (DOY = 1).  

y Quadrat level 

Snow depth Mean winter (Oct 31–April 30) snow depth (cm). Original point 

data were from weather stations across Norway and Sweden. We 

used kriging to create continuous surfaces of mean snow depth 

for each sampling year.  

y Quadrat level 

Winter temperature Mean winter (Oct 31–April 30) temperature (°C). Original point 

data were from weather stations across Norway and Sweden. We 

used kriging to create continuous surfaces for each sampling year.  

y Quadrat level 

Moose harvest density Mean annual harvest density (# shot moose per km2). Values 

represent hunting the autumn prior to spring sampling and are an 

index of moose density.  

y Site level 

Latitudinal group A 2-level factor indicating if the site was a northern or southern 

moose population. 

n Site level 
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Results 

Mean moose pellet group counts for the entire study area were 0.31 (SD = 0.90) pellets per 100 

m2. Counts varied by site with the highest mean counts in Råneå (mean = 0.58; SD = 1.35), the 

furthest north site, and the lowest in Furudal (mean = 0.07; SD = 0.38) (Figure 2). Counts also 

varied by year (Supplementary information: Figure S 1). Snow depth and winter temperature 

varied by year for northern and southern moose populations. Mean winter temperatures increased 

over time for both groups, while mean snow depth declined over time only for southern moose 

populations (Figure 4).  
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Figure 4. Trends for mean winter temperatures (top) and mean snow depth (bottom) in 

Scandinavia. The blue and green lines represent data for northern and southern moose 

populations, respectively. The dotted grey line is a linear trend line. Data were from 1997–2019. 

Intensity of use 

For northern and southern populations, we found similar increases in the intensity of use in 

response to increasing snow depths, until 20 cm, after which intensity of use declined (Figure 5). 
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Similarly, intensity of use of quadrats within sites declined as temperatures increased, particularly 

above 0°C (Figure 5).  

 For the interaction of young forests and temperature, southern populations showed strong 

patterns. Quadrats with a high proportion of young forests (0.9) were used more than areas with 

no or minimal young forest (0, 0.2) regardless of temperature (Figure 6). The distribution of 

young forests within quadrats was nearly double for southern (mean proportion of young forests 

= 0.14, SD = 0.22) relative to northern (mean proportion of young forests = 0.05, SD = 0.14) 

populations. A similar pattern could be seen for the interaction of snow depth and young forests 

in both moose populations; the intensity of use of quadrats increased with increasing snow depths 

at a greater rate when the proportion of young forests was high (0.9) (Figure 6).  

 For other effects, intensity of use declined precipitously when quadrats were greater than 

1 km from secondary roads in southern populations (Supplementary information: Figure S 2). For 

both northern and southern populations, moose harvest density had a positive relationship with 

intensity of use up to 0.25 shot moose per km2 (Supplementary information: Figure S 2). 

However, southern populations saw an additional peak in intensity of use around 0.5 shot moose 

per km2.   

 For the ARMA correlation structure, p and q varied by model and population 

(Supplementary information: Table S 4). For model fit, all models suffered from persistent 

autocorrelation (Supplementary information: Figure S 3) and poor model fit (Supplementary 

information: Table S 4). However, northern populations experienced better model fit than 

southern populations, as seen with the reduced autocorrelation at all lags.  
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Figure 5. Partial effects of snow depth and temperature on intensity of use for northern (top row) 

and southern (bottom row) moose populations. Partial effects are the isolated effects of one 

particular predictor on the response. Dotted lines represent 95% confidence intervals. Hatching 

(rug) on the x axis represents observed data.    
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Figure 6. Partial effects of the interaction of temperature and the proportion of young forest on 

intensity of use in northern (top row) and southern (bottom row) moose populations. Proportions 

of young forest visualized here represent the median (0), third quantile (0.2), and maximum (0.9) 

value of the observed values. Partial effects are the isolated effects of one particular predictor on 

the response. Colored ribbons represent 95% confidence intervals. 
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Discussion 

We analysed moose pellet group count data from 1997 to 2019 across a latitudinal gradient in 

Norway and Sweden. Generally, we found that for both northern and southern populations, 

intensity of use of quadrats declined precipitously when winter temperatures became warmer than 

0°C. Intensity of use of quadrats peaked with snow depths of between 20–30 cm for both 

northern and southern populations. We tested three predictions regarding the interactions of 

weather (temperature, snow) and forest types in northern and southern moose populations. First,  

we predicted that intensity of use will decrease in young forests during warm winters, where 

there is low thermal cover (P1). Second, we predicted that intensity of use will decrease in young 

forests with deep snow but increase as snow depth declines (P2). Third, we predicted that there 

will be a dampened snow response in northern populations (P3).  

For prediction one, we found the intensity of use declined after 0°C when the proportion 

of young forests in the quadrat was low (0, 0.2). This was found only in southern populations. 

This indicates that moose sought thermal shelter (i.e., used young forests less) either to avoid 

peak daytime temperatures, or to rest and dissipate heat (Thompson et al. 2021). This pattern was 

not supported, however, when young forests were abundant (i.e., proportion young forest = 0.9); 

intensity of use declined towards 0°C but remained stable as temperatures increased. This 

indicates that when there was no thermal shelter available nearby, which would be the case if 

much of a quadrat contained young forests, moose cannot shelter in other forest types simply 

because they were unavailable. Or, use could have remained high because moose shifted to 

foraging during night, as has been supported by other studies (Ditmer et al. 2018, Thompson et 

al. 2021). While Ditmer et al. (2018) found that moose rested more frequently at night and 

traveled/foraged during the day, van Beest and Milner (2013) found moose foraged more at 



25 

 

twilight in response to warm air temperatures. However, because we had data only at the 

temporal resolution of a winter season, we could not tease apart diel patterns but expect this is an 

important part of the response of moose to warm thermal conditions.   

Our knowledge on the thermal requirements of moose have changed substantially in the 

last few years. First, we now know that moose enter a period of hypometabolism (lower body 

temperature and heart rate) to deal with limited food availability and to reduce energy 

expenditure during winter (Græsli et al. 2020). This ‘walking hibernation’ has been found in 

other mammals, such as polar bears during food limited summers (Walford and Spindler 1997). 

Second, it was also previously thought that moose enter thermal stress once winter temperatures 

exceed -5°C (Renecker and Hudson 1986), though they only studied captive individuals. Thermal 

stress can increase respiration, heart rate, and energy expenditure and could result in weight loss, 

leading to reduced fitness (Renecker and Hudson 1986, Thompson et al. 2019). Many of the 

individual moose in both populations, but in particular the southern populations, likely 

experienced days with winter temperatures warmer than -5°C, given the mean winter 

temperatures were 1.5°C (SD = 1.65) and -2.75°C (SD = 1.99), respectively. Despite this, pellet 

group counts remained similar between both populations (Figure 3), indicating that moose were 

able to effectively use landscape features to buffer against warm winter temperatures. Recent 

work found that this -5°C threshold is overestimated, and body condition, sex, pregnancy status, 

and the relative change in temperature are greater drivers of thermal stress than air temperature 

alone (Thompson et al. 2020). Our study supports recent findings by Thompson et al. (2020) that 

previous winter thermal threshold for moose were likely overestimated. 

