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Abstract 

Antimicrobial resistance (AMR) is considered a potential threat to global health. Norway have 

had a low prevalence of resistant bacteria. But in the recent years there has been an increase 

in resistant bacteria including, Escherichia coli, Klebsiella pneumoniae and Acinetobacter 

baumannii. Traditionally, clinical microbiology has used culture-based techniques to 

determine antimicrobial susceptibility and resistance profiles, but  now whole–genome 

sequencing for antibiotic susceptibility (WGS-AST) has emerged as a potential alternative.  

 

We aimed to investigate the prevalence of antimicrobial resistance genes and plasmids in WGS 

of 111 clinical Norwegian isolates of E. coli, K. pneumoniae, and A. baumannii, to identify 

correlations between phenotypic and genotypic resistance in the isolates, which are related to 

antibiotic resistance to β-lactam, aminoglycosides, fluoroquinolone, trimethoprim, 

tetracycline, and phenicol.   

 

The most occurring drug class was β-lactam antibiotic with TEM (38%) in E.coli, SHV (67%) 

in K. pneumoniae, and OXA (100%) and TEM (45%) gene families in A. baumannii. In silico 

detection of plasmids with Brooks et al database showed plasmid p2_000837 as prominent 

plasmid 12% E.coli isolates. There were four plasmids (pIB_NDM_1, p2_W5-6, 

pCHL5009T-102k-mcr3, pVir_020022)  in 2% K. pneumoniae isolates which were also shared 

with E. coli. Only one plasmid (pHZ23-1-1) was confirmed in 9% of A. baumannii isolates. 

PLSDB detected Plasmid A and plasmid 4 with the maximum percentage in E.coli (10%) and 

K. pneumoniae isolates (4%). In E. coli and K. pneumoniae, the presence of incompatibility 

groups was observed; IncFIB (64% and 27%), Col156 (74% and 27%), IncFII (43% and 15%), 

while IncHI-1B(pNDM-MAR) (12%) were present only in K. pneumoniae .  

 

A total of 75 isolates had resistance to the tested β-lactam antibiotics, out of which 63 had the 

corresponding resistance genes (ampC, SHV, CTX-M, TEM, LEN, OXA). Only 11 E.coli and 

one K. pneumoniae isolates were found to have resistance genes and the plasmids on the same 

node to confirm plasmid mediated resistance. 

 

This study demonstrates the utility of WGS in defining resistance elements and highlights the 

diversity of resistance within the selected isolates to further the diagnostics and therapeutics 

for the treatment of the relevant infections.  
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1. Introduction 

1.1 Background of Research 

Antimicrobial resistance has contributed immensely to the continuously growing concerns 

about the ineffective treatment against microbial infections (Shi et al., 2019). Overuse of 

antibiotics and insufficient therapy are the main causes of making AMR a global problem that 

leads to longer hospital stays, too costly treatments, and higher mortality rate (Elbadawi et al., 

2019). 

 

WGS is effective in tracking onward transmission of bacteria or resistance plasmid transfer 

between bacteria. WGS is also useful to identify trends in antibiotic resistance e.g. targeting 

the bacteria that are phenotypically sensitive but genotypically positive for a resistance (Köser 

et al., 2014). However, sensitivity of the populations and specificity of allelic variants, causing 

different susceptibility phenotypes, sometimes remains lower than the detection method being 

used, making it even more challenging (Lanza et al., 2018). This new approach requires novel 

microbial informatics (for development of reference databases of molecular and clinical 

metadata), new algorithms (for prediction of resistome and resistance phenotype from 

genotype), and new protocols (for global collection and sharing of high-throughput molecular 

epidemiology data) (McArthur and Wright, 2015). 

1.2 Antimicrobial Resistance (AMR) 

Bacteria are classified as antibiotic resistant when they are non-susceptible to at least one 

antibiotic class. It is estimated that resistant infections may kill one person every 3 seconds by 

the year 2050, raising the death toll worldwide to 10 million annually (Sabino et al., 2019).  

 

In late 60s, due to presence of various antibiotics, most of the infectious bacteria remained 

sensitive to a great number of antibiotics being used to treat them. Since no new clinically 

useful structures have been discovered since 1961, the emergence of antibiotic resistance has 

escalated the ineffectiveness of the treatment. The reason we see the current clonal spread of 

resistant bacteria  is because they contain the resistant gene carrying plasmids that often dump 

their genes into the bacterial chromosome. Species like A.baumannii which were never 

regarded as pathogens are now resistant to almost all the antibiotics. It has become the main 
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cause of pneumonia even in the patients who had antibiotic treatment previously (Amyes, 

2000). So, antibiotic pressure increases the sequence variability in resistance genes. To 

measure this, metagenomics is deployed now, which allows both quantitative and qualitative 

analyses of resistomes.  

1.3 Importance of Gram-negative bacteria in AMR 

Dissemination  

Escherichia coli (E.coli) is a Gram-negative, rod shaped, facultative anaerobe from the family 

Enterobacteriaceae (Allocati et al., 2013). It resides in the large intestine of warm blooded 

animals including humans in the form of commensal microflora. The diseases related to E.coli 

are enteritis (caused by enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), 

enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli 

(EIEC), and diffusely adherent E. coli (DAEC), UTI (caused by extraintestinal E. coli ExPEC), 

septicaemia (caused by ExPEC) and neonatal meningitis (caused by E. coli K1) (Kaper et al., 

2004). ). Β-lactamase (located mainly on plasmids) production in E. coli is the major mediator 

of resistance to broad spectrum of β-lactam antibiotics and multi-drug resistance (MDR) 

(Poirel et al., 2012). 

 

Klebsiella pneumoniae (K. pneumoniae) are Gram-negative, encapsulated, non motile, rod 

shaped, anaerobic bacillus from Enterobacteriaceae, found readily in human mucosal surfaces 

including gastrointestinal tract and oropharynx, which can further proliferate into tissues 

causing serious diseases like pneumoniae, sepsis, UTI, bacteraemia, meningitis, and pyogenic 

liver abscesses (Bagley, 1985; Dao et al., 2014; Paczosa and Mecsas, 2016). K. pneumonia are 

among those bacteria which are responsible for the infections difficult to be treated with 

antimicrobial therapy (Pendleton et al., 2013) because they not only are intrinsically resistant 

to many antibiotics, but have also accumulated resistance to many additional drugs (de Man 

et al., 2018). Hundreds of AMR genes have been detected in K. pneumoniae (Holt et al., 2015). 

Two of the mechanisms for resistance used in K. pneumoniae are expression of ESBLs 

(making them resistant to cephalosporins and monobactams), and production of 

carbapenamases (making them resistant to all available β-lactam antibiotics including 

carbapenems) (Pitout et al., 2015).  

 



 12 

Acinetobacter baumannii (A. baumannii)  is a strictly aerobic, Gram-negative, non motile, 

nosocomial, non fermenting coccobacillus from the family Moraxellaceae (Peleg et al., 2008), 

which cause blood infections, pneumoniae, infections in soft tissues at surgical sites, Urinary 

Tract Infections (Zhao et al.), and Multi-Drug Resistance (MDR) (Harding et al., 2018; Sievert 

et al., 2013). Their genome is prone to mutation in stress, depicting the genetic flexibility to 

upregulate their natural resistance as well as acquire foreign determinants through mobile 

genetic elements (plasmids, integrons, and transposons) A.baumanni is an opportunistic 

pathogen and even pan-drug resistance phenotypes have been observed at unprecedented rate 

in recent times (Giammanco et al., 2017). Out of 33 identified genomic species of 

Acinetobacter genus (Kim et al., 2008; Nemec et al., 2009), A. baumannii, Acinetobacter 

genomic species 3 and 13TU have been considered as the most relevant species in clinical 

context (Nemec et al., 2009).  

1.4 Resistance trends of gram negative bacteria in Norway 

The World Health Organization (WHO) regards AMR a big threat to global health regardless 

of age and location. Apart from natural causes, inappropriate antibiotic prescription, and 

unhygienic conditions in hospitals are also important contributing factors to AMR threat 

(D’Costa et al., 2011). Traditionally, Scandinavia is regarded as a low incidence area for 

antibiotic resistance (Figure 1). In Norway, resistance to antibiotics is supervised by 3 systems; 

Norwegian Surveillance System for Communicable Diseases (MSIS), Norwegian 

Surveillance System for antimicrobial drug resistance (NORM/NORM-VET), and Norwegian 

Surveillance System for antimicrobial drug resistance - Veterinary Medicine (NORM/NORM-

VET, 2016) to reduce antibiotic use, raise awareness about the spread of antibiotic resistance, 

development of new antibiotics, vaccines, and better diagnostic tools.  

 

The  percentage of E. coli with ESBL causing septicaemia has a ten-fold increase in the last 

10 years and had  an increase of 6.5 per cent of all septicaemia cases caused by E. coli in 

Norway in 2016 (NORM/NORM-VET, 2016). About 2.9% and 0.3% of healthy pregnant 

women were colonised by ESBL-producing or ampC-producing E. coli respectively (Rettedal 

et al., 2015), whereas an overall ESBL 15.8% in diarrhoea patients (273 faecal samples) with 

carrier rate of  10.3% in patients with no recent travel history and 56.3% in patients with a 

history of recent travel to Asia (Jørgensen et al., 2014a; Ulstad et al., 2016).  
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Since 2015, the third generation cephalosporins (ESBL) resistant K. pneumoniae isolates has 

increased from 2.9% to 5.3% in 2017, resulting in increased use of  broad spectrum antibiotics. 

(Haug et al., 2011). National action plan on AMR in health care aims to  reduce five specified 

groups of broad spectrum antibiotics by 30% by the end of 2020 (Ministries, 2015). 

 

In Europe, Acinetobacter species have shown high resistance level (fluoroquinolones, 

aminoglycosides and carbapenems), especially in Baltic countries, Southern and South-eastern 

Europe (Prevention and Control, 2018).  

 

Figure 1: Proportion of ESBL-positive E. coli and K. pneumoniae in blood and urine in Norway. 

Retrieved from NORM/NORM-VET, 2016 

1.5 Antimicrobial Agents 

To treat diseases and prevent the risk of infection, the antimicrobial drugs either seize 

the grown of bacteria (bacteriostatic) or kill them (bactericidal) (Kohanski et al., 

2010). Antibiotics like trimethoprim (disturbe the etrahydrofolate synthesis pathway), 

tigecycline, chloramphenicol, and tetracycline (protein synthesis inhibitors) are 

among bacteriostatic (Figure 2). Bactericidal antibacterials mainly include β-lactam 

antibiotics (prevent the formation of mature peptidoglycans), colistin (disrupt cell 

membrane), aminoglycosides (prevent protein synthesis), and quinolones (prevent 
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bacterial DNA replication) (Goffin and Ghuysen, 1998; Kohanski et al., 2010; Willey 

et al., 2011). 

 

 
 

 
Figure 2: Target sites of Antibiotics in bacteria. Retrieved from 

https://courses.lumenlearning.com/microbiology/chapter/mechanisms-of-antibacterial-drugs 

 

1.5.1 Β-lactam antibiotics  

β-lactam antibiotics interrupt bacterial cell-wall synthesis after they covalently bind to 

essential penicillin-binding proteins (PBPs), enzymes that are responsible for peptidoglycan 

cross-linking in both Gram-negative and Gram- positive bacteria (Bush and Bradford, 2016). 

The mechanism of β-lactam antibiotic action is explained by structural similarity between the 

β-lactam ring and the peptidoglycan building block acyl-D-alanyl-D-alanine (Tipper and 

Strominger, 1965). The covalent bond formed between β-lactam ring and an active site serine 

residue in the PBP results in the inactivation of the PBP (Figure 3). 
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Figure 3: The four-member lactam ring in penicillin is highlighted in red. Retrieved from Zeng and Lin, 2013 

 

The four major groups of β-lactam antibiotics are penicillins, cephalosporins, carbapenems, 

and monobactams (Figure 4), which are involved in affecting the bacterial cell wall synthesis. 

Four generations of cephalosporins have been introduced until now.  

