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Abstract. Determining the spatial distribution of large herbivores is a key challenge in ecology and

management. However, our ability to accurately predict this is often hampered by inadequate data on

available forage and structural cover. Airborne laser scanning (ALS) can give direct and detailed

measurements of vegetation structure. We assessed the effectiveness of ALS data to predict (1) the distribution

of browse forage resources and (2) moose (Alces alces) habitat selection in southern Norway. Using ground

reference data from 153 sampled forest stands, we predicted available browse biomass with predictor

variables from ALS and/or forest inventory. Browse models based on both ALS and forest inventory variables

performed better than either alone. Dominant tree species and development class of the forest stand remained

important predictor variables and were not replaced by the ALS variables. The increased explanatory power

from including ALS came from detection of canopy cover (negatively correlated with forage biomass) and

understory density (positively correlated with forage biomass). Improved forage estimates resulted in

improved predictive ability of moose resource selection functions (RSFs) at the landscape scale, but not at the

home range scale. However, when also including ALS cover variables (understory cover density and canopy

cover density) directly into the RSFs, we obtained the highest predictive ability, at both the landscape and

home range scales. Generally, moose selected for high browse biomass, low amount of understory vegetation

and for low or intermediate canopy cover depending on the time of day, season and scale of analyses. The

auxiliary information on vegetation structure from ALS improved the prediction of browse moderately, but

greatly improved the analysis of habitat selection, as it captured important functional gradients in the habitat

apart from forage. We conclude that ALS is an effective and valuable tool for wildlife managers and ecologists

to estimate the distribution of large herbivores.
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INTRODUCTION

Among ungulates, density-dependent food
limitation is a main limiting factor in population
dynamics (Bonenfant et al. 2009). Forage quality
and quantity are therefore important determi-
nants of foraging and habitat selection patterns of
large herbivores (Fryxell 1991, Hanley 1997).
Despite the strong influence of food resources on
both habitat selection and population dynamics,
quantification of food availability at large spatial
scales remains challenging. Most studies rely on
environmental proxies of forage availability and
cover, such as NDVI (Mueller et al. 2008), land
cover classes (Uzal et al. 2013), or forest stand
characteristics like productivity (Godvik et al.
2009), dominant tree species (Dussault et al.
2005a) and age class (Mabille et al. 2012). Often,
such proxies are used without quantifying levels
of food and cover, though exceptions occur (van
Beest et al. 2010b, Avgar et al. 2013, Blix et al.
2014). It is well known that the physical structure
of the habitat is also important for habitat
selection as cover is used for concealment and
thermal shelter (Mysterud and Østbye 1999,
DePerno et al. 2003).

Scale matters greatly in the study of ecological
phenomena (Wiens 1989). Habitat selection
patterns often differ between scales, reflecting
processes and behavioral decisions operating at
different scales (Boyce et al. 2003, DeCesare et al.
2012). The scale of the study should reflect the
question at hand. The concept of scale involves
both extent of the study area, the resolution of the
data, and in some cases, the range over which the
environmental context is considered (De Knegt et
al. 2011). In wildlife management, important
questions on a broad scale include identifying a
population’s seasonal range use or what land-
scape elements are important within an animal’s
home range. GPS tracking collars for wildlife
have enabled researchers to collect large quanti-
ties of precise location data covering large areas.
On the other hand, environmental data covering
the same broad scales often have low resolution
and precision (such as GIS-based land use
classes). This discrepancy frequently results in
poor predictive ability of habitat selection models
(Loe et al. 2012). New methods for monitoring
forage resources and physical habitat structure
with fine resolution at broad scales are therefore

of considerable interest for both basic and
applied ecological research.

Airborne laser scanning (ALS) is a promising
remote sensing technique for obtaining habitat
information across large spatial scales. Besides
providing detailed elevation models, these data
hold three-dimensional information on the dis-
tribution of vegetation biomass. Forest parame-
ters such as timber volume and stem density can
be estimated with high precision, and these
procedures have been operational in the Scandi-
navian countries for more than ten years
(Holmgren 2004, Næsset 2004). ALS data are
also increasingly applied in large-scale ecosystem
studies (Lefsky et al. 2002), to estimate carbon
storage (Stephens et al. 2007), biodiversity
(Müller and Vierling 2014), to map standing
dead wood (Pesonen et al. 2008) and to model
habitat for various wildlife species (Hill et al.
2014), including birds (Hinsley et al. 2002) and
ungulates (Coops et al. 2010, Melin et al. 2013,
Lone et al. 2014). In these studies, laser data have
been used directly to interpret the physical
structure of the habitat relevant to each species
or species assemblages. Despite the fundamental
importance of forage and cover in understanding
animal ecology, there has been no formal analysis
linking structural information of habitat to forage
resources, and few relating ALS derived cover
variables to habitat selection (Graf et al. 2009,
Melin et al. 2014).

The aim of this study was twofold: (1) to
evaluate the use of ALS data in quantifying and
predicting biomass of browse species common in
the diet of Norwegian moose (Alces alces), and (2)
to determine whether ALS-derived measures of
forage and physical habitat structure (cover) are
effective in predicting habitat selection of moose
at multiple spatial and temporal scales. Moose in
Scandinavia are partially migratory and typically
migrate from high elevation summer habitats to
low elevation winter habitats that have high
availability of browse (commonly young pine
stands) and more favorable snow conditions
(Ball et al. 2001, Nikula et al. 2004). Moose
habitat selection is related to forage availability
and cover, both at the landscape and home-range
scales (Dussault et al. 2005b, Månsson et al. 2007,
Herfindal et al. 2009, van Beest et al. 2010b). At a
landscape scale, moose select home ranges with
large volumes of biomass, while they tend to
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select for forage quality within home ranges (van
Beest et al. 2010b). The moose represents an ideal
model species to test the applicability of ALS
because its food (mainly browse) is found in the
bush and tree strata (Mysterud 2000), which can
potentially be quantified with ALS data. Here,
we build upon the study by van Beest et al.
(2010b), in which forage distribution was mod-
eled using forest stand-based inventory and
terrain data. Using that dataset in combination
with existing ALS data, we tested whether the
predictive forage models were improved by
including ALS-derived variables, and whether
ALS data could predict browse biomass well on
its own. Finally, we evaluated the usefulness of
the spatial predictions of browse biomass and
selected ALS variables in resource selection
functions (RSFs) for GPS-marked moose in
southern Norway.