The trend of southern populations experiencing higher winter temperatures could have 

fitness consequences, however. We know moose will reduce dry matter intake under warm 

conditions to reduce heat generated from feeding and rumination (Beatty et al., 2008), which 
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could result in increased resting periods and decreased movement. We might expect more spatial 

clustering of moose pellet groups, particularly in cool, damp forests or bogs in response to 

warming. Warm weather can also shorten the period of high forage quality with early or fast 

spring green-up (Monteith et al. 2015), leading to reduced body mass (Post and Stenseth 1999, 

van Beest and Milner 2013). Moose found at the southern range limit, where temperatures are 

warm, also have shorter life spans (Hoy et al. 2017). As well, Post and Stenseth (1999) found that 

northern ungulates showed population declines following increasingly warmer winters. Warmer 

winters can also cause shifts in distributional ranges, allowing animals which are less adapted to 

the cold to move northward, such as white-tailed deer (Odocoileus virginianus) in North 

America, and roe, red, and fallow deer in Europe, bringing with them novel diseases and 

pathogens (Murray et al. 2006). Recent work has found that increased interspecific competition 

between moose and growing densities of roe, fallow, and red deer in southern Sweden was linked 

to an increased prevalence of Scots pine in moose diets. This implies a space use shift as well, 

though this was not explicitly tested (Spitzer et al. 2020). On this basis, we could expect more 

southern populations to be more susceptible to climate change as the thermal, disease, and food 

landscapes change. Though we cannot link our pellet data to moose fitness consequences, we 

recommend this be a priority for future research.  

  In addition to temperature effects, we found northern and southern moose experienced 

vastly different snow conditions. Mean snow depths for northern populations (mean = 34.80 cm, 

SD = 15.70) were more than four times higher than southern populations (mean = 8.02 cm, SD = 

5.61) (Figure 3). Further, snow depths saw a decrease over time for southern, but not northern, 

populations (Figure 4), indicating the differences between the north and south might become 

even greater. However, common to both northern and southern populations was that intensity of 

use peaked around 20–30 cm of snow, followed by a precipitous decline (Figure 5). This was true 
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in areas where young forests were both rare and abundant (Figure 6). These results did not 

support our predictions that there would be an interaction of snow depth and young forests 

driving intensity of use (P2), and that northern moose would show a dampened snow response 

(P3). However, we did find that once low-growing foods were concealed by snow, moose shifted 

intensity of use within their winter home ranges. If snow was only a movement impediment, we 

would expect a response a negative response only at snow depths known to increase locomotion 

costs (40–70 cm).  

 The difficulty with this analysis was understanding the effects of moose harvest density 

and migration strategy on our response variable. We can see from long-term trends in moose 

pellet group count data, particularly from Grimsö as this represents the longest dataset, that 

pellets count and moose harvest density trends were strongly related (Figure 7). This patterns was 

also found by Ueno et al. (2014). While harvest can be correlated with density, it could simply 

reflect management goals. For example, if two neighboring hunting districts had similar moose 

densities but one had a large commercial forestry industry, the hunting district’s management 

goal may be to reduce moose densities to reduce browsing damage (Wallgren et al. 2013). The 

two districts would thus have a high and low moose harvest densities, but we would (falsely) 

have interpreted low harvest densities as a low moose density. Despite these issues, harvest data 

remain one of the few national scale datasets that are common across countries, so their use 

continues (Cretois et al. 2020), despite these uncertainties. Migration can also cause confusion in 

our analysis, primarily because of events that occurred outside the temporal window of our pellet 

counts. For example, early season snow in a summer area (e.g., nearby mountains) could trigger 

early migration of moose onto their winter range (Sandegren et al. 1985). This could increase the 

number of “moose days” spent on a wintering area, and thereby increase the number of pellet 

groups. We could not fully capture the non-winter story as we do not know where all summer 



28 

 

ranges were from which the moose came, nor was this was the goal of our study. In contrast, a 

late season snow could result in a later migration. We suspect this was one of the drivers of the 

hump-shaped curve seen in Figure 5, as snow accumulated outside the study area in the 

mountains, covering up food or making travel difficult. As snow depths increased above 30 cm, 

moose used areas with reduced snow depth, or it is possible they moved to other wintering areas. 

As such, migration presents a challenge in interpreting pellet count data, as moose can trickle in 

during autumn migration and trickle out again during spring migration, and the proportion of the 

population that migrates may vary by year.   

 In Scandinavia, snow cover duration is decreasing, and the growing period is increasing. 

Warming effects are expected to have greater temperature and precipitation increases during 

winter compared to summer (Post and Stenseth 2011). Indeed, plant community effects are 

already being seen. For example, shrubs are expanding northward and upwards in elevation 

(Bret-Harte et al. 2002, Hallinger et al. 2010, Elmendorf et al. 2012) which could expand moose 

foods into alpine and northern latitudes, leading to an ecological opportunity for moose in 

Scandinavia, particularly northern populations where there is a large elevational gradient. 

However, winter warming events can damage shrubs resulting in reduced summer growth 

(Bokhorst et al. 2009). Of concern, winter warming events are projected to nearly double in 

northern Scandinavia into the 21st century (Vikhamar-Schuler et al. 2016).  

 The different thermal landscapes across this study’s latitudinal gradient highlights a 

reoccurring issue for cold-adapted species as winters continue to warm; that there may be a range 

contraction of the southern limit, and an expansion of the northern limit. The contraction of 

moose southern range limits are already being seen in places such as Minnesota, USA, where 

disease, land use, and warmer winters are interacting to cause drastic declines in moose body 

condition, survival, and abundance (Murray et al. 2006). We suggest that southern populations 
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may currently be more dependent on thermal cover to withstand to a changing thermal landscape, 

based on the available geography with minimal topographical relief. We suggest that northern 

populations might be more flexible in their response to climate change, as they can adjust 

migration depending on autumn conditions. However, other studies notes that migration may 

become a less common strategy for Scandinavian moose as the environment become less 

seasonal (i.e., smaller differences between winter and summer), more akin to current southern 

moose population conditions (Allen et al. 2016). Wildlife and forest managers must emphasize 

the protection and creation of high-quality habitats that can sustain moose not just from a 

foraging perspective, but also from a thermal perspective, such that they can thermoregulate via 

landscape use during increasingly warmer winters. 

