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The crucian carp (Carassius carassius) is a well-studied model organism 
in regard to phenotypic plasticity in anti-predator defenses, as it develops 
a deep body shape to decrease vulnerability to predation. Very few studies, 
however, have investigated the mechanisms underlying the defense res-
ponse of crucian carp in a broader ecological and environmental context. 
This work explored the effects of predation risk on crucian carp morphology, 
resource use, and life-history traits. We considered fifteen small lakes from 
southern Norway along a natural gradient of predation risk: no predators or 
brown trout, perch, or pike. Crucian carp showed a fine-tuned morphologi-
cal defense response against increasingly efficient predators. Predation risk 
determined an increase in crucian carp body depth, rapid juvenile growth, 
larger lifespans, and higher reproductive investment. Predation pressure likely 
reduced crucian carp density, relaxing intraspecific competition and support-
ing individual growth. Higher productivity and habitat complexity associated 
with high-predation lakes and plastic diet preferences may also have favored 
energy allocation to growth and reproduction. Thus, the expression of the  
defense response in crucian carp was likely triggered by the combined  
effects of predation risk and resource availability. Investigating how different 
environmental factors affect inducible defense responses can give new 
insights into the evolution of phenotypic plasticity. Finally, the understanding 
of these processes is important as current human activities can have strong 
impacts on ecological interactions in freshwater ecosystems.
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Abstract 

Predation is one of the main structuring forces of freshwater communities, influencing 

population dynamics, phenotypic variation, resource use, and life-history traits within and 

among prey populations. In order to counteract predation risk, prey organisms may display 

several anti-predator morphological and behavioral adaptations. The crucian carp (Carassius 

carassius) represents a classic example of predator-induced morphological defense, as it 

develops a deep body to decrease vulnerability to predation. Very few studies, however, have 

explored the ecological drivers underlying morphological variation observed among crucian 

carp populations in the wild. This PhD thesis aimed at revealing the effects of predation risk 

on morphology, resource use, and life-history traits of crucian carp along a natural gradient of 

predation risk. The study was performed in fifteen small lakes from southern Norway, which 

presented no predators or increasingly efficient gape-limited predators: brown trout, perch, 

or pike. The results show that crucian carp is provided with a fine-tuned morphological 

defense response against gape-limited predators. Progressively efficient predators 

determined an increase in crucian carp relative body depth and size, a decrease in population 

density, rapid growth at young age, larger lifespans, and higher reproductive effort. Predation 

pressure likely reduced fish abundance, relaxing intraspecific resource competition and 

favoring individual growth of survivors. High-predation lakes also corresponded to productive 

systems with high food availability and complex vegetated littoral habitats. Reduced 

intraspecific competition, larger food availability, and increased habitat complexity associated 

with predation risk favored energy allocation to both growth and reproduction. Plastic feeding 

habits and a shift to more energetically rewarding prey with increasing body size may also 

have supported this energy allocation. Thus, the expression of the defense response in crucian 

carp was likely a result of the synergistic effects of predation risk and favorable environmental 

conditions. 

 

Keywords: Crucian carp, body depth, predator-induced morphological defenses, lake 

productivity, generalist fish, life-history traits. 
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Sammendrag 

Predasjon er en av de viktigste kreftene som strukturerer økosystemene i ferskvann, gjennom 

sin effekt på populasjonsdynamikk, fenotypisk variasjon, ressursbruk, og livshistorietrekk 

mellom og innen populasjonene av byttedyr. For å redusere risikoen for å bli spist kan 

byttedyrene utvise mange ulike antipredator-strategier, som for eksempel morfologiske og 

atferdsmessige tilpasninger. Utviklingen av en høy kroppsform hos karuss (Carassius 

carassius) er et klassisk eksempel på en predatorindusert morfologisk tilpasning (forsvar mot 

predasjon) for å unngå å bli spist av rovfisk. Det er imidlertid få studier som har undersøkt 

hvilke økologiske drivere som ligger bak den morfologiske variasjonen vi finner mellom ulike 

karusspopulasjoner i naturen. Denne PhD-avhandlingen har hatt som mål å finne ut hvordan 

predasjonsrisiko langs en naturlig gradient påvirker karussens morfologi, ressursbruk og 

livshistorietrekk. Studien ble gjennomført i femten små karussvann i Østlandsområdet, som 

varierte fra ikke å ha predatorer til stede til å ha predatorer med en økende grad av effektivitet 

(basert på størrelsen til fiskens gap): brun ørret (Salmo trutta), abbor (Perca fluviatilis) og 

gjedde (Esox lucius). Resultatene viser at karuss har en fininnstilt morfologisk forsvarsrespons 

mot rovfisk, som henger sammen med størrelsen på gapet til predatoren. Med økende 

effektivitet (gap) hos predatoren økte karussen i størrelse og relativ kroppshøyde, 

populasjonstettheten sank, veksten ble raskere i ung alder, livslengden økte og den 

reproduktive innsatsen økte. Det ser ut som om predasjonspress reduserer forekomsten av 

karuss, letter den intraspesifikke konkurransen om ressurser og favoriserer den individuelle 

veksten hos de som overlever.  De vannene som hadde den høyeste graden av predasjon var 

også de mest produktive med høy tilgang på føde og med komplekse habitater i form av 

omfattende strandvegetasjon. Predasjonsrisiko ga redusert intraspesifikk konkurranse, mer 

tilgjengelig føde og økende habitatkompleksitet. Dette førte til mer energi til både vekst og 

reproduksjon. Varierende fødehabitat og et skifte til mer energirik føde som følge av økende 

kroppsstørrelse kan også ha bidratt til denne omfordelingen av energi. Det er altså sannsynlig 

at karussens forsvarsrespons er et resultat av synergi mellom effekten av predasjonsrisiko og 

fordelaktige miljøbetingelser. 

Nøkkelord: Karuss, kroppshøyde, morfologisk forsvarsrespons mot rovfisk, produktivitet, 

generalist fisk, livshistorietrekk.   
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1. Introduction 

Predation has a central place in evolutionary ecology and plays a key role in the functioning 

and structuring of freshwater ecosystems, influencing not only population dynamics but also 

phenotypic variation, resource use, and life-history traits within and among populations 

(Sharma & Borgstrøm, 2008; Nosil & Crespi, 2006; Öhlund et al., 2020). At the individual level, 

predation affects almost every aspect of the prey organism’s life, such as foraging, mating, 

and habitat selection. Predators can directly kill their prey, causing an abrupt decline in prey 

fitness, as they will never reproduce again. Alternatively, they can frighten their prey, which 

results in morphological, behavioral, and life-history adaptations to counteract predation risk 

(Tollrian & Harvell, 1999; Roff, 2002). These indirect, non-consumptive effects of predation 

involve energetic trade-offs which can affect prey fitness dramatically (Lima & Dill, 1990). 

Thus, prey populations need to optimize these trade-offs in presence of predators where both 

a plastic and more genetically hardwired strategy may evolve in the prey (Edgell et al., 2009). 

Predators are also subject to strong selective pressures for increasing their hunting efficiency, 

as they must capture enough food to survive and reproduce. So, why are prey not driven to 

extinction by predators with increasingly effective adaptations? According to the “life-dinner 

principle” (Dawkins & Krebs, 1979), in predator-prey interactions, prey are struggling for life 

while predators are trying to get their dinner. That means that a single mistake can have lethal 

consequences for the individual fitness of prey, while an unsuccessful hunting event does not 

prevent predators from surviving and reproducing. Thus, this asymmetry in selection pressure 

strength between predator and prey would keep the prey ahead in this ‘evolutionary arms 

race’. This co-evolution has determined an extraordinary variety of predator and prey 

adaptations, such as morphological structures, crypsis, sensory systems, and avoidance and 

detection behaviors (Kishida & Nishimura, 2005; Teplitsky et al., 2005; Ferrari et al., 2010). 

 

1.1. Adaptations for foraging 

Predators have several structural, functional, and behavioral adaptations to increase their 

chance to detect, capture, kill and ingest prey. The efficiency of visual, chemical, and 

morphological adaptations for detecting prey in the aquatic environment is also strongly 

dependent on changes in abiotic conditions (Fraser & Metcalfe, 1997; Jönsson et al., 2013). 

javascript:;
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Water color and turbidity levels, for instance, can reduce foraging ability and determine shifts 

in prey selection, with potential effects on fish growth and interspecific 

interactions (Engström-Öst & Mattila, 2008; Ranåker et al., 2014; Scharnweber et al., 2016). 

Predators can exhibit a variety of foraging behaviors, which are also dependent on habitat 

characteristics. For example, piscivorous northern pike (Esox lucius) presents a sit-and-wait 

predation strategy, waiting for the moment to strike on prey from the vegetation (Skov & 

Nilsson, 2018), and tends to prey upon non-vigilant individuals (Heynen et al., 2017). On the 

opposite, perch (Perca fluviatilis) search actively for prey and select mainly mobile individuals 

(Heynen et al., 2017), but can switch to a sit-and-wait foraging mode with increasing habitat 

complexity (Eklöv & Diehl, 1994).  

The ability of predator species to forage on prey from different habitats also depends on their 

morphological and anatomical features. For instance, a body that is laterally compressed 

provides fish with greater maneuverability to forage invertebrates associated with the 

substrate or vegetation. In contrast, a streamlined body shape enables fish to swim fast and 

efficiently catch their prey in the pelagic habitat (Webb, 1984). Variations in morphology 

associated with foraging efficiency in different habitats have also been observed between and 

within populations of the same species, such as in perch (Svanbäck & Eklöv, 2003), 

stickleback (Gasterosteus spp.; Schluter, 1993), and bluegill sunfish (Lepomis macrochirus; 

Ehlinger, 1990), where the littoral morph presented a deeper body compared to the pelagic 

one. These differences in foraging morphology can be genetically determined, 

environmentally induced or both, and, allowing populations to occupy different ecological 

niches, may promote divergent natural selection (Schluter, 1993; Smith & Skúlason, 1996; 

Skúlason et al., 2019). 

 

1.2. Prey selection 

Many predators feed on prey according to their availability, without showing a specific 

preference. Others are specialized to feed on specific prey items and present a narrow diet 

breadth. A more generalized or specialized feeding behavior will depend on the optimal forage 

strategy of the consumer. Optimal foraging theory states that consumers rank alternative 

resources by their energetic and nutritional value, taking into account the costs in energy and 
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time spent in foraging (Werner & Hall, 1974). For example, piscivorous fish such as pike are 

gape-size limited and prefer to select small and shallow-bodied prey, since handling time 

increases with prey body depth (Nilsson & Brönmark, 2000). The pumpkinseed sunfish 

(Lepomis gibbosus) is a specialized molluscivore, but at high fish densities snail abundance is 

kept so low that they are forced to feed on soft-bodied littoral invertebrates, with effects on 

growth and morphology (Osenberg et al., 1992). High intraspecific competition can lead 

conspecifics to adopt different foraging behaviors and use distinct subsets of population diet 

breadth as preferred prey items become less available, resulting in an increase in population 

niche size (Svanbäck & Bolnick, 2007). At the same time, the ability of a consumer to forage 

on alternative resources is strongly dependent on interspecific competition (Bolnick et al., 

2010). Resource partitioning generally constraints niche width by limiting the range of 

available resources to consumers, with cascading effects on trophic interactions (Quevedo et 

al., 2009; Eloranta et al., 2013). Thus, the trophic niche of an individual will depend on the 

abundance and diversity of available resources, morphological and behavioral adaptations to 

capture, handle and digest the prey, but also on the counteracting effects of intra- and 

interspecific competition.  

Moreover, prey selection may vary between sexes. Variation in resource use between males 

and females can be the result of several mechanisms such as different activity levels or 

behaviors in response to predation (Estlander & Nurminen, 2014), energetic costs associated 

with growth and reproduction (Henderson et al., 2003), or sex-specific selective pressures 

(Höök et al., 2021).  

Changes in prey preference can also occur over the lifespan of an individual. Perch, for 

example, can undergo two main ontogenetic dietary shifts: at the juvenile stage, they feed 

mainly on zooplankton; then, with increasing body size, there is a gradual shift to a 

benthivorous diet and finally to piscivory (Hjelm et al., 2000). Brown trout (Salmo trutta) is a 

generalist fish, but can also shift to piscivory at large sizes (Jensen et al., 2012). Besides body-

size-related constraints limiting fish to feed on certain prey items during their lifetime, 

resource competition and predation risk are considered important factors affecting fish 

trophic ontogeny as they influence habitat use and thus prey availability to consumers 

(Sánchez-Hernández et al., 2019).  
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1.3. Non-consumptive effects          

Predators can exert both consumptive and non-consumptive effects on prey. Direct 

consumptive effects have fatal consequences on the fitness of individual prey. By substantially 

reducing prey abundance, predators can also regulate resource availability and affect the size 

structure of prey populations (Persson et al., 1996; Van Buskirk & Yurewicz, 1998; Heibo & 

Magnhagen, 2005). The sole presence of predators can determine non-consumptive effects 

on prey that include the development of morphological, functional, and behavioral responses 

to counteract predation risk (Lima & Dill, 1990). Predation risk can induce the development of 

morphological defenses such as plates, shells, and spines that discourage attacks by predators 

(Tollrian & Harvell, 1999; Zimmerman, 2007) or an increase in body depth (Brönmark & 

Pettersson, 1994). 

Antipredator behaviors include area avoidance, reduction in activity, and increased use of 

spatial and temporal refuges (Metcalfe et al., 1999; Ringelberg, 2009; Magnhagen et al., 2012). 

The choice of a certain behavior in prey is highly dependent on the predation strategy present 

(Peckarsky & McIntosh, 1998; Wood & Moore, 2020), habitat characteristics (Brydges et al., 

2008; Ranåker et al., 2014), and food availability (Anholt & Werner, 1995). Morphological and 

behavioral responses to predation can also have strong effects on community dynamics. Large 

fish that have reached a size-refuge from predators may have a potential competitive 

advantage over smaller conspecifics or be able to shift to a different habitat (Byström et al., 

2004; Woodward & Hildrew, 2002). Habitat shifts can lead to resource partitioning, since 

different prey species may be forced to use the same area, or selection of an unfavorable 

refuge as the preferred one is already occupied (Mittelbach, 1988; Henseler et al., 2020). 

These non-consumptive effects aimed at reducing immediate individual risk, involve time and 

resource allocation trade-offs and, thus, can indirectly affect prey fitness (Steiner & Pfeiffer, 

2007). A high foraging activity, for instance, rewards an individual with more food, but can 

lead to greater exposure to predators. By contrast, a decrease in foraging activity lowers 

predation risk but can come with a cost for growth and reproduction, also prolonging the time 

spent within a predation window. The balance of these costs and benefits generates a trade-

off between foraging gain and predation risk that is common in many prey organisms 

(Pettersson & Brönmark, 1993; McPeek et al., 2001; Benard, 2004). 
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1.4. Life-history strategies under predation risk 

In fish, there is a clear trade-off between allocation to somatic growth and reproduction: 

fecundity increases with body size, but postponing maturity may lead to potential mortality 

before first reproduction (Roff, 2002). In general, life-history theory predicts that fast growth 

and high mortality should lead to early age and size at maturity (Stearns, 1992). Moreover, 

individuals with high reproductive allocation early in life typically have shorter life spans, 

because no energy for growth or surviving is left after reproduction (Bell, 1980; Charnov, 

1993).  

Predation has a central role in determining prey life-history strategies (Belk & Hales, 1993) 

and is expected to influence prey life-history patterns depending on prey size preference of 

predators (Abrams & Rowe, 1996). Mortality on small or young individuals generally favors 

late maturity and lower reproductive effort, while the opposite is expected with increased 

mortality on large or old individuals (Reznick et al., 1990). In the case of gape-limited 

predators, size-selective mortality on small individuals may favor preys growing rapidly into a 

size-refuge (Taborsky et al., 2003). This rapid somatic growth may be achieved by postponing 

reproduction until a safe size is reached (Belk, 1995; Arendt & Wilson, 1999). For instance, 

Trinidadian guppies (Poecilia reticulata) from populations with different predators showed 

remarkably different life-history patterns: in presence of a predator feeding on small size 

classes, guppies matured at a later age and larger size and had low reproductive investment 

compared to guppies occurring with a large predator feeding mostly on adult individuals 

(Reznick & Endler, 1982).  

 

1.5. Predator-induced morphological defenses 

The majority of defense traits are constitutive: they are always expressed regardless of 

predation risk. Many organisms, however, are able to adjust their phenotype to the prevailing 

risk of predation only when required (Tollrian & Harvell, 1999). Chemical cues released by 

predators (kairomones) or from damaged prey tissue can be detected by prey, inducing the 

development of defensive features that reduce vulnerability to predation (Wisenden, 2003; 

Ferrari et al., 2010). These predator-induced morphological defenses represent an adaptive 

phenotypic change in response to predation risk (Tollrian & Harvell, 1999). Pumpkinseed 



6 
 

sunfish, for example, increase body depth and dorsal spine length in response to predation 

cues from walleye (Sander vitreus; Januszkiewicz & Robinson, 2007).  

Prey organisms must often be able to face multiple predator species with different hunting 

modes (Sih et al., 1998). The freshwater crustacean genus Daphnia, for instance, can express 

a variety of defenses including the development of helmets, neckteeth, crests, and spines in 

response to different predators (Weiss et al., 2019; Figure 1.1). Rana pirica tadpoles can 

acquire a bulgy phenotype as a defense against the larval salamanders, while they express a 

“high-tail” phenotype in response to predation risk from dragonfly larvae, which bite their 

prey instead of swallowing it whole (Kishida & Nishimura, 2005; Figure 1.2). Although 

morphological defenses are widespread among freshwater organisms, few studies have 

explored how this morphological plasticity affects prey-population dynamics and their 

ecological role (Verschoor et al. 2004; Van der Stap et al., 2007; Kishida et al., 2009). At the 

individual level, for specific development of the appropriate defense, prey must be able to 

distinguish among predators through a specific sensory system and activate a fine-tuned 

“machinery” for the expression of the defense. Conversely, if the defense expressed is not 

effective against the predator, it may represent a disadvantage and reduce organism fitness. 

The development of morphological defenses is considered a direct effect of predator presence 

(Tollrian & Harvell, 1999). However, the exact mechanism triggering the morphological 

change is not well understood. Some studies suggest that the expression of the defense is 

activated by a physiological stress response to predation risk (Middlemis Maher et al., 2013; 

Vinterstare et al., 2020). Other studies propose that inducible defenses are a by-product of 

prey behavior, since prey may reduce their activity levels with predation threat (Bourdeau & 

Johansson, 2012). This reduction in activity may lower prey metabolism with a reallocation of 

the energy saved to growth or development of morphological structures.  
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Figure 1. Expression of predator-specific morphological defenses is highly flexible for the 
genus Daphnia (1). Examples show helmet expression in D. cucullata (1A), neckteeth 
expression in D. pulex (1B), crest expression in D. longicephala (1C), and head- and tail-
spine formation in D. lumholtzi (1D). Undefended morphotypes are displayed on the left 
side, and the defended morphotype on the right side (Weiss et al., 2019). Rana pirica 
tadpoles (2) express basic morph in the absence of predators (2A), high-tail morph 
induced by the dragonfly (2B), and bulgy morph induced by the salamander (2C)(Kishida 
& Nishimura, 2005). 
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1.6. The cost-benefit evolutionary framework of inducible defenses 

In order to reduce the negative effects of predation on fitness, prey organisms display 

developmental, morphological, or behavioral antipredator defenses, which can be 

constitutive or inducible. When environmental conditions are stable, natural selection should 

favor populations to become locally adapted – that is, constitutive responses are favored 

when predation pressure does not vary in time (Williams, 2018). In contrast, inducible 

responses may improve prey fitness in environments with variable predation risk, when prey 

are able to reliably detect predator presence (Pigliucci, 2001). When the selection regime is 

stable over evolutionary time, inducible responses may be canalized and become genetically 

hardwired - i.e. always expressed regardless of predation risk (Edgell et al., 2009). The 

expression of the inducible response can also be more pronounced according to historical 

coexistence with a predator (Kishida et al., 2007). Moreover, transgenerational plasticity - 

parental exposure to predator cues directly affecting the phenotype of the offspring - may 

have an important role in the expression of inducible responses (Storm & Lima, 2010; Beaty 

et al., 2016).  

In general, the induction of a plastic defense over a permanent one indicates that there are 

some fitness costs and benefits associated with the expression of the trait (Clark & Harvell, 

1992; Snell-Rood et al., 2010). Inducible defenses can be particularly profitable as the intensity 

of the anti-predator response can be finely adjusted to the prevailing predation risk (David et 

al., 2014). At the same time, an inducible response might have potential energetic costs 

associated with the production and maintenance of the defense and the acquisition of 

information from the environment (DeWitt et al., 1998). These costs associated with the 

expression of the inducible defense are also dependent on environmental conditions. At low 

resource availability or high density of competitors, the investment in the defense is expected 

to be low, as energy is needed for maintenance or for actively foraging to avoid starvation 

(Werner & Anholt, 1993; Teplitsky & Laurila, 2007). Energy allocation to defensive traits may 

also have strong effects on fitness traits associated with growth and reproduction (Van Buskirk 

& Yurewicz, 1998; Brönmark et al., 2012). Numerous factors, not possible to be included in 

controlled laboratory studies, may influence the expression of plastic defense responses in 

the wild. Thus, measuring the fitness costs of predator-inducible defenses under more realistic 

ecological conditions is crucial for understanding how selection favors phenotypic plasticity.  
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1.7. Study species: the Crucian carp 
 
Crucian carp (Carassius carassius) is a widespread cyprinid fish in Europe and Asia that inhabits 

small lakes, ponds, and slow-moving areas of rivers. It is a generalist forager with a wide diet 

spectrum, including zooplankton, benthic macroinvertebrates, macrophytes, and detrital 

material (Penttinen & Holopainen, 1992; Gao et al., 2017). This fish is well-known for its 

peculiar physiological adaptations. In autumn, crucian carp builds up a glycogen storage which 

uses for anaerobic metabolism under ice cover during winter (Blažka, 1958; Piironen & 

Holopainen, 1986). Since most other fish species are sensitive to oxygen depletion, a lake may 

change from a multispecies assemblage to a monospecific assemblage of crucian carp under 

severe winter conditions.  

In lakes without predators, crucian carp are shallow-bodied, small-sized, and can reach very 

high densities, where resource limitation leads to strong intraspecific competition (Pettersson 

& Brönmark, 1997). By contrast, in lakes with piscivores, they are deep-bodied and typically 

occur in low density and large sizes (Brönmark et al., 1995; Poléo et al., 1995). This strong 

dichotomy in morphology, biology, and population structure, caused taxonomical confusion, 

as the two morphs were described as two different species, Cyprinus carassius and Cyprinus 

gibelio (Bloch, 1782). Then, in 1838, Ekström performed an experiment where deep-bodied 

crucian carp were moved to a small pond, and the offspring developed a population of small-

bodied fish, suggesting that the two morphs were actually the same species. Later 

experiments showed that crucian carp develop a deep body when exposed to cues from 

piscivores feeding on conspecifics (Brönmark & Pettersson, 1994). This development was 

suggested to be an adaptive morphological defense against gape-limited predators (Nilsson & 

Brönmark, 2000). However, enhanced food availability and low population densities caused 

an increase in relative body depth comparable to predation risk (Tonn et al., 1994). Moreover, 

manipulative experiments showed that crucian carp feeding on benthic prey rather than 

zooplankton developed a deep body, similarly to the fish exposed to cues from predators 

(Andersson et al., 2006). In another experiment, crucian carp was exposed to pike cues 

(presence or absence) and different water currents (standing or running), and it was found 

that standing water conditions and predation cues independently induced a similar 

development in body depth (Johansson & Andersson, 2009). Whether these changes in 

growth and morphology are directly or indirectly mediated by predation, a deep body seems 
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to be associated with a reduction in activity levels and better growth conditions (Holopainen 

et al., 1997a; Vøllestad et al., 2004). However, very few studies have explored the effects of 

predation risk on morphology, feeding strategies, and life-history traits of crucian carp in the 

wild. 
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2. Objectives 

This PhD thesis aimed at revealing the main ecological drivers underlying morphological 

variation observed among natural populations of crucian carp. I considered fifteen small lakes 

from southern Norway along a gradient of predation risk represented by increasingly efficient 

gape-limited predators: no predator fish or brown trout, perch, or pike. I expected that 

increasing predation risk would induce specific morphological defenses – that is, progressively 

deeper body shape. I questioned if this change in body shape was caused by shifts in fish 

resource use or life-history strategies, driven by a direct or indirect response to predation risk. 