METHODS

Study area and the study species
The study was conducted in an 1100-km2 area

within Telemark and Vestfold counties in south-
ern Norway (Appendix: Fig. A1). The area is
within the southern boreal to boreonemoral
zones. Land cover is dominated by commercially
managed forests of Norway spruce (Picea abies)
and Scots pine (Pinus sylvestris). Some mixed
deciduous stands of birch species (Betula pubes-
cens and B. pendula), rowan (Sorbus aucuparia),
willow (Salix spp.) and aspen (Populus tremula)
occur throughout the area. The mean monthly
temperatures in June and January are 15 and
�58C, respectively (Siljan weather station at 100
m above sea level [asl], The Norwegian Meteo-
rological Institute; http:// www.met.no). Snow
depths (mean 6 SD) at a 430 m asl location
during January–April 2007 and 2008 were 42 6

29 cm and 73 6 21 cm (Mykle weather station,
The Norwegian Meteorological Institute). Moose
densities in the area were estimated at 1.3
individuals/km2 (Milner et al. 2012), but per
capita available browse is low relative to its peak
in the 1960s (Milner et al. 2013).

Field measured browse biomass
Field estimates of browse forage biomass were

made for six tree species: pine, silver birch,
downy birch, rowan, aspen, and goat willow

(Salix caprea). These species represent the most
preferred species and, together with the erica-
ceous shrub bilberry (Vaccinium myrtillus), the
bulk of what moose feed on in both summer and
winter. In the original field-study 189 forest
stands were sampled using a random stratified
sampling design (van Beest et al. 2010b). Because
the ALS data did not cover the entire original
study area, data from only 153 forest stands were
used here, but these were well spread among the
originally chosen strata: development class (5
class factor: 1 ¼ forest under regeneration, 2 ¼
regenerated areas and young forest, 3 ¼ young
thinning stands, 4 ¼ advanced thinning stands,
and 5 ¼mature forest), dominant tree species (3
class factor: Scots pine, Norway spruce and
mixed deciduous), and aspect (4 class factor:
north, east, south and west). Each forest stand
was sampled with five 50-m2 circular subplots,
and the center coordinates of the central subplot
were recorded with a handheld GPS obtaining an
average location over 10 min or more. Based on
experience from GPS measurements of almost
1000 plots in similar forest areas we expect a
mean location error from the true position of less
than 3.5 m with a standard deviation of less than
3 m (O. M. Bollandsås, E. Næsset, and T.
Gobakken, unpublished data). The four remaining
subplots were placed 25 m away from the center
subplot in each of the four cardinal directions,
and were at least 15 m from the edge of the forest
stand. Within each subplot, the canopy volume
and stem diameter of individual trees of the
target species were measured in order to predict
the leaf (summer) or twig (winter) biomass
accessible to moose (,3.0 m height, and account-
ing for snow cover in winter) using allometric
models. The R2 of the allometric models of
available browse ranged from 0.63 to 0.92 (see
van Beest et al. 2010b for more details on the
allometric models). Rowan, aspen and willows
are high quality but relatively less common
browse species that were considered together as
one category of browse (abbreviated as RAW).
Total forage biomass in winter (twigs) included
all six browse species while summer forage
biomass (leaves) included all species except pine
as moose do not forage on it during summer. The
average biomass of the five 50-m2 subplots was
considered as the ground reference biomass for
2500-m2 circular plots that encompassed the
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subplots (Table 1). We chose to model biomass at
this scale (2500 m2) because it gave the best
spatial match between the ground reference data
and the ALS data, given the georeferencing
inaccuracies of the field data material. There
was considerable variability in the response
variables between subplots within each plot,
and although the between-plot variability was
greater, the subsampling procedure likely intro-
duced some noise in the response variable on the
2500-m2 plot (Table 1).

Forest inventory data
We had access to the stand-based forest

inventory for operational forest management
for a large (40–80%) and fairly contiguous
portion of the forested area in the municipalities
we considered. Maps were available in Geo-
graphic Information System software and includ-
ed information on stand delineations (polygons)
and associated stand-level attributes: dominant
tree species (deciduous, spruce, pine), develop-
ment class (1–5) and h40 site index (SI) of
productivity (defined in Tveite 1977). Productiv-
ity was reclassified as a two-level factor: ‘‘high’’
where SI . 14 and ‘‘low’’ where SI � 14. Field
assessment confirmed that the accuracy of the
maps was high (van Beest et al. 2010a).

ALS data
Laser scanning systems developed for airborne

platforms are used to survey large areas in great
detail. A laser beam with a small footprint is
directed towards the ground in pulses, and
scanned across the landscape perpendicular to
the flight direction. Each flight line thus covers a
strip of land, and the flight pattern can be

planned so each strip overlaps with the next to
give continuous cover over the entire study area,
as in this study. For each laser pulse, the ALS
instrument registers one or more peaks in the
return signal. From the position of the aircraft,
the speed of light and the reflection time of each
registered peak in the return signal, the system
calculates the location where the beam was
reflected from (see Wehr and Lohr 1999 for a
technically detailed description). This yields a
data set of ‘echoes’ from ground, vegetation or
man-made structures with accurate X, Y, and Z
coordinates, out of which the ground echoes are
classified by standard algorithms (Axelsson
2000). Commercial providers of laser data would
normally process the data to this stage where
they are accessible to researchers in a specialized
GIS environment, but do not require expertise in
geomatics.

The laser data were collected for other pur-
poses and as four separate projects in the period
2008–2010 (Appendix: Table A1). Project param-
eters were similar for the three projects with
relatively low pulse density (1–2 m�2), while the
fourth had a higher pulse density (12 m�2) due to
a lower flying altitude, smaller scan angle, and
higher pulse frequency than the other three
projects. As the higher quality data in one region
could potentially have affected results, we tested
this possibility in the final models and found that
none were significantly improved by including
interactions between the ALS variables and
region/laser project. Each project was delivered
from the contractor as a point cloud with UTM
coordinates and ellipsoidal height, with ground
echoes classified. A triangular irregular network
(TIN) representing the ground surface was made
from the ground echoes and subtracted from the
Z coordinates of the point cloud, to give height
above ground (dz) for each echo. From the
ground surface TIN, we derived a digital terrain
model (DTM) with a 10-m cell size, and used it to
calculate slope, aspect and hill shade. For each
field plot, the corresponding ALS echoes were
extracted from circular plots of 2500 m2 centered
on the ground reference field plots, thus encom-
passing the five subplots. Variables describing
the vertical distribution of the echoes were
calculated for each plot. These were summary
statistics of the height values: the 10th, 20th, 30th,
. . . , 90th percentiles, mean, max, standard

Table 1. Summary statistics for the response variable

browse biomass (g/m2) at the 2500-m2 plot level and

the mean standard deviation (SD) of the five

subplots.