 

Figure 7. Boxplots of observed pellet group counts per quadrat (left y axis; black line), mean 

moose harvest density (right y axis; purple line; number of shot moose per km2), and year (x 

axis). Data were from Grimsö, Sweden 1997–2019. The left y axis was truncated at 25 pellet 

groups for visualization purposes (max = 66).  
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Supplementary information 

 

Figure S 1. Mean moose pellet group counts varied by time (1997–2019) for each of the 12 study 

sites in Norway and Sweden.



45 

 

 

 

 

Figure S 2. Partial effects of moose harvest density and distance to secondary roads (m) on moose intensity of use. Dotted lines 

represent 95% confidence intervals. Rug represents observed data. Predictions were from the snow depth * young forest models. 
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Figure S 3. Residual temporal autocorrelation from GAMMs for northern (top row) and southern 

(bottom row) moose populations. We tested two interactions; temperature and young forest and 

snow depth and young forest. The graphs show the autocorrelation function (acf) over varying 

lags (x axis) for top-ranked ARMA correlation structures.   
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Table S 1. Classifications of movement strategies of Scandinavian moose populations at each of 

the 12 study sites in Norway and Sweden.  

Site Movement strategy Reference  

Råneå, Sweden Partially migratory  (Singh et al. 2012, Allen et al. 2016) 

Sorsele, Sweden Partially migratory (Singh et al. 2012, Allen et al. 2016) 

Furudal, Sweden Partially migratory (Sweanor and Sandegren 1988) 

Nordmaling, Sweden Partially migratory (Neumann et al. 2018a) 

Ljørdalen, Norway Partially migratory (Bramorska 2020)   

Plassen, Norway Partially migratory (Bramorska 2020)   

Gravberget, Norway Partially migratory (Bramorska 2020)   

Malingsbo, Sweden Non migratory (Singh et al. 2012, Allen et al. 2016) 

Grimsö, Sweden Non migratory (Cederlund and Sand 1994) 

Öster Malma, Sweden Non migratory (Neumann et al. 2018b) 

Misterhult, Sweden Non migratory (Singh et al. 2012, Allen et al. 2016) 

Växjö, Sweden Non migratory (Neumann et al. 2019) 



48 

 

Table S 2. Pearson correlation coefficients comparing observed and predicted values from co-

kriging models for snow depth and winter temperature in Norway and Sweden.  

Year Snow 

depth 

Temperature 

1997 0.91 0.98 

1998 0.90 0.99 

1999 0.88 0.99 

2000 0.90 0.98 

2001 0.87 0.99 

2002 0.87 0.99 

2003 0.89 0.99 

2004 0.83 0.99 

2005 0.91 0.98 

2006 0.78 0.97 

2007 0.89 0.99 

2008 0.91 0.99 

2009 0.88 0.99 

2010 1.00 0.96 

2011 0.75 0.98 

2012 0.87 0.99 

2013 0.86 0.97 

2014 0.87 0.99 

2015 0.84 0.98 

2016 0.90 0.99 

2017 0.89 0.99 

2018 0.88 0.97 

2019 0.90 0.97 
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Table S 3. Pearson correlation matrix of numeric covariates used in generalized additive mixed modelling. Data were aggregated at 

the quadrat level. Cells highlighted in orange had absolute values greater than 0.70. Values along the diagonal should be ignored.   

  

Sampling 

day of 

year 

Snow 

depth 

Winter 

temperature 

Moose 

harvest 

density 

Distance 

to 

secondary 

roads 

Young 

forest 

UTM 

Easting 

UTM 

Northing 

Sampling day 

of year 
1.00               

Snow depth 0.72 1.00             

Winter 

temperature 
-0.80 -0.81 1.00           

Moose harvest 

density 
-0.23 -0.20 0.17 1.00         

Distance to 

secondary 

roads 

0.36 0.34 -0.32 -0.08 1.00       

Young forest 0.11 0.03 -0.10 0.33 0.04 1.00     

UTM Easting 0.16 0.10 -0.19 -0.27 -0.04 -0.30 1.00   

UTM Northing 0.82 0.73 -0.82 -0.30 0.30 -0.02 0.55 1.00 
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Table S 4. Table of autoregressive moving average (ARMA) structures and results from Ljung-

Box tests for northern and southern moose populations.  

Model Population  
ARMA 

structure 

Ljung-Box test  

X-squared 
Degress of 

freedom 
p-value 

Temperature * young 

forest 

North p = 2, q = 1 52.19 1 < 0.001 

South p = 2, q = 1 242.8 1 < 0.001 

Snow depth * young 

forest 

North p = 3, q = 2 114.27 1 < 0.001 

South p = 1, q = 1 252.32 1 < 0.001 
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Abstract 

Counting is not always a simple exercise. Specimens can be misidentified or not detected when 

they were present, giving rise to unidentified sources of error. Deer pellet group counts are a 

common method to monitor absolute or relative abundance, density, and population trend. Yet, 

detection errors and observer bias could introduce error into sometimes very large (spatially, 

temporally) datasets. For example, in Scandinavia, moose (Alces alces) pellet group counts are 

conducted by volunteer hunters and students, but it is unknown how much uncertainty observer 

error introduces into these datasets. Our objectives were to 1) estimate the detection probability 

of moose pellet groups; 2) identify the primary variables leading to detection errors including 

prior observer experience; and 3) compare density estimates using single and double observer 

counts. We selected a subset of single observer plots from a long-term monitoring project to be 

conducted as dependent double observer surveys, where primary and secondary observers work 

simultaneously in the field. We did this to quantify detection errors for moose pellet groups, 
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which were previously unknown in Scandinavia, and to identify covariates which introduced 

variation into our count estimates. Our study area was in the boreal forests of southern Norway 

where we had a nested grid of 100-m2 plots that we surveyed each spring. Our observers were 

primarily inexperienced observers. We found that when pellet groups were detected by the 

primary observer, the secondary observer saw additional pellet groups 42% (n = 40) of the time. 

We found search time was the primary covariate influencing detection. We also found density 

estimates from double observer counts were 1.4 times higher than single observer counts, for the 

same plots. This density underestimation from single observer surveys could have consequences 

to managers, who sometimes use pellet counts to set harvest quotas. We recommend specific 

steps researchers and managers can take to improve future moose pellet counts.  

Key words 

Alces alces; deer; detection error; double observer; monitoring; moose; multinomial-Poisson 

mixture models; fecal pellets.  