 

 

Figure 4: Classification of β-lactam abtibiotics. Retrieved from 

http://proteininformatics.org/mkumar/lactamasedb/lactamase.html 
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1.5.2 Non- Β-lactam antibiotics 

Aminoglycosides 

Aminoglycosides are potent, broad-spectrum antibiotics that bind to A-site of 16S rRNA  of 

30S ribosomal subunit where codon-anticodon accuracy is analysed, resulting in disruption of 

protein binding in aerobic, Gram-negative bacteria (Davis et al., 2010; Hermann, 2007; Krause 

et al., 2016). AGs in return are inactivated by Aminoglycoside modifying enzymes, AME 

(Garneau-Tsodikova and Labby, 2016). For example, AAC(6’) AAC(3′)-II (N-

acetyltransferases), and  aph(3’)-II, aph(3’)-III (phosphotransferases) (Tolmasky, 2000; 

Vakulenko and Mobashery, 2003).  

Tetracycline 

Tetracyclines prefer to bind with 30S bacterial ribosomal subunit, and arrest the translation of 

highly conserved 16S ribosomal RNA (rRNA) by sterically hindering the docking of  

aminoacyl-transfer RNA (tRNA) to messenger RNA (mRNA)-ribosome complex during 

elongation (Chopra and Roberts, 2001). On the other hand, the bacteria have developed three 

strategies to become resistant to tetracyclines: limiting the accessibility for teracyclines to 

ribosomes, altering the binding site of ribosomes, production of inhibiors of tetracyclines 

(Speer et al., 1992). Tetracycline resistance genes could be spread by plasmids, transposons, 

and bacteriophages (Salyers et al., 1995). The most common tetracycline resistance 

mechanism in Gram-negative bacteria is by the gnes tetA, tetB, tetC, tetD, and tetG. However, 

tetA and tetB genes are most frequently present because they encode the most frequently used 

mechanism of tetracycline resistance in enterobacteriaceae; energy-dependent efflux. (Fluit et 

al., 2001). Mutation in tet(A), tet(K), tet(M), and tet(X) tetracycline resistance proteins causes 

tigecycline resistance. It is important to note that tet(X3) and tet(X4) inactivate all 

tetracyclines, including tigecycline and the newly FDA-approved eravacycline and 

omadacycline (He et al., 2019). 

Fluoroquinolone 

First generation quinolones; nalidixic acid discovered in 1962, were followed by second 

generation with the addition of a fluorine atom at position C-6 to the quinolone nucleus, 

making them fluoroquinolones (norofloxacin, ofloxacin, pefloxacin, ciprofloxacin etc). 

Fluoroquinolones are effective against several Gram-positive bacteria, Gram-negative 

bacteria, and intracellular bacteria.   
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The resistance to fluoroquinolones has emerged because of mutation in chromosomal 

quinolone targets (DNA gyrase and topoisomerase IV) and acquired resistance due to plasmid 

mediated quinolone resistance determinants (qnr, qep, aac(6’)-Ib-cr and oqxAB (Veldman et 

al., 2011). The plasmid mediated quionolone resistance genes also have the potential to 

disseminate and enhance co-selection of other AMR genes (Ewers et al., 2012). First report of 

plasmid-mediated quinolone resistance was obtained from K. pneumoniae isolates in USA 

(Kim et al., 2009). qnr proteins alter quinolone target enzymes, efflux pump activation, or 

deficiencies in outer mebrane porins to show resistance to quinolones. Qnr proteins also raise 

the frequency level at which the quinolone resistance mutants can be selected by 100-fold 

(Martínez-Martínez et al., 1998). A gene variant of aminoglycoside acetyltransferase (aac(6′)-

Ib-cr) confers reduced susceptibility to ciprofloxacin and norfloxacin by N-acetylation of 

amino nitrogen on its piperazinyl substituent. (Robicsek et al., 2006). The qnrA, qnrB and qnrS 

genes can be found in transposons and integrons located on MDR plasmids of different 

incompatibility groups, which may carry multiple resistance determinants, including ESBLs 

and carbapenemases (Strahilevitz et al., 2009).  

Phenicol 

Chloramphenicol is a very specific and potent inhibitor of protein synthesis due to its affinity 

for peptidyltransferase of 50S ribosomal subunit of 70S ribosomes, thus preventing the 

peptidyl chain elongation in Gram-positive, Gram-negative, aerobic and anaerobic bacteria. 

Bacteria produce acetyletransferases (catA, catB) or phosphotransferases (CmlA, floR) for the 

enzymatic inactivation with acetylation as a mechanism of resistance to chloramphenicol. 

(Geisel et al., 1999; Schwarz et al., 2004). Other reasons for chloramphenicol resistance are 

target site mutation or modification, decreased membrane permeability, and reduction of 

effective intracellular drug concentration due to the presence of efflux pumps.  Genes like 

cmlA and floR are the most commonly found genes for chloramphenicol resistance 

(Bissonnette et al., 1991).  

1.6 Genetic mechanisms of antimicrobial resistance 

1.6.1 Intrinsic resistance 

Apart from environmental changes like radiation, change in light or pH, the bacteria have 

intrinsic resistance too (Wellington et al., 2013). Enzymes are used in intrinsic resistance to 

destroy or modify the drug (D’Costa et al., 2011). Bacteria can also produce inhibitors 
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(acetylases, phosphorylases, and adenylase) that reduce the drug’s affinity for its the target 

sites due to steric hindrance (Munita and Arias, 2016).  

1.6.2 Mutation 

The binding sites of antimicrobials can be altered by one or more point mutations resulting in 

prevention of binding to the target by encoding abnormal target sites, which consequently 

increase the levels of resistance. Point mutations in β-lactamase genes have assisted in the 

identification of over 300 enzymes linked with a range of β-lactam antibiotic resistance 

phenotypes (Harbottle et al., 2006). 

1.6.3 Horizontal gene transfer  

Horizontal gene transfer is the ability of bacteria to exchange genes, which is responsible of 

spread and persistence of antibiotic resistance genes. There are three types of horizontal gene 

transfer; AMR gene linked with mobile genetic element, loss of gene loci in the host, and 

acquired AMR gene through genetic transfer (through transformation, transduction, 

conjugation) (Mullany et al., 2015; Pepper et al., 2018). Mobile genetic elements such as 

plasmids, transposons, integrons, and genomic islands harbour antibiotic resistance genes 

(Bennett, 2008). Many plasmids carrying resistance genes are transferred by the process of 

conjugation. Conjugation is a replicative process in which both donor and recipient cells have 

a copy of the plasmid after the process (Wilkins, 1995). Conjugative plasmids exhibit broad 

or narrow host range. In narrow range, the transfer is restricted generally to and between a 

small number of similar bacterial species. Broad range resistance plasmids are known to be 

associated with pathogens, for example, a resistance plasmid from Pseudomonas aeruginosa 

can be transferred to a wide variety of Gram-negative organisms. These mobile plasmids work 

as one of the means of acquiring resistance genes for pathogens in the environment (Bennett, 

2008). 

1.6.4 Production of β-lactamases 

Resistance to β-lactam antibiotics is frequently mediated through the production of β-

lactamase enzymes which break down β-lactam molecules. The β-lactamases bind to β-lactam 

antibiotics at a very fast deacylation rate resulting in the opening and thus inactivation of the 

β-lactam antibiotic molecule. It allows for the bacterial enzyme to return to normal functioning 

of forming peptidoglycan polymers (Søraas, 2014).  
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In the case of the Gram-positive cell, β-lactamases may either electrostatically attach with 

peptidoglycan layers or disseminate away into the extracellular environment (Figure 5). 

However, in Gram-negative bacteria, the β-lactamase is present mostly in the periplasm, but 

towards the permeability barrier, their ability to protect the bacteria is unpredictable 

(Livermore, 1995). 

 

Figure 5: β-lactamases’ position on both gram-negative (extracellular milieu) and gram-positive 

bacteria (between the outer and cytoplasmic membranes). Retrieved from 

https://www.dreamstime.com/stock-images-gram-positive-negative-bacteria-image13281714 

 

1.7 Importance of ESBLs 

ESBLs are plasmid-mediated β-lactamases that hydrolyse penicillins, cephalosporins (1st, 2nd, 

3rd Generation), and aztreonam (Jacoby and Munoz-Price, 2005), but are susceptible  to  

cefoxitin, carbapenems, and the β-lactam antibiotic inhibitors (clavulanic acid, tazobactams) 

(Bradford, 2001). The  most  frequently  encountered ESBLs  belong to  the  TEM,  SHV 

(2be),  and  CTX-M  classes (Ali et al., 2018). 

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/gram-negative-bacteria
https://www.sciencedirect.com/topics/medicine-and-dentistry/periplasm
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When the amino acid substitutions around the active site of TEM-1/2 and SHV-1 β-lactamases 

started changing the configuration of the active site, the hydrolysis of  oxymino-cephalosporin 

substrates (ceftazidime, cepodoxime, ceftriaxone, cefotaxime, monobactam, aztreonam 

occurred, leading to the discovery of a total of >130 TEM-type and >50 SHV-type β-

lactamases (Kliebe et al., 1985).  

CTX-M-type β-lactamases are capable of hydrolyzing broad-spectrum oximino- β-lactam 

antibiotics (cefotaxime, ceftriaxone, aztreonam), and are inhibited by clavulanate and 

tazobactam (Tzouvelekis et al., 2000).  

Carbapenem-hydrolysing β-lactamases (carbapenemases) related to molecular class D (OXA 

enzymes) have appeared globally as the main mechanism causing this resistance. A 

phylogenetic subgroup OXA-51 has recently been found to be intrinsically present in A. 

baumannii. Since the carbapenem resistance can not be inferred from the presence of intrinsic 

OXA-51,  alleles like OXA-23,  OXA-24, and OXA-58 have been found in the A. baumannii 

isolates with acquired resistance to carbapenems (Woodford et al., 2006).  

The metallo- β-lactamases like IMP and VIM have gained clinical importance, and have 

resistance against most β-lactamases including carbapenems (Nordmann and Poirel, 2002). In 

a Greek hospital, an isolate of E.coli with imipenem resistance was also found to have VIM 

β-lactamase. (Miriagou et al., 2003). The cause of resistance to cephalosporins and 

carbapenems in A. baumannii is due to the presence of metallo  Β-lactamases like IMP and 

VIM (Thomson and Bonomo, 2005).  

OKP-A β-lactamases are chromosomal class A β-lactamases that confer resistance to 

penicillins and early cephalosporins.  

1.7.1 Classification of Extended Spectrum Β-lactamases 

Β-lactamases can be classified according to two general schemes: the Ambler molecular 

classification and the Bush-Jacoby-Medeiros functional classification system (Table 1) 

(Paterson and Bonomo, 2005). The Ambler scheme uses protein homology criterion to divide 

β-lactam antibiotics into four major classes: A, B, C and D. Class A, C and D utilize a transient 

serine acylation/deacylation at the active site. They also show structural similarities with the 

target of β-lactam antibiotics; the DD-peptidases, and therefore presumably come from the 
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same ancestral enzyme, while class B are dependent on a metal ion at the active site 

(Majiduddin et al., 2002).  

 

 

In contrast, the Bush-Jacoby-Medeiros classification groups of β-lactamases into four main 

groups and multiple subgroups according to functional similarities. Both group details are 

mentioned in the Table 1. Most ESBLs are grouped in 2be, members of which stop the 

functioning of penicillins, cephalosporins, and monobactams, and are inhibited by clavulanic 

acid (Bush et al., 1995) . 

Table 1: Main features of two general classification schemes. Retrieved from Dhillon and Clark, 2012 

1.8 Plasmid Prevalence in Enterobacteriaceae and A. baumannii 

In order to study the epidemiological relationships, classification of the plasmids needs to be 

understood (Datta, 1977). Resistance plasmids encode resistance to antimicrobials, for 

example, IncF and IncI1 plsmids are known to carry resistance genes in E. coli, S. enterica, 

K.pneumoniae and other Enterobacteriaceae (Kaper et al., 2004). Moreover, the ColE 

plasmids encoding colicins, which have killing activity against other bacteria are also 

important plasmids (Hiraga et al., 1994). 