Moreover, I considered the synergistic effect of predation risk and other environmental 

factors such as lake productivity and resource competition, which vary in close association 

with the different predator communities.  

This thesis addressed the following research objectives. 

Variation in body shape (Paper I). We examined crucian carp from lakes that differ in predator 

fish communities (species composition, density, and gape-size), and we asked whether the 

prevailing risk of predation was associated with fish body shape. We also tested if variation in 

body shape depended on predator-induced shifts in habitat and resource use or other 

environmental factors such as productivity.  

Variation in resource use (Paper II). We explored differences in the trophic ecology of crucian 

carp at the individual and population levels, considering the effects of intra- and interspecific 

competition, predation, and body size in lakes with different productivity and fish species 

composition.   

Variation in life-history traits (Paper III). We examined variation in crucian carp life-history 

traits along a gradient of predation risk. We expected fish to attain a higher growth rate, larger 

adult size, later age and size at maturity, and lower reproductive effort with increasing 

predation risk. 
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3. Material and Methods 
 

3.1. Study area and lake characteristics 

The selected fifteen study lakes and ponds were located in southeastern Norway and were 

sampled between June and August in 2018 and 2019 (Figure 2, Table 1). Lakes were small 

(0.25–11 ha), relatively shallow (max depth 1.5–11.3 m), and presented a high proportion of 

littoral zone, characterized by high densities of macrophytes (mainly Potamogeton spp. and 

Nuphar spp.). Lakes had variable productivity, probably reflecting different land use of the 

surrounding area, including forest of birch or pine, forest with proximity to an urban area, 

urban areas, or farmland. Measured abiotic parameters included lake altitude, surface area, 

maximum depth, littoral area, specific conductivity, Secchi depth, total nitrogen, phosphorus, 

and organic carbon. Lakes presented distinct communities of piscivorous fish. Six lakes were 

Figure 2. Location of the fifteen study lakes in southeastern Norway. Triangles indicate lakes 
used in paper I and II. Circles indicate additional lakes used in paper III. Blue: no predator 
lakes; Green: brown trout lakes; Yellow: perch lakes; Purple: pike lakes. 
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predator-free (Forkerudtjern, Mottjernet, Langmyrtjern, N.Sætertjern, Skråtjernet, 

Brynitjernet), while nine lakes had different gape-limited predators, which we grouped in 

three main predation categories in Paper I: brown trout, perch, and pike. Brown trout was the 

only predator in Karussputten, Småvanna, and Posttjernet. Perch was the main predator in 

Svartkulp, Bjørnmyradammen, and Øvreseterjern while brown trout was present with very 

low density or absent. Both perch and pike were present in Bugårdsdammen, 

Stomperudtjernet, and Nusttjennet, but we will refer to these lakes as “pike lakes” for 

simplicity. We included all fifteen lakes in paper III, while we excluded Lakes N.Sætertjern, 

Skråtjernet, and Brynitjernet from papers I and II due to cost and time considerations.  

 

Table 1. Environmental characteristics of the 15 study lakes. Abiotic variables include latitude 
(Lat), longitude (Long), lake area (Area), maximum depth (MaxD), total nitrogen (TotN), total 
phosphorus (TotP), total organic carbon (TOC), maximum predator gape size (GS) and crucian 
carp relative density (CPUEc). 

 
Lake  Predators Lat 

(⁰N) 
Long 
(⁰E) 

Area 
(ha) 

MaxD 
(m) 

TotN 
(µg/L) 

 

TotP 
(µg/L) 

 

GS 
(cm) 

CPUEc 
(n·

net−1h−1) 
Nusttjennet Pike, Perch 60.28 11.66 11.00 1.5 1090 164 4.7 0.45 

Bugårdsdammen Pike, Perch 59.13 10.19 5.04 2 980 54 6.1 0.10 

Stomperudtjern Pike, Perch 59.32 11.40 3.85 1.5 1660 146 5.6 0.42 

Øvresetertjern Perch, Trout 59.98 10.67 3.05 3.5 446 13 4.4 0.42 

Posttjernet Trout 61.08 11.33 1.72 11 312 8 3.8 0.19 

Svartkulp Perch, Trout 59.98 10.74 5.80 10 550 13 3.5 0.30 

Bjørnmyrdammen Perch 60.18 11.98 2.10 3.5 672 26 2.7 2.11 

Småvanna Trout 59.80 10.31 0.50 3.8 616 14 3.3 1.03 

Karussputten Trout 60.02 10.66 0.25 4.6 361 9 3.3 0.99 

Skråtjernet - 60.20 11.14 0.88 12.0 431 15 - 1.83 

N.Sætertjern - 60.22 12.01 0.57 2.5 - - - 7.93 

Forkerudstjern - 60.45 12.08 1.24 2.2 1985 82 - 10.63 

Brynitjernet - 60.72 11.27 4.29 1.5 572 22 - 4.08 

Motjennet - 60.23 12.11 0.94 11.3 688 23 - 7.80 

Langmyrtjern - 59.97 10.75 0.30 5 702 20 - 2.07 
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3.2. Fish and invertebrate sampling 

We assessed relative fish density in each lake using Nordic multi-mesh gillnets. Some lakes 

had very limited pelagic and profundal habitats and were considered as entirely littoral. 

Moreover, we did not catch any fish in the profundal zone, probably because the deeper lakes 

were highly humic systems with hypoxic deep waters. Consequently, we calculated CPUE (n 

fish ·net−1 ·h−1) only for littoral and pelagic habitats. We also used a variety of fishing methods 

(e.g., baited traps, gillnets with different mesh sizes, kick nets) to maximize the chance to catch 

small crucian carp. Immediately after capture, fish were euthanized by an overdose of the 

anesthetic tricaine methanesulfonate (MS-222), transported to the laboratory, and frozen for 

subsequent analysis. Permission to catch fish was granted by the Norwegian Environmental 

Agency (2018/4155). 

We collected qualitative samples of zooplankton and benthic invertebrates in order to 

estimate basal resources for stable isotope analysis (SIA) of paper I and II. We sampled 

zooplankton hauling a plankton net through the water column in the pelagic zone of deep 

lakes or in the non-vegetated area of shallow lakes. Samples were later sieved and 

zooplankton were identified to class level. We collected benthic invertebrates from sediments 

and plants in the littoral habitat using kick nets and sorted them to the lowest feasible 

taxonomic level. For paper II, samples of sediment and of the most abundant macrophytes 

were also collected from the littoral zone of each lake. Sediment comprised primarily decaying 

plant material.  

 

3.3. Laboratory work 

In the laboratory, we measured individual fish total length, body depth, wet weight and 

determined sex and maturation stage of crucian carp by gonad inspection. We subsampled 30 

crucian carp from each of the twelve lakes selected for paper I and II, for a total of 360 

individuals. In general, crucian carp size structure was quite uniform within each lake and 

dominated by large individuals in lakes with predators. Thus, whenever possible, we included 

smaller individuals to avoid underrepresentation of this size class. These fish were used for 

morphometric (paper I), stable isotope (paper I and II) and diet (paper II) analysis. For stable 

isotope analysis, a piece of dorsal muscle tissue was dissected and frozen at -20°C for each 
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fish. When possible, for diet determination, we included more individuals to increase sample 

size, since fish with empty guts were excluded from the analysis. We estimated the proportion 

occupied by different prey category observed in the anterior third of crucian carp gut under a 

stereo microscope using percentage scale. For life-history traits analysis (Paper III), we 

determined age by counting true annuli along the primary radius of scales (n ~ 6) using a 

Microfiche Reader (Eyecom 1000). In addition, for paper I and III, we measured total length 

and gape height of piscivorous fish, that is, brown trout, perch, and pike. We calculated the 

mean maximum gape size for each lake by selecting the piscivores with the highest mouth 

height, irrespective of the species (n = 10). We selected maximum gape height over mean gape 

height to avoid potential underestimation of maximum predation window since a large 

proportion of brown trout and perch in the study lakes was small-sized and probably did not 

undergo ontogenetic shifts to piscivory (Jensen et al., 2012; Hjelm et al., 2000). 

 

3.4 Stable isotope and diet analysis (Paper I and II)  

Fish muscle, invertebrate, plant, and sediment samples were freeze-dried, ground to a 

homogeneous fine powder, weighed, and encapsulated into tin cups. Stable carbon and 

nitrogen isotope ratios were analyzed by an elemental analyzer coupled to a continuous flow 

mass spectrometer. Stable isotope measurements were expressed as δ13C and δ15N in parts 

per thousand (‰) relative to the international standards Vienna Pee Dee Belemnite and 

atmospheric air for carbon and nitrogen, respectively.  

In paper I, we standardized crucian carp δ13C and δ15N ratios by using littoral and pelagic 

invertebrates in each lake as baseline. Individual trophic position and littoral reliance (i.e. 

relative contribution of littoral prey items to crucian carp diet) were calculated using a two-

source mixing model (Karlsson & Byström, 2005) with trophic fractionation values of 3.4‰ for 

δ15N and 0.4‰ for δ13C (Post, 2002). These values were then related to the body shape of 

crucian carp.  

Since basal food isotope ratios varied greatly across lakes, in paper II, we estimated resource 

contribution to crucian carp diet through a different approach. We removed variation not 

associated with fish trophic changes rescaling raw isotope values of consumers into modified 

Z-scores using mean and standard deviation of their four major prey categories (pelagic 
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zooplankton, pooled benthic macroinvertebrates, and pooled plant and sediment) at each 

location (Fry & Davis, 2015; Lejeune et al., 2021). Then, we performed generalized linear mixed 

effects models to test for the effects of body size, productivity, and relative density of crucian 

carp, competitor fish, and predators on individual Δ13C and Δ15N values calculated from the 

modified Z-scores. Selection of the best models was performed by backward elimination of 

fixed-effect terms based on the Akaike information criterion (AIC). To estimate the 

predominant resource use of crucian carp at the population level, we used Bayesian isotope 

mixing models (Parnell et al., 2010). In the model, we used trophic fractionation values of 3.4 

± 1.0‰ for δ15N and 0.4 ± 1.3‰ for δ13C (Post, 2002). Moreover, we calculated the isotopic 

niche width of crucian carp in each lake as the standard ellipse area corrected for small sample 

sizes (SEAc; Jackson et al., 2011).  

For diet analysis of paper II, observed prey items from gut contents were grouped in three 

main categories: pelagic prey (mainly pelagic cladocerans and copepods), benthic prey 

(chironomid larvae, gastropods, benthic cladocerans and, other benthic invertebrates), and 

plant-detritus material. We quantified diet breadth at the population level using Levins’ D 

index (Levins, 1968) standardized for resource richness. In addition, we assessed individual 

dietary specialization (IS) calculating the mean overlap between the diet of each individual to 

that of its population (Bolnick et al., 2002).  

 

3.5 Association of body shape with environmental variables (Paper I)  

We examined crucian carp body shape using landmark-based geometric morphometrics. We 

photographed fish laterally and digitized 17 landmarks and six semi-landmarks. Then, we used 

a Generalized Procrustes Analysis (GPA) to standardize the landmark configurations for 

position, orientation, and size. Principal component analysis (PCA) on Procrustes shape 

coordinates was used to identify the major patterns of shape variation and grouping of 

variance among individuals. A Procrustes ANOVA with permutation procedures was used to 

estimate allometric effects (i.e. shape variation in relation to size) among predation categories 

(no predators, trout, perch, and pike). Then, we used linear mixed-effects models (LME) to 

examine the degree of relationship between variation in body depth and specific biotic and 

abiotic characteristics associated with each lake. The scores of the first axis of principal 

component (PC1), which corresponded largely to the crucian carp relative body depth, were 
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used as the response variable. Explanatory variables for predation risk included predation 

category, maximum predator gape size, and predator proportion. Littoral reliance and trophic 

position calculated from SIA were used as a measure of individual crucian carp resource use. 

Abiotic characteristics included lake area, maximum depth, and total phosphorus. Lakes were 

used as a random factor nested in the predation category term. Model selection was 

performed by stepwise selection based on the Akaike information criterion (AIC). 

 

3.6 Determination of life-history traits (Paper III)  

We estimated growth parameters using a Bayesian approach through the ‘BayesGrowth’ 

package (Smart & Grammer, 2021) in R statistical software. We fitted the von Bertalanffy 

growth function to the data from each lake. We used informative priors on the length-at-birth 

(L0) and the asymptotic length (L∞) parameters with a normal distribution. We ran four 

Markov-Chain Monte Carlo (MCMC) chains with 10000 iterations and a burn-in period of 5000 

iterations via the ‘rstan’ R package (Stan Development Team, 2020). The length (LM) and age 

(AM) at which 50% of individuals became sexually mature was determined by fitting a logistic 

model to the proportion of mature versus immature using generalized linear models. 

Moreover, we calculated gonadosomatic index (GSI) for females as (gonad mass/somatic 

mass*100) (Bagenal & Tesch, 1978). Then, we correlated growth and reproductive parameters 

to predator maximum gape size. Growth parameters included the growth coefficient (k), 

asymptotic body length (L∞), length at age 1 (L1) and age 3 (L3), and maximum life span (TMax). 

Length at ages 1 and 3 was chosen as representative of initial growth effort to avoid predation. 

Maximum life span was calculated as the average maximum age observed in each population 

(n=10). Reproductive parameters comprised length (LM) and age (AM) at maturity, 

gonadosomatic index (GSI), and sex ratio. We also included the reproductive life span (RT) 

calculated as the difference between the observed maximum life span and estimated age at 

maturity. 
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4. Results and discussion 
 

4.1. Variation in body shape: the role of predation risk and resource use 
(Paper I) 

Variation in body shape 

The body shape of crucian carp differed greatly among the study lakes. Shape variation along 

the first axis of the PCA of landmark configurations (45% of the total variance) was mainly 

associated with an expansion of fish dorsal and ventral regions, indicating an overall change 

in body depth. Fish grouped along this axis mainly according to the different predation 

categories (Figure 3). Moreover, results of Procrustes ANOVA showed that body shape was 

positively related to size, and varied in relation to size among different predation categories –

e.g. small-sized fish from pike lakes had a deeper body than fish of the same size from lakes 

without predators.  

 

Predation risk: predator species composition, gape-size, and density 

Predator maximum gape size, individual trophic position and body length were the best 

variables explaining variation of crucian carp body shape (Figure 4). In general, in absence of 

predators, fish were smaller and had a slender body shape. Then, they gradually showed 

higher absolute and relative body depth when trout and perch were present, reaching the 

largest size and deepest bodies in pike lakes. Experimental studies showed that crucian carp 

increased in body depth when exposed to cues from single predator species such as perch or 

pike, and that the latter induced a more pronounced development (Brönmark & Pettersson, 

1994). Moreover, crucian carp exhibited different behavioral and neural responses to skin 

extract from trout, perch, and pike (Lastein et al., 2012). Our findings suggest that crucian carp 

develop specific responses in presence of specific piscivorous fish species.  

Predator maximum gape size was the best variable explaining variation of crucian carp body 

depth (PC1). Discerning between the effect of predator community and gape size might be 
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prevented by the fact that brown trout, perch, and pike lakes reflected a gradient in predation 

efficiency that was mainly defined by maximum mouth opening. Still, we could observe a clear 

effect of gape size even within predation categories. Perch in Lake Øvresetertjern and trout in 

Lake Posttjernet reached the largest gape size within their respective predation category. In 

these lakes, crucian carp had the highest body depth compared to the other lakes with the 

same predator species. Laboratory experiments showed that crucian carp was able to detect 

detailed information from waterborne cues. Individuals, for instance, showed different fright 

responses, as a decrease in swimming activity, when exposed to cues from predators of 

different sizes (Pettersson et al., 2000).  

Figure 3. Scatterplot of principal components analysis of body shape of crucian carp. 
Individuals are color-coded according to predation category. Deformation grids show 
the most extreme negative and positive shapes along the first (PC1) axis. Percentages 
indicate how much of the variation is explained by the first two axes. 
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By contrast, predator density did not have a clear effect on body shape. In Lakes 

Stomperudtjernet and Nusttjennet, predators made up only a very small proportion of the 

total fish community (5%) and consisted of few large pike and perch. Nevertheless, in these 

lakes, crucian carp reached the largest size and deepest body. Pike, a highly efficient predator 

that shares the same vegetated habitat with crucian carp, represents a constant threat. Thus, 

in presence of pike, crucian carp might have developed an effective adaptive response to 

predation risk, independently from its density. These results support previous experimental 

studies suggesting that the development of a deep body represents a morphological defense 

against gape-limited piscivores (Nilsson & Brönmark, 2000).  

 

Predator-induced shifts in resource use and availability 

Contrary to our predictions, individual resource use varied greatly within each lake and did 

not have a strong direct effect on crucian carp body shape. Generally, fish seemed to rely 

mostly on littoral invertebrates associated with substrate or vegetation. By contrast, trophic 

position had a significant negative influence on crucian carp body depth. In pike lakes, crucian 

carp had slightly lower trophic position, probably because fish hiding in the vegetation may 

feed on macrophytes or other invertebrates such as snails or clams, which likely lowers their 

trophic position when compared to zooplankton feeding of other lakes. Moreover, crucian 

carp density was decreasing with increasing predation risk, which may have resulted in more 

available resources for the growth of surviving individuals (Persson et al., 1996; Craig et al., 

2006). In contrast, dense populations in allopatric lakes have to compete for resources and 

fish body condition remains low. This also suggests a potentially higher growth rate with 

increasing predation risk. High productivity of pike lakes might also play an important role, 

since it regulates resource availability and ultimately population density and growth (Weber 

et al., 2010). 
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Figure 4. Crucian carp body depth increased with decreasing trophic position and 
increasing predation risk. In the figure crucian carp from lakes with different predation 
categories: no predators (a), brown trout (b), perch (c), and pike (d).  
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4.2. Resource use along a productivity gradient (Paper II) 

Shifts along a productivity gradient 

Lake productivity represented one of the main drivers of crucian carp resource use and fish 

community structure. Stable isotope values of basal sources (littoral invertebrates, 

zooplankton, plants, and sediments) and crucian carp varied greatly among the different lakes, 

probably because of different land use of catchment area (Kendall et al., 2007; Botrel et al., 

2014). Yet, even after accounting for this variation in the baselines, results from generalized 

linear mixed effects models showed a strong positive association of Δ13C values with 

productivity. Analysis at the population level confirmed this pattern, as fish included higher 

proportions of detritus and plants in their diets in the most eutrophic lakes (Figure 5). Fish 

community structure was also shifting along the productivity gradient, as previously observed 

on broader spatial scales (Hayden et al., 2017). Crucian carp coexisted with brown trout, 

perch, or both brown trout and perch in mesotrophic lakes. Minnow (Phoxinus phoxinus) was 

also present in some of these lakes. The most productive lakes were sustaining multispecies 

communities including perch, pike, and high density of cyprinids such as roach (Rutilus rutilus), 

bream (Abramis brama), and rudd (Scardinius erythrophthalmus). In turn, high predation risk 

and large resource availability of productive lakes can determine an increase in crucian carp 

body size (Tonn et al., 1994). Thus, although explanatory variables were not directly 

correlated, productivity, community structure, and fish size were highly interconnected and 

likely had a synergistic effect on crucian carp resource use. 

Size-related resource use 

Body size was an important variable determining crucian carp resource use. In general, at the 

population level, fish seemed to include more littoral prey in their diet with increasing body 

size. At the individual level, we observed great variation in Δ13C values of small fish, while Δ 

15N values were lower relative to larger crucian carp. Consumption of few prey items such as 

filter-feeding zooplankton (mainly Bosmina sp.), detritus, or plant material and exclusion of 

large predatory benthic copepods or macroinvertebrates from the diet, could explain the low 

trophic position, high variation in Δ13C values, and small niche size of crucian carp populations 

from allopatric lakes. By contrast, with increasing average body size, fish seemed to rely on 
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higher proportions of littoral prey. Diet analysis confirmed this pattern. Previous studies from 

allopatric populations reported that crucian carp preference for larger prey items increased 

with fish size (Penttinen & Holopainen, 1992). Experimental studies also showed that crucian 

carp present size-related shifts in feeding efficiency (Paszkowski et al., 1989). Thus, crucian 

carp may undergo changes in diet during ontogeny associated with size-specific differences in 

their ability to ingest prey.  

Interspecific interactions 

While crucian carp density was excluded from model selection, predator and competitor 

density were significant predictors of Δ13C and Δ15N, respectively. In general, fish were more 
13C enriched in lakes with high predator density, probably because they were forced to feed 

on benthic prey when confined to the littoral area. By contrast, in absence of predators, 

crucian carp showed higher reliance on zooplankton, as they may use the pelagic area more 

freely (Pettersson & Brönmark, 1993; Diehl & Eklöv, 1995). Crucian carp, however, included a 

variable proportion of pelagic prey in their diet even in predator-lakes, probably because we 

Figure 5. Littoral (LIT), pelagic (PEL), and pooled plant and sediment (SED) resource use 
of crucian carp for each lake according to the Bayesian isotope mixing models. The box 
is drawn around the 25th and 75th quartiles, representing 50% credible intervals, while 
whiskers represent 95% credible intervals. Lakes are divided into communities without 
(1–-3) and with predators (4–-12) and arranged from left to right by increasing 
productivity within these categories. 
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mostly considered large individuals already outside of the predation window that were able 

to occasionally feed in the open water (Werner & Hall, 1988).  

Interspecific competition also played an important role in determining crucian carp resource 

use. In the productive Lakes Nusttjernet and Stomperudtjernet, where high densities of 

different cyprinid species were present, crucian carp were 15N depleted, had low individual 

specialization, and small isotopic niche area. Small bottom-dwelling cladocerans (mainly 

Chydorus sp.) accounted for more than 50% of their diet. Crucian carp may have been limited 

to feed on a restricted subset of the total prey spectrum, as a result of resource partitioning 

with other abundant cyprinid species such as roach and bream (Persson & Hansson, 1999; 

Nahon et al., 2020). In these productive lakes, predation risk and high density of competitor 

species may have decreased the degree of individual diet variation as a consequence of 

restricted habitat availability and limitation of alternative food sources (Eklöv & Svanbäck, 

2006). However, fish managed to reach very large body sizes even in these lakes, likely 

because resources were abundant. In other lakes, competition with minnow might have 

limited crucian carp resource use as they cohabit in the littoral area (Eklöv et al., 1994). In 

lakes Bjørnmyrdammen, Øvresetetjern, and Bugårdsdammen, where no other cyprinid 

species was present, crucian carp were clearly 15N enriched and included larger proportions 

of macroinvertebrates in their diet, indicating utilization of different resources compared to 

the other lakes. 
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4.3. Variation in life-history traits along a gradient of predation risk (Paper III) 
 
Population structure  

In absence of predators, fish populations consisted of abundant, small, and shallow-bodied 

individuals. By contrast, in presence of piscivores, catches were dominated by low densities 

of deep-bodied individuals, which were mostly well above predator gape size, especially in 

lakes where both perch and pike were present. Relative body depth of crucan carp was 

positively correlated with predator gape size (Figure 6). 

Growth traits  

Mean parameter estimates from the von Bertalanffy growth function varied greatly among 

the various lakes (Figure 7). L∞ ranged from 12.6 cm to 42.0 cm and was positively correlated 

with predator gape size. Young crucian carp also attained larger body length with increasing 

predator gape size, showing clearly a higher growth rate during their first years of life in 

presence of predators. These results show that fish can quickly achieve a size-refuge by 

increasing both in body depth and size, and the degree of growth is highly proportional to the 

Figure 6. Boxplots showing variation in relative body depth (RBD) between female (F) and 
male (M) crucian carp from the fifteen study lakes. Asterisks (*) denote significant 
differences (p < 0.05) between females and males. The dashed line separates lakes without 
predators (left side) from lakes with predators (right side). 
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gape size of the predators present in a lake. However, the growth coefficient was not 

correlated to gape size. Indeed, it was inversely related to asymptotic length, probably 

because of increased time to reach very large maximum body sizes. Maximum life span ranged 

from 6.1 years in N. Sætertjern to 16.2 years in Bugårdsdammen and was positively correlated 

with predator gape size. 