Introduction 

Sign surveys have a long tradition in the field of ecology, such as counting the number of birds 

seen from a point location, the number of frogs heard during a set time interval, or the number of 

carnivore scats seen along a transect line. The number of specimens observed can be used as an 

index of abundance, density, or population trend. However, counting is perhaps not as simple as 

it seems (Elphick 2008). For example, Prater (1979) found that observers counting birds from 

photographs (i.e., with true values known) consistently overestimated the number of individuals 

when counting small groups of birds, but underestimated their numbers when counting large 

groups. Errors associated with sign surveys, such as observation (e.g., species misidentification) 

or detection error (e.g., animal was present but went undetected) lead to biased estimates of 
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occupancy, density, or abundance (Lele et al. 2012, Royle et al. 2014, Burton et al. 2015) 

Recently, statistical advances have attempted to account for these errors (MacKenzie et al. 2002, 

Royle and Nichols 2003). For example, the advent of methods to account for differences in 

detection and movement skyrocketed with the use of camera traps (Burton et al. 2015). Yet, 

certain sign survey methods lag in widespread methodological advancements and acceptance.  

 A common sign survey for monitoring deer (Cervidae) is counting their feces (i.e., pellet 

group counts) as a proxy for animal distribution, abundance, and population trend (Bennett et al. 

1940, Neff 1968, Patterson et al. 2002, Theuerkauf et al. 2012). The primary issue with counting 

pellet groups, as with any sampling method, is identifying the sources of error (Neff 1968, Forcey 

et al. 2006, Riddle et al. 2010). For example, pellets may be removed or made less visible 

through heavy rain events or trampling (Harstad and Bunnell 1987, Woodruff et al. 2015), or 

decompose quickly if the habitat is damp or if there is insect activity (Van Vliet et al. 2009). 

Additionally, if pellet groups are present, there is a possibility they may not be detected (i.e., the 

detection probability). Detection probabilities of deer pellet groups can vary widely, especially 

based on pellet size, environmental conditions, weather, and observer experience. In a study of 

Columbian black-tailed deer (Odocoileus hemionus) and Roosevelt elk (Cervus elaphus 

roosevelti) in a temperate coniferous rainforest, pellet detection probabilities (defined as ‘p’) 

ranged from < 0.2 to 1.0, depending upon observer and distance of the pellet group from the 

transect line (Jenkins and Manly 2008). In another study, pellet groups from the muntjac 

(Muntiacus muntjac), a small deer resident to tropical forests of India, had very low detection 

probabilities of p = 0.03 (SE = 0.02; Gopalaswamy et al. 2012), meaning they were almost 

impossible to detect when present. Pellet group counts (hereafter, pellet counts) continue to be 

extensively used because they do not require expensive equipment, technicians can be trained 
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quickly, and surveys can be done across relatively large areas. However, methods to quantify and 

account for sampling and detection errors are not widely implemented.  

 Moose (Alces alces) are the largest member of the deer family with comparatively large 

fecal pellets (2–3.5 cm; Spitzer et al. 2019). Moose pellet groups are typically identified by a 

single observer, and surveys are often repeated annually or semi-annually (Snaith et al. 2002, Rea 

et al. 2010, Månsson et al. 2011, Zimmermann et al. 2015). However, habitat heterogeneity, 

environmental conditions, and observer skill level introduce variation in the accuracy and 

precision of pellet counts (Persson 2003, Jung and Kukka 2016, Spitzer et al. 2019). For example, 

immediately after snow melt and before spring green-up, moose pellets are highly visible 

(Persson 2003). However, early green-up, late-season snow, or inexperienced observers can lead 

to imperfect detections (Persson 2003, Kéry and Royle 2015, Spitzer et al. 2019).  

Despite the widespread use of moose pellet counts as a direct index of moose density or 

population trend, few studies incorporate detection error because it is largely assumed to be 

negligible since moose pellets are so large. In Scandinavia, for example, moose density (D) is 

calculated as the number of observed pellet groups divided by the average defecation rate of 14 

pellet groups per day for an accumulation period (Cederlund and Liberg 1995, Rönnegård et al. 

2008, Månsson 2009, Zimmermann et al. 2015, Pfeffer et al. 2018). This formulation, however, 

assumes perfect detection and minimal pellet decay during the winter period, which could lead to 

underestimates of moose abundance if these assumptions are incorrect. For a heavily hunted 

species such as moose, where between 18–35% of the population are harvested each autumn in 

Norway (Sand et al. 2011, Jonzén et al. 2013), any systematic bias in population estimates could 

lead to a mismatch between population goals and management strategies.  

Pellet counts are conducted by volunteer hunters in Sweden to track moose density and 

population trends, and by research projects in Scandinavia. Thus, pellet count datasets are formed 
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from volunteer contributions, which we loosely term ‘citizen scientists’. Citizen science, the 

involvement of citizens in scientific research and knowledge production (Cretois et al. 2020), 

allow researchers and managers to collect data across spatio-temporal domains that would 

otherwise be too costly to collect (Tulloch et al. 2013, Buesching et al. 2014, Cretois et al. 2020). 

This is a growing field because of the availability of ‘free’ labor. Yet, these data have trade-offs 

such as observer bias as a result of (in)experience, the ease of implementing the sampling regime, 

and the spatial bias of data (i.e., clustering of data around urban areas; Geldmann et al. 2016). 

There is new emphasis on validating the quality of citizen science data (Clare et al. 2019, Cretois 

et al. 2020) but this step is not universally applied and not enough is done to quantify potential 

biases. 

 We designed a study using single and double observer survey methods to count moose 

pellet groups in southern Norway. Our objectives were to 1) estimate the detection probability of 

moose pellet groups; 2) identify the primary variables leading to detection errors including prior 

observer experience; and 3) compare density estimates using single and double observer counts. 

We predicted higher detection probabilities with double observer compared to single observer 

surveys, with more search time, for more experienced observers, and higher density estimates 

with double observer counts.  

Study area 

Our study area lies between 60.8° and 61.4° N and 12.2°–12.7° E in Innlandet County in southern 

Norway (Figure 1). Elevation ranges from 265–750 m above sea level. The area experiences cold 

(mean January temperature 2011–2018: -9.3 Cº) and snowy (mean winter snow depth 2011–

2018: 39.0 cm; Norwegian Meteorological Institute) and short, cool summers. Land cover is 

dominated by boreal forests (Ahti et al. 1968), which are managed for timber and pulp production 
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based on even-aged forest management. Production forests, which are largely coniferous, 

typically undergo one pre-commercial thinning at 10–20 years to remove competing deciduous 

shrubs and trees. Stands undergo 1–2 thinning events at 40–50 years and 70–80 years to optimize 

commercial tree density. Moose prefer young forests for the high food availability (Shipley et al. 

1998). 

 Common tree species include Scots pine (Pinus sylvestris), silver birch (Betula pendula), 

downy birch (Betula pubescens), Norway spruce (Picea abies), grey alder (Alnus incana), rowan 

(Sorbus aucuparia), goat willow (Salix caprea), and aspen (Populus tremula). The shrub layer is 

dominated by bilberry (Vaccinium myrtillus), heather (Calluna vulgaris), and other dwarf shrubs 

(Ericaceae spp.). In boggy areas, Sphagnum spp. mosses are dominant (Moen et al. 1998). In 

winter, moose typically migrate from summer ranges in higher elevation areas to low-elevation 

valley bottoms where snow depths are reduced (Sweanor and Sandegren 1988, Bunnefeld et al. 