 

Currently there are 27 Inc groups identified in Enterobacteriaceae by Plasmid Section of the 

National Collection Type Culture, Colindale, London (Carattoli, 2011; Couturier et al., 1988). 

IncFII, IncFIA, -B and -C are included in IncF group.  
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Interestingly, IncFIC is similar to IncFII, but still compatible. Sometimes, two plasmids in an 

Inc. family have distinguishable sequences, but still they appear to be incompatible (IncXI 

R485 and IncX2 R6K from IncX family). Within IncI-complex family of replicons, IncB/O 

replicons are incompatible with IncZ replicons (Jones et al., 1993), but both of them can stay 

together with IncI1, IncIγ and IncK replicons (which are incompatible with each other) 

(Praszkier and Pittard, 2005; Praszkier et al., 1991). Details of known plasmid incompatibility 

Inc. groups are given in Table 2.  

 

In A. baumannii, the blaOXA-58 and blaOXA-23 genes encoding the OXA-58 and OXA-23 

carbapenem hydrolysing oxacillinases (CHDLs) respectively, have been found in association 

with plasmids, gathered from various parts of world (Nordmann and Poirel, 2002). A. 

baumannii plasmids belong to a limited number of plasmid lineages and their structure is very 

stable, as compared to so-called mosaic plasmids. Mosaic plasmids are composed of genetic 

elements from distinct sources and they are highly dynamic in acquisition and loss of genes 

(Pesesky et al., 2019). 
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Table 2: List of known Incompatibility Inc. Plasmids. Retrieved from Johnson and Nolan, 2009 

 

 

1.9 Diagnostic Measures against Antimicrobial Resistance 

1.9.1  Antimicrobial Susceptibility Test (AST) 

Antibiotic susceptibility testing (AST) finds a dynamic antibiotic dosage and develops a form 

of diagnostics for protection against bacterial infections. Minimum inhibitory concentrations 
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of various antimicrobial susceptibility testing (AST) are classified by various international 

agencies. The susceptibility of microorganism towards the antibiotic is interpreted as 

susceptible (S), intermediate (I) and resistant (R). Most countries follow the epidemiological 

MIC cut-offs (ECOFFS) determined by the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST, 2020) and/or the Clinical and Laboratory Standards Institute 

(CLSI, USA) (Khan et al., 2019). Presently, AST is performed using either classical manual 

methods or growth-dependent automated systems based on BMD testing. Other AST methods 

(manual and automated), commonly performed by clinical laboratories, are the conventional 

disk diffusion, agar dilution, antimicrobial gradient (e.g. the E-test, AB Biodisk) and 

automated instrumentation (Schofield, 2012).  

1.9.2 PCR 

Apart from culturing as the standard for diagnosing infection, sequence based approaches and 

quantitative PCR offer selective and sensitive way to identify a large number of Antibiotic 

Resistance Genes (ARG). However, qPCR requires a prior selection of targets which can 

overlook many important ARGs in a particular environment (Lindgreen et al., 2016; Walsh 

and Duffy, 2013), but  is helpful to capture the non-culturable section of non clinical antibiotic 

resistome. However, targeting only selected genes is not enough to characterize the intrinsic 

resistance efflux resistance mechanisms, which are controlled by many genes (Walsh and 

Duffy, 2013). 

1.9.3 Mass Spectrometry 

Mass spectrometry (MS) has been used for microbial identification in place of conventional 

identification techniques (laboratory diagnostics) (Van Veen et al., 2010). Its role in AST and 

Antibiotic Resistance Testing (ART) has emerged recently (Hrabák et al., 2012). In contrast 

to conventional AST, where the response or no response of living organisms is noted upon 

exposure to antibiotics, ART uses the presence of biomarkers proteins, carbohydrates, lipids, 

and enzymatic activity to detect specific resistance mechanism. Mass spectrometry selects 

either resistance or susceptibility of resistance of clinical isolates. So, if we know the resistance 

mechanism for carbapenemase resistance (e.g. modification in drug influx or presence of 

carbapenemases), only the second mechanism can be selected for the inhibitors (clavulanic 

acid) related to it (Nordmann et al., 2012). MS techniques like matrix-assisted laser 

desorption/ionization time-of-flight MS (MALDI-TOF MS) and  liquid chromatography-MS 

(LC-MS; in various forms) are currently in use (Welker and Van Belkum, 2019).  
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1.9.4 Whole Genome Sequencing (WGS)  

WGS  technology has made it possible to determine and evaluate the whole DNA sequence of  

a bacterium at low costs in just a few days (Punina et al., 2015). WGS not only allows in silico 

prediction of antimicrobial resistance (including resistance to compounds not routinely tested 

phenotypically), but also the early detection of outbreaks or their epidemiological 

investigation (Köser et al., 2014). Since the in silico prediction of resistance needs to be 

validated by phenotypic antimicrobial testing (Zankari et al., 2013),the combined use of 

phenotypic assays and techniques allowing the identification of genetic determinants of 

resistance can be helpful in epidemiological surveillance. Bacteria showing similar resistance 

patterns but different mechanisms can also be identified with WGS (Gordon et al., 2014). The 

unprecedented level of details of assays obtained from WGS for microbial typing and AMR 

surveillance can describe current trends and differentiate between emerging tendencies 

(Ellington et al., 2017). Moreover, Multi drug Resistance (MDR) patterns is defined with much 

greater precision with DNA sequence based surveillance as compared to phenotypic tests. The 

reason is that bioinformatics analysis goes beyond the concept of  MDR as resistance to 

compounds from three or more drug classes, as it considers the co-carriage of particular genes 

behind different MDR patterns, allelic trends, their potential for horizontal transfer, and their 

distribution by source (Magiorakos et al., 2012).  

1.10 Bioinformatic tools for WGS- based Characterization of 

Antimicrobial Resistance  

1.10.1 Sequencing Platforms 

First generation technology has remained the leading technology for decades for DNA 

sequencing (Sanger et al., 1977), using traditional shotgun technique that produced long low 

through put read sequences (500-1000 bp) at a relatively higher cost.  

 

Second generation sequencing technology was fast and high throughput, generating short 

reads  of 25-100 bp length (HiSeq from Illumina (https://www.illumina.com/.), 454 Life 

sciences from Roche (https://www.454.com/.), Solexa, and SOLiD 

(https://www.appliedbiosystems.). They were able to run over a few million reads in a single 

run with high coverage depth, cutting short the cost for DNA sequencing significantly (Butler 

and Grimme, 2010).  
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Sequencing by synthesis approach used by Illumina has made it dominate the industry in the 

recent years (Bentley et al., 2008), using fluorescently labeled reversible terminator 

nucleotides, on clonally amplified DNA templates (immobilized on acrylamide coating on the 

surface of glass flow-cell). In 2011, MiSeq was released which is suitable for smaller 

laboratories and the clinical diagnostic market (Quail et al., 2012). 

 

One of the third generation sequencing platform; PacBio (Biosciences, 2014) has enabled 

single molecule real time sequencing (SMART). Here, DNA polymerase molecules, which 

are bound to DNA template are attached to the bottom of 50nm wide wells (zeromode 

waveguides (ZMWs). Second strand is synthesized by each polymerase in the presence of   γ-

phosphate fluorescently labeled nucleotides. When the fluorescence appears with a distinctive 

pulse, it means that fluorophores attached to the nucleotides are excited by the energy 

penetrating the waveguide at the time of addition of a new base.  It produces a relatively small 

number of longer reads (> 10 kbp) as compared to a large number of short reads <200 bp like 

Illumina. However, higher cost per base, and higher sequencing error rate (15-20%) have 

limited their use in genome assembly (Schadt et al., 2010).   

 

Oxford Nanopore Technologies (ONT) MinION8 uses a new technique where native DNA 

molecules are pulled through nanoscale pores that accept only one DNA molecule at a time. 

As the DNA molecule moves through the pore, followed by sensors detecting changes in the 

ionic current produced by each passing nucleotide. This information can be visualized in a 

‘squiggle plot’ and provides the signal used for base calling. Resulting long read lengths 

significantly improve de novo genome assemblies and the detection of structural variations in 

large genomes (Deamer et al., 2016). ONT is the first technology that can deliver sequencing 

data from clinical samples in a timeframe that allows early de-escalation and refinement of 

antimicrobial treatment (Schmidt et al., 2016). 

 

Another post 2011 NGS technique; Ion Torrent PGM (personal Genome Machine) uses 

Semiconductor technology, which detects the released protons as nucleotides are incorporated 

during synthesis. On the surface of Ion Sphere particles (3-micron diameter beads), DNA 

fragments with specific adaptor sequences are linked to and then emulsion PCR amplified. 

There are proton sensing wells fabricated on a silicon wafer for the templated beads to be 

loaded on, here the sequencing starts from a specific location in the adaptor sequence. The 
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addition of all four basis is done sequentially, base of a particular type has a particular signal 

after the proton gets released proportional to the number of bases incorporated (Rothberg et 

al., 2011).  

 

1.10.2 AMR Detection Tools 

AMR gene databases with comprehensive and accurate gene record are needed to assess AMR 

prevalence. Different approaches used are BLAST (Peirano et al., 2014), Hidden Markov 

Model (HMM) (Gibson et al., 2015), nucleotide or protein based differentiation, web interface, 

or operation on local servers. The researchers have to choose between the collections of 

resistance genes for use in HMMs (Gibson et al., 2015), or collections of nucleotides or protein 

sequences of individual resistance genes or resistance related mobile elements (McArthur et 

al., 2013; Zankari et al., 2012). Some databases focus on allelic variation of house keeping 

genes and their contribution to resistance, and some focus on acquired resistance mechanisms 

(Feldgarden et al., 2019b).   

 

Another important factor to be considered is the bias of ARG databases towards 

experimentally validated genes. Thus selection of stringent cutoffs (≥ 90% per read/contig) 

though increases the probability of targeted functional genes, but it also omits environmentally 

relevant ARGs that can be more diverse. However, lowering the cutoffs to 60-80% will 

increase the false positives (Bengtsson-Palme et al., 2017).  For the ARG characterization in 

metagenomic datasets, sequencing data (e.g. Illumina) can be used either without being 

assembled or  be de novo/reference based assembled (Breitwieser et al., 2019; Knight et al., 

2018). Although de novo assembly results in data loss, and  needs higher genome coverage of 

diverse microbes with uneven taxonomic composition, it is helpful in more accurate detection 

of protein coding genes and exploration of upstream and downstream, unlike read-based 

methods (Henson et al., 2012). Moreover, with the advent of long read sequencing 

technologies (pacBio and Oxford Nanopore), the challenges offered by short read assemblies 

can be compensated by covering whole genes and even entire operons and mobile elements 

(Schatz et al., 2010). 

 

Use of paired end reads in NGS technologies has made it possible to read the DNA fragment 

from both sides. An assembler uses both the expected distance and the orientation of the reads 

when reconstructing a genome. Although paired end reads are helpful for resolving repeat 
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regions that are longer than the length of the reads, where the one not in the repeat region helps 

the other to anchor correctly, but if the sequence data does not contain paired ends that span a 

particular repeat, then it might be impossible to assemble the data unambiguously (Treangen 

and Salzberg, 2011).  

 

ResFinder is a highly cited tool among the established tools for ARG characterization in WGS 

data. It accepts both short reads and assembled genomes/contigs, using BLAST and/or KMA 

(k-mer alignment) based approaches to detect the acquired resistance, except for the resistance 

due to chromosomal mutations. To avoid ambiguous results, it is recommended to use 90% 

identity and 60% query coverage (Zankari et al., 2012).  