Variable Mean Min Max SD
Within-plot

SD

RAW (winter) 39.0 0 419 71.8 33.9
RAW (summer) 83.6 0 1021 152 62.1
Pine (winter) 157 0 2710 383 168
Total biomass (winter) 331 0 3286 524 311
Total biomass (summer) 158 0 1165 215 104

Note: RAWdenotes a group of high quality browse species:
rowan, aspen and goat willow.
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deviation and coefficient of variation of the
height of echoes with dz . 0.5 m. Additionally,
the proportion of echoes within the height
intervals corresponding to ground, understory
and canopy: 0–0.5 m, 0.5–3.0 m, above 3.0 m
(thus a measure of canopy cover), and, lastly, the
ratio of understory echoes (0.5 m , dz � 2.0 m)
to understory and ground echoes (dz � 2.0 m) (a
measure of understory cover). Wing et al. (2012)
also utilized echo intensity to distinguish ground
and vegetation echoes, but as we lacked calibrat-
ed intensity measures our definition of understo-
ry cover relied solely on echo height. Many of the
ALS variables are correlated, and to aid model
interpretation, we pre-screened them to avoid
cross-correlation (r . 0.5), retaining the function-
ally most meaningful variables: canopy cover,
understory cover, 90th percentile of height (h90)
and coefficient of variation of height (hcv). A
single pulse can give several echoes, and we used
all echoes in the calculation of the variables in
order to use all the information and because
initial analyses showed better results than split-
ting into first and last echoes. Terrain variables
were extracted from the cell that each plot center
fell in.

Browse biomass models
We developed models for summer and winter

biomass of RAW, winter biomass of pine, and
total summer biomass and total winter biomass
separately. To fulfill the assumption of homoge-
neity of the variance, we used log-linear regres-
sions to model the available forage biomass. We
used three sets of predictor variables, inventory
variables alone, inventory and ALS variables
together, and ALS variables alone. Terrain
variables (elevation, slope, aspect and hill shade)
were always included as topography influences
growing conditions (Gartlan et al. 1986). We
allowed for an interaction between h90 and
canopy cover. Understory cover was log-trans-
formed. For each of the three sets of candidate
predictor variables, we identified the best model
by backwards selection using F-tests with cutoff
p¼ 0.05 (Murtaugh 2009). We assessed predictive
performance using K-fold cross-validation with
five folds, fitting the model to 80% of the data
and using it to predict observations for the
remaining 20%. From this, we determined the
variation explained by the model using squared

Pearson’s correlation coefficient between log-
transformed responses and predictions on log
scale. We assessed prediction accuracy by calcu-
lating the root-mean-square prediction error
(RMSPE) for predictions, both on the log scale
and back-transformed. We extrapolated our
results to map total available moose forage in
winter and summer across the study area. A grid
with 50 m3 50 m cells was superimposed on the
ALS point cloud and for each cell we calculated
the variables describing the vertical distribution
of echoes using the same definitions as for the
field plots. The resulting ALS raster maps were
used together with the rasterized forest inventory
variables to predict, cell by cell, the available
browse biomass according to the final models for
total winter biomass and total summer biomass.
We applied the bias-correction factor of Snowdon
(1991) to all predictions: after back-transforma-
tion from the log scale, they were multiplied by
the ratio of the average value of response
variables on the original scale to the average
value of the predicted values after back-transfor-
mation. All analyses were done in R 2.14.1 (R
Development Core Team 2011).

Moose data
In total 34 adult female moose were tranquil-

ized by dart gun from a helicopter, using
established techniques (Arnemo et al. 2003),
and fitted with GPS collars (Tellus Remote
GSM, Followit AB, Lindesberg, Sweden) pro-
grammed with a 1 hour relocation schedule. All
animal handling was carried out with permission
from the national management authority, the
Directorate for Nature Management (protocol
number: FOTS ID 1428), and evaluated and
approved in accordance with the ethical guide-
lines and legal requirements set by the Norwe-
gian Institute for Nature Research. Collar data
were collected from January to November 2007
(n¼16) and 2008 (n¼18) but the sample size was
reduced to 31 individuals during winter and to
20 individuals during summer due to collar
malfunctions and exclusion of individuals with
seasonal space use outside the area of ALS
coverage. All GPS locations collected within 24
h of marking were excluded. Winter length was
defined based on snow conditions (period with
�30 cm snow depth). In 2007 winter stretched
from 21 January until 8 April and in 2008 from 4
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January until 30 April. We defined summer as 1
June until 15 September for both years, and
excluded spring and autumn positions altogeth-
er. The average GPS-collar fix rate was 96%
(range 87–99%) during winter and 90% (range
83–97%) during summer. To correct for possible
bias in GPS fix success prior to analyzing habitat
selection, we simulated the missing GPS posi-
tions weighting by the terrain-specific probability
of obtaining a fix (Frair et al. 2004, van Beest et al.
2010b).

Moose habitat selection analysis
To evaluate how effectively the forage maps

and ALS information quantified habitat selection
of moose, we used RSFs and followed procedures
in van Beest et al. (2010b) as closely as possible.
RSFs are defined as any function proportional to
the probability of use of a resource unit by an
animal (Manly et al. 2002). We computed RSFs
for both summer and winter seasons and for two
spatial scales commonly investigated in basic and
applied ecology: where in the landscape seasonal
home ranges are located and where within
seasonal home ranges the animals spend time,
i.e., second and third selection order of Johnson
(1980). As such, habitat availability at the within
home range scale was estimated by drawing a
random sample of point locations from within
each individual’s wintering and summer home

range (delineated by a 95% minimum convex
polygon). Available points were selected in equal
number to the used points for each individual. At
the landscape scale, habitat availability was
defined as a random sample of point locations
from within the study area boundaries and we
considered availability at the within home range
scale as used points (Aebischer et al. 1993). For
each spatiotemporal scale, we compared six
candidate RSFs (Table 2) that had forest inven-
tory data, predicted forage availability, ALS
estimates of canopy and understory cover, or
some combination of these as predictor variables.
The resource (predictor variable) value at a used
or available point location was extracted from the
2500-m2 cell of the resource map that the point
fell within. A preliminary analysis showed a non-
linear relationship with selection so we included
a second order effect of canopy cover. At the
home range scale we included interactions
between all focal predictor variables and light
condition (dark, daylight, twilight) as moose
activity level depended on light conditions
(highest activity levels during twilight; F. M.
van Beest and J. M. Milner, unpublished data) and
this may be related to resource use. Candidate
models were selected a priori to assess whether
the ALS variables improved the predictive ability
of the RSFs, either directly by quantifying cover,
or through better forage estimates.

Table 2. The candidate moose RSF models compared within each combination of season and scale and the

interpretation of specific inter-model comparisons.