2011, Singh et al. 2012). Moose are the dominant deer species. Roe deer (Capreolus capreolus) 

and red deer (Cervus elaphus) are present in the area but occur at low densities. 

Methods 

Pellet counts  

As part of a long-term monitoring project (Loosen et al. 2021a, 2021b), we have plots (n = 992) 

nested within quadrats at three sites. Within each site, we systematically placed 20–21 quadrats 

of 500 x 500 m. Each quadrat contained 16 100-m2 circular plots (Figure 1) where we counted 

pellet groups. All plot centers were marked with a pole. Observers used a rope, which was 

marked at 5.64 m and 3.99 m, to measure the plot radii. Observers walked in the inner circle 

(radius = 3.99 m), zig-zagging within the circle to ensure the area was properly surveyed. Once 

the smaller circle was surveyed, observers moved to the outer circle (radius = 5.64 m) and 



7 

 

searched in the opposite direction to ensure pellet groups obscured by vegetation could be seen 

(Figure 2). We counted deer pellet groups in late spring, shortly after snow melt (May or early 

June). We identified deer species according to morphological characteristics of the pellets 

(Spitzer et al. 2019). Roe and red deer pellets are smaller and easily differentiated from moose 

pellets (Spitzer et al. 2019). To include a pellet group in our counts, >50% of the pellets had to 

fall within the plot. Only piles with ≥20 pellets for moose and red deer and ≥10 pellets for roe 

deer were counted. We visually distinguished between fresh (current winter) and old (prior to 

winter) pellets. Winter pellets were typically brown, in pellet form, and positioned on top of leaf 

litter and forest debris, while summer pellets were often in patty form, covered by leaf litter, or 

had mold or fungus growth (Zimmermann et al. 2015). We included only winter pellets in this 

analysis. Pellets were removed from the plot each spring to avoid double counting the following 

year. One full day each field season (i.e., year), we trained observers in the field. Observers then 

worked independently for the duration of the field season. All observers were students enrolled in 

an educational program at the authors’ institution. 



8 

 

 

Figure 1. Maps of A) our study area in southern Norway; B) each of the three sites (Gravberget, 

Plassen, Ljørdalen) which contained 20–21 quadrats. Background map is a 20-m digital 

elevation map; C) each quadrat contained 16 plots. A subset of long-term monitoring plots were 

completed as double observer surveys. Gravberget is shown as an example. 
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Figure 2. In the grey box at left, a diagram showing how each 100-m2 circular plot was searched. Observers first walked the ‘inner 

circle’ (the 3.99-m radius, indicated by the dotted grey line) in a zig-zag fashion to identify pellet groups. Once the inner circle was 

surveyed, the observer moved to the outer circle (5.64-m radius) and surveyed in the opposite direction. Each plot center was marked 

with a white pole. At center, a diagram showing the data collected during dependent double observer surveys. The primary observer 

(in brown) communicated the pellet groups seen to the secondary observer, who recorded the observations (here, two pellet groups). 

The secondary observer (in blue) recorded additional pellet groups the primary observer missed (here, one pellet group). At right, a 

diagram showing the three probabilities (p) estimated with dependent double observer surveys. Figure adapted from Powell and Gale 

2015. Photo credit: Roos Ahlers. 
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Double observer surveys  

To estimate detection error, we counted pellet groups using a dependent double observer survey 

method (Riddle et al. 2010, Powell and Gale 2015). Dependent double surveys have higher 

precision and are more time efficient in the field than independent double observer methods 

(Forcey et al. 2006). The primary observer surveyed the plot, pointing to and verbalizing 

observed pellet groups (Figure 2). The secondary observer recorded observations made by the 

primary observer while simultaneously searching for and recording additional pellet groups that 

the primary observer did not detect (Figure 2). Thus, the secondary observer counts are 

‘dependent’ on the primary observer counts. All pellet group locations were drawn by hand on a 

data sheet in the field to ensure double counting did not occur (Supplementary information: 

Figure S 1). Observers switched primary and secondary observer roles between each plot 

(Jenkins and Manly 2008, Riddle et al. 2010, Powell and Gale 2015). These surveys resulted in 

two counts per plot: one count for the pellet groups seen by the primary observer and a second 

count for the additional pellet groups seen by the secondary observer. This method did not 

require observers to match or reconcile individual observations. Observers did not discuss their 

results. Double observers switched partners every day for the duration of the field season to 

increase knowledge ‘mixing’ between all observers. 

 We aimed to complete 30% (n = 297) of the plots each year as dependent double observer 

surveys, based on previous years’ time effort and available observers. We used a random number 

selector to select 30% of the quadrats. We selected entire quadrats rather than single plots to 

minimize travel time between plots (i.e., a pair of observers could travel together to quadrats 

rather than meeting up after single observer surveys).  
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Covariates 

We recorded covariates which could increase variation in detectability (Table 1). At each plot, we 

recorded weather conditions, visually estimated the percent cover of snow or standing water, 

visually estimated the percent cover of forestry residues (i.e., branches), time of day, Julian day, 

and forestry actions (see Table 1). We included also the total time spent searching for pellet 

groups in the plot (minutes; primary and secondary observer time combined). There was no 

search time cut-off. The observer-level covariates we included in our models were ‘observer 

experience’, an index of prior field research experience, and ‘prior pellet counting experience’ 

(Table 1; see survey questions sent to observers in Supplementary Information: Figure S 2).  

 Additionally, we assigned a forest maturity index (cutting class), field-layer composition 

(Fremstad 1997), tree density, and dominant canopy species from a separate dataset, which was 

collected in 2018 (Loosen et al. 2021b). These covariates should not change within one or two 

years unless the area was clearcut or thinned, which was indicated in the ‘forestry actions’ 

variable collected in 2019 and 2020 (Table 1). In this case, clearcut or thinned plots were dropped 

from the dataset.  



12 

 

Table 1. Table of plot-level and observer-level covariates used in modeling.  

Covariate Description Plot-level Observer-

level 

Weather Weather conditions: foggy; rainy; cloudy (≥50%); 

partly cloudy (<50%); sunny/clear 

X  

Snow cover Percent cover of snow or standing water in the plot 

(0–100%). Visually estimated. 

X  

Residual 

cover 

Percent cover of forestry residues (i.e., branches) in 

the plot (0–100%). Visually estimated. 