Predator gape size was negatively correlated with fish density. In predator-free lakes, dense 

allopatric populations suffer high intraspecific competition and adult mortality, with a few fish 

reaching large sizes (Tonn et al., 1994). Predation may have an indirect positive effect on prey 

growth by reducing the density of prey population and releasing survivors from competition 

(Van Buskirk & Yurewicz, 1998). These dynamics are also expected to be highly dependent on 

resource availability (Day et al., 2002). Interestingly, in Lakes Posttjernet and Karussputten, 

crucian carp had the lowest length at age 1 and 3 compared to other lakes with similar fish 

community. These lakes had the lowest nutrient values, suggesting that growth might be 

limited by resource availability. Lake structure is particularly important as small lakes at 

northern latitudes are subject to extreme seasonal changes, such as abrupt rising 

temperatures during summer and anoxic conditions during winter. Small crucian carp from 

allopatric populations might invest more energy and time for building up reserves for 

overwintering compared to large fish from multi-species communities (Vornanen et al., 2011). 

Moreover, differences in lake structure and abiotic characteristics may explain the great 

variation in growth traits observed among predator-free populations (Fox & Keast, 1990; 

Dembski et al., 2006; Tarkan et al., 2011). 
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Figure 7. Von Bertalanffy growth curves for crucian carp from 15 lakes without predator 
fish (first and second upper rows), with brown trout (second upper row), perch or perch 
and brown trout (second lower row), and pike and perch (first lower row). Shaded areas 
around the growth curves correspond to the 95% credibility intervals. 
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Reproductive traits  

Age at sexual maturity ranged from 2.6 years to 4.0 years, and, contrary to predictions, was 

not correlated with predation risk. These results were comparable to values of populations 

from similar latitudes (Holopainen & Pitkänen, 1985), although studies on reproductive traits 

of crucian carp are rare in Fennoscandia. By contrast, length at maturity was positively 

correlated with gape size, as a result of increased growth at young age. Gonadosomatic index 

(GSI) was increasing with predation risk and was positively correlated with reproductive life 

span. Previous studies found that large females from multispecies communities had higher 

gonadosomatic index, absolute and relative fecundity, and larger eggs, and proposed that 

reproductive effort increases with body size (Moisander, 1991; Holopainen et al., 1997b).  

Moreover, crucian carp is a batch spawner, and the number of spawning events during each 

season seems to depend on water temperature rather than predation risk or other 

environmental factors (Aho & Holopainen, 2000). These results seem to contrast with life-

history theory since a high reproductive effort should happen at the expense of growth or 

survival (Stearns, 1992). However, previous studies on crucian carp considered mainly large 

females that were probably already well outside of the predation window. Small fish from 

predator lakes may mature early but still invest more energy in growth than reproduction in 

order to reach a size-refuge from predation. Then, they may slow down growth and allocate 

more energy to reproduction.  

Crucian carp allocate more energy to reproduction, grow older, and attain larger asymptotic 

sizes in presence of predators, which strongly suggests higher food availability in these lakes. 

Fish from predator lakes likely experience higher levels of resource availability as an indirect 

consequence of reduced intraspecific competition caused by predation. High-predation lakes 

are also highly productive systems that presented a great proportion of complex vegetated 

littoral habitats. This may favor growth and reproductive allocation even after fish have 

outgrown predator gape size.  
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5. General discussion 

5.1. A fine-tuned defense mechanism against predation risk  

Crucian carp body depth increased along a gradient of predation risk. This change in body 

shape was accompanied by shifts in population structure and life-history strategies. 

Increasingly efficient predators determined a decrease in population density, progressively 

deeper body shape, and larger size (paper I). Moreover, with increasing predation risk, fish 

grew older, attained larger asymptotic length, and had higher reproductive effort (paper III). 

Differences in the morphology, biology, and ecology of crucian carp have been traditionally 

described as a dichotomy between populations from allopatric and multi-species communities 

where pike is the top predator (Holopainen et al., 1997b). These results show that crucian carp 

morphology, population structure, and life-history traits range widely between these two 

extreme morphotypes. Relative body depth was highly proportional to the predation window, 

strongly suggesting that crucian carp is provided with a fine-tuned morphological defense 

response to decrease vulnerability to gape-size limited predators (paper I; paper III). This 

increase in body depth was accompanied by a higher growth rate, especially at young age, 

further supporting the hypothesis that fish were rapidly achieving a size-refuge to avoid 

predation (paper III).  

As previously observed under experimental conditions (Brönmark & Pettersson, 1994), 

crucian carp from pike-lakes seem to present the greater response to predation risk, and fish 

grew well above predator gape size. Pike was coexisting with perch in these lakes, which may 

have imposed a greater predation risk due to a widening of predation window but also for 

their different hunting strategies (Eklöv & Diehl, 1994). Crucian carp from perch and/or brown 

trout lakes presented higher variation in body depth and growth, but always in between 

allopatric populations and pike-lakes. This was probably associated with the variable dietary 

preferences of perch and brown trout compared to the strictly piscivorous pike (Mittelbach & 

Persson, 1998). Thus, this gape-size gradient is also representative of a shift in the species 

composition and ecology of the predator communities, which may ultimately regulate crucian 

carp defense response. Crucian carp in small lakes, characterized by frequent fish mortality 

during winter followed by recolonization of piscivores, have a stochastic environment (e.g. 

Lappalainen et al., 2016) potentially favoring the evolution of specific inducible antipredator 
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responses. However, regulation of development of body shape in response to predation risk 

seems to be a complex process and other indirect effects as such resource availability, 

competition, and behavioral responses seemed to influence crucian carp growth and 

expression of inducible defense. 

 

5.2. The role of resource use: feeding preferences, competition and lake 
productivity 

Differences in crucian carp body shape were not directly related to predator-induced shifts in 

resource use (paper I), although we observed an increase in littoral prey preference in 

presence of predators (paper II). In these highly variable systems, changes in resource 

availability are likely to occur and plastic feeding strategies might be favored over 

specialization in acquiring specific resources (Scharnweber et al., 2013). In general, crucian 

carp experienced better growth conditions along the predation risk gradient, probably favored 

by the larger resource availability and decreasing intraspecific competition associated with the 

different predator communities. 

We observed a strong correlation between fish density, predator gape size, and fish growth 

(paper III). Small body sizes, short lifespans, and low reproductive effort suggest that 

intraspecific competition is a major driver of the ecology of allopatric populations of crucian 

carp in the wild (Tonn et al., 1994). Size-selective predation could reduce the density of small 

fish, relaxing intraspecific competition and favoring a subsequent increase in growth of 

survivors (Persson et al., 1996; Craig et al., 2006). Indeed, crucian carp from populations with 

absent or low predation risk presented higher individual dietary specialization compared to 

the other lakes, suggesting that increasing predation risk was releasing intraspecific 

competition (paper II). Moreover, decreased intraspecific competition coupled to size-related 

shift in resource use in presence of predators may have also allowed access to a broader range 

of resources, probably more energetically rewarding compared to small cladocerans or 

detritus (paper II).  

Fish community composition was shifting with lake productivity. In particular, pike-lakes 

corresponded to the most productive communities, where resources were likely highly 

available. Large food availability of these lakes may sustain crucian carp growth even in 

presence of high densities of competitor species (paper II). Interspecific competition, 
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however, may strongly influence crucian carp resource use and growth, and its role is 

overlooked. Langmyrtjern was the only lake to harbor crucian carp and another no-predator 

species, minnow. Here, crucian carp had the lowest relative body depth, smallest size, slow 

growth at young age (paper III), and highest individual dietary specialization (paper II). The 

combined effect of intra- and interspecific competition might have constrained crucian carp 

diet breadth, with negative effects on individual growth. On the opposite in Bugårdsdammen, 

crucian carp reached the highest relative body depth, large sizes, and rapid growth at young 

age (paper III). This was a productive lake where only pike and perch were present in addition 

to crucian carp. It could be argued that in absence of other cyprinids, increased predation risk 

would elicit a stronger antipredator response. Crucian carp from this lake had also the largest 

isotopic niche area among all lakes (paper II), suggesting increased foraging opportunity 

compared to other pike-lakes with dense cyprinid communities.  

 
5.3. Patterns of energy allocation under predation risk 

Crucian carp development in body depth seems to be the result of overall better growth 

conditions associated with larger resource availability with increasing predation risk, rather 

than a defense directly induced by the predator presence. However, if this theory is true, how 

can we explain crucian carp increase in body depth after simple exposure to predation cues? 

Activity, growth, and morphology are often highly integrated traits and therefore changes in 

activity levels affecting energy acquisition can, in turn, affect morphology (Pigliucci, 2005). 

Experiments show that crucian carp exposed to predation cues respond with a lowering of 

activity levels (Holopainen et al., 1997a). This reduction in activity may save energy, which is 

then allocated to somatic growth, determining body development (Johansson & Andersson, 

2009). Crucian carp with a body height below predator gape size had very low catchability in 

this and other field studies (Brönmark et al., 1995; Vornanen et al., 2011), suggesting that 

small individuals vulnerable to predation may have very low activity levels. Still, small fish 

allocated energy to growth and reproduction (paper III). Laboratory experiments show that 

crucian carp habitat use was significantly affected by both predation risk and hunger level, 

indicating a trade-off between food acquisition and predator avoidance (Pettersson & 

Brönmark, 1993). In the wild, the structural complexity of vegetated littoral habitats in high-

predation lakes may offer fish food and shelter until they reach a size-refuge. Here, a deep 
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body might also provide fish with greater maneuverability and foraging efficiency to feed on 

benthic invertebrates associated with the substrate or vegetation (Svanbäck & Eklöv, 2003). 

Moreover, crucian carp can alter diel activity patterns when occurring with predators 

(Vinterstare et al., 2020). Increased habitat complexity, food availability and high plasticity in 

diet may allow fish to get enough energy for allocation to growth and reproduction while 

lowering foraging activity. By contrast, high competition for resources in absence of predators, 

likely forces individuals to increase foraging activity to avoid starvation, resulting in stunted 

growth and low reproductive effort. Fish from allopatric populations may also invest more 

energy in building up winter reserves (Vornanen et al., 2011). A deep-bodied shape, however, 

resulted costly when competing for limited resources in absence of predators (Webb 1984; 

Pettersson & Brönmark, 1997). 
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6. Conclusion 

Crucian carp variation in body shape represents a fine-tuned defense response against 

increasingly efficient gape-limited predators. Variation in body depth was accompanied by a 

clear shift in population structure and life-history strategies. Reduced intraspecific 

competition, larger food availability, and habitat complexity likely favored energy acquisition 

despite potential low activity levels associated with predation risk. Plastic feeding habits and 

a shift in resource use with increasing body size may also have supported this energy-saving 

mechanism. The energy saved from reduced foraging activity was then allocated to both 

growth and reproduction. Predation is a major selective force favoring the evolution of 

inducible defenses, however, the observed anti-predator response in crucian carp was likely a 

result of evolutionary optimization of predation risk with the prevailing environmental 

conditions. In this work, I related the crucian carp antipredator defense response to a broader 

environmental and ecological context, offering new insights on how selection can maintain 

predator-induced plasticity. This may contribute to a better understanding of the evolutionary 

and ecological significance of phenotypic plasticity in small lakes with high environmental 

stochasticity. Environmental variation driving plastic changes in one organism may have 

effects that spread throughout the ecosystems. The understanding of these dynamics is 

particularly important nowadays since small freshwater ecosystems are particularly exposed 

to anthropogenic pressure.  
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7. Caveats and future directions 
 

In this field study, predator community was shifting along a productivity gradient. On one side, 

this allowed us to observe how different selective forces operate on several traits in complex, 

real-world situations. On the other side, there were limitations in distinguishing the effect of 

predation risk from resource availability. Moreover, the smallest size classes were often 

underrepresented in high-predation lakes. Future studies should investigate the changes 

associated with the predator-induced defense along a gradient of resource availability in 

controlled experimental settings. Changes in body shape, activity levels, metabolism, and 

investment in growth and reproduction could be quantified to better understand the patterns 

of energy allocation of crucian carp. 

Crucian carp from allopatric populations had different relative body depth and highly variable 

life-history traits. These fish can inhabit very heterogeneous systems and future investigations 

should examine how different environmental conditions influence crucian carp population 

dynamics and energy allocation in absence of predators.  

In this study, both intra- and interspecific competition seemed to play an important role in 

crucian carp diet preferences and growth. In order to fully address the effect of resource 

competition, future studies should investigate crucian carp resource use and growth under 

different exposures to competitor species in pond or mesocosm experiments.  

Laboratory and field experiments often assume that the development of an inducible defense 

in crucian carp is exclusively due to a plastic response. However, natural population of crucian 

carp may present differences in the degree of expression of the inducible defense as a result 

of selection. Future studies should investigate if there is a genomic component associated with 

the phenotypic expression. Common garden experiments could be also used to compare the 

expression of the inducible defense among fish from locations with different historical 

exposure to predators.   

Future studies investigating crucian carp resource use should include data on prey abundance 

for estimation of pelagic and littoral habitat profitability. Gut contents analysis gives a 

snapshot of fish prey preferences and may not reflect fish optimal diet choices. Stable isotopes 

are particularly useful in complementing gut contents analysis as they can give information on 
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resource use over a longer time frame. However, they do not give taxonomical resolution. 

Compound-specific stable isotopes could be used as a complementary methodology to get a 

better resolution of crucian carp resource use.     

 



36 
 

Acknowledgments  
 
 
I would like to thank my supervisor Antonio Poleo for the freedom and trust gave me over the 

PhD process and for being always open for discussion. Many thanks to Kjartan Østbye for the 

long conversations and insightful comments, which have really been food for scientific 

thought. I am grateful to Kimmo Kahilainen, for the great help and for always putting things 

in perspective. Thanks for introducing me to the world of stable isotopes. I would like to thank 

Brian Hayden for all the good suggestions with the analysis and for welcoming me into the 

SINLAB.  

This work would not have been possible without the help of willing students. I am grateful to 

Kaisa, Jeannette, Marius, Minna, Christian, Alicia, Geoffrey, Jonas, and María for their hard 

work in the field and laboratory. A special thanks to Toni and Victoria for opening their home 

to me and other fieldworkers. It has been a great part of my PhD and personal experience.  

These years at Evenstad have gone very fast, but I met many people I am thankful for: PhD 

students, flatmates, academic and non-academic staff. A special thank you goes to Jeremy, 

Ana, Natalia, Alex, and Annie. You always had a good word and made my PhD time more 

enjoyable. Thanks for all the good moments hiking, drinking, doing yoga, biking, or jamming. 

Olivier and Eliana, thanks for the many evenings of talking and all the support.  

Francisco, thank you for always encouraging me and pushing me to do better. And now I need 

to switch language for one moment... Un grazie alla mia famiglia per osservare con pazienza i 

miei spostamenti e sostenermi sempre nonostante la distanza. Un giorno troverò un porto 

sicuro! Gracias a Tere y Francisco, no habría terminado a tiempo sin vuestro cariño. 



37 
 

References 

Abrams, P. A., & Rowe, L. (1996). The effects of predation on the age and size of maturity of 

prey. Evolution, 50 (3), 1052-1061. 

Aho, J., & Holopainen, I. J. (2000). Batch spawning of crucian carp (Carassius carassius (L.)) in 

mono-and multispecies communities. Annales Zoologici Fennici 37, 101-111.  

Andersson, J., Johansson, F., & Söderlund, T. (2006). Interactions between predator-and diet-

induced phenotypic changes in body shape of crucian carp. Proceedings of the Royal 

Society of London B: Biological Sciences, 273(1585), 431–437. 

Anholt, B. R., & Werner, E. E. (1995). Interaction between food availability and predation 

mortality mediated by adaptive behavior. Ecology, 76(7), 2230-2234. 

Arendt, J. D., & Wilson, D. S. (1999). Countergradient selection for rapid growth in 

pumpkinseed sunfish: disentangling ecological and evolutionary effects. Ecology, 80(8), 

2793-2798. 

Bagenal, T.B. & Tesch, F.W. (1978) Age and growth. Methods for Assessment of Fish Production 

in Fresh Waters (ed. T.B. Bagenal), 101-136. Blackwell Scientific Publications Ltd, 

London. 

Beaty, L. E., Wormington, J. D., Kensinger, B. J., Bayley, K. N., Goeppner, S. R., Gustafson, K. D., 

& Luttbeg, B. (2016). Shaped by the past, acting in the present: transgenerational 

plasticity of anti‐predatory traits. Oikos, 125(11), 1570-1576. 

Belk, M. C. (1995). Variation in growth and age at maturity in bluegill sunfish: genetic or 

environmental effects? Journal of Fish Biology, 47(2), 237-247. 

Belk, M. C., & Hales Jr, L. S. (1993). Predation-induced differences in growth and reproduction 

of bluegills (Lepomis macrochirus). Copeia, 4, 1034-1044. 

Bell, G. (1980). The costs of reproduction and their consequences. The American 

Naturalist, 116(1), 45-76. 

Benard, M. F. (2004). Predator-induced phenotypic plasticity in organisms with complex life 

histories. Annual Review of Ecology, Evolution, and Systematics, 35, 651-673. 



38 
 

Blažka, P. (1958). The anaerobic metabolism of fish. Physiological Zoology, 31(2), 117–128.  

Bloch, M. E. (1782) Oeconomische Naturgeschichte der Fishe Deutschland (in German). Erster 

Teil, Berlin, Germany. 

Bolnick, D. I., Ingram, T., Stutz, W. E., Snowberg, L. K., Lau, O. L., & Paull, J. S. (2010). Ecological 

release from interspecific competition leads to decoupled changes in population and 

individual niche width. Proceedings of the Royal Society B: Biological 

Sciences, 277(1689), 1789-1797. 

Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. (2002). Measuring 

individual–level resource specialization. Ecology 83, 2936–2941. 

Botrel, M., Gregory-Eaves, I., & Maranger, R. (2014). Defining drivers of nitrogen stable 

isotopes (δ15N) of surface sediments in temperate lakes. Journal of 

Paleolimnology, 52(4), 419-433. 

Bourdeau, P. E., & Johansson, F. (2012). Predator-induced morphological defences as by-

products of prey behaviour: A review and prospectus. Oikos, 121(8), 1175–1190. 

Brönmark, C., & Pettersson, L. B. (1994). Chemical cues from piscivores induce a change in 

morphology in crucian carp. Oikos, 70(3), 396–402. 

Brönmark, C., Lakowitz, T., Nilsson, P. A., Ahlgren, J., Lennartsdotter, C., & Hollander, J. (2012). 

Costs of inducible defence along a resource gradient. PLoS One, 7(1), e30467. 

Brönmark, C., Paszkowski, C. A., Tonn, W. M., & Hargeby, A. (1995). Predation as a 

determinant of size structure in populations of crucian carp (Carassius carassius) and 

tench (Tinca tinca). Ecology of Freshwater Fish, 4(2), 85-92. 

Brydges, N. M., Colegrave, N., Heathcote, R. J., & Braithwaite, V. A. (2008). Habitat stability 

and predation pressure affect temperament behaviours in populations of three‐spined 

sticklebacks. Journal of Animal Ecology, 77(2), 229-235. 

Byström, P., Andersson, J., Persson, L., & De Roos, A. M. (2004). Size‐dependent resource 

limitation and foraging‐predation risk trade‐offs: growth and habitat use in young arctic 

char. Oikos, 104 (1), 109-121. 



39 
 

Charnov, E. L. (1993). Life history invariants: some explorations of symmetry in evolutionary 

ecology (Vol. 6). Oxford University Press, USA. 

Clark, C. W., & Harvell, C. D. (1992). Inducible defenses and the allocation of resources: a 

minimal model. The American Naturalist, 139(3), 521-539. 

Craig, J. K., Burke, B. J., Crowder, L. B., & Rice, J. A. (2006). Prey growth and size-dependent 

predation in juvenile estuarine fishes: Experimental and model analyses. Ecology, 87(9), 

2366–2377. 

David, M., Salignon, M., & Perrot-Minnot, M. J. (2014). Shaping the antipredator strategy: 

flexibility, consistency, and behavioral correlations under varying predation 

threat. Behavioral Ecology, 25(5), 1148-1156. 

Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the 

Royal Society of London. Series B. Biological Sciences, 205(1161), 489-511. 

Day, T., Abrams, P. A., & Chase, J. M. (2002). The role of size‐specific predation in the evolution 

and diversification of prey life histories. Evolution, 56(5), 877-887. 

Dembski, S., Masson, G., Monnier, D., Wagner, P., & Pihan, J. C. (2006). Consequences of 

elevated temperatures on life‐history traits of an introduced fish, pumpkinseed Lepomis 

gibbosus. Journal of Fish Biology, 69(2), 331-346. 

DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in 

Ecology & Evolution, 13(2), 77–81. 

Diehl, S., & Eklov, P. (1995). Effects of piscivore‐mediated habitat use on resources, diet, and 

growth of perch. Ecology, 76(6), 1712-1726. 

Edgell, T. C., Lynch, B. R., Trussell, G. C., & Palmer, A. R. (2009). Experimental evidence for the 

rapid evolution of behavioral canalization in natural populations. The American 

Naturalist, 174(3), 434-440. 

Ehlinger, T. J. (1990). Habitat choice and phenotype‐limited feeding efficiency in bluegill: 

individual differences and trophic polymorphism. Ecology, 71(3), 886-896. 



40 
 

Eklöv, A. G., Greenberg, L. A., & Kristiansen, H. (1994). The effect of depth on the interaction 

between perch (Perca fluviatilis) and minnow (Phoxinus phoxinus). Ecology of 

Freshwater Fish, 3(1), 1-8. 

Eklöv, P., & Diehl, S. (1994). Piscivore efficiency and refuging prey: the importance of predator 

search mode. Oecologia, 98(3-4), 344-353. 

Eklöv, P., & Svanbäck, R. (2006). Predation risk influences adaptive morphological variation in 

fish populations. The American Naturalist, 167(3), 440-452. 

Ekström, C. U. (1838). Iakttagelser öfver formförändringen hos rudan (Cypr. Carassius Lin.). – 

Kongliga Vetenskaps Akad. Hand. 213-215 

Eloranta, A. P., Knudsen, R., & Amundsen, P. A. (2013). Niche segregation of coexisting Arctic 

charr (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling 

in subarctic lakes. Freshwater Biology, 58(1), 207-221. 

Engström-Öst, J., & Mattila, J. (2008). Foraging, growth and habitat choice in turbid water: an 

experimental study with fish larvae in the Baltic Sea. Marine Ecology Progress 

Series, 359, 275-281. 

Estlander, S., & Nurminen, L. (2014). Feeding under predation risk: potential sex‐specific 

response of perch (Perca fluviatilis). Ecology of Freshwater Fish, 23(3), 478-480. 

Ferrari, M. C., Wisenden, B. D., & Chivers, D. P. (2010). Chemical ecology of predator–prey 

interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of 

Zoology, 88(7), 698-724. 

Fox, M. G., & Keast, A. (1990). Effects of winterkill on population structure, body size, and prey 

consumption patterns of pumpkinseed in isolated beaver ponds. Canadian Journal of 

Zoology, 68(12), 2489-2498. 

Fraser, N. H. C., & Metcalfe, N. B. (1997). The costs of becoming nocturnal: feeding efficiency 

in relation to light intensity in juvenile Atlantic salmon. Functional Ecology, 11(3), 385-

391. 



41 
 

Gao, J., Zhong, P., Ning, J., Liu, Z., & Jeppesen, E. (2017). Herbivory of omnivorous fish shapes 

the food web structure of a Chinese tropical eutrophic lake: Evidence from stable 

isotope and fish gut content analyses. Water, 9(1), 69. 

Hayden, B., Myllykangas, J. P., Rolls, R. J., & Kahilainen, K. K. (2017). Climate and productivity 

shape fish and invertebrate community structure in subarctic lakes. Freshwater 

Biology, 62(6), 990-1003. 