Model
no. Data origin

Focal predictor
variables Evaluation and interpretation

1 Forest inventory maps development class,
dominant species

If best model, ALS information doesn’t contribute
anything new to moose selection models and forest
stand classes capture moose selection better than
simple functional gradients of total forage biomass or
total amount of cover

2 Forage maps (inventory) total forage biomass If best model, ALS information doesn’t contribute
anything new to moose selection models and total
forage biomass is the main driver of selection patterns

3 Forage maps (ALS) total forage biomass If nearly as good as model 2, ALS-only forage maps
capture the wildlife-relevant variation in forage as well
as other forage maps

4 Forage maps (inventory &
ALS)

total forage biomass If better than model 2, ALS-improved forage maps lead
to improved predictions of moose space use

5 ALS variables canopy cover, understory
cover

If best model, ALS vegetation structure variables capture
important habitat variation better than the forage
estimates or the inventory categories, by capturing the
same and/or additional information

6 Forage maps (inventory)
and ALS variables

total forage biomass,
canopy cover,
understory cover

If better than model 4, ALS holds information relevant
to moose habitat selection beyond how it relates to
forage
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Coefficients of the exponential RSFs were
estimated from use–availability data in a
mixed-effects logistic regression (design III data;
Thomas and Taylor 2006) with moose ID as a
random intercept (Gillies et al. 2006). Mixed-
effect logistic regressions were fitted using the
library ‘lme4’ (Bates et al. 2012) implemented in
R (R Development Core Team 2011). For each
spatiotemporal scale, we compared the fit (using
AIC) and predictive performance (with K-fold
validation; Boyce et al. 2002) of the six pre-
defined candidate RSFs. For the K-fold cross-
validation procedure, the model was repeatedly
trained withholding 20% of the used locations
every time. The points withheld for validation
were then predicted using that model and their
RSF scores were binned into ten bins that each
represented an equal area, as calculated from the
available locations. We calculated the Spearman-
rank correlation (rs) between the number of
predicted used points in each bin and the bin
rank from low to high RSF score (Boyce et al.
2002). This procedure was repeated 100 times to
determine whether the rs was significantly
different from random.

RESULTS

Estimating biomass of browse forage
The explanatory power (R2) of the best forage

models for each browse category ranged from
0.35 to 0.58, while the K-fold cross-validated
Pearson r2 ranged from 0.28 to 0.50 (Table 3). All
models tended to over-predict at low biomass
and under-predict at higher biomass, so the
estimated quantity is better interpreted as a
relative rather than an absolute measure of
forage biomass (Appendix: Fig. A2). Models
including ALS variables typically had more
predictor variables. To ensure that the improve-
ment was not only due to the increased com-
plexity of the model, we made our comparison
on the basis of the cross-validation Pearson r2

and RMSPE. The models including both ALS and
inventory variables predicted as well or better
than the inventory-only models. By including
ALS variables, we could explain 7 percentage
points and 6 percentage points more of the
variation in total biomass for winter and sum-
mer, respectively, bringing the explained varia-
tion up to 45% and 28% (Table 3). The prediction

Table 3. Predictive ability of the best browse biomass models using inventory (inv), airborne laser scanning

(ALS), or inventory and ALS data; explained variation (R2), cross-validated explained variation (Pearson r2),

root mean square prediction error normalized to the mean value of the response (RMSPE %), and number of

estimated parameters (k).

Data type R2
Cross-validation�

Pearson r2
Cross-validation�

RMSPE (%)
Cross-validation�

RMSPE (%) k

RAW (winter)
inv 0.32 0.26 65.8 158 7
inv þ ALS 0.37 0.29 64.7 151 10
ALS 0.18 0.15 70.5 175 4

RAW (summer)
inv 0.33 0.28 52.9 159 7
inv þ ALS 0.36 0.29 52.6 158 11
ALS 0.10 0.09 59.2 176 1

Pine (winter)
inv 0.56 0.50 68.7 217 7
inv þ ALS 0.58 0.50 68.3 209 8
ALS 0.23 0.18 87.6 248 4

Total biomass (winter)
inv 0.45 0.38 33.5 145 (145) 8
inv þ ALS 0.52 0.45 31.5 151 (144) 11
ALS 0.30 0.24 37.0 176 (178) 5

Total biomass (summer)
inv 0.30 0.22 32.3 121 8
inv þ ALS 0.35 0.28 30.9 117 9
ALS 0.18 0.13 33.8 134 5

Notes: RAW¼rowan, aspen and goat willow. For total biomass winter the RMSPE of the back-transformed predictions with
one influential point removed is shown in parentheses.

� Calculated with log-transformed responses and predictions on log scale.
� Calculated with untransformed responses and back-transformed predictions.
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of biomass was not improved for pine, while it
was slightly improved for the RAW species.
Models that only used ALS variables had
consistently poorer predictive abilities than either
of the models including inventory variables
(Table 3).

ALS variables were generally included in
addition to the other variables, rather than
outperforming them. In particular, ALS variables
never replaced the inventory variables dominant
tree species and development class, which were
kept in nearly all relevant top models (Table 4).
The important ALS variables were canopy cover,
h90 in interaction with canopy cover, and
understory cover. For total biomass in winter
and summer, increasing ALS measured canopy
cover was negatively correlated with forage
availability (Fig. 1). For total biomass in winter,
the steepness of this slope depended on the
general height of the trees (h90), where taller
trees meant a steeper decline in forage availabil-
ity with canopy cover. An increase in understory
cover was related to an increase in available
forage biomass (Fig. 1). This was the case for all
models where understory cover was included
(Table 4).

The final product of browse modeling was
summer and winter forage maps, based on ALS
and/or inventory data. Fig. 2 shows maps based
on the best models using inventory and ALS data.

Habitat selection of moose
Overall, the best performing RSF models were

those containing ALS variables (models 5 and 6),
both in terms of AIC rank and K-fold validation
(Table 5). Although the RSFs based on the forest
inventory maps only (model 1) often had
relatively low AIC values, the K-fold validation
showed that these models had low predictive
power. The RSFs based on forage maps predicted
only by means of ALS (model 3) were never
ranked as the top-model. Moose selected for a
low or intermediate amount of canopy cover
depending on the time of day, season and spatial
scale of analyses, and typically against (and
never for) understory cover (Fig. 3; Tables A2–
A5). At the landscape scale, moose selected for
low canopy cover both during summer and
winter (Fig. 3A, B). At the home range scale,
moose selected for an intermediate optimum of
canopy cover during daytime (Fig. 3C, D). At
twilight and night, moose selected sites with
lower canopy cover as low canopy cover was
monotonically selected (summer: Fig. 3F, H) or
the optimum was shifted to lower canopy cover
relative to the daytime optimum (winter: Fig.
3E, G). Moose selected for sites with increased
forage biomass in all seasons and times of day at
both the landscape scale and the within home
range scale (all b . 0, all p , 0.05; Appendix:
Tables A2–A5).

Table 4. The best models for predicting available forage biomass by browse category.