 

On the other hand, Comprehensive Antibiotic Resistance database (Marini et al.) is among the 

tools for ARG surveillance in metagenomics sequencing data. In CARD database, molecular 

sequences, Resistance gene identifier (RGI), and BLAST is used for the prediction of 

antimicrobial resistance genes (ARGs) in metagenomics datasets, based on homology and 

Single nucleotide Polymorphism (SNP) models. CARD is a rigorously curated collection of 

characterized, peer reviewed resistance determinants, and linked antibiotics organized by the 

Antibiotic Resistance Ontology (ARO) and AMR gene detection models. CARD contains 

more than 2000 ontologically structured protein homologues, and includes intrinsic, mutation 

driven, and acquired resistance mechanisms. (Jia et al., 2016). 

MEGARes, which is a hand curated ARG database, detects antimicrobial resistance 

determinants in large metagenomics datasets. Each protein and nucleotide has been validated 

manually with each annotation formatted in such a way that the database can be integrated into 

custom scripting easily. However, MEGARes focuses on previously published sequences, 

rather than newly discovered variants (Lakin et al., 2017).  

 

The Bacterial Antimicrobial Resistance Reference Gene Database (AMRFinder) is derived 

from β-lactamase alleles, quinolone resistance protein alleles, ResFinder, and CARD. Since 

the AMR gene nomenclature is defined by protein identity and similarity, this phenomenon is 

used as a base of AMRFinder database. Within this framework using protein based HMMs, 

can be helpful to discover potentially novel AMR genes. This database contains over 560 

AMR HMMs, and over 4579 curated AMR protein sequences to identify AMR genes from 

sequence data. Both AMR HMMs and AMR protein sequences are put together in a 
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hierarchical framework of gene families, symbols, and names in collaboration with groups like 

CARD (Feldgarden et al., 2019b).   

 

With the exception of CARD and ResFinder , most of the ARG databases lack effective and 

sustainable curation strategies  making them outdated (Lal Gupta et al., 2020).  

 

Since the best hit approach of Next Generation Sequencing produces a high rate of false 

negatives, the Machine Learning (ML) approach considers the similarity distribution of 

sequences in the ARG database, instead of only the best hit. Due to disregard of cutoffs in ML 

gene prediction, there is a  great reduction in false negatives, as well as maintaining high 

positive rate associated with traditional best hit approach by expanding the available ARGs 

individually available in the databases like CARD, ARDB, UNIPROT etc (Arango-Argoty et 

al., 2018).  

1.10.3 In Silico Plasmid Detection Tools 

Plasmids primarily contain the genes related with environmental fitness of the host, 

catabolism, and resistance (Carattoli, 2013; Zhang et al., 2011), leading them to contribute to 

horizontal gene transfer between different species (Thomas and Nielsen, 2005). However, 

assemblies generated using Illumina sequencing do not produce complete genomes, which 

affects the efforts to characterize the plasmid content of samples.  

This happens because the plasmids tend to contain repeat sequences with sizes greater than 

sequences generated by Illumina technology (Arredondo-Alonso et al., 2017).  

 

The need for in silico plasmid detection also emerged from the difficulty of plasmid DNA 

purification if they are longer than 50kbp (Smalla et al., 2015). Moreover, since the 

metagenomes usually are biased towards chromosomal content as compared to plasmids, 

many plasmid sequences remain unidentified in sequenced metagenomes, making it a complex 

process (Dib et al., 2015).  

 

Most of the in silico plasmid detection methods are aimed at recovering circular contigs from 

de Bruijn assembly graphs (Jørgensen et al., 2014b; Rozov et al., 2017). However, even if 

plasmids are assembled directly from WGS by short read sequencing platform, still they have 

repeat region sequences that prohibit complete assembly of the plasmids, and they rely on 
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laborious and computationally intensive methods (De Toro et al., 2015; Kristiansson et al., 

2011). 

 

De Bruijn graph based plasmid prediction is done by Recycler (Rozov et al., 2017) and 

PlasmidSPAdes (Antipov et al., 2016). PlasmidSPAdes first calculates the median coverage 

from the SPAdes assembly graph to estimate a chromosome coverage, then it builds a second 

assembly graph which considers only those contigs which have a read contig coverage 

differing from chromosome coverage (Antipov et al., 2016; Bankevich et al., 2012). These 

second assemblies are regarded as putative plasmids after repeat resolution by ExSPAnder 

(Prjibelski et al., 2014). However, the read contig coverage dependency of PlasmidSPADes 

makes large and low copy plasmids nearly indistinguishable from the chromosome. This 

dependency is not applied by the databases like PlasmidFinder, cBar, and MOB-suite for 

resistance analysis (Page et al., 2018b).  

 

PlasFlow is a neural network model, that is trained to separate chromosomal and plasmid 

sequences (short-length) (Vollmers et al., 2017) from different phyla by finding hidden 

structures in highly complicated biological data (Angermueller et al., 2016). A total of 9565 

FASTA sequences were used to compile it, including 1961 chromosomes and plasmids 7604 

of organisms from the kingdom Bacteria (Krawczyk et al., 2018). Unlike PlasmidSpades and 

Recycler, which output full length plasmid sequence predictions, based on their circularity or 

differential sequencing coverage, PlasFlow can predict the plasmid origin of the contigs even 

if it does not cover the whole plasmid sequence. That clarifies PlasFlow usage in the type of 

analysis that does not require full plasmid sequences with precise taxonomic information 

(Arredondo-Alonso et al., 2017; Krawczyk et al., 2018).  

 

The plasmid detection programs that try to determine the plasmid origin of contigs include 

PlasmidFinder and cBar. cBar predicts plasmid-derived sequences (using self organizing 

maps: SOMs), on the basis of genomic signatures (k-mer composition) in full length sequences 

(Zhou and Xu, 2010), while PlasmidFinder tool detects the plasmid replicons and assigns the 

query plasmids to the respective Inc.  group in Enteobacteriaceae (Orlek et al., 2017). Since 

two plasmids sharing the same replication mechanism can not co-exist within the same cell, 

the plasmids are put into different incompatibility groups (Carattoli et al., 2014). However, 

the size of PlasmidFinder database and its limitation only to Enterobacteriaceae replicons 

limits its usage for metagenomics studies. 
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In Plasmid Constellation Network (PLACNET), BLAST is used to compare sequences against 

reference databases to reconstruct plasmids through network analysis. Plasmid prediction by 

PLACNET depends on the expertise of the researchers because it needs scaffold linking and 

coverage information, replication initiator proteins (Rip) and relaxase proteins (Rel), and 

similarity of the sequences with non redundant plasmid sequences from NCBI. In addition, it 

relies on manual curation of obtained sequence clusters, which prevents its use in automatic 

annotation pipeline (Lanza et al., 2014).  

 

Another plasmid database; PLSDB has an extensive set of complete bacterial plasmids from 

the NCBI database covering records from RefSeq and INSDC (DDBJ, EMBL-EBI, and Gen- 

Bank). All the plasmids present in the database are annotated using ARG- ANNOT (Gupta et 

al., 2014), CARD (Jia et al., 2016), ResFinder (Zankari et al., 2012) and VFDB (Chen et al., 

2005), and characterized by PlasmidFinder and pMLST (Carattoli et al., 2014).  

 

A comprehensive plasmid database; Brooks et al database contains 10,892 complete plasmid 

sequences and related metadata from NCBI and all available annotated bacterial genomes. 

(Brooks et al., 2019). 

 

1.11 Aim of the study 

The aim of this study was to perform in silico detection of  AMR genes and plasmids in the 

selected WGS of Norwegian isolates from E. coli, K. pneumoniae and A. baumanii 

 

The goal was accomplished by achieving the following secondary objectives:  

 

 Annotation of de novo assembled WGS (for resistance genes and incompatibility 

groups) as well as plasmid only contigs (for plasmid detection) 

 Assessing the prevalence of most abundant ESBLs in the isolates to evaluate their 

relevance to Norwegian background of the isolates 

 Correlating genotypic antibiotic resistance with phenotypic expression for 

concordance purposes  

 Narrowing down to the same contig number for both resistance gene and plasmids in 

order to predict the presence of plasmid mediated resistance amongst the isolates 
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2. Study Design 

Schematic workflow of the study is represented in Figure 6.  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 6:: Workflow of the study 
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3. Materials and Method 

This work is a part of the ongoing bilateral Norway-India project AMR-Diag: A Novel 

Diagnostic Tool for Sequence Based Prediction of Antimicrobial Resistance funded by the 

Research Council of Norway. 

3.1 Clinical isolates 

The sample  collection comprised of the details mentioned in Table 3. E. coli and K. 

pneumoniae samples belonged to Norwegian patients. A. baumanii samples collection was 

based on carbapenem resistance and selected according to the guidelines of the Reference 

Centre of Antimicrobial Resistance. 

 

Table 3: Details of clinical Isolates collected for the study 

 
Microorganism Source 

  Oslo University Hospital  National competence service for the detection of 

antibiotic resistance (K-Res)  
Blood  Urine  blood, pus, respiratory secretions, abdominal 

cavity fluid and spinal fluid  

 E. coli              

(n=58) 

53 (sample 

numbers100-152) 

5 (152-157)   

K. pneumoniae 

(n=41) 

38 (sample 

numbers 200-

236, 240) 

4 (241-244)   

A. baumannii 

(n=11) 

    11 (sample numbers 301-311) 

 

3.2 Antimicrobial susceptibility testing (AST) 

Phenotypic antibiotic resistance profiles for the isolates were received from the fellow master 

student (Helene Bouras) working on the AMR Diag project. Briefly, antibiotic resistance was 

assessed using the Sensititre system (ThermoFischer) in the laboratories of NIPH-FHI 

(Norwegian institute for public health/Folkehelseinstitutet). The results from quality strains 

were accepted only if they were within EUCAST range of acceptance. Each isolate was 

classified as sensitive-intermediate or resistant (Alcock et al., 2020) against given antibiotics 
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according EUCAST (European Committee for Antimicrobial Susceptibility Testing of the 

European Society of Clinical) guidelines (v 10.0, January 2020). 

3.3 Whole Genome Sequencing 

All library preparations and Illumina sequencing was performed at Oslo University Hospital 

Ullevål using the MiSeq platform. The generated output was fastq files with pair-end reads of 

300 bp length. These reads were subsequently used for de novo genome assembly and 

annotation. Three isolates with <5X coverage were re-sequenced and included in the final 

dataset.   

3.4 Genome Assembly 

3.4.1 Quality Control of Illumina Outputs 

Raw sequencing paired-end reads were quality controlled using FastQC v0.11.8 (Andrews, 

2010). Using Trimmomatic  (Bolger, Lohse, & Usadel, 2014), adaptors and low-quality (with 

<15 per base quality) sequences were removed. Average quality score threshold of 25 within 

sliding window of 4 bases was set (if the average quality score over any consecutive four bases 

drops below 25, the tool will cut the leftmost position in the window and remove the rest of 

the read ). The trimmed reads were subsequently reassessed by FastQC before further analysis. 

Both FastQC and Trimmomatic were used as part of the Omics box tool 

(https://www.biobam.com/omicsbox, March 3, 2019). 

3.4.2 De novo Assembly 

Genomes were de novo assembled using SPAdes v3.13.1 (Bankevich et al., 2012) using 

default settings. Contigs < 500 bp were discarded. The command used was:  

‘~spades.py –k 21, 33, 55, 77 -1 [path to forward reads] -2 [path to reverse 

reads] –o [path to output file] 

Assemblies were assessed by QUAST v 4.6.0 (Gurevich et al.). All statistics were based on 

contigs of size   500 bp unless otherwise noted. The command used was:  

python quast.py [options] <contig_file(s)>--o <output_dir> 

 

De novo plasmid assembly from WGS in a few isolates (104, 125, 142, 211, 225, 240) was 

performed using PlasmidSpades v 3.9 with default settings (Antipov et al., 2016). The 
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resulting plasmid assemblies were further BLAST searched for plasmids. The command for 

SPADes was used with the addition ‘plasmid’ flag: 

‘~spades.py  --plasmid –k 21, 33, 55, 77 -1 [path to forward reads] -2 [path to reverse 

reads] –o [path to output file] 

3.5 Genome Annotation  

3.5.1 Genome Features Annotation 

Annotation of features with the de novo assembled genome was performed with Prokka 

(version1.12) (Seemann, 2014) using default parameters. Counts of features (Genes, CDS, 

tmRNA, tRNAs, Bases, and repeat regions) were identified along with products of the genes. 