Heibo, E., & Magnhagen, C. (2005). Variation in age and size at maturity in perch (Perca 

fluviatilis L.), compared across lakes with different predation risk. Ecology of freshwater 

fish, 14(4), 344-351. 

Henderson, B. A., Collins, N., Morgan, G. E., & Vaillancourt, A. (2003). Sexual size dimorphism 

of walleye (Stizostedion vitreum vitreum). Canadian Journal of Fisheries and Aquatic 

Sciences, 60(11), 1345-1352. 

Henseler, C., Nordström, M. C., Törnroos, A., Snickars, M., & Bonsdorff, E. (2020). Predation 

risk and competition affect habitat use of adult perch, Perca fluviatilis. Journal of Fish 

Biology, 96(3), 669-680. 

Heynen, M., Bunnefeld, N., & Borcherding, J. (2017). Facing different predators: Adaptiveness 

of behavioral and morphological traits under predation. Current Zoology, 63(3), 249–

257. 

Hjelm, J., Persson, L., & Christensen, B. (2000). Growth, morphological variation and 

ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource 

availability. Oecologia, 122(2), 190-199. 

Holopainen IJ, Pitkänen AK. (1985). Population size and structure of crucian carp (Carassius 

carassius (L.)) in two small natural ponds in Finland. Annales Zoologici Fennici 22, 397–

406. 

Holopainen, I. J., Aho, J., Vornanen, M., & Huuskonen, H. (1997a). Phenotypic plasticity and 

predator effects on morphology and physiology of crucian carp in nature and in the 

laboratory. Journal of Fish Biology, 50(4), 781–798. 



42 
 

Holopainen, I. J., Tonn, W. M., & Paszkowski, C. A. (1997b). Tales of two fish: The dichotomous 

biology of crucian carp (Carassius carassius (L.)) in northern Europe. Annales Zoologici 

Fennici, 34(1), 1–22. 

Höök, T. O., Svanbäck, R., & Eklöv, P. (2021). Sex-specific plasticity in a trophic polymorphic 

aquatic predator: a modeling approach. Oecologia, 195(2), 341-354. 

Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths 

among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Journal of 

Animal Ecology, 80(3), 595-602. 

Januszkiewicz, A. J., & Robinson, B. W. (2007). Divergent walleye (Sander vitreus)-mediated 

inducible defenses in the centrarchid pumpkinseed sunfish (Lepomis 

gibbosus). Biological Journal of the Linnean Society, 90(1), 25-36. 

Jensen, H., Kiljunen, M., & Amundsen, P. A. (2012). Dietary ontogeny and niche shift to 

piscivory in lacustrine brown trout Salmo trutta revealed by stomach content and stable 

isotope analyses. Journal of Fish Biology, 80(7), 2448-2462. 

Johansson, F., & Andersson, J. (2009). Scared fish get lazy, and lazy fish get fat. Journal of 

Animal Ecology, 78(4), 772–777. 

Jönsson, M., Ranåker, L., Nilsson, P. A., Brönmark, C., & Grant, J. (2013). Foraging efficiency 

and prey selectivity in a visual predator: Differential effects of turbid and humic 

water. Canadian Journal of Fisheries and Aquatic Sciences, 70(12), 1685–1690. 

Karlsson, J., & Byström, P. (2005). Littoral energy mobilization dominates energy supply for 

top consumers in subarctic lakes. Limnology and Oceanography, 50(2), 538–543. 

Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to 

ecosystems. Stable Isotopes in Ecology and Environmental Science, 2(1), 375-449. 

Kishida, O. & Nishimura, K. (2005) Multiple inducible defences against multiple predators in 

the anuran tadpoles, Rana pirica. Evolutionary Ecology Research, 7(4), 619–631. 

Kishida, O., Trussell, G. C., & Nishimura, K. (2007). Geographic variation in a predator‐induced 

defense and its genetic basis. Ecology, 88(8), 1948-1954. 



43 
 

Kishida, O., Trussell, G. C., Nishimura, K., & Ohgushi, T. (2009). Inducible defenses in prey 

intensify predator cannibalism. Ecology, 90(11), 3150-3158. 

Lappalainen, J., Vinni, M., & Malinen, T. (2016). Living in the edge: The fate of individually 

marked pike (Esox lucius) stocked in a hyper-eutrophic lake with frequent winter 

hypoxia. Journal of Freshwater Ecology, 31(4), 509–519. 

Lastein, S., Stabell, O. B., Larsen, H. K., Hamdani, E. H., & Døving, K. B. (2012). Behaviour and 

neural responses in crucian carp to skin odours from cross-order species. Behaviour, 

149(9), 925–939. 

Levins, R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton 

University Press. 

Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review 

and prospectus. Canadian Journal of Zoology, 68(4), 619–640. 

Magnhagen, C., Hellström, G., Borcherding, J., & Heynen, M. (2012). Boldness in two perch 

populations–long‐term differences and the effect of predation pressure. Journal of 

Animal Ecology, 81(6), 1311-1318. 

McPeek, M. A., Grace, M., & Richardson, J. M. (2001). Physiological and behavioral responses 

to predators shape the growth/predation risk trade‐off in damselflies. Ecology, 82(6), 

1535-1545. 

Metcalfe, N. B., Fraser, N. H., & Burns, M. D. (1999). Food availability and the nocturnal vs. 

diurnal foraging trade‐off in juvenile salmon. Journal of Animal Ecology, 68(2), 371-381. 

Middlemis Maher, M. J., Werner, E. E., & Denver, R. J. (2013). Stress hormones mediate 

predator-induced phenotypic plasticity in amphibian tadpoles. Proceedings of the Royal 

Society B: Biological Sciences, 280 (1758), 20123075 

Mittelbach, G. G. (1988). Competition among refuging sunfishes and effects of fish density on 

littoral zone invertebrates. Ecology, 69(3), 614-623. 

Mittelbach, G. G., & Persson, L. (1998). The ontogeny of piscivory and its ecological 

consequences. Canadian Journal of Fisheries and Aquatic Sciences, 55(6), 1454–1465. 



44 
 

Moisander, H. (1991). The fractional spawning of crucian carp in two different ponds in 

eastern Finland. M. Sc. thesis, University of Joensuu, Finland (in Finnish). 

Nahon, S., Roussel, J. M., Jaeger, C., Menniti, C., Kerhervé, P., Mortillaro, J. M., & Aubin, J. 

(2020). Characterization of trophic niche partitioning between carp (Cyprinus carpio) 

and roach (Rutilus rutilus) in experimental polyculture ponds using carbon (δ13C) and 

nitrogen (δ15N) stable isotopes. Aquaculture, 522, 735162. 

Nilsson, P. A., & Brönmark, C. (2000). Prey vulnerability to a gape-size limited predator: 

Behavioural and morphological impacts on northern pike piscivory. Oikos, 88(3), 539–

546. 

Nilsson, P. A., Brönmark, C., & Pettersson, L. B. (1995). Benefits of a predator-induced 

morphology in crucian carp. Oecologia, 104(3), 291–296. 

Nosil, P., & Crespi, B. J. (2006). Experimental evidence that predation promotes divergence in 

adaptive radiation. Proceedings of the National Academy of Sciences, 103(24), 9090-

9095. 

Öhlund, G., Bodin, M., Nilsson, K. A., Öhlund, S. O., Mobley, K. B., Hudson, A. G., Mikael Peedu, 

M., Brännström, Å., Bartels, P., Præbel, K., Hein, C. L., Johansson, P., & Englund, G. 

(2020). Ecological speciation in European whitefish is driven by a large‐gaped 

predator. Evolution letters, 4(3), 243-256. 

Osenberg, C. W., Mittelbach, G. G., & Wainwright, P. C. (1992). Two‐stage life histories in fish: 

the interaction between juvenile competition and adult performance. Ecology, 73(1), 

255-267. 

Paszkowski, C. A., Penttinen, O. P., Holopainen, I. J., & Tonn, W. M. (1996). Predation risk and 

feeding patterns of crucian carp. Journal of Fish Biology, 48(5), 818-828. 

Paszkowski, C.A., Tonn, W.M. & Holopainen, I.J. (1989). An experimental study of body size 

and food size relations in crucian carp, Carassius carassius. Environmental Biology of 

Fishes 24, 275–286. 

Peckarsky, B. L., & McIntosh, A. R. (1998). Fitness and community consequences of avoiding 

multiple predators. Oecologia, 113(4), 565-576. 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Peedu%2C+Mikael
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Br%C3%A4nnstr%C3%B6m%2C+%C3%85ke
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bartels%2C+Pia
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Pr%C3%A6bel%2C+Kim
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Hein%2C+Catherine+L
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Johansson%2C+Petter


45 
 

Penttinen, O. P., & Holopainen, I. J. (1992). Seasonal feeding activity and ontogenetic dietary 

shifts in crucian carp, Carassius carassius. In Environmental biology of European 

cyprinids (pp. 215-222). Springer, Dordrecht. 

Persson, A., & Hansson, L. A. (1999). Diet shift in fish following competitive release. Canadian 

Journal of Fisheries and Aquatic Sciences, 56(1), 70-78. 

Persson, L., Andersson, J., Wahlstrom, E., & Eklöv, P. (1996). Size-specific interactions in lake 

systems: Predator gape limitation and prey growth rate and mortality. Ecology, 77(3), 

900–911.  

Pettersson, L. B., & Brönmark, C. (1993). Trading off safety against food: state dependent 

habitat choice and foraging in crucian carp. Oecologia, 95(3), 353-357. 

Pettersson, L. B., & Brönmark, C. (1997). Density-dependent costs of an inducible 

morphological defense in crucian carp. Ecology, 78(6), 1805–1815.  

Pettersson, L. B., Nilsson, P. A., & Brönmark, C. (2000). Predator recognition and defence 

strategies in crucian carp. Carassius carassius. Oikos, 88(1), 200–212. 

Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture. Johns Hopkins 

University Press. 

Pigliucci, M. (2005). Evolution of phenotypic plasticity: Where are we going now? Trends in 

Ecology & Evolution, 20(9), 481–486. 

Piironen, J., Holopainen, I.J. (1986). A note on seasonality in anoxia tolerance of crucian carp 

(Carassius carassius L.) in the laboratory. Annales Zoologici Fennici 23, 335–338 

Poléo, A. B., Osxnevad, S. A., Østbye, K., Heibo, E., Andersen, R. A., & Vøllestad, L. A. (1995). 

Body morphology of crucian carp Carassius carassius in lakes with or without piscivorous 

fish. Ecography, 18(3), 225-229. 

Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and 

assumptions. Ecology, 83(3), 703–718. 

Quevedo, M., Svanbäck, R., & Eklöv, P. (2009). Intrapopulation niche partitioning in a 

generalist predator limits food web connectivity. Ecology, 90(8), 2263-2274. 



46 
 

Ranåker, L., Persson, J., Jönsson, M., Nilsson, P. A., & Brönmark, C. (2014). Piscivore-prey fish 

interactions: mechanisms behind diurnal patterns in prey selectivity in brown and clear 

water. PloS one, 9(11), e102002. 

Reznick, D. A., Bryga, H., & Endler, J. A. (1990). Experimentally induced life-history evolution 

in a natural population. Nature, 346(6282), 357-359.  

Reznick, D., & Endler, J. A. (1982). The impact of predation on life history evolution in 

Trinidadian guppies (Poecilia reticulata). Evolution, 36(1), 160-177. 

Ringelberg, J. (2009). Diel vertical migration of zooplankton in lakes and oceans: causal 

explanations and adaptive significances. Springer Science & Business Media. 

Roff, D. A. (2002). Life History Evolution. Sinauer Associates, Sunderland.  

Sánchez‐Hernández, J., Nunn, A. D., Adams, C. E., & Amundsen, P. A. (2019). Causes and 

consequences of ontogenetic dietary shifts: a global synthesis using fish 

models. Biological Reviews, 94(2), 539-554. 

Scharnweber, K., Strandberg, U., Karlsson, K., & Eklöv, P. (2016). Decrease of population 

divergence in Eurasian perch (Perca fluviatilis) in browning waters: Role of fatty acids 

and foraging efficiency. PloS one, 11(9), e0162470. 

Scharnweber, K., Watanabe, K., Syväranta, J., Wanke, T., Monaghan, M. T., & Mehner, T. 

(2013). Effects of predation pressure and resource use on morphological divergence in 

omnivorous prey fish. BMC evolutionary biology, 13(1), 1-12. 

Schluter, D. (1993). Adaptive radiation in sticklebacks: size, shape, and habitat use 

efficiency. Ecology, 74(3), 699-709. 

Sharma, C. M., & Borgstrøm, R. (2008). Shift in density, habitat use, and diet of perch and 

roach: An effect of changed predation pressure after manipulation of pike. Fisheries 

Research, 91(1), 98-106. 

Sih, A., Englund, G., & Wooster, D. (1998). Emergent impacts of multiple predators on 

prey. Trends in ecology & evolution, 13(9), 350-355. 

Skov, C., & Nilsson, P. A. (Eds.) (2018). Biology and ecology of pike. CRC Press. 



47 
 

Skúlason, S., Parsons, K. J., Svanbäck, R., Räsänen, K., Ferguson, M. M., Adams, C. E., 

Amundsen, P.-A., Bartels, P., Bean, C. W., Boughman, J. W., Englund, G., Guðbrandsson, 

J., Hooker, O. E., Hudson, A. G., Kahilainen, K. K., Knudsen, R., Kristjánsson, B. K., Leblanc, 

C.-L., Jónsson, Z., … Snorrason, S. S. (2019). A way forward with eco evo devo: An 

extended theory of resource polymorphism with postglacial fishes as model systems. 

Biological Reviews, 94(5), 1786–1808. 

Smart, J. J., & Grammer, G. L. (2021). Modernising fish and shark growth curves with Bayesian 

length-at-age models. PloS One, 16(2), e0246734. 

Smith, T. B., & Skúlason, S. (1996). Evolutionary significance of resource polymorphisms in 

fishes, amphibians, and birds. Annual Review of Ecology and Systematics, 27(1), 111-

133. 

Snell-Rood, E. C., Van Dyken, J. D., Cruickshank, T., Wade, M. J., & Moczek, A. P. (2010). Toward 

a population genetic framework of developmental evolution: The costs, limits, and 

consequences of phenotypic plasticity. BioEssays, 32(1), 71–81. 

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. 

http://mc-stan.org/ 

Stearns, S. C. (1992). The evolution of life histories. Oxford University Press, Oxford.  

Steiner, U. K., & Pfeiffer, T. (2007). Optimizing time and resource allocation trade-offs for 

investment into morphological and behavioral defense. The American 

Naturalist, 169(1), 118-129. 

Storm, J. J., & Lima, S. L. (2010). Mothers forewarn offspring about predators: a 

transgenerational maternal effect on behavior. The American Naturalist, 175(3), 382-

390. 

Svanbäck, R., & Bolnick, D. I. (2007). Intraspecific competition drives increased resource use 

diversity within a natural population. Proceedings of the Royal Society B: Biological 

Sciences, 274(1611), 839-844. 

Svanbäck, R., & Eklöv, P. (2003). Morphology dependent foraging efficiency in perch: A trade-

off for ecological specialization? Oikos, 102(2), 273–284.  

http://mc-stan.org/


48 
 

Taborsky, B., Dieckmann, U., & Heino, M. (2003). Unexpected discontinuities in life–history 

evolution under size–dependent mortality. Proceedings of the Royal Society of London. 

Series B: Biological Sciences, 270(1516), 713-721. 

Tarkan, A. S., Gaygusuz, Ö., Godard, M. J., & Copp, G. H. (2011). Long‐term growth patterns in 

a pond‐dwelling population of crucian carp, Carassius carassius: environmental and 

density‐related factors. Fisheries Management and Ecology, 18(5), 375-383. 

Teplitsky, C., & Laurila, A. (2007). Flexible defense strategies: competition modifies investment 

in behavioral vs. morphological defenses. Ecology, 88(7), 1641-1646. 

Teplitsky, C., Plénet, S., Léna, J. P., Mermet, N., Malet, E., & Joly, P. (2005). Escape behaviour 

and ultimate causes of specific induced defences in an anuran tadpole. Journal of 

evolutionary biology, 18(1), 180-190. 

Tollrian, R., & Harvell, C. D. (Eds.). (1999). The ecology and evolution of inducible defenses. 

Princeton University Press. 

Tonn, W. M., Holopainen, I. J., & Paszkowski, C. A. (1994). Density-dependent effects and the 

regulation of crucian carp populations in single-species ponds. Ecology, 75(3), 824–834.  

Van Buskirk, J., & Yurewicz, K. L. (1998). Effects of predators on prey growth rate: relative 

contributions of thinning and reduced activity. Oikos, 20-28. 

Van Der Stap, I., Vos, M., Verschoor, A. M., Helmsing, N. R., & Mooij, W. M. (2007). Induced 

defenses in herbivores and plants differentially modulate a trophic 

cascade. Ecology, 88(10), 2474-2481. 

Verschoor, A. M., Vos, M., & Van Der Stap, I. (2004). Inducible defences prevent strong 

population fluctuations in bi‐and tritrophic food chains. Ecology letters, 7(12), 1143-

1148. 

Vinterstare, J., Hulthén, K., Nilsson, D. E., Nilsson, P. A., & Brönmark, C. (2020). More than 

meets the eye: Predator-induced pupil size plasticity in a teleost fish. Journal of Animal 

Ecology, 89(10), 2258–2267. 



49 
 

Vinterstare, J., Hulthén, K., Nilsson, P. A., Sköld, H. N., & Brönmark, C. (2020). Experimental 

manipulation of perceived predation risk and cortisol generates contrasting trait 

trajectories in plastic crucian carp. Journal of Experimental Biology, 223(4), 1–8. 

Vøllestad, L. A., Varreng, K., & Poleo, A. B. S. (2004). Body depth variation in crucian carp 

Carassius carassius: An experimental individual-based study. Ecology of Freshwater Fish, 

13(3), 197–202. 

Vornanen, M., Asikainen, J., & Haverinen, J. (2011). Body mass dependence of glycogen stores 

in the anoxia-tolerant crucian carp (Carassius carassius L.). Naturwissenschaften, 98(3), 

225-232. 

Webb, P. W. (1984). Form and function in fish swimming. Scientific American, 251, 58–68.  

Weber, M. J., Brown, M. L., & Willis, D. W. (2010). Spatial variability of common carp 

populations in relation to lake morphology and physicochemical parameters in the 

upper Midwest United States. Ecology of Freshwater Fish, 19(4), 555–565. 

Weiss, L. C. (2019). Sensory ecology of predator-induced phenotypic plasticity. Frontiers in 

Behavioral Neuroscience, 12, 330. 

Werner, E. E., & Anholt, B. R. (1993). Ecological consequences of the trade-off between growth 

and mortality rates mediated by foraging activity. The American Naturalist, 142(2), 242-

272. 

Werner, E. E., & Hall, D. J. (1974). Optimal foraging and the size selection of prey by the bluegill 

sunfish (Lepomis macrochirus). Ecology, 55(5), 1042-1052. 

Werner, E. E., & Hall, D. J. (1988). Ontogenetic habitat shifts in bluegill: the foraging rate‐

predation risk trade‐off. Ecology, 69 (5), 1352-1366. 

Williams, G. C. (2018). Adaptation and natural selection. Princeton university press. 

Wisenden, B. D. (2003). Chemically mediated strategies to counter predation. In Sensory 

processing in aquatic environments (pp. 236-251). Springer, New York, NY. 

Wood, T. C., & Moore, P. A. (2020). Big and bad: how relative predator size and dietary 

information influence rusty crayfish (Faxonius rusticus) behavior and resource-use 

decisions. Canadian Journal of Zoology, 98(1), 62-72. 



50 
 

Woodward, G. & Hildrew, A.G. (2002). Body‐size determinants of niche overlap and intraguild 

predation within a complex food web. Journal of Animal Ecology, 71(6), 1063-1074. 

Zimmerman, M. S. (2007). A field study of brook stickleback morphology: multiple predators 

and multiple traits. Canadian Journal of Zoology, 85(2), 250-260. 

 

 

  



51 
 

Dissertation articles 



52 
 

  



53 
 

1 
 



54 
 

 
  



Ecology and Evolution. 2021;00:1–14.	﻿�    |  1www.ecolevol.org

 

Received: 29 September 2020  |  Revised: 15 December 2020  |  Accepted: 17 December 2020

DOI: 10.1002/ece3.7176  

O R I G I N A L  R E S E A R C H

Predator community and resource use jointly modulate the 
inducible defense response in body height of crucian carp

Ilaria de Meo1  |   Kjartan Østbye1 |   Kimmo K. Kahilainen2 |   Brian Hayden3 |    
Christian H. H. Fagertun1 |   Antonio B. S. Poléo1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Department of Forestry and Wildlife 
Management, Inland Norway University of 
Applied Sciences, Koppang, Norway
2Lammi Biological Station, University of 
Helsinki, Helsinki, Finland
3Biology Department, Canadian Rivers 
Institute, University of New Brunswick, 
Fredericton, NB, Canada

Correspondence
Ilaria de Meo, Department of Forestry 
and Wildlife Management, Inland Norway 
University of Applied Sciences, Campus 
Evenstad, Koppang, Norway.
Email: ilaria.demeo@inn.no

Funding information
Inland Norway University of Applied 
Sciences

Abstract
Phenotypic plasticity can be expressed as changes in body shape in response to 
environmental variability. Crucian carp (Carassius carassius), a widespread cyprinid, 
displays remarkable plasticity in body morphology and increases body depth when 
exposed to cues from predators, suggesting the triggering of an antipredator defense 
mechanism. However, these morphological changes could also be related to resource 
use and foraging behavior, as an indirect effect of predator presence. In order to de-
termine whether phenotypic plasticity in crucian carp is driven by a direct or indirect 
response to predation threat, we compared twelve fish communities inhabiting small 
lakes in southeast Norway grouped by four categories of predation regimes: no pred-
ator fish, or brown trout (Salmo trutta), perch (Perca fluviatilis), or pike (Esox lucius) as 
main piscivores. We predicted the body shape of crucian carp to be associated with 
the species composition of predator communities and that the presence of efficient 
piscivores would result in a deeper body shape. We use stable isotope analyses to 
test whether this variation in body shape was related to a shift in individual resource 
use—that is, littoral rather than pelagic resource use would favor the development of 
a specific body shape—or other environmental characteristics. The results showed 
that increasingly efficient predator communities induced progressively deeper body 
shape, larger body size, and lower population densities. Predator maximum gape size 
and individual trophic position were the best variables explaining crucian carp vari-
ation in body depth among predation categories, while littoral resource use did not 
have a clear effect. The gradient in predation pressure also corresponded to a shift in 
lake productivity. These results indicate that crucian carp have a fine-tuned morpho-
logical defense mechanism against predation risk, triggered by the combined effect 
of predator presence and resource availability.
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1  | INTRODUC TION

Phenotypic plasticity is the ability of an organism to express different 
phenotypes in response to environmental variation (Pigliucci, 2001). 
Plastic responses can be a successful strategy in spatially or tem-
porally heterogeneous environments, where organisms can im-
prove their fitness by adjusting morphological, physiological or 
behavioral traits in relation to different abiotic and biotic condi-
tions (Gabriel,  2005; Lind & Johansson,  2007; Miner et  al.,  2005). 
However, the ecological and evolutionary significance of phenotypic 
plasticity is still under debate (Pfennig et al., 2010; Price et al., 2003; 
Uller et al., 2019). Phenotypic plasticity can facilitate adaptation to 
novel environments, allowing populations to occupy different eco-
logical niches that may lead to speciation events (Corl et al., 2018; 
Skúlason et al., 2019). At the same time, its benefits could be con-
strained by the energetic costs associated with the production and 
maintenance of plastic responses as well as limits in the predictabil-
ity and reliability of environmental cues (DeWitt et al., 1998; Snell-
Rood et al., 2010).