Predictor variable

RAW Pine Total biomass

Winter Summer Winter Winter Summer

b SE b SE b SE b SE b SE

(Intercept) 3.30 0.97 3.80 1.1 3.09 0.60 6.32 0.94 6.76 0.65
Dominant tree species�

Pine �1.85 0.34 �2.42 0.40 1.93 0.40 0.31 0.35 �1.27 0.32
Spruce �0.96 0.33 �0.69 0.36 �1.25 0.37 �1.28 0.32 �1.11 0.29

Development class�
2 �0.60 0.37 �0.35 0.41 0.43 0.43 0.85 0.36 0.24 0.33
3 �0.78 0.39 �0.65 0.43 �0.98 0.43 �0.40 0.38 �0.52 0.33
4 0.06 0.39 0.57 0.43 �1.25 0.45 �0.05 0.38 0.26 0.34
5 �0.87 0.39 �0.63 0.43 �1.74 0.46 �1.15 0.38 �1.10 0.34

Productivity§
Low . . . . . . 0.71 0.37 1.24 0.36 0.83 0.33 0.91 0.27

h90 0.18 0.08 0.15 0.083 . . . . . . 0.070 0.073 . . . . . .
Canopy cover 4.82 1.92 2.88 2.3 �2.06 0.83 0.88 2.0 �2.61 0.65
h90:canopy cover �0.40 0.13 �0.31 0.15 . . . . . . �0.26 0.13 . . . . . .
log(understory cover) 0.53 0.19 0.43 0.21 . . . . . . 0.51 0.18 0.32 0.15

Note: RAW¼ rowan, aspen and goat willow.
� Reference level ¼mixed deciduous stands.
� Reference level¼ development class 1.
§ Reference level¼ high productivity.
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DISCUSSION

The lack of broad scale information on forage
and cover availability has often hampered
studies of spatial distribution of large herbivores,
as field-based inventories of forage at large
spatial and temporal scales are extremely costly
and rarely available. Remote sensing techniques
have great potential to fill this void as they can
extract detailed information on biotic or abiotic
environmental conditions relevant to ecological
studies (Pettorelli et al. 2014). Here, we presented
a novel use of ALS data to model browse

availability at the landscape scale in a managed
boreal forest. Incorporating ALS data moderately
improved models predicting browse biomass
compared to models only using inventory map
information. A significant challenge in our study
was to fully exploit the potential of ALS
information to estimate forage due to limitations
in matching laser data to field data. This resulted
in only conservative improvements in predictive
ability. Nonetheless, ALS is a promising tool for
quantifying forage for large browsers such as
moose. Our study further showed that the ALS-
based structural information on cover increased

Fig. 1. Predicted effects of airborne laser scanning variables on amount of available forage, from the best

models for total biomass in winter and summer (shown for deciduous stands of development class 2 with high

productivity). Shaded regions are 95% confidence intervals. For total winter biomass, effect of canopy cover is

shown for two values of 90th percentile echo height (h90) to show the interaction of the two variables. In that

panel, black is for h90¼ 11 m, grey is for h90¼ 17 m, this corresponds to the 20th and 80th percentiles of h90 in

the entire dataset. Rugplots along the x-axis show the distribution of the data.
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the predictive performance of moose habitat
selection models. The possibility to obtain de-
tailed and continuous maps of ‘‘new’’ environ-
mental descriptors from ALS data offers great
opportunities across a range of research disci-
plines in ecology, natural resource management
and conservation (Graf et al. 2009, Martinuzzi et
al. 2009, Wing et al. 2012).

The effectiveness of ALS to quantify browse
at broad scales

ALS increased explanatory power in the
browse models by capturing variability in cano-
py cover and density of understory vegetation
within and between forest stands of a given
combination of development class and dominant
tree species. Increasing canopy cover led to lower
available forage biomass. This harmonizes with
the general ecological and silvicultural under-

standing that canopy gaps alter understory
conditions by increasing light levels (Canham
1988) in favor of early colonizing species, such as
the forage species considered here. The interac-
tion between h90 (the 90th percentile height of
non-ground laser echoes) and canopy cover in
some of the models may be an expression of
‘‘effective openness’’ that depends on both the
height of the trees and canopy density. At the
same percentage canopy cover, shorter trees will
shade less than tall trees and therefore be
associated with a greater effective openness. In
contrast to canopy cover, the ALS measured
understory cover also had a strong positive
relationship with forage biomass. This is expect-
ed as understory cover consists of forage tree
species within browsing range of the moose.
Among remote sensing technologies, ALS is
uniquely suited to obtain such information on

Fig. 2. Maps of predicted browse availability in the study area in southern Norway. Areas with no forest

inventory data are shaded black, and include both non-forested land and forests under different ownership.
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the amount of understory, as some of the narrow
laser beams are able to penetrate through small
gaps in the canopy, even when it is relatively
dense.

Boreal forest ecosystems are dynamic land-
scapes with successional processes having a
considerable impact on the physical structure
and hence wildlife forage availability, including
browse (Angelstam and Kuuluvainen 2004).
Although natural processes such as fire and
storms can open up forest canopies, Scandina-
vian forest dynamics are largely determined by
silvicultural practices and clear-cutting (Kuulu-
vainen and Aakala 2011). Indeed, the inventory
variables forest development class and tree
species were never replaced by ALS variables in
the best models, which likely reflected the
importance of forestry practices in the dynamics
of wildlife forage availability. Although h90 is a
good overall measure of vegetation height
(Næsset and Bjerknes 2001), and thus the
development from young to old forests, the
categorical representation of stand age and
structure as development class in the inventory
maps performed better in the models. While ALS
can identify vegetation in the understory range,
distinguishing between preferred and non-pre-
ferred species or inedible material is more

difficult. Because of this, the improvement we
found in tree species-specific models was mar-
ginal compared to the improvement on total
browse biomass estimates. That none of the ALS
variables could be interpreted in terms of tree
species composition, was probably the main
reason that the ALS-only model did not perform
satisfactorily. As an alternative to using inventory
data as we did here, information on tree species
could be obtained using other remote sensing
techniques. Although there are no readily avail-
able ALS proxy measures of species composition,
it can be modeled by ALS data if one also
considers echo intensity measures (Brandtberg
2007, Suratno et al. 2009, Ørka et al. 2013).
Unfortunately, our ALS data did not have
calibrated intensity measures. Combining ALS
with multi- or hyperspectral images is another
option for obtaining reliable species classification
(Holmgren et al. 2008, Ørka et al. 2013). In the
Scandinavian forest management context, devel-
opment class, dominant tree species, site produc-
tivity and stand delineations are typically
obtained from stereographic photo interpreta-
tion. As ALS forest inventories commonly rely on
this information (Næsset 2004), development
class and tree species would be readily available
covariates if browse was estimated in conjunction

Table 5. Model fit according to AIC and model predictive performance according to K-fold cross-validation.