The command used was:  

prokka<input_file.fasta> --outdir <output_directory_name> 

3.5.2 In Silico Plasmid Identification 

Presence of plasmids in Enterobacteriaceae genomes was assessed using PlasmidFinder 

(Carattoli et al., 2014) and mlPlasmids (Arredondo-Alonso et al., 2018). In the first step of the 

analysis, PlasmidFinder database was used to identify plasmid replicons after 95 % identity as 

a cutoff. 

 

Next, to improve the plasmid replicon detection and to identify all contigs representing a 

plasmid, the mlPlasmids (web interface) tool was used. The best-matching hits in each genome 

for each replicon sequence were given as output, using 0.5 as posterior probability of 

belonging to the plasmid or chromosomal class and 1000 bp being the minimum sequence 

length.  

 

Since plasmidFinder and mlPlasmids databases do not include A.baumanii genome, the 

comparison was restricted to Enterobacteriaceae. In this regard, the de novo assemblies were 

separated into plasmid and chromosomal contigs using a neural network model; PlasFlow 

(Krawczyk et al., 2018) based on the genome signatures of chromosomes and plasmids 

sequences. The resulting plasmid only sequences of all three bacteria were BLAST searched 

for the most similar/reference plasmids in Brooks et al and PLSDB databases with 95% 

identity as a cut-off. The output files were filtered with the selection of only those contigs 
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which showed over 80% contig coverage and a length between  500-100000 bp length, as the 

plasmids rarely exceed 100 kb size (Smillie et al., 2010).  

3.5.3 Resistance Gene Identification 

Since the transferrable ARGs are typically of greater concern, ResFinder (version 2.1) 

(Zankari et al., 2012), which focuses on acquired ARGs, was used for the in silico prediction 

of acquired antibiotic resistance genes in the current study. In addition, Comprehensive 

Antibiotic Resistance Database – CARD (Alcock et al., 2020) was also employed to search 

for AMR genes. Two other resistance gene databases; MEGARes and AmrFinder (done by 

Erasmas fellow: Clàudia López) along with genome annotation with Prokka (without identity 

and matching length details) were also used to extract resistance genes. Minimum 60% of gene 

length coverage and a sequence identity of 95% was used as criteria to select the genes from 

AmrFinder and MEGARes.  

 

All the BLASTN commands for both ARG databases and the plasmid databases were as 

follows: 

blastn –<query> -db <database> -outfmt ‘6 qseqid sseqid salltitles length qstart qend 

sstart send’ –perc_identity 95 –word_size 28 

3.6 Correlation Analysis 

3.6.1 Identifying Plasmids Hosting the Resistance Genes 

The prediction of location of antibiotic resistance genes and plasmids on the same contig was 

performed to confirm plasmid mediated resistance. It was accomplished by combining the 

results of resistance prediction and plasmid detection outputs. Contigs identified by 

CARD/ResFinder were tallied with those which were carrying plasmid replicons detected by 

PlasmidFinder, Brooks et al, and PLSDB. 

3.6.2 Contig Source Comparison for Plasmid Detection 

It was important to see which contig source (plasmid contigs or WGS contigs) was a better 

option to be used as an input for plasmid detection tools. For this purpose, in a few isolates 

(104, 125, 142, 211, 225, 240), WGS were assembled with PlasmidSPADes. Furthermore 

assembled plasmids for the same isolates using plasmid exclusive contigs (SPADes, PlasFlow) 
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were generated. At the end, results from both assembly techniques were used as input for 

plasmid detection. 
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4. Results 

4.1 Phenotypic Antimicrobial Resistance 

Forty-one percent of E. coli isolates were resistant to ampicillin. Resistance to ceftazidime 

(13%), trimethoprim (22%), ciprofloxacin (14%), and gentamicin (7%) was also found, as 

shown in Figure 7. Only 2 % of E. coli isolates were resistant to chloramphenicol. No 

isolates were able to grow in the presence of colistin, meropenem, and tigecycline. In 

K.pneumoniae, resistance to ampicillin (98%), trimethoprim (16%). Moreover, resistance to 

ceftazidime (13%), cefotaxime and tigecycline (11% each), ciprofloxacin and gentamicin 

(9% each) was also present. Resistance to colistin was not shown by any of the isolates. In 

A.baumannii, all 11 isolates (100%) were resistant to ciprofloxacin, and meropenem, while 

ten of them (91%) were found to be reistant to gentamicin.  

 

 
Figure 7: Prevalence (%) of resistant Ecoli (n=58), K.pneumoniae (n=42), and A.baumannii (n=11) 

strains (%)  

 

Regarding resistance patterns, 28% of E.coli isolates were not resistant to any of the antibiotics 

tested (Figure 8). Resistance to at-least one antibiotic (15%) (either of ampicillin, 

ciprofloxacin, trimethoprim, and chloramphenicol), resistance to at-least two antibiotics (10%) 

(ampicillin combined with either of gentamicin, ciprofloxacin, and trimethoprim), and 

resistance to at-least three antibiotics (4%) (ampicillin combined with either of gentamicin and 

trimethoprim, ciprofloxacin and trimethoprim, gentamicin and trimethoprim) was prevalent in 

E.coli isolates. Only 1% E.coli isolates were resistant to at-least four antibiotics (ampicillin, 

cefotaxime, ciprofloxacin, and trimethoprim) (Figure 8).  
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Resistance to one antibiotic (ampicillin) was the most common in K. pneumoniae isolates 

(26%). Resistance to at-least two antibiotics (10%) (ampicillin with either of trimethoprim, 

tigecycline, and chloramphenicol), resistance to at-least three antibiotics (4%) (ampicillin with 

either tigecyline and trimethoprim, or cefotaxime and ceftazidime), resistance to at-least five 

antibiotics (2%) (ampicillin, cefotaxime, ceftazidime, ciprofloxacin, and gentamicin), 

resistance to at-least six antibiotics (1%) (ampicillin, cefotaxime, ceftazidime, 

chloramphenicol, ciprofloxacin, and gentamicin), and resistance to at-least seven antibiotics 

(1%) (ampicillin, ceftazidime, chloramphenicol, ciprofloxacin, gentamicin, tigecycline, and 

trimethoprim) was also found.  

 

In A.baumanii, 91% of the isolates were resistant to at-least 3 antibiotics (ciprofloxacin, 

gentamicin, meropenem) , and the rest (9%) were resistant to at-least two antibiotics 

(ciprofloxacin, meropenem) (Figure 8). 

 
Figure 8: Resistance profiles of all the isolates (n=111) showing resistance to antibiotics ranging from 

1 to 6. The colored bars show the type of resistance. 
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4.2 Trimming of Illumina Sequence Reads 

The pre-processing step illustrates that bases at the end of reads tend to have lower quality. 

The quality trimming step improves the read quality leading to a higher average quality 

(Figure 9 A & B).  The quality score for each base ranges from -5 to 40, and in our study, the 

reads for each sample were of highest quality (>30) between 75-225 bp and the quality dropped 

at 5'. Despite that, the overall quality of the reads remained towards high. The processing of 

reads prior to assembly removed overrepresented sequences (only 8 samples failed in 

overrepresented sequences and the rest were either passed or with warning), thus decreased 

the duplication. The sequencing resulted in sequence data comprising average 704571 

±570319 reads per file (supplementary file 10). With trimming, the number of both surviving 

reads were reduced to average 660694± 548544, as can be seen in Figure 10. 

 

 

 

 

 

 

 

A 
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Figure 9: FastQC visualization of per base sequence quality of  E. coli isolate 157 before (A) and after (B) 

trimming of adapters and low quality reads.  

 

 

Figure 10: Influence of quality-based trimming on sequencing reads. Yellow bars indicate reads after trimming. 

Red bars indicate the number of reads before trimming. 
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4.3 De novo Assembly  

Trimmed sequences were de novo assembled with SPAdes (Bankevich et al., 2012). The 

contigs were further put to quality check using Quast (Gurevich et al., 2013). The results from 

the final quality assessment are shown in Table 4. 

 

Table 4: Mean ± Standard deviation of SPAdes’ de novo assembly of 58 E. coli, 41 K.pneumoneae, and 
11 Acinetobacter isolates, visualized by QUAST. All statistics were based on contigs length ≥500 bp, 

minimum alignment length of 65, and ambiguity one.  

 

 

Both E. coli and K. pneumoniae displayed average GC% ≥50, while A. baumannii had 39%.   

Nearly half of E. coli isolates (48 %) had largest contig length in the range of 500 Kbp followed 

by 31% isolates in 800 Kbp range. In K. pneumoniae, most of the isolates (26%) had contig 

length in the range of 10 Kbp followed by 17% isolates having contig length in the range of 

500 Kbp and 800 Kbp each. K. pneumoniae isolates (10% and 14%) also had contig length in 

the range of  20 Kbp and 1000 Kbp each and 50 Kbp respectively A. baumanii displayed 73 

% of A. baumannii isolates displayed length within the range of  500 Kbp followed by 18% 

and 9% isolates in the range of 100 Kbp and 50 Kbp respectively. Regarding contiguity, 12, 

18, and 3 of E.coli, K. pneumoniae, and A. baumanii isolates had number of contigs above 500 

as shown in Figure 19.  

Statistics E. coli (n=58) K. pneumoniae (n=42) A. baumannii (n=11) 

Number of contigs 

 

Largest contig (bp) 

 

Total assembly length 

(bp) 

 

GC % 

 

N50 

471±622 

 

373475±229473 

 

5058946±1000581 

 

50±1 

 

146114±106360 

840±961 

 

332403±377228 

 

4156185±2314802 

 

56±2 

 

128977±148029 

347±293 

 

219493±150134 

 

4060152±92430 

 

 

39±0 

 

 
82805±78310 
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Figure 11: Graphical representation of distribution of largest contig length 

4.4 Genome Features Annotation 

Total genome size in most of the isolates ranged between 4-5 Mbp for E.coli and 

K.pneumoniae while a few isolates fell into either below 2 Mbp or above 6 Mbp 

(supplementary file 5 and Figure 18). Number of CDS in E.coli and K.pneumoniae ranged 

between 4500-5500 in most of the cases while a few isolates had below 2000  or above 6000 

genes. tmRNA were found to be either one or two in most of E.coli and K.pneumoniae isolates 

while a few had no tRNAs. Total genome size in the form of base pairs was between 4 - 4 

Mbp for 7 of A.baumanii isolates, while 4 isolates were found to be in the genome size of 

above 5 Mbp. Number of CDS in A.baumanii ranged between 3500-4000 in 7 cases, while 4 

isolates had above 5000 genes. tRna in 7 A.baumanii isolates ranged between 60-70 with 4 

isolates having  tRNA above 80. tmRNA were one in number in 10  A.baumanii isolates with 

only one isolate having two tmRNA. There were 21, 9, and 2 isolates of E.coli, K.pneumoniae, 

A.baumanii where the repeat regions were present while 37, 33, and 9 isolates of all three 

bacteria had no repeat regions. 

4.5 Prevalence of Antimicrobial Resistance Genes 

WGS sequences were screened for AMR genes in different resistance gene databases as shown 

in (Figure 12). According to the results obtained from CARD, the most occurring drug class 

in which AMR genes were detected was β-lactam.  

 

In E.coli, the most prevalent gene was TEM (38%) with other β-lactamases in small 

percentages (SHV (5%),  OXA (7%), VIM (2%), and CTX-M (3%). ampC being inherent to 
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E.coli was found in 93% of the isolates. Two β-lactam representative genes LEN and OKP-A 

were not present at all. The most abundant non- β-lactamase gene found was in 28% of E. coli 

isolates i.e. aac/aph representing gentamicin followed by 16% isolates with dfr gene for 

trimethoprim resistance and 14% isolates with tet gene (tetracycline, tigecycline). 

Fluoroquinolone (qnr) and phenicol genes (cat/Cml/floR) were found in only 3% of isolates.  