Phenotypic plasticity can be expressed as variation in body 
shape in response to interactions with other species, different 
resource availability, as well as different habitat characteristics. 
Many freshwater organisms can adopt predator-induced morpho-
logical defenses when exposed to a predation threat (Bourdeau & 
Johansson, 2012; DeWitt et al., 2000; Sperfeld et al., 2020). Here, 
chemical cues from predators or injured conspecifics induce a mor-
phological change in the prey that make them less vulnerable to 
predation (Harvell,  1990). For example, in the presence of preda-
tors, pumpkinseed sunfish (Lepomis gibbosus) increases its defensive 
structure such as dorsal spine length and body depth (Januszkiewicz 
& Robinson, 2007). Another classic example of inducible antipreda-
tor defense mechanism in fish is the crucian carp (Carassius carassius), 
which develops a deep body when exposed to cues from predators 
such as perch (Perca fluviatilis) or pike (Esox lucius) (Brönmark & 
Pettersson, 1994). Flexibility in prey morphological and behavioral 
responses might be a widespread strategy, given that species com-
position of predators often varies greatly among locations and over 
time (Kishida & Nishimura, 2006). Indeed, although with consistent 
differences among species, variation in body shape in response to 
predator presence has been hypothesized in various freshwater 
fish such as perch, roach (Rutilus rutilus), three-spined sticklebacks 
(Gasterosteus aculeatus), and fathead minnow (Pimephales promelas) 
(Eklöv & Jonsson, 2007; Frommen et al., 2011; Meuthen et al., 2019).

In general, predators play an important role in structuring fresh-
water ecosystems. Different predators can influence prey dynamics 
and select specific morphological and behavioral traits of prey by vari-
ation in their density, gape size and foraging strategies (Magnhagen 
& Heibo,  2004; Scharf et  al.,  2000; Sharma & Borgstrøm, 2008). 
For example, pike is a sit-and-wait predator, attacking from littoral 
vegetation (Skov & Nilsson, 2018; Turesson & Brönmark, 2004) and 
tends to prey upon nonvigilant individuals (Heynen et al., 2017). In 
contrast, piscivorous perch hunt actively for prey and select mainly 
mobile, bold individuals (Heynen et al., 2017). Piscivorous fish such 

as pike are also gape-size limited in their prey selection and often 
prefer to select shallow-bodied individuals, since handling time in-
creases with prey body depth (Nilsson et al., 1995). Selective con-
sumption can cause a shift in the phenotypic distribution of prey, 
since large deep-bodied individuals which are outside the predation 
window are more likely to survive (Nilsson & Brönmark, 2000). In 
turn, this shift can have indirect effects that influence dramatically 
prey competitive interactions and community dynamics (Peacor & 
Werner, 2001; Siepielski et al., 2020).

Moreover, the role of resource use in predator-induced mor-
phological defenses has been recently debated, since trade-offs 
occur among predation risk and resource acquisition (Scharnweber 
et al., 2013; Svanbäck et al., 2017). In this sense, lake morphology 
and water quality regulate availability and quality of food resources 
that, in turn, influence both population density and individual 
growth rate (Horppila et al., 2010). In particular, fish condition gener-
ally increases with lake productivity since nutrients fuel the base of 
the food web, increasing available resources for consumers (Weber 
et  al.,  2010). At the same time, food acquisition and growth rate 
are often highly influenced by intraspecific competition and thus 
negatively related to population density (Amundsen et  al.,  2007; 
Svanbäck & Persson, 2004). Predation can also indirectly induce a 
change in prey morphology causing shifts to habitat with different 
food quality (Preisser et al., 2005). In this case, an alteration in prey 
phenotype can represent a foraging adaptation that promotes spe-
cialization in acquiring specific resources in the new habitat (Ellerby 
& Gerry, 2011). Thus, it is pertinent to address the question whether 
the predator cues alone result in morphological change in the prey, 
or if the changed foraging habitat of the prey is driving the altered 
morphology as a secondary response. Alternatively, and more likely, 
evolutionary optimization of the trade-off regime may result from 
both selective pressures jointly.

In this study, we examine crucian carp body shape and depth 
from lakes and ponds with different piscivore assemblages and en-
vironmental characteristics, testing also for associations between 
predator-induced shifts in resource use and morphology. Because 
of its unique physiological adaptations, crucian carp is often the only 
fish species able to survive in anoxic waters of shallow ponds during 
winter (Blažka, 1958; Piironen & Holopainen, 1986). High densities 
of small-sized and shallow-bodied fish characterize populations oc-
curring in these ponds, where obvious resource limitation leads to 
strong intraspecific competition (Pettersson & Brönmark,  1997). 
On the other hand, multispecies assemblages in larger lakes contain 
low densities of deep-bodied crucian carp, for which predation is 
likely the main regulating force (Poléo et al., 1995). In these lakes, a 
deep body represents a morphological defense against gape-limited 
predators (Nilsson & Brönmark, 2000). However, experiments have 
shown that enhanced food availability and low population densities 
alone can cause a similar increase in relative body depth compared 
to predation risk (Holopainen et  al.,  1997; Tonn et  al.,  1994), sug-
gesting that growth and morphology are also dependent on resource 
availability. Moreover, in a manipulative experiment, Andersson 
et  al.,  (2006) observed that crucian carp feeding on benthic prey 
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rather than zooplankton developed a deeper body, similarly to the 
fish exposed to cues from predators. With an analogous experimen-
tal approach, it was found that both standing water conditions and 
exposure to predation cues independently induced a deeper body 
in crucian carp (Johansson & Andersson,  2009). Thus, it has been 
proposed that this increase in body depth could be associated with 
an alteration in foraging behavior and activity levels of the fish, sug-
gesting that more complex mechanisms may control the morphology 
of this species than the sole predation risk (Vøllestad et al., 2004). 
Laboratory experiments also show that crucian carp habitat use was 
significantly affected by both predation risk and hunger level, indi-
cating a trade-off between food acquisition and predator avoidance 
(Pettersson & Brönmark,  1993). Moreover, in presence of preda-
tors, the structural complexity offered by vegetation of near shore 
habitats may enhance the chance of survival of crucian carp until 
they reach a certain body depth (Holopainen et  al.,  1997). In this 
environment, benthic invertebrates associated with the substrate or 
vegetation are the most abundant prey type and a deep body might 
provide fish with a greater maneuverability and foraging efficiency 
(Svanbäck & Eklöv, 2003; Webb,  1984). In contrast, if predation 
pressure is released, fish would rely more on pelagic invertebrates 
and show a slender body shape. Hence, discerning how different en-
vironmental factors affect plastic responses in crucian carp may help 
us gain a better understanding of their evolutionary and ecological 
significance for freshwater fish.

Here, we examined crucian carp body shape and trophic niche 
variability by landmark-based geometric morphometrics and stable 
isotope analysis (SIA) in a series of small lakes. We used stable iso-
topes of carbon and nitrogen to estimate the trophic position and 
relative contribution of littoral and pelagic energy to each crucian 
carp sampled in each lake. Individual trophic specialization could re-
veal potential variation in crucian carp habitat preferences and re-
source use, which could be reflected in specific body morphology. 
Thus, a more extensive morphometric analysis of wild populations of 
this species could potentially show variation in different traits other 
than body depth. This approach differs from previous experimen-
tal studies (Andersson et al., 2006; Johansson & Andersson, 2009; 
Vøllestad et al., 2004), as we consider a comprehensive set of abiotic 
and biotic characteristics that might directly or indirectly underlie 
crucian carp body development. Moreover, we included locations 
with multiple predators to quantify the predation risk associated 
with each lake. Here, a set of three replicate lakes of four categories 
of predation regimes was tested, being allopatric lakes (no preda-
tors), and sympatric lakes with three increasingly efficient main 
predators: brown trout (Salmo trutta), perch, and pike. Brown trout 
and perch are opportunistic piscivores. In small lakes, invertebrates 
are the major food source of brown trout and perch until they shift 
to a diet mainly consisting of fish, and this switch to piscivory gen-
erally occurs at a larger size for trout (Mittelbach & Persson, 1998). 
On the contrary, pike is a specialist piscivore throughout its life and 
grows to large body and gape size, representing an efficient predator 
that can impose a greater risk for a broad range of prey size classes 
(Mittelbach & Persson, 1998).

In particular, in the present study, we expected the body shape 
of crucian carp to be associated with the species composition of 
predators in the lakes investigated and thus that increasingly effi-
cient predators would cause progressively deeper body shape. We 
also wanted to evaluate if such variation in body shape depended 
on predator-induced shifts in habitat and resource use. Specifically, 
we wanted to test whether crucian carp under increasing preda-
tion risk feed more on littoral resources associated with substrate 
or vegetation, compared to crucian carp in lakes without predators 
(Pettersson & Brönmark, 1993). Moreover, we predicted that varia-
tion in body shape was modulated by the synergistic effect of pre-
dation risk (predator mouth gape and density) and specific abiotic 
factors (lake morphology and productivity).

2  | METHODS

2.1 | Study area and sample collection

We sampled twelve fish communities from small (0.25–11 ha) and rela-
tively shallow (max depth 1.5–11.3  m) lakes located in southeastern 
Norway between June and August in 2018 and 2019 (Figure 1; Table 1). 
All lakes were characterized by high densities of macrophytes. Abiotic 
parameters collected include lake surface area (ha), maximum depth (m), 
and nutrient concentration (Table 1). We estimated lake bathymetry in 
the field with a portable echosounder. Total nitrogen (µg/l), phosphorus 
(µg/l), and organic carbon (mg/l) were determined from surface water 
samples for ten lakes and retrieved from the Norwegian Environment 
Agency for two lakes (vannmiljofaktaark.miljodirektoratet.no).

Locations were chosen along a gradient of predation pressure. 
We grouped lakes into four categories according to species composi-
tion of predators in the systems: no predators, brown trout (hereafter 
trout), perch, and pike lakes (Tables 2 and 3). No predators occurred 
in Forkerudtjern, Langmyrtjern, and Motjennet. Brown trout was 
the only predator in Karussputten, Småvanna, and Posttjernet. 
Perch was the main predator in Svartkulp, Bjørnmyradammen, 
and Øvreseterjern while trout was present with very low density 
or absent. Both perch and pike were present in Bugårdsdammen, 
Stomperudtjernet, and Nusttjennet, but we will refer to these lakes 
as “pike lakes” for simplicity. We assessed fish density in each lake 
using Nordic multimesh gillnets consisting of 12 equidistant panels 
(mesh sizes 5–55 mm) and calculated CPUE (n fish·net−1 h−1) for litto-
ral, profundal, and pelagic habitats. Then, proportions of predators 
and crucian carp were calculated as the respective densities from 
CPUE data relative to the total fish present in each lake (Table 3). 
Some lakes had very limited pelagic and profundal habitats and were 
considered as entirely littoral. Moreover, we did not catch any fish 
in the profundal zone, probably because deeper lakes were highly 
humic systems with hypoxic deep waters. Consequently, fish density 
and biomass analysis were limited to the littoral and pelagic zones. 
We also used a variety of fishing methods (e.g., baited traps, gillnets 
with different mesh sizes, kick nets) to increase our catch of small cru-
cian carp, since these fish often display an elusive behavior and alter 
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diel activity patterns when occurring with predators (Vinterstare 
et al., 2020). Immediately after capture, fish were euthanized by an 
overdose of tricainemethanesulfonate (MS222) and transported to 
the laboratory. Permission to catch fish was given by the Norwegian 
Environmental Agency (2018/4155) and fish were sampled after oral 
approval by the local landowners.

In order to estimate the basal resources for stable iso-
tope analysis (SIA), we collected qualitative samples of benthic 

invertebrates and zooplankton. We sampled benthic invertebrates 
from sediments and plants in the littoral habitat using kick nets 
and sorted them to the lowest feasible taxonomic level. We col-
lected zooplankton from several hauls through the water column 
in the pelagic zone of deep lakes and in the nonvegetated area of 
shallow lakes with a 50-μm mesh plankton net. Samples were later 
sieved through a 200-μm mesh to remove unwanted material. The 
remaining zooplankton were identified to class level.

TA B L E  1   Environmental characteristics of the study lakes

Lake
Lat 
(°N)

Long 
(°E) Alt (m a.s.l.)

Area 
(ha)

MaxD 
(m) TotN (µg/l) TotP (µg/l) TOC (mg/l)

Fish 
species

Bugårdsdammen 59.13 10.2 42 5.04 2 980 54 9.5 a, b, c

Stomperudtjernet 59.32 11.4 103 3.85 1.5 1,660 146 18.4 a, b, c, e, f, g

Nusttjennet 60.28 11.66 131 11.00 1.5 1,090 164 16.4 a, b, c, e, f

Øvresetertjern 59.98 10.67 478 3.05 3.5 446 13 6.6 a, c, d

Svartkulp 59.98 10.74 202 5.80 10 550 13 9.9 a, c, d, h

Bjørnmyrdammen 60.18 11.98 256 2.10 3.5 672 26 6.5 a, c, i

Posttjernet 61.08 11.33 271 1.72 11 312 8 9.7 a, d, h

Småvanna 59.8 10.31 222 0.50 3.8 616 14 10.1 a, d, h

Karussputten 60.02 10.66 356 0.25 4.6 361 9 5.4 a, d

Forkerudstjennet 60.45 12.08 152 1.24 2.2 1,985 82 23.4 a

Langmyrtjern 59.97 10.75 206 0.30 5 702 20 14.2 a, h

Motjennet 60.23 12.11 167 0.94 11.3 688 23 11.2 a

Note: Variables include latitude (Lat), longitude (Long), altitude (Alt), lake area (Area), maximum depth (MaxD), total nitrogen (TotN), total phosphorus 
(TotP), total organic carbon (TOC), and fish species present.
Fish species: (a) crucian carp; (b) pike; (c) perch; (d) brown trout; (e) roach Rutilus rutilus; (f) bream Abramis brama; (g) rudd Scardinius erythrophthalmus; 
(h) minnow Phoxinus phoxinus; (i) tench Tinca tinca.

F I G U R E  1   Location of the twelve 
sampling sites in southeastern Norway
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2.2 | Laboratory analysis

Body shape was measured from a total of 360 crucian carp. From 
each lake, we subsampled 30 crucian carp for morphometric 
analysis (Table 2). In general, fish size structure was quite uniform 
within each lake and dominated by large individuals. Thus, we 
included smaller crucian carp whenever possible to avoid under-
representation of this size class. From the same fish, a piece of 
dorsal muscle tissue was dissected and frozen at −20°C for SIA. 
We also measured length and gape height of the most abundant 
piscivorous fish, that is, trout, perch, and pike (Table  3). Mouth 
height was measured as the maximum distance between the tip of 
the premaxilla and the mandible with the mouth stretched open. 
Then, we calculated the mean maximum gape size from each lake 

by selecting the predators with the highest mouth height, irre-
spective of the species (n = 10).

2.2.1 | Morphometric analysis

We examined crucian carp body shape using landmark-based 
geometric morphometrics. We laterally photographed fish using 
a Nikon D5300 camera positioned on a tripod and set at a focal 
length of around 60 mm. In order to minimize perspective and dis-
tortions errors among images, we arranged fish along their main 
horizontal axis, extended dorsal and ventral fins using dissecting 
pins, and used a mesh cradle (Muir et  al.,  2012). Digital photo-
graphs were transferred to tpsDig2 software v 2.31 (Rohlf, 2004), 
and 17 landmarks and six semilandmarks were digitized (Figure 2). 

TA B L E  2   Mean and standard deviation of total length (TL), body height (BH), carbon (δ13C) and nitrogen (δ15N) stable isotopes, littoral 
reliance (LIT), trophic position (TP), and sex ratio of crucian carp

Lake
Predation 
category TL (cm) BH (cm) δ13C (‰) δ15N (‰) LIT TP

Sex ratio 
(m/f)

Bugårdsdammen Pike 31.5 ± 6.8 12.4 ± 2.4 −30.2 ± 0.7 8.7 ± 0.7 0.5 ± 0.3 1.9 ± 0.2 6.5

Stomperudtjernet Pike 19.1 ± 9.5 7.7 ± 3.9 −32.2 ± 0.7 13.6 ± 1.2 0.9 ± 0.4 1.9 ± 0.3 4

Nusttjennet Pike 33.1 ± 1.6 13.5 ± 0.5 −31.6 ± 0.3 10.6 ± 0.4 0.8 ± 0.0 1.8 ± 0.1 1.3

Øvresetertjern Perch 28.8 ± 3.6 10.6 ± 1.4 −28.1 ± 0.5 7.0 ± 0.4 0.8 ± 0.4 2.2 ± 0.1 1.3

Svartkulp Perch 19.8 ± 4.7 6.5 ± 1.6 −32.3 ± 0.7 5.6 ± 0.4 0.9 ± 0.2 2.0 ± 0.1 2

Bjørnmyrdammen Perch 18.0 ± 1.7 6.0 ± 06 −32.2 ± 0.8 6.0 ± 0.4 0.6 ± 0.1 2.3 ± 0.1 1.5

Posttjernet Trout 19.3 ± 3.6 6.9 ± 1.5 −34.1 ± 1.3 5.7 ± 0.3 0.5 ± 0.3 2.3 ± 0.1 1.7

Småvanna Trout 15.4 ± 2.2 4.9 ± 0.7 −36.5 ± 1.4 8.6 ± 0.7 0.4 ± 0.3 2.0 ± 0.2 1.4

Karussputten Trout 14.5 ± 3.4 4.5 ± 1.1 −35.0 ± 1.2 3.6 ± 0.4 0.1 ± 0.3 1.5 ± 0.1 1

Forkerudstjennet No pred. 11.4 ± 1.9 3.3 ± 0.7 −31.9 ± 1.0 10.1 ± 0.9 0.8 ± 0.2 2.2 ± 0.2 0.2

Langmyrtjern No pred. 10.7 ± 2.8 2.8 ± 0.9 −34.5 ± 0.9 4.5 ± 0.6 0.5 ± 0.3 1.7 ± 0.2 0.3

Motjennet No pred. 11.9 ± 3.0 3.4 ± 0.9 −32.7 ± 1.4 5.4 ± 0.7 0.6 ± 0.2 2.1 ± 0.2 1

TA B L E  3   Predator species present in each lake, number of pike, perch and trout measured in the laboratory, mean and standard deviation 
of maximum predator gape size (MaxGS, n = 10), predator density (CPUEpred) and proportion (RelPred), and crucian carp density (CPUEcc) 
and proportion (RelCc)

Lake
Predator 
species

No. 
Pike

No. 
Perch

No. 
Trout

MaxGS 
(mm)

CPUEpred 
(n.net−1 h−1)

RelPred 
(%)

CPUEcc 
(n.net−1 h−1)

RelCc 
(%)

Bugårdsdammen Pike, perch 27 337 — 61.0 ± 14.2 1.6 ± 0.6 93.8 0.1 ± 0.1 6.2

Stomperudtjernet Pike, perch 7 25 — 56.2 ± 26.0 0.4 ± 0.0 5.0 0.4 ± 0.2 5.7

Nusttjennet Pike, perch 27 24 — 47.3 ± 11.9 0.3 ± 0.3 4.6 0.4 ± 0.2 6.2

Øvresetertjern Perch, trout — 286 36 44.3 ± 7.0 3.6 ± 1.9 89.4 0.4 ± 0.6 10.6

Svartkulp Perch, trout — 151 7 34.8 ± 4.4 2.1 ± 1.3 68.9 0.4 ± 0.4 12.2

Bjørnmyrdammen Perch — 34 — 26.7 ± 2.1 0.4 ± 0.3 16.1 2.1 ± 2.1 83.2

Posttjernet Trout — — 89 37.9 ± 1.7 0.9 ± 1.1 53.3 0.2 ± 0.2 10.6

Småvanna Trout — — 17 33.1 ± 7.0 0.3 ± 0.4 18.0 1.0 ± 1.1 60.8

Karussputten Trout — — 12 32.8 ± 4.8 0.2 ± 0.2 13.8 1.0 ± 0.2 86.2

Forkerudstjennet — — — — — — — 10.6 ± 5.9 100.0

Langmyrtjern — — — — — — — 2.1 ± 1.8 77.0

Motjennet — — — — — — — 7.8 ± 4.4 100.0
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Digitizing was always performed by the same person. After check-
ing for outliers, we used a Generalized Procrustes Analysis (GPA) 
to standardize the landmark configurations for position, orienta-
tion, and size. Centroid size (CS) of the landmark configurations 
was used as a proxy for body size. Centroid size is the square root 
of the sum of the squared distances of landmarks from their center 
of gravity (centroid). Centroid size values were log-transformed 
prior to statistical analysis. All morphometric analysis was per-
formed using the package “Geomorph” (Adams et al., 2020) in R 
version 4.0.1 (R Core Team, 2020).

2.2.2 | Stable isotope analysis

Fish muscle and invertebrate samples were freeze-dried at −50°C for 
48 hr, ground to a homogeneous powder, weighed (1.0–1.2 mg), and 
encapsulated into tin cups. Stable carbon and nitrogen isotope ratios 
were analyzed by a Costech 4010 elemental analyzer (Costech) coupled 
to a Delta Plus continuous flow mass spectrometer (Thermo Finnigan). 
Stable isotope measurements are expressed as δ13C and δ15N in parts 
per thousand (‰) relative to the international standards Vienna Pee 
Dee Belemnite and atmospheric air for carbon and nitrogen, respec-
tively. Standard deviation of internal working standards was less than 
0.1‰ for δ13C and 0.2‰ for δ15N. C:N ratios from fish data were low 
in all samples (3.3  ±  0.1) indicating low lipid concentrations (Fagan 
et al., 2011; Kiljunen et al., 2006). Thus, we did not lipid-correct δ13C 
ratios. Since basal resource values can vary greatly among different 
systems, we standardized crucian carp δ13C and δ15N ratios by using 
littoral and pelagic invertebrates in each lake as baseline. Individual 

trophic position and littoral reliance (i.e., relative contribution of litto-
ral prey items to crucian carp diet) were calculated using a two-source 
mixing model (Karlsson & Byström, 2005) with trophic fractionation 
values of 3.4‰ for δ15N and 0.4‰ for δ13C (Post, 2002).

2.3 | Data analyses

2.3.1 | Body shape analysis

Principal component analysis (PCA) on Procrustes shape coordi-
nates was used to identify the major patterns of shape variation 
and grouping of variance among individuals. Thin-plate deformation 
grids were used to visualize variation at the lowest and highest val-
ues along the first principal component axis. In order to investigate 
variation of crucian carp body shape among predation categories 
(no predators, trout, perch, and pike), principal component scores 
were examined through Discriminant Function Analysis (DFA) in the 
R package “MASS.” The maximum number of principal components 
to retain in the analysis was estimated by the broken stick model. 
Validity of discrimination was tested by jackknifed cross-validation. 
A Procrustes ANOVA with permutation procedures was used to 
estimate allometric effects (i.e., shape variation in relation to size) 
among predation categories in the R package “Geomorph” (Adams 
et al., 2020). Procrustes shape coordinates were used as response 
variables, log-transformed centroid size as predictor variable and 
predation as categorical variable with lake as nested effect. Since 
allometry had a significant effect on shape, centroid size was used as 
a covariate in subsequent linear models. Shape differences between 

F I G U R E  2   Crucian carp line drawing showing the location of 17 landmarks (red dots) and 6 semilandmarks (blue dots) used in geometric 
morphometric analysis. Homologous landmarks (red dots) indicate tip of the snout (1), posterior dorsal margin of the head (3), anterior 
insertion of dorsal fin (5), posterior insertion of dorsal fin (6), dorsal insertion of caudal fin (7), posterior margin of caudal peduncle (8), 
ventral insertion of caudal fin (9), posterior insertion of caudal fin (10), anterior insertion of caudal fin (11), insertion of pelvic fin (12), 
posterior ventral margin of the head (14), posterior margin of mouth (16), anterior margin of eye (17), posterior margin of eye (19), center 
of eye (21), posterior margin of operculum (22), dorsal insertion of pectoral fin (23). Semilandmarks placed along axis passing through the 
center of eye and the posterior edge of the operculum indicate dorsal midpoint of head (2), anterior dorsal midpoint of body (4), anterior 
ventral midpoint of body (13), ventral midpoint of head (15), dorsal margin of eye (18), and ventral margin of eye (20). Picture adapted from 
the Crucian Carp Field Identification Guide by the UK Environment Agency (www.gov.uk/envir​onmen​t-agency)

http://www.gov.uk/environment-agency


     |  7de MEO et al.

sexes were significantly different but explained only a very small 
part of variation (R2: 0.047, p-value: 0.001). Males had slightly larger 
dorsal region than females; however, females alone expressed the 
same changes along the PC axes, indicating a minor effect of sex. 
Therefore, females and males were pooled in the analysis.