Scale Season Model no. k AIC DAIC AIC Wt LL K-fold rs

Landscape Winter 6 6 120887.8 0 1 �60437.88 0.83
5 5 120935.5 47.7 0 �60462.75 0.79
1 8 122320.7 1432.9 0 �61152.33 0.17
2 3 122531.3 1643.5 0 �61262.65 0.67
4 3 122648.8 1761.0 0 �61321.41 0.73
3 3 122721.5 1833.7 0 �61357.77 0.09�

Landscape Summer 6 6 71259.1 0 1 �35623.55 0.99
5 5 71285.9 26.8 0 �35637.92 0.99
1 8 71322.1 63.0 0 �35653.05 0.31
3 3 72830.3 1571.2 0 �36412.14 0.80
4 3 73091.4 1832.3 0 �36542.69 0.57
2 3 73167.4 1908.3 0 �36580.68 0.50

Home range Winter 6 16 124807.0 0 1 �62387.50 1.00
1 22 125766.5 959.5 0 �62861.25 0.59
5 13 126421.6 1614.6 0 �63197.81 1.00
2 7 127510.9 2703.9 0 �63748.47 0.92
4 7 128037.0 3230.0 0 �64011.52 0.78
3 7 129598.6 4791.6 0 �64792.32 0.82

Home range Summer 6 16 88182.2 0 1 �44075.11 0.97
5 13 88423.8 241.4 0 �44198.87 0.98
1 22 88814.0 631.8 0 �44385.01 0.59
4 7 89395.5 1213.3 0 �44690.74 0.71
2 7 89777.6 1595.2 0 �44881.80 0.81
3 7 90279.4 2097.2 0 �45132.69 0.82

Note: The models with the best K-fold values within each spatiotemporal scale are shown in boldface.
� K-fold values that were not better than random (two-sample t-test, p . 0.05).
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with this.

ALS can be a viable stand-alone alternative if it

can predict browse availability without a sub-

stantial drop in performance relative to the

inventory data. The predictive power of the

models based on only ALS was too low to

promote this as based on the current study, yet it

should not be excluded until tested under

optimal field sampling design. Here we aimed

to best exploit existing field data, with the

drawback that survey grade GPS receivers were

not used for plot positioning and only 10% of the

ALS plot area was measured in the field.

Furthermore, the four ALS projects were collect-

ed over a three year time span and were collected

with different acquisition settings. Addressing

Fig. 3. Relative probability of selection of canopy cover by moose in southern Norway by season, scale and

light condition. Panels show landscape scale (A, B) and home range scale during daylight (C, D), twilight (E, F)

and darkness (G, H). Note that y-axis values (relative probability of selection) can be compared within, but not

between models.
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these issues in future studies would reduce the
noise in the data (Gobakken and Næsset 2009)
with the expected consequence that ALS vari-
ables would capture more of the variation and
thus further improve predictions of browse
compared to our findings.

ALS improves understanding of habitat selection
In addition to forage, we framed our habitat

selection analyses specifically around the concept
of cover, which is an important structural
element of the habitat as it modifies interactions
with conspecifics or predators due to reduced
visual detection rates or hindrances in escaping
(Schooley et al. 1996, Heithaus et al. 2009, Camp
et al. 2013). Moreover, cover affects food avail-
ability and abiotic factors such as temperature,
wind speed, humidity, snow depth and precip-
itation (Mysterud and Østbye 1999). Our study
shows that incorporating ALS data improved
habitat selection models of moose. The main
contribution towards this result was through
quantification of cover, rather than the improve-
ment in forage predictions. Direct inclusion of
structural variables is a common approach to
ALS based habitat studies (Graf et al. 2009,
Coops et al. 2010, Melin et al. 2013), but the
ecological links are not always obvious. Habitat
selection studies that lack detailed field data on
forage and cover availability typically character-
ize habitat as ‘‘open’’ or ‘‘dense’’ (Godvik et al.
2009, Ciuti et al. 2012, Tolon et al. 2012) and
assume these are ‘‘forage’’ and ‘‘cover’’ habitat
types respectively. There are clear drawbacks to
this, as we can expect variation in selection
within habitat types (Blix et al. 2014) linked to
variation in one or multiple resources or charac-
teristics within a habitat type. By using ALS
instead of subjective habitat classes, we have
decoupled the physical structure of the habitat
from other resources, and moved towards a
direct investigation of animals’ habitat selection
on a functional gradient in cover that is fully
quantitative. Moose in our study avoided stands
with dense understory vegetation, implying that
they avoid visual shelter at ground level and (at
least weakly) high forage availability. Although
the reason for this finding remains unclear it
could be related to understory vegetation creat-
ing movement obstructions or reducing the
overview of the surroundings (Camp et al.

2013). The selection for open canopy at the
landscape scale likely reflected selection for
young forest stands, which is to be expected as
moose select for forage quantity at this scale (van
Beest et al. 2010b). At the within home range
scale, we observed a diurnal shift in use of cover.
In daytime, selection peaked at an intermediate
level of canopy cover. At intermediate levels,
animals limited their exposure to wind, sun, rain,
and humans, while actively selecting for forage
under these conditions. Moose selected forage
with a similar strength at night, but at the same
time were more willing to leave cover during the
dark or twilight hours, as is a common response
of ungulates subject to human disturbance and
risk in daytime (Crosmary et al. 2012, Bonnot et
al. 2013). Thermoregulatory behavior could also
explain some of the observed patterns and is
increasingly being reported as an important
driver of moose habitat selection across their
distribution (Dussault and Ouellet 2004, Melin et
al. 2014), including our study population (van
Beest et al. 2012). In support, the use of greater
canopy cover we observed in daytime may be
related to more favorable abiotic conditions in
the forest interior. The use of dense forest as
thermal shelter in response to critically high
temperatures, especially during summers, has
been identified as a fine-scale habitat selection
pattern in this population (van Beest et al. 2012),
with likely consequences for individual fitness
(van Beest and Milner 2013).

Conclusions
ALS data improved our ability to predict

browse biomass when used in combination with
traditional forest inventory information, such as
site productivity index, dominant tree species
and forest development class. In boreal forests,
there is also variation in habitat quality within
these habitat classes, and laser data captured
some aspects of this variation. Using ALS
techniques, we generated continuous measures
of ecologically meaningful quantities such as
understory cover density and canopy gaps,
which are related to forage availability, thermal
cover and hiding cover for wildlife. These are
important environmental descriptors that are
otherwise difficult to quantify in great detail
and over large areas. ALS data unfortunately has
a relatively large price tag: we estimate that the
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data used in our study cost around US $200 per
km2 to the initial collectors. But there are several
options for accessing ALS data at lower cost.
Existing data collected for other purposes may in
many regions be cheaply available to researchers
or managers. Costs could also be reduced by
undertaking collaborative data collection for
multiple purposes. In the Scandinavian coun-
tries, mapping of browse and cover could easily
be implemented on a large scale (nearly coun-
trywide) by incorporating it in the ongoing ALS
based forest inventories, as most stand level
forest inventories in Scandinavia now use this
method (Maltamo et al. 2011). This provides a
great opportunity to further integrate forest and
wildlife management (Milner et al. 2013). We
conclude that ALS characterizes functional hab-
itat gradients important to wildlife and has the
potential to bring us one step closer to effectively
quantify the abundance and distribution of large
herbivores at the spatial scale necessary for
sound management and conservation.
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SUPPLEMENTAL MATERIAL

APPENDIX

Table A1. Sensor and flight parameters for the four airborne laser scanning projects.