 

In K.pneumoniae, the β-lactam antibiotic resistance gene with highest percentage of isolates 

was SHV (67%) while other β-lactamase resistance genes were TEM (19%), OXA (7%), LEN 

(5%), OKP-A (2%), CTX-M (7%) and ampC (5%). Non-β-lactam antibiotic resistance 

occurred mainly with the genes (aac/aph) for aminoglycoside in 26% of K.pneumoniae 

isolates, while resistance to other non-β-lactam was in 10%, 7%, 7%, and 5% isolates for 

chloramphenicol, trimethoprim, fluoroquinolone, and tetracycline/tigecycline respectively.  

 

Regarding β-lactam resistance gene prevalence in A.baumanii, the most abundant gene was 

OXA (100% isolates) followed by ampC (91% isolates)), and TEM (45% isolates)). Nine 

percent of isolates had both SHV and CTX-M. The most abundant non β-lactam gene found 

in A.baumanii was aac/aph followed by tet (55% isolates)) and chloramphenicol genes 

(cat/Cml/floR) (36% isolates). 

 

Similar gene pattern was detected by other databases (ResFinder, MEGARes, AmrFinder, and 

Prokkka) as well, but with different prevalence percantage.  For details of all the databases see 

supplementary file 1.
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        Figure 12: Relative abundance of antimicrobial resistance genes in E. coli, K. pneumoniae and A. baumannii detected using different databases
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4.6 AMR Database Performance Evaluation 

The comparison of AMR databases was performed, based on the values detected in at-least 

two isolates in at-least one database.  

 

CARD database detected five β-lactamases (ampC, SHV, TEM, OXA, CTX-M) along with 

genes of all other classes in E. coli.  Six β-lactamases (ampC, SHV, TEM, OXA, CTX-M, 

LEN) along with resistance genes of aminoglycoside, tetracycline, chloramphenicol, 

trimethoprim, fluoroquinolone in K. pneumoniae,  while three β-lactamases (ampC, TEM, 

OXA) along with aminoglycoside, tetracycline and phenicol genes were detected in A. 

baumannii  as shown in Figure 13 and in supplementary file 9.  

 

ResFinder detected all the genes, as did CARD. However, ResFinder did not detect ampC, as 

it was intrinsically present. In agreement with CARD and ResFinder, MEGARes detected all 

the genes except dfr and CTX-M in both E. coli and K. pneumoniae. However, it was in 

agreement with CARD in the detection of ampC in E. coli and A. baumannii. AmrFinder 

detected three non-βlactamases resistance genes (aac/aph tet, cat/Cml/floR) in all three 

bacteria. Prokka was in agreement with CARD, ResFinder, and MEGARes in the detection of 

TEM, aac/aph, tet, and CTX-M in all three bacteria. Regarding ampC, it was in agreement 

with CARD and MEGARes in E. coli and A. baumannii, while the gene SHV was only 

detected by Prokka  in  A. baumannii. 
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Figure 13:. AMR database comparison on the basis of presence of resistance genes in  number of isolates by CARD, ResFinder, MEGARes, AmrFinder, and Prokka. Reported 

genes were detected in at-least two isolates in at-least one databases
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4.7 In Silico Dectection of Plasmids 

PlasmidFinder was used to detect plasmid replicons, while Brooks et al and PLSDB was also 

used to search plasmids as shown in Figure 14. Regarding plasmids detected by Brooks et al 

database, 12% of E. coli strains had plasmid p2_000837, while the rest of 11 identified 

plasmids were found in below 10% of isolates. There were four plasmids (pIB_NDM_1, 

p2_W5-6,   pCHL5009T-102k-mcr3, pVir_020022) in 2% K. pneumoniae isolates which were 

also shared with E. coli. Only one plasmid (pHZ23-1-1) was present in  9% of A. baumannii 

isolates. Unknown plasmids in all three bacteria can be viewed in supplementary file 2.  

 

PLSDB detected many plasmids in E. coli isolates including Plasmid A with the maximum 

percentage (10%) while the rest of the 20 plasmids were present in under 4% isolates. In K. 

pneumoniae, only 9 plasmids were identified with plasmid 4 in as many as 4% isolates while 

the rest of the plasmids were in less than 3 % isolates. Only plasmid A and plasmid B were 

present in both E. coli and K. pneumoniae. No identified plasmid was present in A. baumannii 

although unknown plasmids are shown in supplementary file 2.  

 

PlasmidFinder database detected 31 previously known plasmids in E. coli isolates. IncFIB 

(64%), Col156 (47%), IncFII (21%), IncFII(29) (22%), Col8282 (10%), Col(BS512) (17%) 

were prominent plasmids while the rest of the plasmids were found in below 10% of the 

isolates. In K. pneumoniae, IncFIB(K) plasmids were present in the highest percentage (27%) 

while 15% of the isolates had both IncFII(K) and Col(MG828). Moreover, Col(8282) and 

IncHI-1B(pNDM-MAR) both were present in 12% of the isolates. The rest of the plasmids 

were represented by below 10% K. pneumoniae isolates. Contigs of plasmid origin, that could 

not be assigned to one particular plasmid/plasmid class with high degree of certainty (because 

of a lot of hits to different plasmids of different classes) can be viewed in supplementary file 

2. 
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Figure 14: Plasmid Detection by multiple databases;  Brooks et al, PLSDB, and  PlasmidFinder 



 51 

4.8 Correlation between detected resistance genes, Phenotype 

resistance profile, and plasmids 

ResFinder detects only acquired genes and ignores chromosomal mutations (Xavier et al., 

2016) wherease CARD includes chromosomal genes and mutations. Therefore resistance 

genes from CARD database were correlated with both the phenotypic resistance and the 

plasmid found in all the isolates.  

 

Table 5 shows a total of 75 isolates that had resistance to β-lactam antibiotics (ampicillin, 

cefotaxime, ceftazidime, meropenem), out of which 63 had the corresponding resistance genes 

either alone or in combination (ampC, SHV, CTX-M, TEM, LEN, OXA). ampC and the 

phenotypic resistance to β lactam antibiotics matched 34 times, and 33 times the gene ampC 

was present without the isolate displaying and phenotypic resistance. TEM was found in 36 

isolates which was complimented by 31 isolates having phenotypic resistance to β lactam 

antibiotics. SHV gene was present in 32 isolates which was again reciprocated by 31 isolates 

having phenotypic resistance to β lactam antibiotics. A total number of three isolates had CTX-

M gene which displayed resistance to β lactam antibiotics in all three isolates. LEN gene was 

present in two isolates, and out of these two only one showed resistance to β lactam. 18 isolates 

had OXA genes with 16 isolates matching the expected phenotypic resistance to β lactam 

antibiotics. A total number of 33, 30, and 39 isolates had the presence of both the resistance 

to β lactam antibiotics and different types of plasmid; Col, IncFII, and IncFIB respectively.   

 

The antibiotic resistance against aminoglycosides (gentamicin) was found in 18 isolates, and 

either of aac/aph genes was found in 17 of the respective isolates. On the other hand, 15 

isolates were found to have the genes aac/aph but no resistance phenotypically was detected. 

There were 5, 4, 6 times when the isolates had both the resistance to gentamicin and the 

plasmid Col (different types), IncFII (different types), and InFIB (different types) respectively.  

   

There were 12 dfr genes that matched with the phenotypic resistance against trimethoprim in 

20 isolates. On 14, 9, 15  occasions, the isolates had both the resistance to trimethoprim and 

the plasmid Col (different types), IncFII and InFIB (different types) respectively.  
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A sum of 23 isolates were found with  fluoroquinolone resistance (ciprofloxacin), out of which 

3 times there was a corresponding qnr gene, while 2 isolates had qnr gene without any 

phenotypic resistance to ciprofloxacin. Col (different types), IncFII (different types), and 

IncFIB (different types) plasmids in combination with ciprofloxacin resistance were found in 

6, 5, and 9 isolates.   

 

Eight isolates found with chloramphenicol resistance were being reciprocated with either of 

cat/Cml/floR genes in only two isolates, while 7 isolates had these genes but with no expressed 

resistance to chloramphenicol. There were 5, 3, and 3 isolates had Col (different types), IncFII 

(different types), and IncFIB (different types) along with chloramphenicol resistance.  

 

Five isolates had tigecycline resistance but no corresponding tet gene was present although tet 

gene was present in 19 isolates without showing resistance to tetracycline or tigecycline 

antibiotic. It occurred 4, 2, and 1 time that the isolates had Col (different types), IncFII 

(different types), and IncFIB (different types) along with tigecycline resistance.  
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Table 5: Concordance between phenotype and genotype for predictions made using a database of 

resistance determinants and the plasmids. Red color coded genes and antibiotics have concordance. 

Detailed table can be viewed in appendix Table 8. . 
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In order to confirm the plasmid mediated resistance, contigs of plasmid origin on which AMR 

gene was also detected are shown in Table 6. IncFII (different types) plasmids were present in 

6 isolates with the resistance gene pattern; TEM, TEM/aac/aph, and TEM/aac/aph/dfr. These 

6 isolates had resistance to either ampicillin or trimethoprim or both. IncI1(Alpha) was found 

in the isolate 106 sharing the same node with TEM with phenotypic resistance to ampicillin 

and trimethoprim. In two isolates, resistance to ampicillin and trimethoprim antibiotics, and 

antibiotic resistance genes aac/aph were located on contigs assigned to  IncQ1 plasmid. Isolate 

130 exhibiting resistance towards trimethoprim, had two plasmids (pTMTA63632, 

pIB_NDM_1) sharing contigs with tet and dfr resistance genes respectively. The isolate 211 

also had 2 plasmids (IncX3, pCFSAN061772_02) sharing contigs with qnrS1, TEM, aac/aph 

resistance genes, and showing phenotypic resistance to ampicillin, cefotaxime, ceftazidime, 

chloramphenicol, Ciprofloxacin, and gentamicin antibiotics.  
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Table 6: Common nodes between resistance genes and plasmid
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The graphical representation of the contigs harbouring both the resistance genes and the plasmids is shown in Figure 15. 

 
 

 
 

 

 
              Figure 15: Graphical representation of the contigs being shared by the resistance gene and the plasmids along with their position on the contig
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When PlasmidSPAdes assembled contigs were searched for plasmids, and was compared with 

the SPAdes assemblies (PLasFlow segregated), there were only PlasmidFinder detected 

plasmids (IncFII(29), IncX3, ColpVC, IncFIB(pkPHS1), IncFII) in 104, 125, 211, and 240 

that were common between them (Table 7). Regarding database detection, isolate 104 had 

only PlasmidFinder detected plasmid, while isolate 125 and 142 had plasmids detected by all 

three databases. In isolate 211, there were plasmids detected by PlasmidFinder and PLSDB, 

and no Brooks et al plasmids were there. Contigs of plasmid origin, that could not be assigned 

to one particular plasmid/plasmid class with high degree of certainty (because of a lot of hits 

to different plasmids of different classes) can be viewed in the supplementary file 3. 

 

 
Table 7: Plasmid detection in PlasmidSPAdes assembled WGS contigs, and its comparison with                

plasmids detected in SPAdes assembled and PlasFlow segregated plasmid contigs. 
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5. Discussion 

5.1 Quality assessment of sequencing data 

As a rule of thumb, 5-10X coverage  is suggested in order to support sequence assembly and 

genome- reconstruction (Kunin et al., 2008). In this regard, only 27 out of 111 isolates had 

sequencing depth below 5X in our study. This along with range of sequencing depth can be 

viewed in  Figure 16 and Supplementary file 6. One explanation of low sequencing depth can 

be the fact that sequencing depth is influenced by errors at many stages during DNA 

processing and library preparation e.g. amplification error, DNA quality, and target region 

complexity (Jennings et al., 2017; Ma et al., 2019; Quail and Smith), and with peaks in 

sequencing error shows marked drops in coverage (Ekblom et al., 2014). Another reason for 

low sequencing depth could be that Illumina sequencing platform favours GC-balanced 

regions that have fewer reads in GC poor regions, which usually results in uneven sequencing 

depth across genome  (Sims et al., 2014). However, average GC% in E. coli (50%), and K. 

pneumoniae (56%), and A. baumannii (39%) in our study does not agree with the statement 

above. Abrupt ARG spread across different contigs can result in low coverage in some isolates 

which is responsible for discordance between ARGs detection and phenotype (Clausen et al., 

2016). In agreement to this finding, nine E. coli and K. pneumoniae isolates with low coverage 

(1X) displayed phenotypic resistance without corresponding resistance genes in our study 

(Figure 17).  