X  

Time of day Time of day survey was started X  

Search time Time spent searching for pellet groups in the plot X  

Julian day Julian day of the year sampling occurred X  

Forestry 

actions 

Forestry activity: clearcut; thinned; scarified; clearcut 

and scarified; none of the above 

X  

Field layer1 Dominant field layer:  

dwarf shrub; grass; fen; bog; lichen; small fern 

X  

Tree density1 Number of trees ≥ 0.3 m tall  X  

Dominant 

tree1 

Dominant tree species in the forest canopy X  

Cutting class1 Forest maturity index:  

0: forestry not present (i.e., barren rock or bog);  

1: clear cut; no regeneration;  

2: visible regeneration, tree height < 10 m;  

3: tree height > 10 m;  

4: forest mature for logging, age of tree 55–75 years 

depending on productivity;  

5: old growth forest 
 

X  

Observer 

experience  

Prior general field research experience:  

no experience; 

1–6 months; 

7–12 months; 

>1 year 

  X 

Pellet 

counting 

experience 

Prior pellet counting experience:  

no experience; 

1–6 months; 

7–12 months; 

>1 year 

 X 

 

 
1 Extrapolated from 2018 dataset.  
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Density estimates 

We calculated density separately for each year and for single and double observer counts. We 

compared counts from single observer surveys (i.e., primary observer counts only) and double 

observer surveys (i.e., primary and secondary observer counts summed), assuming the counts 

from double observer surveys were closer to ‘truth’. We did this only for plots where double 

observer surveys occurred. We estimated moose density (D) as:  

Equation 1                                                    𝐷 =
𝑛

𝑎∗𝑡∗𝑑
 

where n is the number of detected pellet groups, a is the area sampled, t is the accumulation 

period in days (usually based on time elapsed since first snow fall), and d is the daily defecation 

rate (Cederlund and Liberg 1995, Rönnegård et al. 2008, Månsson 2009, Zimmermann et al. 

2015, Pfeffer et al. 2018). Following standard methods we assumed an average defecation rate of 

14 pellet groups per day for moose (Zimmermann et al. 2015, Pfeffer et al. 2018) and an 

accumulation period of 183 days (30 October –30 April). We calculated density ranges based on 

minimum and maximum defecation rates (min. 13 and max. 23 moose pellet groups per day; 

Andersen et al. 1992, Persson et al. 2000, Matala and Uotila 2013). We defined the effective 

sampling area as the number of plots multiplied by the plot area (100 m2).  

Multinomial-Poisson mixture models  

We estimated detection probabilities for only double observer survey data. For this we used 

multinomial-Poisson mixture models (Royle 2004, Royle and Dorazio 2006). We used a 

multinomial distribution for the observation state (i.e., the observed counts), and a Poisson 

distribution became the latent (i.e., unobserved) variable. We used a structure for dependent 

double observer surveys by specifying multinomial cell probabilities according to (i) the 

probability observer 1 but not observer 2 detected the pellet group (column 1; Figure 2); (ii) the 

probability that observer 2 but not observer 1 detected the pellet group (column 2); and (iii) the 
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probability that both detected the pellet group (column 3). We included a single covariate on 

detection probability (p; all covariates described in Table 1) and cutting class as a single 

covariate on abundance (Edenius et al. 2015). We also specified a null model (~1 on p, ~1 on 

abundance), resulting in 12 candidate models. We calculated density by dividing abundance by 

the effective sampling area (see above). We used only moose pellet counts for this analysis. We 

used Akaike’s Information Criterion corrected for small sample sizes (AICc) and model weights 

(wi) for model selection. We considered models <2 ∆AIC to be equally supported and chose the 

simpler model (Burnham and Anderson 2002). We ran models using package ‘unmarked’ (Fiske 

and Chandler 2011) in program R (R Core Team 2020). 

Results 

Pellet counts 

We completed 19% (n = 192) and 15% (n = 145) of all plots as double-observer surveys in 2019 

and 2020, respectively. Seven plots were clearcut and five had missing data from 2018 so we 

could not reliably assign tree density, field layer, and dominant tree species. These plots were 

dropped from the analysis (new sample size = 325). Across years, most double observer surveys 

occurred among two sites (Gravberget: n = 161; Ljørdalen: n = 123; Plassen: n = 41). Of the 325 

plots, we counted 230 moose pellet groups with a mean count of 0.68 pellet groups per plot (SD 

= 1.55). We did not detect pellet groups in 70% (n = 229) of the plots. Pellet counts were highest 

among dwarf shrub (mean pellet counts per plot = 0.52, SD = 1.24) and lichen (mean pellet 

counts per plot = 0.53, SD = 0.99) field layer types. Forty-eight percent (n = 13) of our observers 

had no prior field experience, 31% (n = 8) had 0–6 months experience, 12% (n = 3) had 6–12 

months experience, and 8% (n = 2) had >1 year of experience. Single observers spent less time 

surveying (Figure 3A). Mean pellet group counts were similar for observer experience levels 
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(Figure 3C), but observers with 7–12 months prior field experience spent more time searching 

(Figure 3D). For double-observer surveys, the second observer detected additional pellet groups 

(mean = 0.20, SD = 0.67) not seen by the first observer (mean = 0.48, SD = 1.12), indicating a 

potential source of detection error (Figure 3B). The primary and secondary observers detected the 

same number of pellet groups in 88% (n = 285) of the plots. However, when pellet groups were 

present (e.g., combined observer count > 0; n = 96) the secondary observer saw additional pellet 

groups 42% (n = 40) of the time (Figure 3D). See Table 2 for the distribution of pellet group 

counts by primary and secondary observer.  
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Figure 3. A) Box and violin plot of search time by survey type; B) box and violin plots of the 

search time (by both primary and secondary observers) in minutes by observer experience; C) 

the mean number of pellet groups detected by observer experience, which is a general field 

research experience index. We used mean values as the data are very zero-biased, thus it is 

difficult to visualize many zeros in boxplots. Error bars represent standard deviation; D) 

distribution of additional pellet groups detected by the secondary observer. Surveys were 

conducted in Norway 2019–2020.  
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Table 2. The distribution of moose pellet group counts by primary and secondary observers. The 

first row under the primary observer column means observer one did not detect pellets in 233 

plots. For the second row under the secondary observer column, observer two detected one 

additional pellet group in 26 plots. We denoted the gap between 6 and 13 pellet group counts 

with an empty row. Data were from 325 plots in Norway (2019–2020).   

Pellet group count Primary observer Secondary observer  

0 233 285 

1 64 26 

2 15 7 

3 5 3 

4 5 3 

5 1 0 

6 1 1 

… … … 

13 1 0 

Total 325 325 

 

Density estimates 

We calculated density estimates separately for 2019 and 2020. In 2019, double and single 

observer density estimates were 2.0 (min–max: 1.2–2.1) and 1.4 (min–max: 0.9–1.5) moose per 

km2, respectively. In 2020, double and single observer density estimates were 2.7 (min–max: 

1.7–2.9) and 1.9 (min–max: 1.2–2.0) moose per km2, respectively. 