Parameter Skien Siljan Larvik Lardal

Instrument Optech ALTM Gemini Optech ALTM Gemini Optech ALTM Gemini Optech ALTM Gemini
Aircraft fixed wing fixed wing fixed wing fixed wing
Date of acquisition 5, 26–27 May 2008 2 June 2010 24 May 2010 21–25 May 2009
Average flying altitude 1400–1700 m a.g.l. 1600 m a.g.l. 1275 m a.g.l. 690 m a.g.l.
Flight speed 75 m s�1 75 m s�1 75 m s�1 80 m s�1

Pulse repetition frequency 70 kHz 70 kHz 100 kHz 125 kHz
Scan angle 23.08 19.08 20.08 12.08
Pulse density on ground

Mean 1.0 m�2 1.4 m�2 2.2 m�2 12.5 m�2

Range 0.5–2.8 m�2 0.7–2.6 m�2 0.9–4.4 m�2 7.9–22 m�2
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Table A2. Landscape scale winter exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(winter forage inventory) 0.041 0.006 6.63 ,0.001
arcsin(sqrt(canopy cover)) 0.468 0.140 3.33 ,0.001
arcsin(sqrt(canopy cover))2 �0.786 0.103 �7.60 ,0.001
arcsin(sqrt(understory cover)) �2.311 0.072 �32.16 ,0.001

5 arcsin(sqrt(canopy cover)) 0.580 0.140 4.15 ,0.001
arcsin(sqrt(canopy cover))2 �0.942 0.101 �9.33 ,0.001
arcsin(sqrt(understory cover)) �2.296 0.072 �31.98 ,0.001

4 log(winter forage combined) 0.063 0.005 12.96 ,0.001
3 log(winter forage als) �0.062 0.006 �9.79 ,0.001
2 log(winter forage inventory) 0.091 0.005 16.88 ,0.001
1 Development class�

2 0.305 0.045 6.84 ,0.001
3 0.173 0.044 3.89 ,0.001
4 �0.133 0.048 �2.76 0.006
5 0.230 0.046 5.04 ,0.001

Dominant tree species�
Pine 0.342 0.045 7.57 ,0.001
Spruce 0.306 0.043 7.06 ,0.001

� Reference level ¼ development class 1.
� Reference level¼mixed deciduous forest.

Table A3. Landscape scale summer exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(summer forage inventory) 0.075 0.014 5.36 ,0.001
arcsin(sqrt(canopy cover)) �0.366 0.175 �2.09 0.037
arcsin(sqrt(canopy cover))2 �0.878 0.131 �6.72 ,0.001
arcsin(sqrt(understory cover)) �2.062 0.098 �21.04 ,0.001

5 arcsin(sqrt(canopy cover)) �0.423 0.175 �2.42 0.016
arcsin(sqrt(canopy cover))2 �0.918 0.131 �7.03 ,0.001
arcsin(sqrt(understory cover)) �1.933 0.095 �20.38 ,0.001

4 log(summer forage combined) 0.193 0.009 21.19 ,0.001
3 log(summer forage als) �0.352 0.013 �26.43 ,0.001
2 log(summer forage inventory) 0.228 0.012 19.35 ,0.001
1 Development class�

2 0.833 0.073 11.43 ,0.001
3 0.551 0.073 7.56 ,0.001
4 �0.074 0.079 �0.94 0.348
5 1.267 0.074 17.18 ,0.001

Dominant tree species�
Pine 0.349 0.076 4.61 ,0.001
Spruce 0.875 0.073 11.93 ,0.001

Note: Symbols are as in Table A2.

Table A4. Home range winter exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(winter forage inventory) 0.247 0.009 27.61 ,0.001
arcsin(sqrt(canopy cover)) 4.174 0.232 17.97 ,0.001
arcsin(sqrt(canopy cover))2 �4.195 0.181 �23.12 ,0.001
arcsin(sqrt(understory cover)) �2.758 0.117 �23.64 ,0.001
Light condition§
Daylight �1.857 0.143 �12.94 ,0.001
Twilight �1.344 0.289 �4.64 ,0.001
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Table A4. Continued.

Model no. Fixed effect b SE z p

log(winter forage inventory) 3 Daylight 0.002 0.013 0.18 0.860
log(winter forage inventory) 3 Twilight 0.023 0.026 0.88 0.382
arcsin(sqrt(canopy cover)) 3 Daylight 3.260 0.365 8.94 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 2.469 0.732 3.38 ,0.001
arcsin(sqrt(canopy cover))2 3 Daylight �1.154 0.273 �4.23 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight �1.262 0.557 �2.27 0.023
arcsin(sqrt(understory cover)) 3 Daylight 0.749 0.165 4.54 ,0.001
arcsin(sqrt(understory cover)) 3 Twilight 0.700 0.341 2.05 0.040

5 arcsin(sqrt(canopy cover)) 4.888 0.230 21.30 ,0.001
arcsin(sqrt(canopy cover))2 �5.235 0.177 �29.52 ,0.001
arcsin(sqrt(understory cover)) �2.683 0.116 �23.16 ,0.001
Light condition§
Daylight �1.823 0.125 �14.61 ,0.001
Twilight �1.152 0.246 �4.68 ,0.001

arcsin(sqrt(canopy cover)) 3 Daylight 3.256 0.360 9.04 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 2.339 0.722 3.24 0.001
arcsin(sqrt(canopy cover))2 3 Daylight �1.141 0.267 �4.28 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight �1.226 0.545 �2.25 0.025
arcsin(sqrt(understory cover)) 3 Daylight 0.651 0.164 3.98 ,0.001
arcsin(sqrt(understory cover)) 3 Twilight 0.685 0.338 2.02 0.043

4 log(winter forage combined) 0.323 0.008 43.13 ,0.001
Light condition§
Daylight 0.568 0.055 10.41 ,0.001
Twilight 0.161 0.113 1.43 0.152

log(winter forage combined) 3 Daylight �0.110 0.010 �10.46 ,0.001
log(winter forage combined) 3 Twilight �0.034 0.022 �1.59 0.112

3 log(winter forage als) 0.327 0.011 30.61 ,0.001
Light condition§
Daylight 0.774 0.083 9.39 ,0.001
Twilight 0.184 0.170 1.08 0.279

log(winter forage als) 3 Daylight �0.138 0.015 �9.44 ,0.001
log(winter forage als) 3 Twilight �0.036 0.030 �1.21 0.228

2 log(winter forage inventory) 0.356 0.008 44.51 ,0.001
Light condition§
Daylight 0.423 0.059 7.22 ,0.001
Twilight 0.077 0.122 0.63 0.527

log(winter forage inventory) 3 Daylight �0.082 0.011 �7.28 ,0.001
1 Development class�

2 0.761 0.066 11.57 ,0.001
3 0.279 0.065 4.27 ,0.001
4 0.384 0.073 5.23 ,0.001
5 0.395 0.067 5.86 ,0.001