2.3.2 | Association of body depth with 
environmental variables

We determined if crucian carp assemblages occupied distinct iso-
topic niches using a permutational multivariate analysis of variance 
(PERMANOVA; Anderson, 2001) of a Euclidean distance matrix of 
littoral reliance and trophic position. Predation category and Lake 
were used as factors in the analysis. In addition, we used a distance-
based test for homogeneity of multivariate dispersions (PERMDISP; 
Anderson, 2006) to evaluate differences in within-group variability 
of Lakes and Predation factors. Analysis was performed in R using 
the adonis and betadisper functions in the “vegan” package (Oksanen 
et al., 2019). We used linear mixed-effects models (LME) to exam-
ine the degree of relationship between variation in body depth and 
specific biotic and abiotic characteristics associated with each lake. 
The scores of the first axis of principal component (PC1), which cor-
responded largely to the fish body depth, were used as the response 
variable. More precisely, considering that Procrustes superimposi-
tion controls the size effects through scaling, the response variable 
represents crucian carp relative body depth. Candidate explana-
tory variables for predation risk included predation category (Pred), 
maximum predator gape size (MaxGS), predator density (CPUEPred), 
and predator proportion (RelPred). Density (CPUECc) and propor-
tion (RelCc) of crucian carp were used as a proxy for intraspecific 
competition. However, predator density and proportion were posi-
tively correlated (r > 0.8), and only the latter was included in the final 
model. Moreover, both crucian carp density and proportion were ex-
cluded, since negatively correlated with the maximum predator gape 
size (r < −0.8). Littoral reliance (LIT) and trophic position (TP) were 
used as a measure of individual crucian carp resource use. Abiotic 
characteristics included lake area, maximum depth (MaxD), and total 
nutrients. Among nutrient variables, only total phosphorus (TotP) 
was used in the analysis, since it was positively correlated with both 
total nitrogen and organic carbon (r ≥ 0.7). The full model takes the 
form:

Body depth  ~  RelPred  +  MaxGS  +  LIT +  TP  +  MaxD  +  TotP  
+ Area + logCsize.
Model selection was performed by stepwise selection based on 

the Akaike information criterion (AIC). Lakes were used as a random 
factor nested in the predation category term. Model assumptions 
of normality and homogeneity of residuals were met and validated 
using a QQ-plot and plotting residuals against fitted values, respec-
tively. Correlation between variables was tested using the ggpairs 
function in the “GGally” package (Emerson et  al.,  2013). Analyses 
were performed in R using “lme4” and “lmerTest” packages (Bates 
et al., 2015).

3  | RESULTS

3.1 | Body shape analysis

The first three axes of the PCA of landmark configurations (Figure 3) 
accounted for 67% of the variation in body shape, with PC1, PC2, and 
PC3 explaining 45%, 15%, and 7% of the total variance, respectively. 
Shape variation along the PC1 axis was mainly associated with the 
expansion of the dorsal (landmarks 4, 5, 6) and ventral (landmarks 11, 
12) regions, indicating an overall change in body depth (see Table S1 
in Appendix S1). PC2 described mainly variation in body curvature, 
with snout (landmarks 1, 16) and caudal peduncle (landmarks 6, 7, 
8) bending slightly downwards, and ventral and dorsal parts (land-
marks 4, 5, 12) shifting upwards, indicating an overall flattering of 
the ventral region along the axis. PC3 explained variation in head 
size (landmarks 1, 22), body slenderness (landmarks 4, 5, 7, 8, 11, 
12, 13), and insertion of the pectoral fin (landmark 23). Fish grouped 
along the first PC axis mainly according to the different predation 
categories. In absence of predators, fish had a slender body shape, 
which got increasingly rounded in presence of trout, perch, and 
pike. The same grouping was revealed by DFA as complementary 
method (Figure S1). DFA produced three significant DF axes differ-
entiating between predation categories, and DFA1, DFA2, and DFA3 

F I G U R E  3   Scatterplot of principal components analysis of 
body shape of crucian carp. Individuals are color-coded according 
to predation category. Deformation grids show the most extreme 
negative and positive shapes along the first (PC1) axis. Percentages 
indicate how much of the variation is explained by the first two 
axes
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accounted for 92.7%, 7.2%, and 0.1% of shape variation, respectively. 
Jackknifed validation indicated that 79% of crucian carp were as-
signed to the correct predation category (Table S2). Individuals from 
“No predators” and “Pike” groups were generally correctly classified 
(≥90%), while individuals from “Trout” and “Perch” groups were more 
frequently classified as each other. Results of Procrustes ANOVA 
(Table S3) show that the body shape of crucian carp was positively 
related to the logarithm of centroid size (F: 191.42, p-value: 0.001), 
predation category (F: 46.41, p-value: 0.001) and their interaction 
with (F: 6.89, p-value: 0.001) and without lake effect (F: 7.19, p-value: 
0.001). The significance of the interaction terms suggests nonpar-
allel slopes and thus that shape variation in relation to size differs 
among predation categories—for example, small-sized fish from pike 
lakes have deeper body depth than fish of the same size from lakes 
without predators (Figure 4).

3.2 | Major variables explaining variation in 
body depth

The range of littoral reliance and trophic position values observed 
in each population was significantly different among predation cat-
egories (PERMANOVA, Pseudo-F: 27.35, p-value: 0.001) and lakes 
(PERMANOVA, Pseudo-F: 42.67, p-value: 0.001). However, signifi-
cant differences may be caused by different dispersion of isotopic 
values for both predation categories (PERMIDISP, Pseudo-F: 10.45, 
p-value: 0.001) and lakes (PERMIDISP, Pseudo-F: 9.23, p-value: 
0.001), suggesting great variation in individual resource use within 
assemblages. Results of model selection for crucian carp body depth 
show that predator maximum gape size, individual trophic position, 

and crucian carp size were the best variables explaining variation 
among predation categories (Tables  4 and 5, Figure  5). It is to be 
noticed that maximum gape size was also negatively correlated with 
crucian carp density. Littoral reliance, total phosphorus, predator 
proportion, and lake depth were excluded from the final model dur-
ing model selection.

4  | DISCUSSION

The body shape of crucian carp differed significantly among the 
lakes investigated, and this variation was given mostly by differences 
in relative body depth. This difference in body shape was related to 
a gradient of predation risk represented by the predator community 
of each lake, which caused progressively deeper bodies, larger size, 
and lower population densities. Variation in body depth was related 
mainly to the maximum gape size reached by the predators in the 
different communities and crucian carp trophic position.

In general, in absence of predators, fish were smaller and had 
a more slender body shape and gradually showed higher absolute 
and relative body depth values when trout and perch were present, 
reaching the largest size and deepest bodies in pike lakes. Previous 
field studies, in line with our findings, show that crucian carp had a 
deeper body depth in populations sympatric with predators com-
pared to allopatric ones (Poléo et  al.,  1995), but did not test the 
effect of specific predator communities. Experimental studies ob-
served the effect of single predator species under controlled con-
ditions and showed that crucian carp increased in body depth when 
exposed to cues from perch or pike and that the latter induced a 
more pronounced development (Brönmark & Pettersson,  1994). 

F I G U R E  4   Allometric trajectories of crucian carp from twelve lakes with different predation regimes calculated using the plotAllometry 
function in the R package “Geomorph” (Adams et al., 2020). The x-axis values represent the log-transformed centroid size (LogCsize) as a 
proxy for individual body size. The y-axis values represent a) the shape as the first principal component of the predicted values and b) the 
standardized shape scores from the multivariate regression of shape on size
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In our study, we also observed a smaller but significant increase in 
body depth of crucian carp from lakes with trout as the only predator 
present. Indeed, laboratory experiments showed that crucian carp 
was able to detect detailed information from waterborne cues such 
as predator diet or relative size. Individuals, for instance, showed dif-
ferent fright responses, as a decrease in swimming activity, when 
exposed to cues from large or small predators, or when these were 
fed crucian carp or invertebrates (Pettersson et al., 2000) Moreover, 
crucian carp exhibited different behavioral and neural responses to 
skin extract from trout, perch, and pike (Lastein et al., 2012). Fish 
also reduced activity levels and shifted to a nocturnal activity pat-
tern when occurring with diurnal predators such as pike (Vinterstare, 
Hulthén, Nilsson, Nilsson, et al., 2020). These findings suggest that 
crucian carp may develop specific responses in presence of certain 
piscivorous fish species. A similar example of flexible predator-in-
duced morphological defenses is represented by Rana pirica tad-
poles, which develop a specific body shape in response to predators 
with different predation strategies (Kishida & Nishimura, 2005).

However, trout, perch, and pike lakes reflected a gradient in 
predation efficiency which was mainly defined by maximum mouth 
opening, making it difficult to distinguish the effect of predator 
community from the gape size. Still, perch in Lake Øvresetertjern 
and trout in the oligotrophic Lake Posttjernet reached the largest 
body and gape size relative to the other lakes with the same pred-
ator species. In these lakes, crucian carp had the highest body 
depth in relation to the other lakes from the respective preda-
tion category. Moreover, in Lakes Øvresetertjern, Svartkulp, and 
Posttjernet, where perch and trout made up more than half of the 
species present, crucian carp had a deeper body compared to the 

Lakes Bjørnmyrdammen, Småvanna, and Karussputten, where pred-
ators represented a smaller proportion of the total fish (14%–18%). 
However, in Lakes Stomperudtjernet and Nusttjennet, predators 
made up only a very small proportion of the total fish community 
(5%) and consisted mainly of few large pike and perch. Nevertheless, 
in these lakes, crucian carp reached the largest size and deepest 
body. In the presence of perch or trout, which undergo ontogenetic 
diet shifts to piscivory, crucian carp may grow considerably in body 
depth (Brönmark & Pettersson,  1994). On the other hand, pike, a 
largely piscivorous and highly efficient predator which share the 
same vegetated habitat with crucian carp, represents a constant 
threat. Thus, in presence of pike, crucian carp might have developed 
an effective adaptive response to predation risk, independently 
from its density. Moreover, in these lakes, predation risk might be 
intensified due to the presence of perch. The coexistence of perch 
and pike may impose a greater risk for crucian carp of different size 
classes both due to the greater gape size range but also to their very 
different foraging behavior (Eklöv & Diehl, 1994). Thus, our results 
support previous experimental studies suggesting that the devel-
opment of a deep body represents a morphological defense against 
gape-limited piscivores (Nilsson & Brönmark,  2000). In particular, 
body depth determines prey size refuge, decreasing substantially 
vulnerability to predation (Nilsson et al., 1995). Moreover, this de-
velopment in body depth would stop as soon as crucian carp reach 
the most functional morphology, that is, the size in which it is out-
side of the predation window. Indeed, in an experimental setting, 
removal of cues from predators resulted in a decrease in crucian carp 
relative body depth (Brönmark & Pettersson, 1994). While reaching 
a certain body shape in natural conditions is not directly compara-
ble to the removal of predator cues in the laboratory, it suggests 
that a high body depth might be costly to maintain and that this 
development would be supported only when the predation risk is 
certain (Pigliucci, 2005). Thus, this variation in body shape does not 
seem to be the result of the simple exposure to predators, but more 
likely it is finely tuned with the specific structure and ecology of the 
predator communities (Holopainen, Aho, et al., 1997; Johansson & 
Andersson, 2009; Pettersson & Brönmark, 1997).

Regulation of development of body shape in response to preda-
tion risk seems to be a complex process, and indirect effects such as 
food availability and behavioral responses can also affect fish body 
morphology and growth at a fine scale (Pettersson & Brönmark, 1997; 
Svanbäck et  al.,  2017). In this regard, it was proposed that pred-
ator-induced morphological defenses are a by-product of prey 

Model AIC ΔAIC Wi

PC1 ~ MaxGS + TP + logCsize −2,324.98 0.00 0.982

PC1 ~ MaxGS + TP + TotP + logCsize −2,316.90 8.08 0.017

PC1 ~ RelPred + MaxGS + TP + TotP + logCsize −2,308.73 16.25 0.000

PC1 ~ RelPred + MaxGS + TP + TotP + MaxD + logCsize 2,298.44 26.54 0.000

PC1 ~ RelPred + MaxGS + TP + LIT + TotP + MaxD + logCsize −2,283.78 41.20 0.000

Note: AIC, difference in AIC (ΔAIC) and Akaike weights (Wi) for candidate models are shown.

TA B L E  4   Model selection for body 
height of crucian carp with biotic and 
abiotic environmental parameters as 
explanatory variables: predator proportion 
(RelPred), maximum gape size (MaxGS), 
trophic position (TP), littoral reliance (LIT), 
total phosphorus (TotP), maximum depth 
(MaxD), and body size (logCsize)

TA B L E  5   Results of the best linear mixed model 
(PC1 ~ MaxGS + TP + logCsize) explaining the relation between 
crucian carp body shape and maximum gape size (MaxGS), trophic 
position (TP), body size (logCsize)

Effect Estimate SE df t-value p-value

(Intercept) 0.00002 0.0036 2.10 0.01 0.996

MaxGS 0.02700 0.0036 2.59 7.43 0.008*

TP −0.00284 0.0008 354.00 −3.46 0.001*

logCsize 0.00289 0.0009 353.30 3.15 0.002*

Marginal R2: 0.81; Conditional R2: 0.94

*p-value < 0.05. 
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behavior, since predators can intimidate prey inducing a decrease in 
their foraging activity (Peacor, 2002). This reduction in movement 
has been hypothesized to lower prey metabolism with a reallocation 
of the energy saved to increased growth or development of defense 
structures (Bourdeau & Johansson, 2012). Other studies suggest a 
link between stress physiology and the expression of inducible de-
fense traits (Middlemis Maher et al., 2013; Vinterstare et al., 2020). 
Our results show distinctly that progressively deeper bodies were 
accompanied by an overall increase in fish size. Moreover, crucian 
carp density was decreasing with increasing predation risk, which 
may have resulted in more available resources for surviving indi-
viduals. In presence of efficient predators such as pike, few large 
and high-bodied crucian carp were present. On the opposite, small-
sized individuals occurred in higher densities in absence of preda-
tors. In this regard, piscivorous fish can affect the structure of prey 
communities and indirectly regulate resource availability through 

size-selective predation (Heynen et al., 2017). Predation can reduce 
prey density through direct consumption of small individuals, caus-
ing competitive release and eventually leading to an increase in so-
matic growth of survivors (Craig et al., 2006; Persson et al., 1996; 
Svanbäck & Persson, 2004). In contrast, dense populations in allo-
patric lakes have to compete for resource and their body condition 
remains low. This also suggests a potential higher growth rate with 
increasing predation risk (Vøllestad et al., 2004). Lake productivity 
also plays an important role in these dynamics, since it regulates 
resource availability and ultimately population density and somatic 
growth (Weber et  al.,  2010). Previous studies show that crucian 
carp achieved a deep body in a few months if low densities of shal-
low-bodied fish were introduced into a food-rich environment with-
out piscivores (Holopainen, Aho, et al., 1997). However, discerning 
between the effects of predation and food availability is difficult in 
the present study, since the most productive lakes corresponded 

F I G U R E  5   Relationship between crucian carp relative body depth (PC1) and (a) predation category, (b) maximum predator gape size (cm), 
(c) crucian carp proportion (%), and (d) trophic position
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greatly to the ones with pike as main predator, making it difficult to 
isolate the two different effects. Remarkably, crucian carp from the 
allopatric pond Forkerudtjern, one of the most productive among 
the study systems, had the highest relative body depth respect to 
the other lakes with no predators, but fish were still considerably 
stunted, probably because of the high population density.

Individual resource use did not have a strong direct effect on 
crucian carp body shape. Trophic ecology of crucian carp was dif-
ferent among lakes, but our results do not show a clear shift in 
resource use induced by predation risk. Generally, fish seemed to 
rely on littoral invertebrates associated with substrate or vegeta-
tion, but at the same time, individual resource use varied greatly 
within each lake. A possible reason for the lack of correlation be-
tween body shape and resource use might be that many of the 
fish caught were already outside of the predation window and 
thus probably able to forage more actively and exploit different 
food resources. Moreover, fish might be able to easily use the re-
sources from both the pelagic and littoral habitat since the study 
lakes were mostly small and both habitats are next to each other 
(Scharnweber et  al.,  2013). Furthermore, we did not catch any 
fish from the profundal habitat of deeper lakes—that is, maximum 
depth of around 11 m—suggesting that crucian carp were still con-
fined to the shallow area. In contrast, crucian carp body depth was 
related to trophic position, and, in particular, different predator 
communities seemed to have specific effects. Trophic position had 
a positive influence on body depth in allopatric and trout lakes. 
With absent or low predation risk, one of the main limiting factors 
for crucian carp to feed on different resources could be mouth 
gape, as fish are able to exploit larger sized invertebrate resources 
only when they reach a certain body depth or size. In pike lakes, 
trophic position was slightly lower. Here, crucian carp hiding in 
the vegetation might feed on macrophytes and large invertebrates 
such as snails and clams, which likely lowers the trophic position 
when compared to zooplankton feeding. This also corresponds 
with a lowering of crucian carp activity, as fish expend less energy 
in foraging.

Crucian carp body depth increased along a gradient of preda-
tion risk represented by increasingly efficient predator categories. 
Specifically, our results indicate that crucian carp is provided with 
a fine-tuned morphological defense mechanism against gape-lim-
ited piscivores. The mechanism that triggers and regulates a 
change in body shape does not seem to be solely regulated by ex-
posure to predators (Brönmark & Pettersson, 1994; Durajczyk & 
Stabell, 2014), but also depends on the specific structure and ecol-
ogy of the predator communities. In many natural systems, prey 
organisms experience complex predation regimes. Species compo-
sition and abundance of predators can vary over time, especially in 
small lakes that are characterized by frequent fish mortality during 
winter (e.g., Lappalainen et al., 2016). In these small systems with 
high environmental stochasticity, plastic responses are advanta-
geous since organisms are likely to be subject to strong interannual 
variability of predation pressure rather than constant predation 
risk (Kishida & Nishimura, 2006). Under such conditions, seasonal 

and annual changes in resource availability are also likely to occur, 
and generalist feeding strategies might be favored over special-
ization in acquiring specific resources (Scharnweber et al., 2013). 
Crucian carp flexibility in niche use is complex and needs to be 
better explored considering not only predation pressure, but also 
the competitive interactions and the abiotic conditions shaping 
these systems. In this sense, a limitation of this study was that 
the gradient of predation pressure corresponded to a shift in lake 
productivity and fish community, making it difficult to discern be-
tween the effects of predation risk and other environmental fac-
tors. For example, pike lakes were the most productive and had 
a complex fish community respect to the trout and perch lakes. 
However, this is an intrinsic characteristic of these systems, and 
crucian carp variation in body shape is likely a result of different 
ecological processes which act in synergy with specific predation 
risk. Moreover, though laboratory and field experiments show that 
this change in crucian carp body shape is mainly due to a plastic 
response, it could also be related to evolutionary responses, that 
is, natural populations may present differences in both their phe-
notypes and the extent of plasticity of those phenotypes as the 
product of natural selection within each population. Thus, further 
field and experimental studies should investigate if there is a ge-
nomic component to observed phenotypic differentiation.

ACKNOWLEDG MENTS
This work was supported by the Inland Norway University of 
Applied Sciences. We are grateful to all the students and interns for 
their hard work in the field, particularly Kaisa Paakkari, Jeannette 
Spiess, Marius Magnus, Miglius Stankunavicius, Minna Kutvonen, 
Miriam Reingruber, Peder Remmen, and Samirah Hohl. We thank 
the landowners for granting the access to the lakes. We also want 
to thank the personnel at the Stable Isotopes in Nature Laboratory 
(SINLAB) at the University of New Brunswick and the Department of 
Biotechnology at Inland Norway University of Applied Sciences, for 
the great assistance in processing the samples. We also thank Olivier 
Devineau and Jérémy Monsimet for improvement to an earlier ver-
sion of the manuscript.

CONFLIC T OF INTERE S T
Authors have no conflict of interest to declare.

AUTHOR CONTRIBUTION
Ilaria de Meo: Conceptualization (lead); data curation (lead); for-
mal analysis (lead); investigation (lead); methodology (lead); pro-
ject administration (equal); supervision (lead); writing – original 
draft (lead). Kjartan Østbye: Conceptualization (equal); methodol-
ogy (equal); resources (equal); supervision (equal); writing-review 
& editing (supporting). Kimmo K. Kahilainen: Conceptualization 
(equal); formal analysis (supporting); methodology (equal); su-
pervision (equal); writing-review & editing (supporting). Brian 
Hayden: Conceptualization (supporting); formal analysis (support-
ing); resources (equal); supervision (supporting); writing-review & 
editing (supporting). Christian H. H. Fagertun: Conceptualization 



12  |     de MEO et al.

(supporting); investigation (equal); writing-review & editing (sup-
porting). Antonio B. S. Poleo: Conceptualization (equal); project 
administration (lead); resources (lead); supervision (equal); writ-
ing-review & editing (supporting).

DATA AVAIL ABILIT Y S TATEMENT
Landmark coordinates, stable isotope values, and environmen-
tal data used in this study are available on Dryad at https://doi.
org/10.5061/dryad.d2547​d825.

ORCID
Ilaria de Meo   https://orcid.org/0000-0003-1433-2017 

R E FE R E N C E S
Adams, D. C., Collyer, M. L., & Kaliontzopoulou, A. (2020). Geomorph: 

Software for geometric morphometric analyses. R package version 
3.2.1. Retrieved from https://cran.r-proje​ct.org/web/packa​ges/
geomo​rph/index.html

Amundsen, P. A., Knudsen, R., & Klemetsen, A. (2007). Intraspecific com-
petition and density dependence of food consumption and growth 
in Arctic charr. Journal of Animal Ecology, 76(1), 149–158. https://doi.
org/10.1111/j.1365-2656.2006.01179.x

Anderson, M. J. (2001). A new method for non-parametric multivariate 
analysis of variance. Austral Ecology, 26(1), 32–46.

Anderson, M. J. (2006). Distance-based tests for homogeneity of 
multivariate dispersions. Biometrics, 62(1), 245–253. https://doi.
org/10.1111/j.1541-0420.2005.00440.x

Andersson, J., Johansson, F., & Söderlund, T. (2006). Interactions be-
tween predator-and diet-induced phenotypic changes in body shape 
of crucian carp. Proceedings of the Royal Society of London B: Biological 
Sciences, 273(1585), 431–437.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear 
mixed-effects models using lme4. Journal of Statistical Software, 
67(1), 1–48.

Blažka, P. (1958). The anaerobic metabolism of fish. Physiological Zoology, 
31(2), 117–128. https://doi.org/10.1086/physz​ool.31.2.30155385

Bourdeau, P. E., & Johansson, F. (2012). Predator-induced mor-
phological defences as by-products of prey behaviour: A re-
view and prospectus. Oikos, 121(8), 1175–1190. https://doi.
org/10.1111/j.1600-0706.2012.20235.x

Brönmark, C., Pettersson, L. B., & Bronmark, C. (1994). Chemical cues 
from piscivores induce a change in morphology in crucian carp. Oikos, 
70(3), 396–402. https://doi.org/10.2307/3545777

Corl, A., Bi, K., Luke, C., Challa, A. S., Stern, A. J., Sinervo, B., & Nielsen, 
R. (2018). The genetic basis of adaptation following plastic changes 
in coloration in a novel environment. Current Biology, 28(18), 2970–
2977. https://doi.org/10.1016/j.cub.2018.06.075

Craig, J. K., Burke, B. J., Crowder, L. B., & Rice, J. A. (2006). Prey 
growth and size-dependent predation in juvenile estuarine fishes: 
Experimental and model analyses. Ecology, 87(9), 2366–2377. 
ht tps://doi .org/10.1890/0 012-9658(20 06)87[2366:PGASP​
I]2.0.CO;2

DeWitt, T. J., Robinson, B. W., & Wilson, D. S. (2000). Functional di-
versity among predators of a freshwater snail imposes an adaptive 
trade-off for shell morphology. Evolutionary Ecology Research, 2(2), 
129–148.

DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of pheno-
typic plasticity. Trends in Ecology & Evolution, 13(2), 77–81. https://
doi.org/10.1016/S0169​-5347(97)01274​-3

Durajczyk, M. M., & Stabell, O. B. (2014). Coping with continual 
danger: Assessing alertness to visual disturbances in crucian 
carp following long-term exposure to chemical alarm signals. 

Physiology & Behavior, 126, 50–56. https://doi.org/10.1016/j.physb​
eh.2013.12.010

Eklöv, P., & Diehl, S. (1994). Piscivore efficiency and refuging prey: The 
importance of predator search mode. Oecologia, 98(3–4), 344–353. 
https://doi.org/10.1007/BF003​24223

Eklöv, P., & Jonsson, P. (2007). Pike predators induce morphological 
changes in young perch and roach. Journal of Fish Biology, 70(1), 155–
164. https://doi.org/10.1111/j.1095-8649.2006.01283.x

Ellerby, D. J., & Gerry, S. P. (2011). Sympatric divergence and perfor-
mance trade-offs of bluegill ecomorphs. Evolutionary Biology, 38(4), 
422–433. https://doi.org/10.1007/s1169​2-011-9130-y

Emerson, J. W., Green, W. A., Schloerke, B., Crowley, J., Cook, D., 
Hofmann, H., & Wickham, H. (2013). The generalized pairs plot. 
Journal of Computational and Graphical Statistics, 22(1), 79–91. 
https://doi.org/10.1080/10618​600.2012.694762

Fagan, K. A., Koops, M. A., Arts, M. T., & Power, M. (2011). Assessing the 
utility of C: N ratios for predicting lipid content in fishes. Canadian 
Journal of Fisheries and Aquatic Sciences, 68(2), 374–385. https://doi.
org/10.1139/F10-119

Frommen, J. G., Herder, F., Engqvist, L., Mehlis, M., Bakker, T. C., 
Schwarzer, J., & Thünken, T. (2011). Costly plastic morphological 
responses to predator specific odour cues in three-spined stickle-
backs (Gasterosteus aculeatus). Evolutionary Ecology, 25(3), 641–656. 
https://doi.org/10.1007/s1068​2-010-9454-6

Gabriel, W. (2005). How stress selects for reversible phenotypic plas-
ticity. Journal of Evolutionary Biology, 18(4), 873–883. https://doi.
org/10.1111/j.1420-9101.2005.00959.x

Harvell, C. D. (1990). The ecology and evolution of inducible de-
fenses. The Quarterly Review of Biology, 65(3), 323–340. https://doi.
org/10.1086/416841

Heynen, M., Bunnefeld, N., & Borcherding, J. (2017). Facing different 
predators: Adaptiveness of behavioral and morphological traits 
under predation. Current Zoology, 63(3), 249–257.

Holopainen, I. J., Aho, J., Vornanen, M., & Huuskonen, H. (1997). 
Phenotypic plasticity and predator effects on morphology and phys-
iology of crucian carp in nature and in the laboratory. Journal of Fish 
Biology, 50(4), 781–798. https://doi.org/10.1111/j.1095-8649.1997.
tb019​72.x

Holopainen, I. J., Tonn, W. M., & Paszkowski, C. A. (1997). Tales of two 
fish: The dichotomous biology of crucian carp (Carassius carassius (L.)) 
in northern Europe. Annales Zoologici Fennici, 34(1), 1–22.

Horppila, J., Olin, M., Vinni, M., Estlander, S., Nurminen, L., Rask, 
M., Ruuhijärvi, J., & Lehtonen, H. (2010). Perch production 
in forest lakes: The contribution of abiotic and biotic fac-
tors. Ecology of Freshwater Fish, 19(2), 257–266. https://doi.
org/10.1111/j.1600-0633.2010.00410.x

Januszkiewicz, A. J., & Robinson, B. W. (2007). Divergent walleye (Sander 
vitreus) - mediated inducible defenses in the centrarchid pump-
kinseed sunfish (Lepomis gibbosus). Biological Journal of the Linnean 
Society, 90(1), 25–36.

Johansson, F., & Andersson, J. (2009). Scared fish get lazy, and lazy 
fish get fat. Journal of Animal Ecology, 78(4), 772–777. https://doi.
org/10.1111/j.1365-2656.2009.01530.x

Karlsson, J., & Byström, P. (2005). Littoral energy mobilization domi-
nates energy supply for top consumers in subarctic lakes. Limnology 
and Oceanography, 50(2), 538–543. https://doi.org/10.4319/
lo.2005.50.2.0538

Kiljunen, M., Grey, J., Sinisalo, T., Harrod, C., Immonen, H., & Jones, 
R. I. (2006). A revised model for lipid-normalizing δ13C values 
from aquatic organisms, with implications for isotope mixing 
models. Journal of Applied Ecology, 43(6), 1213–1222. https://doi.
org/10.1111/j.1365-2664.2006.01224.x

Kishida, O., & Nishimura, K. (2005). Multiple inducible defences against 
multiple predators in the anuran tadpole. Rana pirica. Evolutionary 
Ecology Research, 7(4), 619–631.

https://doi.org/10.5061/dryad.d2547d825
https://doi.org/10.5061/dryad.d2547d825
https://orcid.org/0000-0003-1433-2017
https://orcid.org/0000-0003-1433-2017
https://cran.r-project.org/web/packages/geomorph/index.html
https://cran.r-project.org/web/packages/geomorph/index.html
https://doi.org/10.1111/j.1365-2656.2006.01179.x
https://doi.org/10.1111/j.1365-2656.2006.01179.x
https://doi.org/10.1111/j.1541-0420.2005.00440.x
https://doi.org/10.1111/j.1541-0420.2005.00440.x
https://doi.org/10.1086/physzool.31.2.30155385
https://doi.org/10.1111/j.1600-0706.2012.20235.x
https://doi.org/10.1111/j.1600-0706.2012.20235.x
https://doi.org/10.2307/3545777
https://doi.org/10.1016/j.cub.2018.06.075
https://doi.org/10.1890/0012-9658(2006)87%5B2366:PGASPI%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2006)87%5B2366:PGASPI%5D2.0.CO;2
https://doi.org/10.1016/S0169-5347(97)01274-3
https://doi.org/10.1016/S0169-5347(97)01274-3
https://doi.org/10.1016/j.physbeh.2013.12.010
https://doi.org/10.1016/j.physbeh.2013.12.010
https://doi.org/10.1007/BF00324223
https://doi.org/10.1111/j.1095-8649.2006.01283.x
https://doi.org/10.1007/s11692-011-9130-y
https://doi.org/10.1080/10618600.2012.694762
https://doi.org/10.1139/F10-119
https://doi.org/10.1139/F10-119
https://doi.org/10.1007/s10682-010-9454-6
https://doi.org/10.1111/j.1420-9101.2005.00959.x
https://doi.org/10.1111/j.1420-9101.2005.00959.x
https://doi.org/10.1086/416841
https://doi.org/10.1086/416841
https://doi.org/10.1111/j.1095-8649.1997.tb01972.x
https://doi.org/10.1111/j.1095-8649.1997.tb01972.x
https://doi.org/10.1111/j.1600-0633.2010.00410.x
https://doi.org/10.1111/j.1600-0633.2010.00410.x
https://doi.org/10.1111/j.1365-2656.2009.01530.x
https://doi.org/10.1111/j.1365-2656.2009.01530.x
https://doi.org/10.4319/lo.2005.50.2.0538
https://doi.org/10.4319/lo.2005.50.2.0538
https://doi.org/10.1111/j.1365-2664.2006.01224.x
https://doi.org/10.1111/j.1365-2664.2006.01224.x


     |  13de MEO et al.

Kishida, O., & Nishimura, K. (2006). Flexible architecture of inducible 
morphological plasticity. Journal of Animal Ecology, 75(3), 705–712. 
https://doi.org/10.1111/j.1365-2656.2006.01091.x

Lappalainen, J., Vinni, M., & Malinen, T. (2016). Living in the edge: The 
fate of individually marked pike (Esox lucius) stocked in a hyper-eutro-
phic lake with frequent winter hypoxia. Journal of Freshwater Ecology, 
31(4), 509–519.

Lastein, S., Stabell, O. B., Larsen, H. K., Hamdani, E. H., & Døving, K. 
B. (2012). Behaviour and neural responses in crucian carp to skin 
odours from cross-order species. Behaviour, 149(9), 925–939. https://
doi.org/10.1163/15685​39X-00003013

Lind, M. I., & Johansson, F. (2007). The degree of adaptive pheno-
typic plasticity is correlated with the spatial environmental het-
erogeneity experienced by island populations of Rana temporaria. 
Journal of Evolutionary Biology, 20(4), 1288–1297. https://doi.
org/10.1111/j.1420-9101.2007.01353.x

Magnhagen, C., & Heibo, E. (2004). Growth in length and in 
body depth in young-of-the-year perch with different preda-
tion risk. Journal of Fish Biology, 64(3), 612–624. https://doi.
org/10.1111/j.1095-8649.2004.00325.x

Meuthen, D., Ferrari, M. C., Lane, T., & Chivers, D. P. (2019). Predation 
risk induces age-and sex-specific morphological plastic responses in 
the fathead minnow Pimephales promelas. Scientific Reports, 9(1), 1–9. 
https://doi.org/10.1038/s4159​8-019-51591​-1

Middlemis Maher, M. J., Werner, E. E., & Denver, R. J. (2013). Stress hor-
mones mediate predator-induced phenotypic plasticity in amphib-
ian tadpoles. Proceedings of the Royal Society B: Biological Sciences, 
280(1758), 20123075.

Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., & Relyea, R. A. 
(2005). Ecological consequences of phenotypic plasticity. Trends 
in Ecology & Evolution, 20(12), 685–692. https://doi.org/10.1016/j.
tree.2005.08.002

Mittelbach, G. G., & Persson, L. (1998). The ontogeny of piscivory 
and its ecological consequences. Canadian Journal of Fisheries 
and Aquatic Sciences, 55(6), 1454–1465. https://doi.org/10.1139/
f98-041

Muir, A. M., Vecsei, P., & Krueger, C. C. (2012). A perspective on perspec-
tives: Methods to reduce variation in shape analysis of digital images. 
Transactions of the American Fisheries Society, 141(4), 1161–1170. 
https://doi.org/10.1080/00028​487.2012.685823

Nilsson, P. A., & Brönmark, C. (2000). Prey vulnerability to a gape-
size limited predator: Behavioural and morphological impacts 
on northern pike piscivory. Oikos, 88(3), 539–546. https://doi.
org/10.1034/j.1600-0706.2000.880310.x

Nilsson, P. A., Brönmark, C., & Pettersson, L. B. (1995). Benefits of a pred-
ator-induced morphology in crucian carp. Oecologia, 104(3), 291–296.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, 
D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, 
M. H. H., Szoecs, E., & Wagner, H. (2019). vegan: Community ecology 
package. R package version 2.5-6. Retrieved from https://cran.r-proje​
ct.org/web/packa​ges/vegan/​index.html

Peacor, S. D. (2002). Positive effect of predators on prey growth rate 
through induced modifications of prey behaviour. Ecology Letters, 
5(1), 77–85. https://doi.org/10.1046/j.1461-0248.2002.00287.x

Peacor, S. D., & Werner, E. E. (2001). The contribution of trait-mediated 
indirect effects to the net effects of a predator. Proceedings of the 
National Academy of Sciences of the United States of America, 98(7), 
3904–3908. https://doi.org/10.1073/pnas.07106​1998

Persson, L., Andersson, J., Wahlstrom, E., & Eklöv, P. (1996). Size-specific 
interactions in lake systems: Predator gape limitation and prey 
growth rate and mortality. Ecology, 77(3), 900–911. https://doi.
org/10.2307/2265510

Pettersson, L. B., & Brönmark, C. (1993). Trading off safety against 
food: State dependent habitat choice and foraging in crucian carp. 
Oecologia, 95(3), 353–357. https://doi.org/10.1007/BF003​20988

Pettersson, L. B., & Brönmark, C. (1997). Density-dependent costs of 
an inducible morphological defense in crucian carp. Ecology, 78(6), 
1805–1815. https://doi.org/10.1890/0012-9658(1997)078[1805:D-
DCOA​I]2.0.CO;2

Pettersson, L. B., Nilsson, P. A., & Brönmark, C. (2000). Predator recogni-
tion and defence strategies in crucian carp. Carassius carassius. Oikos, 
88(1), 200–212.

Pfennig, D., Wund, M., Snell-Rood, E., Cruickshank, T., Schlichting, C., 
& Moczek, A. (2010). Phenotypic plasticity's impacts on diversifica-
tion and speciation. Trends in Ecology and Evolution, 25(8), 459–467. 
https://doi.org/10.1016/j.tree.2010.05.006

Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture. 
Johns Hopkins University Press.

Pigliucci, M. (2005). Evolution of phenotypic plasticity: Where are we 
going now? Trends in Ecology & Evolution, 20(9), 481–486. https://doi.
org/10.1016/j.tree.2005.06.001

Piironen, J., & Holopainen, I. J. (1986). A note on seasonality in anoxia 
tolerance of crucian carp (Carassius carassius (L.)) in the laboratory. 
Annales Zoologici Fennici, 23(3), 335–338.

Poléo, A. B. S., Osxnevad, S. A., Østbye, K., Heibo, E., Andersen, R. A., & 
Vøllestad, L. A. (1995). Body morphology of crucian carp Carassius 
carassius in lakes with or without piscivorous fish. Ecography, 18(3), 
225–229. https://doi.org/10.1111/j.1600-0587.1995.tb001​25.x

Post, D. M. (2002). Using stable isotopes to estimate trophic posi-
tion: Models, methods, and assumptions. Ecology, 83(3), 703–718. 
ht tps://doi .org/10.1890/0012-9658(2002)083[0703:USITE​
T]2.0.CO;2

Preisser, E. L., Bolnick, D. I., & Benard, M. F. (2005). Scared to death? 
The effects of intimidation and consumption in predator–prey inter-
actions. Ecology, 86(2), 501–509. https://doi.org/10.1890/04-0719

Price, T. D., Qvarnström, A., & Irwin, D. E. (2003). The role of phenotypic 
plasticity in driving genetic evolution. Proceedings of the Royal Society 
of London. Series B: Biological Sciences, 270(1523), 1433–1440.

R Core Team (2020). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing. Retrieved from https://
www.R-proje​ct.org/

Rohlf, F. J. (2004). TpsDig, digitize landmarks and outlines, version 2.0. 
Department of Ecology and Evolution, State University of New York.

Scharf, F. S., Juanes, F., & Rountree, R. A. (2000). Predator size-prey size re-
lationships of marine fish predators: Interspecific variation and effects 
of ontogeny and body size on trophic-niche breadth. Marine Ecology 
Progress Series, 208, 229–248. https://doi.org/10.3354/meps2​08229

Scharnweber, K., Watanabe, K., Syväranta, J., Wanke, T., Monaghan, 
M. T., & Mehner, T. (2013). Effects of predation pressure 
and resource use on morphological divergence in omnivo-
rous prey fish. BMC Evolutionary Biology, 13, 132. https://doi.
org/10.1186/1471-2148-13-132

Sharma, C. M., & Borgstrøm, R. (2008). Shift in density, habitat use, and 
diet of perch and roach: An effect of changed predation pressure 
after manipulation of pike. Fisheries Research, 91(1), 98–106. https://
doi.org/10.1016/j.fishr​es.2007.11.011

Siepielski, A. M., Hasik, A. Z., Ping, T., Serrano, M., Strayhorn, K., & Tye, S. 
P. (2020). Predators weaken prey intraspecific competition through 
phenotypic selection. Ecology Letters, 23(6), 951–961. https://doi.
org/10.1111/ele.13491

Skov, C., & Nilsson, P. A. (Eds.) (2018). Biology and ecology of pike. CRC 
Press.

Skúlason, S., Parsons, K. J., Svanbäck, R., Räsänen, K., Ferguson, M. M., 
Adams, C. E., Amundsen, P.-A., Bartels, P., Bean, C. W., Boughman, 
J. W., Englund, G., Guðbrandsson, J., Hooker, O. E., Hudson, A. G., 
Kahilainen, K. K., Knudsen, R., Kristjánsson, B. K., Leblanc, C.-L., 
Jónsson, Z., … Snorrason, S. S. (2019). A way forward with eco evo 
devo: An extended theory of resource polymorphism with postglacial 
fishes as model systems. Biological Reviews, 94(5), 1786–1808. https://
doi.org/10.1111/brv.12534

https://doi.org/10.1111/j.1365-2656.2006.01091.x
https://doi.org/10.1163/1568539X-00003013
https://doi.org/10.1163/1568539X-00003013
https://doi.org/10.1111/j.1420-9101.2007.01353.x
https://doi.org/10.1111/j.1420-9101.2007.01353.x
https://doi.org/10.1111/j.1095-8649.2004.00325.x
https://doi.org/10.1111/j.1095-8649.2004.00325.x
https://doi.org/10.1038/s41598-019-51591-1
https://doi.org/10.1016/j.tree.2005.08.002
https://doi.org/10.1016/j.tree.2005.08.002
https://doi.org/10.1139/f98-041
https://doi.org/10.1139/f98-041
https://doi.org/10.1080/00028487.2012.685823
https://doi.org/10.1034/j.1600-0706.2000.880310.x
https://doi.org/10.1034/j.1600-0706.2000.880310.x
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.1046/j.1461-0248.2002.00287.x
https://doi.org/10.1073/pnas.071061998
https://doi.org/10.2307/2265510
https://doi.org/10.2307/2265510
https://doi.org/10.1007/BF00320988
https://doi.org/10.1890/0012-9658(1997)078%5B1805:DDCOAI%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(1997)078%5B1805:DDCOAI%5D2.0.CO;2
https://doi.org/10.1016/j.tree.2010.05.006
https://doi.org/10.1016/j.tree.2005.06.001
https://doi.org/10.1016/j.tree.2005.06.001
https://doi.org/10.1111/j.1600-0587.1995.tb00125.x
https://doi.org/10.1890/0012-9658(2002)083%5B0703:USITET%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083%5B0703:USITET%5D2.0.CO;2
https://doi.org/10.1890/04-0719
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.3354/meps208229
https://doi.org/10.1186/1471-2148-13-132
https://doi.org/10.1186/1471-2148-13-132
https://doi.org/10.1016/j.fishres.2007.11.011
https://doi.org/10.1016/j.fishres.2007.11.011
https://doi.org/10.1111/ele.13491
https://doi.org/10.1111/ele.13491
https://doi.org/10.1111/brv.12534
https://doi.org/10.1111/brv.12534


14  |     de MEO et al.

Snell-Rood, E. C., Van Dyken, J. D., Cruickshank, T., Wade, M. J., & 
Moczek, A. P. (2010). Toward a population genetic framework of de-
velopmental evolution: The costs, limits, and consequences of phe-
notypic plasticity. BioEssays, 32(1), 71–81. https://doi.org/10.1002/
bies.20090​0132

Sperfeld, E., Nilssen, J. P., Rinehart, S., Schwenk, K., & Hessen, D. O. 
(2020). Ecology of predator-induced morphological defense traits in 
Daphnia longispina (Cladocera, Arthropoda). Oecologia, 192(3), 687–
698. https://doi.org/10.1007/s0044​2-019-04588​-6

Svanbäck, R., & Eklöv, P. (2003). Morphology dependent foraging effi-
ciency in perch: A trade-off for ecological specialization? Oikos, 102(2), 
273–284. https://doi.org/10.1034/j.1600-0706.2003.12657.x

Svanbäck, R., & Persson, L. (2004). Individual diet specialization, niche 
width and population dynamics: Implications for trophic poly-
morphisms. Journal of Animal Ecology, 73, 973–982. https://doi.
org/10.1111/j.0021-8790.2004.00868.x

Svanbäck, R., Zha, Y., Brönmark, C., & Johansson, F. (2017). The interac-
tion between predation risk and food ration on behavior and mor-
phology of Eurasian perch. Ecology and Evolution, 7(20), 8567–8577. 
https://doi.org/10.1002/ece3.3330

Tonn, W. M., Holopainen, I. J., & Paszkowski, C. A. (1994). Density-
dependent effects and the regulation of crucian carp popula-
tions in single-species ponds. Ecology, 75(3), 824–834. https://doi.
org/10.2307/1941738

Turesson, H., & Brönmark, C. (2004). Foraging behaviour and cap-
ture success in perch, pikeperch and pike and the effects of 
prey density. Journal of Fish Biology, 65(2), 363–375. https://doi.
org/10.1111/j.0022-1112.2004.00455.x

Uller, T., Feiner, N., Radersma, R., Jackson, I. S., & Rago, A. (2019). 
Developmental plasticity and evolutionary explanations. Evolution & 
Development, 22(1–2), 47–55.

Vinterstare, J., Hulthén, K., Nilsson, D. E., Nilsson, P. A., & Brönmark, C. 
(2020). More than meets the eye: Predator-induced pupil size plas-
ticity in a teleost fish. Journal of Animal Ecology, 89(10), 2258–2267. 
https://doi.org/10.1111/1365-2656.13303

Vinterstare, J., Hulthén, K., Nilsson, P. A., Sköld, H. N., & Brönmark, 
C. (2020). Experimental manipulation of perceived predation risk 
and cortisol generates contrasting trait trajectories in plastic cru-
cian carp. Journal of Experimental Biology, 223(4), 1–8. https://doi.
org/10.1242/jeb.213611

Vøllestad, L. A., Varreng, K., & Poleo, A. B. S. (2004). Body depth vari-
ation in crucian carp Carassius carassius: An experimental individu-
al-based study. Ecology of Freshwater Fish, 13(3), 197–202. https://
doi.org/10.1111/j.1600-0633.2004.00048.x

Webb, P. W. (1984). Form and function in fish swimming. Scientific 
American, 251, 58–68. https://doi.org/10.1038/scien​tific​ameri​can07​
84-72

Weber, M. J., Brown, M. L., & Willis, D. W. (2010). Spatial variabil-
ity of common carp populations in relation to lake morphology 
and physicochemical parameters in the upper Midwest United 
States. Ecology of Freshwater Fish, 19(4), 555–565. https://doi.
org/10.1111/j.1600-0633.2010.00436.x

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: de Meo I, Østbye K, Kahilainen KK, 
Hayden B, Fagertun CHH, Poléo ABS. Predator community 
and resource use jointly modulate the inducible defense 
response in body height of crucian carp. Ecol Evol.  
2021;00:1–14. https://doi.org/10.1002/ece3.7176

https://doi.org/10.1002/bies.200900132
https://doi.org/10.1002/bies.200900132
https://doi.org/10.1007/s00442-019-04588-6
https://doi.org/10.1034/j.1600-0706.2003.12657.x
https://doi.org/10.1111/j.0021-8790.2004.00868.x
https://doi.org/10.1111/j.0021-8790.2004.00868.x
https://doi.org/10.1002/ece3.3330
https://doi.org/10.2307/1941738
https://doi.org/10.2307/1941738
https://doi.org/10.1111/j.0022-1112.2004.00455.x
https://doi.org/10.1111/j.0022-1112.2004.00455.x
https://doi.org/10.1111/1365-2656.13303
https://doi.org/10.1242/jeb.213611
https://doi.org/10.1242/jeb.213611
https://doi.org/10.1111/j.1600-0633.2004.00048.x
https://doi.org/10.1111/j.1600-0633.2004.00048.x
https://doi.org/10.1038/scientificamerican0784-72
https://doi.org/10.1038/scientificamerican0784-72
https://doi.org/10.1111/j.1600-0633.2010.00436.x
https://doi.org/10.1111/j.1600-0633.2010.00436.x
https://doi.org/10.1002/ece3.7176


69 
 

 

 

 

2 
 
  



70 
 

  



71 
 

 

The resource use of Crucian carp along a productivity 

gradient reveals dynamic adaptations contingent upon body 

size, predation risk, and competition 

 

Ilaria de Meo1,     Kjartan Østbye1
,     Kimmo K. Kahilainen2,     Brian Hayden3,     

Marius Magnus1,     Antonio B. S. Poléo1 

 

1Department of Forestry and Wildlife Management, Inland Norway University of Applied 

Sciences, Koppang, Norway 

2Lammi Biological Station, University of Helsinki, Finland 

3Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, 

NB, Canada 

 

 

Correspondence: ilaria.demeo@inn.no 

 

 

 

 

 

 

 

 

 

 

 

mailto:ilaria.demeo@inn.no


72 
 

 

Abstract 

Generalist fish species can feed on a wide resource spectrum and across trophic levels 

depending on changes in resource availability and intra- and interspecific interactions. 