5.2 De novo Assembly 

Regarding contiguity, 12, 18, and 3 isolates of E. coli, K. pneumoniae, and A. baumannii had 

more than 500 contigs (Figure 19 and see supplementary file 4). De Bruijn graphing 

techniques like SPAdes specifically look for the exact features that repetitive elements create 

within a graph such as convergent, divergent or cyclic paths (Ricker et al., 2012), and therefore 

terminate at these repetitive elements to avoid them to be overly compressed in the final 

assembly. Since repeat regions were detected in a few isolates as shown by the high number 

of contigs (see supplementary file 5), this resulted in a more fragmented assembly for these 

isolates. However, resistance genes were found despite the fragmented assemblies in our 

study. 
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5.3 AMR Database Comparison 

CARD, ResFinder, and MEGARes have been in agreement with each other in most of the 

antibiotic resistance gene detection in our study (Figure 13). On all occasions, where CARD 

database detected a resistance gene, ResFinder also did (although only HGT resistance genes, 

thus fewer variants). However, CARD remained on top for the most number of predictions 

(both acquired and mutation- based resistance genes with multiple variants). A similar study, 

related with consolidating and exploring antibiotic resistance genes data resources, has also 

proved that using whole-genome sequences and metagenomic sequencing data, CARD not 

only performed better than the rest of the databases used (ResFinder, Antibiotic Resistance 

Genes Database; ARDB, and Comprehensive β-lactamase Molecular Annotation Resource;  

CBMAR), but it also reported the most number of correct predictions  (Xavier et al., 2016). 

On the other hand, cyclical annotation graphs like the ARO (such as used by CARD) can result 

in falsely inflated counts for the conflation of assignments in sequence classification (Lakin et 

al., 2017) 

 

Apart from MEGARes, no single resource currently enables structured, comprehensive and 

statistically appropriate analysis of metagenomics data for all types of antimicrobial 

compounds, including biocides and metals (McArthur and Tsang, 2017). However, the main 

focus of MEGARes is not to be an alternative choice for CARD and ResFinder users, but  be 

available as a foundation for the development of resistome-centered analytical methods, such 

as sequence classifiers and hierarchical statistical models. However, MEGARes focuses on 

previously published sequences, rather than newly discovered variants (Lakin et al., 2017). In 

our study, MEGARes was in agreement with CARD in the detection of all the genes with the 

exception of CTX-M and dfr. Another study compared ARG-miner and MEGARes with 

CARD, and these databases didn’t accurately detect all mutants that were detected by CARD, 

suggesting CARD is better suited for detecting chromosomal mutations compared to other 

available databases. Moreover, due to different nomenclature strategies, some discrepancies 

have been noted in ARG annotation whith MEGARes as compared to CARD, where just the 

name of the gene appeared and not the variant number (Lal Gupta et al., 2020).  

 

Although AMRFinder did not detect any β-lactamase resistance gene, and detected only three 

non-β-lactamase antibiotic resistance genes (aminoglycoside, tetracycline, chloramphenicol), 

it was in agreement with CARD, ResFinder, and MEGARes. In this regard, it is important to 
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note that AMRFinder does not attempt to assert the effects of detected proteins found to have 

a clinical resistance phenotype too, as the factors responsible for the expression of those 

proteins are outside the current coverage of AMRFinder (Feldgarden et al., 2019b). Moreover, 

gene symbol output disagreement (8.8%) was also noted between 2017 version of ResFinder 

and AMRFinder.  Since HMM and BLAST-based approaches are used by AMRFinder and 

ResFinder, both approaches need to be synchronized to minimize inconsistent outputs due to 

algorithmic differences (Feldgarden et al., 2019a).  However, HMM approaches may have 

poor specificity, producing high number of false positive predictions and sometimes may not 

be able to distinguish between ARGs with closely related functions (Lal Gupta et al., 2020). 

5.4 Phenotypic-Genotypic Relationship  

In our study,  E. coli isolates showed 56% cumulative resistance to three β-lactam antibiotics 

(ampicillin and cefotaxime, ceftazidime), followed by trimethoprim (22%), and 

fluoroquinolone (14%), while resistance to aminoglycosides, and chloramphenicol was low 

(7%, 2% respectively) ( 

Figure 7). This β-lactam antibiotic resistance phenotype is complemented by isolates having 

β-lactamase genes; ampC (93%), TEM (38%), SHV (5%), OXA (7%),VIM (2%), and CTX-

M (3%) in E. coli (Table 5 and Figure 12). Low percentage (9%) of E. coli isolates being 

resistant to gentamicin in our study is in contrast to a study where 69% (total 44 isolates) of 

ESBL producing E. coli bacteria were resistant to gentamicin  (Ojdana et al., 2018). However, 

it complies with the finding in Norway where the gentamicin non- susceptibility among the E. 

coli (109 isolates) was 4% in the isolates collected in 2009 (Lindemann et al., 2012). One 

explanation of low resistance to gentamicin in our study can be the clinical use of 

aminoglycosides below 10% of sales (total 5,450 kg) of antibiotics since 2016 in Norway 

(NORM/NORM-VET, 2016). Trimethoprim resistance rate in E. coli isolates (22%) in our 

study was comparable to 14.1% in ECO.SENS study (Kahlmeter, 2003), and 18-26% E. coli 

isolates from human clinical samples in Lithuania (Šeputienė et al., 2010).  

 

In K. pneumoniae, β-lactam antibiotic resistance was mainly towards ampicillin (98%), 

ceftazidime (13%), and cefotaxime (11%), as compared to non β-lactam antibiotics;  

trimethoprim (16%), tigecycline (11%), ciprofloxacin and gentamicin (9% each). K. 

pneumoniae isolates being resistant to gentamicin (9%) in this study are similar to the 5% (11 

isolates) in the west Norwegian K. pneumoniae isolates (Ambaye et al., 1997).  
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High percentage of phenotypic ampicillin resistance was shown in our study (E. coli 41% and 

K. pneumoniae 91%). Similar results were found in a study, where E. coli isolated from 

outpatient population (urine samples) in Bosnia and Herzegovina showed the highest 

antimicrobial resistance to ampicillin (82.79%) (Vranic and Uzunovic, 2016). Moreover, 

100% ampicillin resistant isolates of both E. coli and K. pneumoniae (urine) were obtained in 

another study from India, where E. coli and K. pneumoniae comprised 60% and 15% of total 

20 identified microorganisms (Agarwal et al., 2015). One reason of such high ampicillin 

resistance could be the high rate of penicillin (both β-lactamase sensitive and extended-

spectrum) prescription as human medicine in Norway (NORM/NORM-VET, 2016).  

 

Multi Drug Resistance (MDR) means the ability of the microorganism to resist at least one 

drug from three different antimicrobial classes (Magiorakos et al., 2012). In our study, E. coli 

was found to have MDR in 5 isolates (9%). The resistance patterns was towards three (isolate 

105, 124, 138, 112) and four (isolate 121) antibiotics. This is in contrast to many other studies, 

for example a higher percent (33.2%) of E. coli isolates were reported to be MDR in another 

study in North-western Libya (Abujnah et al., 2015).  

 

In ten isolates (24%) of K. pneumoniae, MDR phenotype was expressed with the resistance to 

three (215, 217, 225), four (220, 226), five (216), and six (211, 212, 213, 240) antibiotics 

respectively. In a similar study, higher percentage of MDR resistant K. pneumoniae (46% of 

116 isolates) was observed (Moini et al., 2015). Moreover, presence of complimentary β-

lactamase resistance genes (ampC, SHV, TEM, OXA, LEN, OKP, CTXM) supports the high 

β-lactam antibiotic resistance found in K. pneumoniae, where SHV and TEM together were 

represented by 86% of the isolates, making them the dominant β-lactamases antibiotic 

resistance genes in K. pneumoniae (Table 5 andFigure 12).  

 

Like E. coli and K. pneumoniae, A. baumannii  also displayed MDR; ciprofloxacin, 

gentamicin, and meropenem in 10 isolates (91%). Similar finding was observed in a study 

where 78 (80%) out of 97 A. baumannii clinical isolates were resistant to three or more classes 

of antimicrobial compounds, and thus considered MDR (Taitt et al., 2014). The most common 

mechanism responsible for carbapenem resistance in A. baumannii is mediated by the acquired 

oxacillinases OXA-23-like, OXA-24-like, OXA-58-like, OXA-143-like and OXA-235. 

Metallo-βlactamases, such as VIM have only rarely been found in A. baumannii (Krizova et 

al., 2012). In this regard, we found OXA-23 in nine A. baumanii isolates (302, 303, 304, 306, 
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307, 308, 309, 310, 311), OXA-24 in one (305), OXA-58 in one (301), while OXA-235 along 

with VIM enzyme was not found in any of the isolates. 

 

In our study, isolates with resistance phenotypes with no AMR genes were identified, as were 

the isolates with susceptible phenotypes that carried resistance genes (Table 5). The resistance 

phenotypes without the corresponding genes included ciprofloxacin (E. coli: 8, K. 

pneumoniae: 2 ), trimethoprim (E. coli: 4, K. pneumoniae: 4 ), chloramphenicol (E. coli: 2, K. 

pneumoniae: 5), gentamicin (E. coli: 2), and ciprofloxacin in all eleven A. baumannii isolates. 

So was the case with another study, where every antimicrobial outcome had some isolates with 

a resistant phenotype, but no genetic explanation (Rosengren et al., 2009). On the other hand, 

the susceptible phenotypes with AMR genes in E. coli included β-lactamase (ampC in 32 

isolates, TEM in 4 isolates, and OXA in 1 isolate), gentamicin (aac/aph in10 isolates), 

tetracycline (tet in 9 isolates), fluoroquinolone (qnr in 2 isolates), and phenicol (cat in 2 

isolates).  

 

In K. pneumoniae, the susceptible phenotypes with AMR genes were aminoglycosides 

(aac/aph in 5 isolates), fluoroquinolone and βlactam (qnr and LEN in one isolate each), and 

tetracycline (Nordmann et al.) and phenicol (cat/Cml/floR) in 2 isolates each.  

 

In case of A. baumannii, tetracycline, aminoglycosides and phenicol related susceptibilities 

were found with AMR genes (tet, aph, and cat/Cml/floR genes in six, one and three isolates).  

 

Another study, where E. coli genotypic resistance was compared with phenotype (Do 

Nascimento et al., 2017), reported discrepancies mainly referring to phenotypically-

susceptible isolates harbouring a resistance gene. This evident contradiction of susceptible 

isolates carrying resistance genes can be because of unexpressed resistance genes, if they are 

far from or associated with a weak promoter in an integron. Similarly, the free gene cassettes, 

which are not a part of an integron are silent because the integron’s promoter is required for 

expression (Carattoli, 2001). Alternatively, isolates could be wrongly represented as 

susceptible, if the MIC breakpoint is higher than the resistance communicated by the gene 

(Boerlin et al., 2005).  

 

Three different enzymes, CTX-M-15, -16, -19 and, recently, CTX-M-27 have been reported 

to be linked with ceftazidime hydrolysis (Bonnet et al., 2001). This is in agreement with our 
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finding where three K. pneumoniae isolates (213, 216, 220) had CTX-M gene as well as 

phenotypic resistance to ceftazidime. 