Dominant tree species�
Pine 0.639 0.070 9.17 ,0.001
Spruce �0.441 0.068 �6.44 ,0.001

Light condition§
Daylight �1.070 0.147 �7.31 ,0.001
Twilight �0.493 0.286 �1.72 0.085

Development class 3 Light condition
2 3 Daylight 0.625 0.110 5.69 ,0.001
3 3 Daylight 0.957 0.109 8.76 ,0.001
4 3 Daylight 0.825 0.119 6.93 ,0.001
5 3 Daylight 0.894 0.111 8.04 ,0.001
2 3 Twilight 0.161 0.204 0.79 0.431
3 3 Twilight 0.331 0.203 1.63 0.103
4 3 Twilight 0.048 0.227 0.21 0.833
5 3 Twilight 0.302 0.208 1.46 0.145

Dominant tree species 3 Light condition
Pine 3 Daylight 0.212 0.102 2.08 0.038
Spruce 3 Daylight 0.331 0.100 3.30 ,0.001
Pine 3 Twilight 0.249 0.211 1.18 0.239
Spruce 3 Twilight 0.258 0.207 1.25 0.213

� Reference level ¼ development class 1.
� Reference level¼mixed deciduous forest.
§ Reference level¼ darkness.
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Table A5. Home range summer exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(summer forage inventory) 0.196 0.028 7.12 ,0.001
arcsin(sqrt(canopy cover)) �3.062 0.312 �9.81 ,0.001
arcsin(sqrt(canopy cover))2 0.594 0.263 2.26 0.024
arcsin(sqrt(understory cover)) �1.128 0.210 �5.38 ,0.001
Light condition§
Daylight �2.846 0.189 �15.10 ,0.001
Twilight �0.519 0.284 �1.83 0.068

log(summer forage inventory) 3 Daylight 0.016 0.032 0.52 0.602
log(summer forage inventory) 3 Twilight �0.022 0.048 �0.45 0.652
arcsin(sqrt(canopy cover)) 3 Daylight 5.695 0.367 15.50 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 0.380 0.551 0.69 0.490
arcsin(sqrt(canopy cover))2 3 Daylight �2.026 0.300 �6.75 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight 0.390 0.450 0.87 0.387
arcsin(sqrt(understory cover)) 3 Daylight 0.590 0.238 2.48 0.013
arcsin(sqrt(understory cover)) 3 Twilight 1.183 0.358 3.30 ,0.001

5 arcsin(sqrt(canopy cover)) �3.106 0.316 �9.84 ,0.001
arcsin(sqrt(canopy cover))2 0.377 0.264 1.43 0.154
arcsin(sqrt(understory cover)) �0.715 0.202 �3.54 ,0.001
Light condition§
Daylight �2.723 0.112 �24.36 ,0.001
Twilight �0.614 0.169 �3.64 ,0.001

arcsin(sqrt(canopy cover)) 3 Daylight 5.469 0.369 14.84 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 0.343 0.555 0.62 0.537
arcsin(sqrt(canopy cover))2 3 Daylight �1.854 0.301 �6.17 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight 0.449 0.452 0.99 0.320
arcsin(sqrt(understory cover)) 3 Daylight 0.652 0.228 2.86 0.004
arcsin(sqrt(understory cover)) 3 Twilight 1.150 0.343 3.35 ,0.001

4 log(summer forage combined) 0.498 0.018 28.07 ,0.001
Light condition§
Daylight 2.332 0.096 24.27 ,0.001
Twilight 0.594 0.146 4.07 ,0.001

log(summer forage combined) 3 Daylight �0.501 0.020 �24.80 ,0.001
log(summer forage combined) 3 Twilight �0.123 0.031 �4.02 ,0.001

3 log(summer forage als) 0.283 0.028 10.29 ,0.001
Light condition§
Daylight 1.426 0.149 9.54 ,0.001
Twilight �0.154 0.231 �0.67 0.505

log(summer forage als) 3 Daylight �0.305 0.031 �9.79 ,0.001
log(summer forage als) 3 Twilight 0.030 0.048 0.63 0.528

2 log(summer forage inventory) 0.502 0.023 22.00 ,0.001
Light condition§
Daylight 1.919 0.123 15.62 ,0.001
Twilight 0.525 0.188 2.80 0.005

log(summer forage inventory) 3 Daylight �0.415 0.026 �15.86 ,0.001
1 Development class�

2 �0.263 0.111 �2.37 0.018
3 �1.458 0.114 �12.76 ,0.001
4 �0.831 0.130 �6.40 ,0.001
5 �0.959 0.116 �8.30 ,0.001

Dominant tree species�
Pine �0.762 0.202 �3.78 ,0.001
Spruce �0.122 0.195 �0.62 0.533

Light condition§
Daylight �1.524 0.261 �5.85 ,0.001
Twilight �0.287 0.388 �0.74 0.459

Development class 3 Light condition
2 3 Daylight 0.560 0.136 4.13 ,0.001
3 3 Daylight 1.775 0.139 12.81 ,0.001
4 3 Daylight 1.018 0.156 6.52 ,0.001
5 3 Daylight 1.429 0.140 10.21 ,0.001
2 3 Twilight �0.097 0.212 �0.46 0.645
3 3 Twilight 0.283 0.216 1.31 0.190
4 3 Twilight 0.020 0.244 0.08 0.936
5 3 Twilight 0.087 0.219 0.40 0.693

v www.esajournals.org 20 November 2014 v Volume 5(11) v Article 144

LONE ET AL.



Fig. A1. Map of the study area in southern Norway, showing land use, topography and the ground reference

field plots. The four ALS data projects that define the study area are outlined and named.

Table A5. Continued.

Model no. Fixed effect b SE z p

Dominant tree species 3 Light condition
Pine 3 Daylight 0.678 0.231 2.93 0.003
Spruce 3 Daylight 0.442 0.225 1.97 0.049
Pine 3 Twilight 0.377 0.339 1.11 0.266
Spruce 3 Twilight 0.269 0.328 0.82 0.413

Note: Symbols are as in Table A4.

v www.esajournals.org 21 November 2014 v Volume 5(11) v Article 144

LONE ET AL.



Fig. A2. K-fold (k¼ 5) cross-validation plots for the best forage biomass models based on forest inventory data

(inv), ALS data (ALS), or forest inventory and ALS data (invþALS). Modeled browse categories are (A, B, C)

RAW winter, (D, E, F) RAW summer, (G, H, I) pine winter, (J, K, L) total biomass winter, and (M, N, O) total

biomass summer. Two trend lines are shown: the ideal 1:1 relationship (black) and the least-squares trend line

(red) between predicted and field measured values. The original biomass data were in g/m2.

v www.esajournals.org 22 November 2014 v Volume 5(11) v Article 144

LONE ET AL.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00083
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