Multinomial-Poisson mixture models 

The top-ranked model included time searched (Table 3). Detection probabilities increased with 

search time (Figure 4A). At 10 minutes search time, detection probability was 0.60 (95% CI = 

0.42–0.75). At 20 minutes search time, detection probability was 0.94 (95% CI = 0.81–0.99). 

Looking at lower-ranked models ( 

Table 3), p increased with tree density (Figure 4B), p was highest for experienced observers 

(Figure 4C), and p decreased slightly as Julian day increased (Figure 4D). Interestingly, field 

layers ranked low ( 
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Table 3) in relative parsimony but they are important from a possible habitat bias perspective. 

Detection probabilities were highest in field layers dominated by dwarf shrubs (Figure S 3) but 

this was also the most common field layer type (Figure S 4). Uncertainties (i.e., wide 95% 

confidence intervals) in field layer estimates, however, precluded any strong conclusions. We 

back-transformed estimates of p for the null model: p = 0.56 (SE = 0.06) and abundance = 0.84 

(SE = 0.08). This suggests that when a pellet group was present, it went undetected 44% of the 

time by the first observer. Moose density was highest in cutting class two (Figure 5). 

Table 3. Model selection table from multinomial Poisson mixture models. Covariates were used 

only on detection probability (p). Cutting class was the sole covariate used on abundance and is 

not listed in the table.  

Model K AICc ∆AICc wi LL 

Time searched 8 948.65 0.00 1.00 -466.10 

Tree density 8 963.48 14.83 0.00 -473.51 

Observer experience 10 977.34 28.69 0.00 -478.32 

Julian day 8 978.07 29.42 0.00 -480.81 

Snow cover 8 980.99 32.34 0.00 -482.27 

Dominant tree 10 981.42 32.77 0.00 -480.36 

Residual cover 8 982.00 33.35 0.00 -482.77 

Time of day 8 982.71 34.05 0.00 -483.13 

Field layer 12 983.69 35.04 0.00 -479.35 

Weather 12 983.75 35.10 0.00 -479.38 

Pellet counting experi-

ence 
9 983.89 35.24 0.00 -482.66 

Null model 2 1077.19 128.54 0.00 -536.58 
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Figure 4. Prediction plots showing detection probabilities for A) the time searched in minutes; B) 

number of trees taller than 0.30 cm in the plot; C) prior observer experience in field research; D) 

Julian day that sampling occurred. Ribbons and error bars represent 95% confidence intervals. 

Predictions were made from models listed in Table 3. 
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Figure 5. Predicted moose density (number of moose per km2) by cutting class, which are 

graphed in order of maturity (1 = clearcut, 5 = old-growth forest; see Table 1 for the variable 

description). Predictions taken from top-ranked multinomial-Poisson mixture model. Error bars 

represent 95% confidence intervals.  

Discussion  

Pellet counts are a commonly used method to monitor ungulates because they are relatively 

cheap, it is easy to train inexperienced workers, and pellet counts do not require expensive field 

equipment. There are known issues, however, such as uncertainties with pellet decay and 

incomplete observations (Alves et al. 2013). We completed 16% of our annual plot surveys 

across two years as double observer surveys, a method common to avian point counts. Use of 

double observer methods allowed us to provide detection probabilities for moose pellet groups. 

This was important especially for our work, as we relied heavily on volunteers, many of whom 

had no prior field experience. We believe our results also provide valuable knowledge for other 

studies relying on fecal count estimates. 

 It should be no surprise that we found more pellet groups when two instead of one 

observer looked for pellets. Indeed, rarely are counts without error (MacKenzie and Kendall 
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2002, Elphick 2008). Generally, pellet counts underestimate density because pellets go 

undetected due to vegetation, decay, and insufficient survey efforts (MacKenzie and Kendall 

2002). Results from our modeling indicate that overall, we detected 56% of pellet groups when 

they were present. This matches what was seen in the observed data as well. While our estimates 

indicate we missed pellets, and may be cause for concern, they were similar to estimates of p in 

other deer studies. For example, in one study, teams of inexperienced observers detected on 

average 68% of the deer (fallow deer [Dama dama], roe deer, white-tailed deer [Odocoileus 

virginianus]) pellet groups detected by professional biologists (i.e., experienced observers; 

Buesching et al. 2014), meaning they missed 32% of the known pellet groups. The consequences 

of missing pellet groups could be small if the spatial and temporal scale of the estimates are also 

small, as was the case in our study. Indeed, the scale of our study was small relative to moose 

distributions in Scandinavia (Figure 1), and one could argue that our sites were too small 

(minimum site area = 38.68 km2; maximum site area = 55.57 km2) to estimate moose density, 

relative to an average moose winter home range (across Sweden 10.81 km2; SD = 6.55; Allen et 

al. 2016; specific to our study region in Norway 42.15 km2; SE = 8.55; Bramorska 2020). Yet, if 

we think of our density estimates as simply a mathematical exercise, and we assume our double 

observer counts represent “true” values, the moose density would be 1.4 larger than if we had 

estimated using single observer counts only.  

In Scandinavia, hunting is a primary driver of moose mortality (Zimmermann et al. 2019), 

where between 18 and 35% of the population is harvested each autumn (Sand et al. 2011, Jonzén 

et al. 2013). Pellet counts are used by both researchers and managers as indices of absolute and 

relative abundance, density, or population trend (Cederlund and Liberg 1995, Rönnegård et al. 

2008, Månsson 2009, Zimmermann et al. 2015, Pfeffer et al. 2018). For a research example, 

Zimmermann et al. (2015) used pellet counts to estimate the relative density of moose and other 
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deer species to understand functional responses of wolves to their prey. For a management 

example, in central Sweden (Svealand), pellet counts are used to supplement observed moose 

(‘sett elg’) to help set moose harvest quotas (Bergström et al. 2011), though the use of pellet 

counts may decline in the future (F. Widemo, pers. comm.). If we indeed underestimate moose 

density, harvest quotas may be lower than populations can sustain. More importantly, this could 

result in a mismatch between on-the-ground moose densities and management objectives. 

 Our detection probability covariates provided insights into our sampling biases. First, 

detection probabilities were highest for the least and most experienced observers. While this is 

not an intuitive result, it is supported by findings from other studies where inexperienced 

observers performed better than experienced observers. For example, technicians new to the 

sampling protocol in a non-invasive genetic sampling study in the USA collected more scats, 

were more accurate in identifying the target species, and collected more high-quality samples for 

genetic amplification relative to technicians familiar with the protocol (Soller et al. 2020). The 

authors attributed these findings to inexperienced observers being choosier, meaning they likely 

sampled from higher-quality scats, and experienced observers possibly became bored or fatigued. 