 

ESBL harbouring K. pneumoniae isolates have been found to be resistant to other antibiotics, 

especially, fluroquinolones (Lautenbach et al., 2001) In a study done by Tumbarello et al., in 

Italy, 32% of ESBL producing isolates of K. pneumoniae were resistant to ciprofloxacin 

(Tumbarello et al., 2006). Considering our bacterial samples as pathogenic, at all the occasions 

where ciprofloxacin resistance was present  (Table 5), it co-existed with phenotypic β-lactam 

antibiotics resistance (E. coli: 4, K. pneumoniae: 4, A. baumannii:11 isolates). 

 

Another aspect to consider is the co-existence of carbapenem and aminoglycoside resistance 

phenotype in 91% of A. baumannii isolates in our study ( 

Figure 7), which is confirmed by another study done on multidrug-resistant clinical isolates of 

A. baumannii from Krakow, Poland, where genes conferring resistance to carbapenems and 

aminoglycosides coexisted in 44.3% (61 isolates) clinical strains of A. baumannii (Nowak et 

al., 2014). 

 

Seventeen SHV variants are exclusively found in clinical K. pneumoniae: blaSHV-6, blaSHV-

13, blaSHV-16, blaSHV-18, blaSHV-23, blaSHV-45, blaSHV-64, blaSHV-66, blaSHV-86, 

blaSHV-90, blaSHV-91, blaSHV-98, blaSHV-99, blaSHV-100, blaSHV−104, blaSHV-105, 

and blaSHV-134 (Liakopoulos et al., 2016). These variants are mostly associated with 

plasmids. All these variants were found in our data also (supplementary file 1). A variant 

blaSHV-27 has been detected on different plasmids in E. coli and K. pneumoniae (Corkill et 

al., 2001). In our study, four E. coli isolates, and 26 K. pneumoniae isolates had SHV-27 along 

with plasmids except for two isolates (212, 219). As SHV-27 confers resistance to cefotaxime, 

ceftazidime and aztreonam (Corkill et al., 2001), six K. pneumoniae isolates (211, 212, 213, 

216, 220, 240) from our study had SHV-27 and exhibited resistance to either cefotaxime or 

ceftazidime, or both simultaneously (Table 5). SHV-12 has been reported as the most 

prevalent enzyme within SHV family all over the world in K. pneumoniae and in E. coli from 

community patients (Valverde et al., 2004). In agreement to the statement above, we found 

SHV-12 in isolates of of E. coli (2) and K. pneumoniae (29) respectively (Supplementary file 

1).  
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TEM-1 is the most commonly encountered β-lactamase in gram-negative bacteria. Up to 90% 

of ampicillin resistance in E. coli is due to the production of TEM-1 (Livermore, 1995). 

Regarding TEM-1 in our study, there isolates of E. coli (21), K. pneumoniae (9), and A. 

baumannii (https://www.454.com/.) with the variant (supplementary file 1). TEM-3 and TEM-

4 also seem to be widespread, and to be associated with different clones of  K. pneumoniae in 

ICUs (Asensio et al., 2000). TEM-52  is also widespread in Europe, and is associated with E. 

coli from urinary tract infections (Caccamo et al., 2006). It was also seen in our study that 

TEM-3 and TEM-52 was represented by isolates of E. coli (20), K. pneumoniae (8), and A. 

baumannii (https://www.454.com/.) respectively.  

 

CTX-M-15 prevalence has been increasing all over Europe (Livermore et al., 2007). 

Moreover, we found CTX-M-15 only in four K. pneumoniae isolates (215, 216, 220, 213) 

(Table 5). International spread of blaCTX-M-15 seems to be linked with IncFII plasmids 

(Lavollay et al., 2006), and we observed the presence of both of them together on two 

occasions in our study (213, 216) although not on common nodes. Similarly, blaCTX-M-32, 

which has association with IncN plasmids (Cottell et al., 2013), was present in three isolates 

(213, 216, 220), but its presence with IncN plasmids was not seen.  Another variant blaCTX-

M-9, which is associated with IncHI2 (Novais et al., 2006), was present in two isolates (146, 

147)  along IncHI2 plasmid. blaCTX-M-1 is the most often identified gene on IncI plasmid 

(Rozwandowicz et al., 2018), but it was not found in any of the isolates in our study.  

5.5 Plasmid mediated Resistance 

Overall, the presence of the different types of plasmid Col and IncFIB in the isolates which 

expressed phenotypic resistance to β-lactam antibiotics (33 and 39 isolates) (ampicillin, 

cefotaxime, ceftazidime, meropenem) and trimethoprim (14 and 15 isolates) was observed 

(Table 5). Moreover,  IncFII (different types) were also found in the isolates that expressed 

phenotypic resistance to β- lactam antibiotics (30 isolates). 

 

The most frequently described resistance genes on IncF plasmids are related to 

carbapenemases, aminoglycoside and plasmid-mediated quinolone resistance (PMQR) genes 

(Rozwandowicz et al., 2018). In our study, in all the isolates, where aac/aph and qnr resistance 

genes were present in E.coli and K. pneumoniae, IncF (different types) plasmids were also 
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present, while regarding carbapenemases, it was not observed in A. baumannii isolates, which 

could be due to the low instances of carbapenamases in Norway. 

 

In silico detection using PlasmidFinder and ResFinder on WGS data explores the opportunity 

to associate replicons with antimicrobial resistance genes on the same DNA fragment because 

the exact position of genes and the plasmids is available in these tools.  However,  uncertainty 

prevails in deciding whether genetic elements, which have been identified on different contigs, 

are located on the same plasmid too (Carattoli et al., 2014). Our plasmid detection results had 

only a few instances (E.coli: 11, K. pneumoniae: 1), where the resistance genes and the 

plasmids actually shared the same contig (Table 6 and Figure 15). Moreover, the plasmids 

detected by PLSDB and Brooks et.al were numerous in number and types (80-90 thousand 

hits per isolate before filtering). However, regardless of employed algorithm for plasmid 

detection and identification, there were multiple plasmids found on the same contig that made 

the selection of one confirmed plasmid difficult. This problem can be explained with the fact 

that if the plasmids are sequenced along the rest of the genome, they can rarely be completely 

assembled from Illumina reads, making it difficult to separate the contigs of the plasmids from 

the rest of the genome (Page et al., 2018a). A helpful thing in this regard was to use mlPlasmids 

to confirm the plasmid containing contigs with plasmid databases used (supplementary file 7).  

 

Usually, if the same contig or set of contigs match several plasmids, we can select the plasmid 

that matches over the greatest length of the plasmid with the highest sequence identity (Hall, 

2018). In our case however, the several plasmids with the same assigned contig had identical 

matched plasmid length and identity, which lowered the certainty in identifying plasmids. 

Otherwise, the resistance genes can actually be present on the chromosome and not on the 

plasmid. These two factors contributed to low number of isolates with plasmid mediated 

resistance. 

 

WGS based in silico analysis of resistance genes and their plasmid context is performed in a 

unified way on a large number of isolates (Carrër et al., 2010). However, Plasmid detection 

from WGS can be challenging to understand considering the presence of multiple plasmids or 

a single plasmid containing multiple replicons (Johnson et al., 2007).  
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6. Conclusion  

In conclusion, detected ESBLs and their resistance specific variants confirm the importance 

of selected pathogens in the spread of antimicrobial resistance in Norway. TEM, SHV, and 

OXA remain the most dominant ESBLs in our study. A total of 63 isolates (57%) had 

concordance between antibiotic resistance phenotype and corresponding resistance genes (to 

keep the analysis brief, only CARD  detected genes were taken), which explains how well 

curated databases ensure a high concordance between phenotype and genotype resistance. 

CARD, ResFinder, and MEGARes performance in resistance gene detection was in agreement 

with each other, and thus reliable. There is however, a significant need for standardization of 

pipelines and databases as well as phenotypic predictions based on the genomic data. 

 

IncFIB, IncFII, and Col remain the dominant types of incompatibility groups of plasmids in 

Enterobacteriaceae isolates. PlasmidFinder was not only more accurate in plasmid detection 

than PLSDB and Brooks et al database, but it also predicted most number of plasmids that 

were hosting antibiotic resistance genes. This happened due to the noise created by huge 

number of hits and the presence of multiple plasmids on the same contig in PLSDB and Brooks 

et al database. Since such contigs were excluded from the plasmid detection analysis, it 

impacted their plasmid mediated resistance analysis.   

 

Important conclusion is that Norway has low level of resistance based on the AMR genes and 

AST data, which is good for the health care in Norway. This could also be attributed to the 

regulations and guidelines for antibiotic use in Norway.  

 

The wide adoption of WGS  has proved to be useful in describing AMR genes and plasmids 

in priority pathogens; E.coli, K. pneumoniae, and A. baumannii in Noway. 
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7. Future Prospects 

In future studies, choice of  hybrid assemblies with the inclusion of non-Norwegian isolates 

can be explored to detect the plasmids with high, comparable certainty in less fragmented 

assemblies. The predicted resistance determinants and the related risks for human health using 

WGS technology should play an important part in future risk assessment policies to combat 

AMR spread in Norway.  

 

This study can be extended to investigate the resistance mechanisms used by antimicrobial 

determinants to identify the correct antibiotic treatment. Moreover, molecular extraction of 

plasmids followed by sequencing can also be tried in order to see if the in silico plasmid 

prediction improves 
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9. Appendix 

9.1 Appendix A 

 
 

Figure 16:  Range of sequencing depth distribution among the isolates (n=111) 
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9.2 Appendix B 

 

 

 

 

Figure 17 : Graphical Representation of the effect of sequencing depth on the genotype resistance 

detection of the isolates. The red colored dots represent the isolates with  phenotypic resistance without 
any resistance genes. Two E. coli  and ten K. pneumoniae isolates displayed phenotypic resistance 

without corresponding resistance genes. All these isolates had sequencing depth between 1X- 16X. 
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9.3 Appendix C 

 
(Note for supplementary file 5) 

 
Genome annotation with Prokka Genome size of isolates (142, 233, 112, 119 , 131, 

150, 105, 140, 234, 222, 236, 230, 231, 235, , 200, 215, 223, 232) fell into either 

below 2 Mbp or above 6 Mbp (156, 157, 141, 136,  220, 225, 241, 243, 307, 302, 
304). A few isolates had genes below 2000 (142, 112, 119, 131, 105, 150, 233, 142, 

234, 236, 222, 230, 231, 235, 200, 215, 223) or above 6000 (141, 136, 157, 204, 225, 

220, 243, 304).  

 

 

 

Figure 18: Prokka statistics for general features of E. coli, K. pneumoniae, and Acinetobacter genome.  
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9.4 Appendix D 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Number of contigs from SPAdes assembly assessment by Quast 
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9.5 Appendix E 

Table 8: Concordance between phenotype and genotype for predictions made using a database of 
resistance determinants and the plasmids. Red color coded genes and antibiotics have concordance.  
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9.6 Supplementary Files 

 

1. S1- Gene variants and nodes CARD/ResFinder 

Description: Gene variants along with nodes, gene length and identity from CARD 

and ResFinder. Details of MEGARes AMRFinder and Prokka are also included. 

 

2. S2- Plasmid detection in silico 

Description: Includes WGS for PlasmidFinder detection and PlasFlow segregated 

WGS probed by Brooks et al and PLSDB for plasmids 

 

3. S3- Plasmidspades assemblies for plasmid detection 

Description: WGS assembled with PlasmidSPAdes and probed through PLSDB, 

Brooks et al and PlasmidFInder 

 

4. S4- Quast statistics for SPAdes assemblies 

Description: SPAdes assemblies evaluated with QUAST for assembly quality 

 

5. S5- Prokka stats supplementary file 

Description: Genomic feature annotation with Prokka 

 

6. S6- Sequencing coverage  

Description: Sequencing coverage for all the isolates 

 

7. S7- mlplasmid predictions 

Description: Plasmid contig prediction through probability value  

8. S8-AMR database 18 Sep 2020 comparison 

Description: Describes AMR database performance evaluation for AMR deection 

9. S9- AMR database comparison supplementary file 

Description: CARD, ResFinder, MEGARes, AMRFinder, Prokka comparison 

10. S10- Trimming data 

Description: Input reads and surviving reads comparison 

11. S11- After trimming sequence quality 

Description: FASTQC  
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