This could certainly be the case in our study, where the same protocols are completed multiple 

times per day. Interestingly, observers with 6–12 months prior experience searched the longest 

but had the lowest detection probability. We collected the observer experience data as a binned 

category. In hindsight, we should have collected continuous data since our binned categories may 

have been inappropriate (i.e., is there a different between 1–5 months and 6–12 months 

experience?). However, our findings indicate that it is important to properly define prior observer 

experience. Second, we also found that detection probability increased with increasing tree 

density. Given this counterintuitive result, we suspected this was a result of increased search time 

in plots with more trees. However, our data do not support this (Figure 6). More likely, high tree 
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densities may reduce field layer complexity due to canopy shading. Likely there are interactions 

present, which we did not test in this paper. Third, we found that p decreased with Julian day; an 

increase by one week (7 days) decreased p by 0.9. This makes sense as green-up of the field layer 

can conceal pellets, as confirmed by previous studies (Persson 2003). 

 

Figure 6. Scatter plot and loess smoother (green line) of tree density and time spent searching the 

plot. Tree density was number of trees taller than 0.30 cm per plot. Grey ribbon represents 95% 

confidence interval. Data were from Norway 2019–2020.  

 

 Given our study, how can pellet count methods be improved? We provide three 

recommendations. First, we recommend that projects relying on pellet counts do a subset of plots 

as double observer surveys to identify sources of error or bias. While we implemented a 

dependent double observer method because it has higher precision and is more time efficient in 

the field than independent double observer methods (Forcey et al. 2006), projects could modify 

our methods to do independent double counts. For example, the Scandinavian Wolf Research 

Project (SKANDULV; e.g. Zimmermann et al. 2015, Sand et al. 2016) conducts deer pellet 

counts by surveying the plot in a similar manner as described in Figure 2. However, they have a 

single observer walk the inner and outer circles twice, walking each circle first clockwise and 
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then counter-clockwise (i.e., they make four ‘rounds’). This is an intensive searching method that 

could be easily changed to estimate detection rates: the first walk around could be recorded as a 

‘first count’ and the second walk would be the ‘second count’.  

 A second recommendation for improving pellet counts is that once sources of error are 

identified, they can be accounted for in the field and in modeling. In our case, search time was an 

important variable for detection. In the field, minimum search times could be implemented based 

on desired detection probabilities, and ‘time searched’ should be recorded. At the office, ‘time 

searched’ could be included in models and future single-observer counts could be adjusted based 

on the known detection probabilities. Third, we recommend doing a subset of single observer 

plots as double observer surveys for several years. The data collected for this study only 

represented two years. In this time, we relied on large groups (> 16 observers) of inexperienced 

observers. However, every third year (e.g., 2018, 2021) we have smaller groups (4–8 observers) 

who spend up to two months in the field. Observers thus get more experience within the field 

season, versus only a few days where observers have only a short ‘learning window.’ We might 

see even stronger trends in p based on prior observer experience.  

 Another recommendation from this study is improving the sampling design to match 

scales of movement relevant to moose. During winter, moose move on average 3 km per day 

(Pfeffer et al. 2018). Thus, 100m2 (5.6–m radius) plots represent a very small total sampled area 

for a moose. Other methods, such as distance sampling with transects (Alves et al. 2013) might 

allow researchers to cover more ground with equivalent effort. As well, this could increase 

habitat representation along a gradient (e.g., a transect could cover a range of distances to an open 

forest). The choice of methods, however, depends on the goals of the monitoring project.  

While not a direct result from our study, we recommend regular feedback sessions with 

observers throughout the field season, rather than train them only one day at the beginning. 
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Previous work has shown that data collected by volunteers increases in accuracy with consistent 

supervision and training (Foster-Smith and Evans 2003, Buesching et al. 2014). Feedback 

sessions could be useful, where all observers count the same plots and learn from the group 

average (Wintle et al. 2013). For large-scale efforts like those in Svealand, Sweden, pellet counts 

are completed mostly by volunteer hunters (‘citizen scientists’). This represents an excellent 

database, but the numerous observers with differing prior field experience levels likely introduces 

additional variation into the observed pellet groups. 

The future of population monitoring is changing. Advances in non-invasive genetic 

techniques have made individual assignment of moose from pellets possible (Blåhed et al. 2019). 

While more costly for the same spatial extent, this may represent a possibility for future moose 

population monitoring, as is the case for other wide-ranging mammals (Proctor et al. 2015, 

Loosen et al. 2019). One of the take-homes from this study is that large uncertainties exist in 

management decisions and being able to identify sources of error can help reduce those 

uncertainties. We maintain that pellet counting is an important tool for monitoring, as it is an easy 

method to implement across large areas. However, our results highlight the uncertainties with a 

standard method and recommend research and management projects complete a subset of plots as 

double observer surveys to identify and quantify uncertainties.  
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Supplementary information  

 

Figure S 1. Example of a double observer diagram completed in the field.  
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Figure S 2. Survey questions completed by each observer.  
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Figure S 3. Detection probabilities by field layer type. Error bars represent 95% confidence 

intervals. Data were from Norway 2019–2020. 
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Figure S 4. The distribution of field layer classifications in our data. Data were from Norway 

2019–2020. 
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This thesis focuses on the primary challenges to ungulate management in the 21st 
century: multiple land uses that provide food subsidies, predator recolonization, 
climate change, and monitoring population trends of wide-ranging animals. I focus 
on the feeding ecology and spatio-temporal patterns of the largest circumboreal 
herbivore, the moose (Alces alces). 

The thesis objectives were to evaluate: 1) how browsing was influenced in areas with 
high predation risk, such as areas close to roads and with wolves (Canis lupus), 
in accordance with a landscape of fear; 2) whether ungulate-adapted forestry can 
be used to mitigate and reduce browsing damage; 3) if there was variation in the 
intensity of landscape use of moose, in response to variable winters; 4) sources of 
error associated with a common monitoring method for cervids.

I found that roads are a major driver of moose browsing ecology, with a greater 
effect than wolf occurrence alone. Browsing occurrence was nearly double in 
young forests along low-traffic roadsides, relative to forests older and younger than 
5–20 years, which could exacerbate moose-forestry conflicts. I also found prom-
ising effects of ungulate-adapted logging to alleviate browsing damage, although 
monitoring over a longer period would likely show greater differences. I found that 
snow depth and winter temperature influenced intensity of use of the landscape by 
moose, with temperatures above 0°C showing a decline in intensity of use. And last, 
I found evidence that the detection errors associated with fecal pellet group counts 
were larger than previously thought.

This thesis advanced our knowledge of the effects of human disturbance on moose 
ecology. It highlights that humans are an important provider of forage via land 
use changes, and that milder winters may disproportionately affect Scandinavia’s 
southern moose populations compared to northern populations. I provide practical 
suggestions to address detection errors to improve monitoring.
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