Crucian carp (Carassius carassius) represents a good candidate species to investigate 

variation in the trophic ecology of generalist fish as it can be found in highly variable fish 

communities and its resource use is only relatively well documented. In this study, we 

explored the trophic ecology of crucian carp at the individual and population levels using 

stable isotope and gut contents analysis. We tested if resource use varied according to 

lake productivity, predation risk, intra- and interspecific competition, or individual fish 

size. We found that crucian carp resource preference was highly variable among and 

within lakes. In predator-free lakes, small crucian carp occurred in high densities, 

showed increased inter-individual specialization, and relied mainly on pelagic 

zooplankton. In presence of predators, large crucian carp occurred in low densities and 

included greater proportions of benthic macroinvertebrates in their diet. This shift in 

resource use was further favored in productive, shallow lakes where littoral prey were 

probably largely available. Interspecific competition was an important factor 

determining Crucian carp niche use, as fish had higher trophic position in absence of 

other cyprinids. Crucian carp showed highly dynamic resource use and food preferences 

in response to variable environmental conditions. Overlooking the complex diet 

preferences of generalist fish may lead to an oversimplification of freshwater 

community dynamics. 

 

Keywords: Generalist fish, stable isotope trophic ecology, cyprinid, diet analysis, 

individual specialization 
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INTRODUCTION 

Generalist fish species have often a fundamental role in aquatic ecosystems due to their ability 

to forage on a wide resource spectrum and across trophic levels, with profound effects on 

food web regulation and stability (Schindler & Scheuerell, 2002; Vander Zanden & 

Vadeboncoeur, 2002). Generalist feeding strategies are also beneficial in fluctuating 

environments since they allow fish to respond flexibly to changes in resource availability 

(Hayden et al., 2014; Pool et al., 2017; Laske et al., 2018). Accordingly, generalist fish are 

expected to vary their resource preferences along gradients associated with changes in 

environmental characteristics such as productivity (Lesser et al., 2020). In shallow temperate 

lakes, an initial increase in productivity intensifies the growth of benthic algae and 

macrophytes, enhancing invertebrate prey availability in the littoral habitat (Moss et al., 

2004). As lakes become more eutrophic, nutrient supply often intensifies primary production 

of the pelagic habitat, with considerable changes in invertebrate and fish community structure 

(Jeppesen et al., 2000; Olin et al., 2002). Thus, the trophic ecology of species that can 

potentially behave as planktivores, benthivores, herbivores, or detritivores could change in 

response to resource availability in different systems (Araujo, Bolnick, & Layman, 2011; 

Vejříková et al., 2017).  

At the same time, the ability of generalist fish to forage on alternative resources is strongly 

dependent on their intra- and interspecific interactions (Quevedo et al., 2009; Bolnick et al. 

2010). Intraspecific competition can increase population niche variability as conspecifics may 

adopt different foraging behaviors and use distinct subsets of the population diet breadth if 

preferred prey items become less abundant (Svanbäck & Bolnick, 2007; Svanbäck et al., 2008). 

On the other hand, interspecific competition generally constraints niche width by limiting the 

range of available resources (Eloranta et al., 2013). The strength of interspecific competition 

will also depend on fish density and species composition present in a system, as closely related 

species are often assumed to have a similar ecological function and more likely to compete 

than distantly related ones (Burns & Strauss, 2011; Dayan & Simberloff, 2005). Predation is 

another important factor determining the trophic niche and population structure of prey 

(Brabrand & Faafeng, 1993; Brönmark et al., 2008). Predators can increase or decrease the 

strength of interspecific interactions, and thus resource partitioning, among competing prey 
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(Chase et al., 2002). Interspecific interactions also depend on abiotic characteristics such as 

habitat heterogeneity. Increased structural complexity of the environment, such as enhanced 

macrophyte density, usually leads to a decrease of predation pressure, as prey can adopt 

different antipredator behaviors and seek refuge in alternative habitats (Werner et al. 1983; 

Snickars et al., 2004). This change in habitat use is frequently accompanied by a diet shift, 

leading to decreased growth rates if less-favorable food resources are found (Werner et al., 

1983). Moreover, competing species may occupy the same refuge or select sub-optimal 

habitats as the preferred one is already occupied (Mittelbach, 1988; Henseler et al., 2020). 

Foraging strategies can differ during ontogeny, as increasingly large fish have access to a 

broader range of resources (Scharf et al., 2000). Larger fish are also able to use different 

habitats, e.g., by attaining a size-refuge from predators, with a potential competitive 

advantage over smaller conspecifics (Byström et al., 2004; Woodward & Hildrew, 2002). Thus, 

body size can modify the strength of interspecific interactions in a way that competition or 

predation can be predominant at certain size classes (Persson, 1988). 

Crucian carp (Carassius carassius) is a widespread generalist fish belonging to the Cyprinidae 

family and can inhabit a variety of habitats, ranging from small ponds to productive lakes with 

stagnant water. Due to a peculiar physiology, crucian carp is able to survive winter months in 

ice-covered anoxic water and is often the only fish species present in small lakes (Piironen & 

Holopainen, 1986). In these pond populations, high densities of small crucian carp lead to 

resource limitation and strong intraspecific competition (Holopainen et al., 1997; 

Pettersson & Brönmark, 1997). In contrast, in more complex fish communities, crucian carp 

occurs at low densities and individuals usually attain larger sizes. This fish displays an elusive 

behavior in lakes with piscivores (e.g. Vinterstare et al., 2020) and is well-known for 

developing a deep-bodied morphology in response to gape-size limited predators (Brönmark 

& Pettersson, 1994; de Meo et al., 2021). While the effect of predation risk on crucian carp 

resource use is relatively well-documented (Pettersson & Brönmark, 1993; Paszkowski et al., 

1996; Andersson et al., 2006), the potential role of interspecific competition has often been 

overlooked. This species shows a wide diet spectrum, including zooplankton, benthic insect 

larvae, macrophytes, and detrital material (e.g. Penttinen and Holopainen, 1992). In warm, 

shallow, eutrophic lakes its diet can vary greatly and consists mainly of plant material and 

zooplankton or detritus, depending on the dominance state of the lake (Gao et al., 2017). 
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Benthic foraging of crucian carp can also cause resuspension of sediment and increase 

nutrient concentrations, with potential effects on lake trophic state and water quality (He et 

al., 2019). 

Since crucian carp can be found along different productivity gradients, it represents a good 

candidate species to investigate the trophic ecology of generalist fish in small lakes. In this 

study, we consider how lake characteristics and fish community structure affect the resource 

use of crucian carp through stable isotope and gut contents analysis. Stable isotope analysis 

of carbon (δ13C) and nitrogen (δ15N) is a well-established method providing integrated 

information on consumer trophic ecology. Since isotope ratios of consumers and food sources 

are closely linked, variation in the environment that affects the isotopic values of food sources 

at the base of the food chain may also influence the position occupied by consumers in the 

niche space (Post, 2002; Newsome et al., 2007). Here, we explored the trophic ecology of 

crucian carp at the individual and population levels, taking into account the main 

environmental characteristics potentially underlying variation in isotope ratios of food sources 

among different lakes. In particular, we wanted to find out if resource use of crucian carp 

varied according to lake productivity, predation risk, intra- and interspecific competition, or 

individual fish size. We expected a shift towards more littoral resource use with increasing 

predator or competitor density, as vegetated littoral habitat represents both a refuge and an 

important food source. At the same time, we predicted this shift to be enhanced by increasing 

productivity and individual body size, as they influence availability and accessibility of littoral 

resources. We also expected an increase in individual specialization, and thus an increase in 

the population-specific niche size, in communities where crucian carp was the dominant 

species, and a narrowing in niche size with higher interspecific competition and predation risk. 

Thus, investigating resource competition, predation, and body size in lakes with different 

productivity and fish community structure, we aimed at revealing their relative contribution 

upon niche use of crucian carp. 
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METHODS 

Study sites and data collection 

The selected twelve study lakes and ponds were located in southeastern Norway and were 

relatively small (0.25-11 ha) and shallow (max depth 1.5-11.3 m; Table 1). Land use of the area 

surrounding the lakes was different among localities: peat bog-forest of birch or pine (lakes 

Posttjernet, Motjennet, Karussputten), forest with proximity to an urban area (lakes 

Øvresetertjern, Svartkulp, Småvanna, Langmyrtjern, Bjørnmyrdammen), and urban area or 

farmland (lakes Bugårdsdammen, Forkerudstjern, Stomperudtjern, Nusttjennet). Abiotic 

parameters included lake altitude (m a.s.l.), surface area (ha), maximum depth (m), littoral 

area (%), specific conductivity (S/cm), Secchi depth (m), total nitrogen (µg/l), phosphorus 

(µg/l) and organic carbon (mg/l). We estimated lake bathymetry in the field with a portable 

echosounder and the littoral area was calculated as the percentage of bottom depth shallower 

than 3.5 meters as a proxy for basin profile.  

Fish collection was carried out between June and August in 2018 and 2019 during the open-

water season to examine the food sources assimilated during the main period of fish growth 

and activity. We assessed fish density in each lake using Nordic multimesh gillnets consisting 

of 12 equidistant panels (mesh sizes 5–55 mm) for littoral and pelagic habitats. Moreover, 

different fishing methods were used to maximize the catch of small crucian carp (see details 

in de Meo et al., 2021). We calculated CPUE (n fish·net-1·h-1) for crucian carp (CPUE crucian), 

invertebrate-consumer fish potentially in competition for resources with crucian carp (CPUE 

comp), and piscivorous fish (CPUE pred; Table 2). Piscivorous fish species in these lakes were 

brown trout (Salmo trutta), European perch (Perca fluviatilis), and northern pike (Esox lucius). 

In particular, in lakes at these latitudes, trout and perch undergo ontogenetic shifts to 

piscivory at a size of around 20 cm (Jonsson et al., 1999; Jensen et al., 2012) and 17 cm (Hjelm 

et al., 2000, Horppila et al., 2000; Svanbäck & Eklöv, 2002), respectively. Consequently, large 

fish were considered predators. Permission to catch fish was given by the Norwegian 

Environmental Agency (2018/4155) and fish were sampled after oral approval by the local 

landowners. 

We collected qualitative samples of zooplankton, benthic invertebrates, macrophytes, and 

sediment to estimate basal resources for stable isotope analysis (SIA). We sampled 
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zooplankton hauling a plankton net through the water column in the pelagic zone of deep 

lakes or in the non-vegetated area of shallow lakes. Samples were later sieved through a 200-

μm mesh. We collected benthic invertebrates from sediments and plants in the littoral habitat 

using kick nets and sorted them to the lowest feasible taxonomic level. Samples of sediment 

and of the most abundant macrophytes (mainly Potamogeton spp. and Nuphar spp.) were also 

collected from the littoral zone of each lake. Sediment comprised primarily decaying plant 

material. 

In the laboratory, we measured individual fish total length (± 0.1 cm) and wet weight (± 0.1 g). 

A piece of dorsal muscle tissue was dissected from a subsample representative of the length 

distribution of crucian carp in each lake (n=30) and frozen at -20 ⁰C for later stable isotope 

analysis (SIA). When available, we included smaller crucian carp to avoid underrepresentation 

of this size class.  

 

Stable isotope analysis and rescaling 

Fish muscle, invertebrate, plant, and sediment samples were freeze-dried at -50 ⁰C for 48 h, 

ground to a homogeneous fine powder, weighed and encapsulated into tin cups. We analyzed 

stable carbon and nitrogen isotope ratios using a Costech 4010 elemental analyzer (Costech, 

California, USA) coupled to a Delta Plus continuous flow mass spectrometer (Thermo Finnigan, 

Bremen, Germany). Precision of internal standards was better than 0.1 ‰ for δ13C and 0.2 ‰ 

for δ15N. Elemental C:N ratios were low in all fish samples (3.3 ± 0.1) indicating low lipid 

concentrations and δ13C values were arithmetically lipid-corrected prior to analysis (Kiljunen 

et al., 2006).  

Since basal food isotope ratios varied greatly across lakes, it was necessary to take into 

account this variation when comparing changes in isotopic niche of crucian carp. In order to 

remove this variation not associated with trophic changes and make fish isotopic values 

directly comparable, we used a method based on modified Z-scores (Fry & Davis 2015). This 

method was adapted by Lejeune et al. (2021) to compare isotopic values of newts from 

different communities. Isotope values of consumers were standardized by rescaling raw 

isotope data into modified Z-scores using the mean and standard deviation of their prey 

community at each location. In this study, the mean of pelagic zooplankton, pooled benthic 

macroinvertebrates collected from the littoral area, and pooled plant and sediment were used 



78 
 

as sources for calculation of the parameters (see Table S1 in Supplementary material). 

Rescaled stable isotope values are expressed using a Δ notation instead of δ notation and 

conserve the original measurement unit (‰ deviation from international standards). 

 

Diet analysis 

We examined the gut contents of all the fish used in stable isotope analysis. When feasible, 

we included more individuals to increase sample size, since fish with empty guts were 

excluded from the analysis. We estimated the proportion occupied by each prey category 

observed in the anterior third of crucian carp gut under a stereomicroscope using percentage 

scale. The observed prey items were grouped in three main categories: pelagic prey, benthic 

prey, and plant/detritus material. Pelagic prey included (I) pelagic cladocerans (mainly 

Bosmina sp., Daphnia sp.), (II) copepods (Calanoida and Cyclopoida), and (III) other rare 

pelagic prey items (chironomid pupae, water mites, Chaoborid larvae). Benthic prey 

comprised (IV) chironomid larvae, (V) gastropods, (VI) benthic cladocerans (mainly Chydorus 

sp.), and (VII) other benthic invertebrates (Odonata nymphs, Trichoptera, Ephemeroptera, 

and Coleoptera larvae, Asellus aquaticus, ostracods). We also included in a third category (VIII) 

plant (mainly filamentous algae and macrophytes) and (IX) sediment, largely composed of 

decaying organic material (Table 3).  

Diet breadth was quantified using Levins’ D index (Levins, 1968) standardized for resource 

richness. The index ranges between 0 and 1 and is used to show the relative level of diet 

specialization at the population level. Low index values characterize a population diet 

dominated by few prey items, while high values are indicative of a more generalist diet. In 

addition, we assessed individual dietary specialization (IS) calculating the mean overlap 

between the diet of each individual to that of its population (Bolnick et al., 2002). Values 

approaching 1 indicate low inter-individual diet variation, while values near 0 indicate high 

inter-individual specialization. We calculated Levins’ D index and IS using the R package 

“RInSp” (Zaccarelli et al., 2013).  

 

Statistical analysis 

Environmental structure. We used the abiotic variables measured at each lake to explore 

potential environmental drivers of variation in the raw stable isotope values of basal sources 
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(δ13C and δ15N of littoral invertebrates, zooplankton, plants, and sediments) and crucian carp 

among the different systems. Abiotic variables included lake altitude, surface area, maximum 

depth, littoral area, specific conductivity, Secchi depth, and nutrient concentration (Table 1). 

We identified main environmental gradients reducing the set of our abiotic variables using 

principle component analysis (PCA). Then, we explored association between the two first PC 

axes and basal resource values through correlation analysis (i.e. Pearson correlation 

coefficient).   

Crucian carp resource use and niche width. In order to estimate the predominant resource 

use of crucian carp at the population level, we used Bayesian isotope mixing models from the 

R package ‘simmr’ (Parnell et al., 2010). Mean and standard deviation of pelagic zooplankton 

(PEL), pooled benthic invertebrates (LIT) and combined plant and detritus (SED) were used as 

baseline values. Trophic fractionation values of 3.4 ± 1.0‰ for δ15N and 0.4 ± 1.3‰ for δ13C 

were used in the model (Post, 2002). Difference in resource use of crucian carp among lakes 

was compared by looking at the overlap of the 95% credibility limits of each source. Moreover, 

we performed generalized linear mixed effects models to test for the effects of size (TL), 

productivity (PC1), and density of crucian carp (CPUEcrucian), competitor fish (CPUEcomp), 

and predators (CPUEpred) on individual Δ13C and Δ15N values, as calculated from the modified 

Z-scores. We also included interactions of crucian carp size with predator and competitor fish 

density and considered lake as random effect. The full model equation was: Δ13C /Δ15N ~ PC1 

+ CPUEcrucian + TL*CPUEcomp + TL*CPUEpred. Variance inflation factor (VIF) was used to 

detect potential multicollinearity. As values indicated low correlation (VIF < 2.3), all predictor 

variables were included in the full model. Selection of the best models was performed by 

backward elimination of fixed-effect terms based on the Akaike information criterion (AIC). 

Finally, we calculated the isotopic niche width of crucian carp in each lake as the standard 

ellipse area corrected for small sample sizes (SEAc) using ‘Stable Isotope Bayesian Ellipses in 

R’ (SIBER; Jackson et al., 2011). The isotopic niche space consisted of the individual Δ13C and 

Δ15N values. We interpreted differences in niche areas examining the overlap of the 95% 

credible intervals.  
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RESULTS  

Environmental characteristics  

Stable isotope values of basal sources (littoral invertebrates, zooplankton, plants and, 

sediments) and crucian carp varied greatly among the different lakes (Figure 1). At the 

population level, we observed the lowest δ15N ratios for crucian carp in Karussputten (3.6 ± 

0.4 ‰) and the highest in Stomperudtjernet (13.6 ± 1.2 ‰). The lowest δ13C ratios were 

measured in Småvanna (-36.5 ± 1.4 ‰) and the highest in Øvresetertjern (-28.1 ± 0.5 ‰). The 

first two axes of the PCA accounted for 74% of the variation in the predictor variables (Figure 

S1). The first axis explained 56% of the variance and was loaded positively by all nutrient values 

and littoral area and negatively by maximum depth and transparency. Specifically, lakes were 

increasingly shallow, turbid, and productive along PC1 axis. Thus, we interpreted this axis as a 

gradient in lake productivity. The second axis explained 18 % of the variance and was positively 

loaded to specific conductivity and altitude and negatively to maximum depth and total 

organic carbon. We found positive correlations between productivity gradient and nitrogen 

values of fish and all baselines (Figure S2), as PC1 axis was positively correlated with δ15N of 

crucian carp (r=0.82, p<0.001), zooplankton (r=0.88, p<0.001), littoral invertebrates (r=0.72, 

p<0.001), plants (r=0.73, p<0.001) and sediments  (r=0.54, p=0.006). The correlation between 

productivity gradient and δ13C was statistically significant only for crucian carp (r=0.29, 

p<0.001). We also found positive correlation between PC2 axis and sediment nitrogen values 

(r=0.51, p=0.009) and zooplankton carbon values (r=0.39, p=0.024). However, variation along 

this axis seems mainly driven by few relatively deeper lakes and correlations should be 

interpreted carefully. 

 

Fish community 

 A total of 10 fish species was recorded from the study lakes. Crucian carp density and fish 

community composition showed different patterns (Table 2 and Figure S3). Small lakes were 

inhabited mainly by high densities of crucian carp (lakes 1 and 3), or by crucian carp and 

minnow (Phoxinus phoxinus; lake 2). Crucian carp coexisted with brown trout (lakes 4, 5 and, 

8) or brown trout and perch (lakes 6 and 7) in mesotrophic lakes. Minnow also occurred in 

some of these lakes (lakes 2, 4, 7, and 8). In Bjørnmyrdammen (lake 9) only perch was present 
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together with very low density of tench (Tinca tinca). In large and productive lakes (lakes 10, 

11, and 12), perch and pike were the main predator fish species present. In particular, lakes 

11 and 12 presented the richest number of species, including high densities of roach 

(Rutilus rutilus), bream (Abramis brama), and rudd (Scardinius erythrophthalmus) while perch 

and pike occurred at low densities.  

 

Crucian carp resource use  

In general, fish community structure, productivity and individual body size were all important 

determinants of crucian carp resource use. Individual body size was a significant predictor of 

both Δ13C and Δ15N values, while crucian carp density was excluded from model selection. 

Variation in Δ13C values was mainly explained by productivity, predator density, and its 

interaction with crucian carp size (Table 4). In particular, Δ13C values showed a strong positive 

association with productivity (Figure 2a). Small individuals showed great variation in Δ13C 

values, while larger fish were more 13C enriched (Figure 2b). In general, fish from lakes with 

high predator density were more carbon enriched, irrespective of their size. Results of model 

selection show that variation in Δ15N values was explained mainly by fish size, competitor 

density, and their interaction (Table 4). Individuals below 15 cm in size were more 15N 

depleted relative to larger crucian carp, irrespective of lake characteristics (Figure 2c). Δ15N 

values of larger crucian carp varied greatly and seemed to depend on competitor fish density. 

At high competitor density, crucian carp had low Δ15N values.  

Bayesian mixing models revealed great variation in crucian carp resource use among 

populations (Figure 3). Reliance on pelagic and littoral resources did not show a clear pattern. 

In general, crucian carp from populations with small average body size seemed to rely more 

on pelagic rather than littoral invertebrates, and this separation was clear. Mottjennet 

represented an exception to this pattern, although gut contents revealed that pelagic prey, 

and particularly cladocerans, made up the largest proportion of the diet (Table 3). On the 

contrary, with increasing average body size, fish seemed to rely mostly on littoral 

invertebrates or on littoral and pelagic resources in similar proportions. Diet analysis confirms 

this pattern, as crucian carp included larger proportions of benthic prey with increasing body 

size (Figure 4). Reliance on plants and detritus increased in productive lakes (lakes 3, 11, and 
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12; Figure 3), which could contribute to explain the higher carbon values observed from 

generalized mixed models. 

 

Crucian carp niche size  

Standard ellipse area of Δ13C and Δ15N isotope ratios of crucian carp varied among lakes. 

Populations from predator-free lakes with small fish (lakes 1 - 3) and lakes with low 

productivity (lakes 4 - 7) had smaller isotopic niches compared to populations from more 

productive lakes (Figures 5 and S4). Fish from these lakes had also a very similar diet breadth 

index (Table 3). Bugårdsdammen had the largest isotopic niche area, although diet breadth 

and inter-individual variation appeared to be low. In this lake, however, benthic invertebrates 

made up 60.2% of the diet and were grouped in a single category even if they constituted a 

very heterogeneous group, including coleopterans and Asellus aquaticus, possibly 

underestimating diet breadth and inter-individual variation. On the opposite, Nusttjernet, a 

productive lake with large fish, presented a remarkably low isotopic niche area. Fish from this 

lake had also the lowest inter-individual variation in diet and very similar sizes. In particular, 

fish showed specialization on benthic cladocerans, mainly small bottom-dwelling chydorids, 

which accounted for more than 50% of the diet (Table 3). Chydorids were also the main diet 

item of crucian carp from Stomperudtjern, which had very similar environmental 

characteristics to Nusttjernet. Crucian carp from Stomperudtjernet, however, grouped clearly 

in large and small individuals in isotopic space, resulting in a wider niche area (Figure 5). 

 

DISCUSSION 

Crucian carp showed great variation in resource use. Productivity, individual body size, and 

interspecific interactions were all important underlying factors of niche use. Low densities of 

large fish were found in shallow lakes in association with different sympatric fish species, 

including top predators such as pike. In general, in these macrophyte-dominated lakes, crucian 

carp used more littoral prey sources. In contrast, small crucian carp were typical in lakes where 

other species were absent or present at very low densities. Here, pelagic zooplankton 

constituted an important part of their diet.  
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Crucian carp and all basal resources had increasingly higher nitrogen stable isotope values 

(δ15N) along the productivity axis. Nutrient inputs from agriculture or sewage usually elevate 

δ15N ratio at the base of the food chain (Kendall et al., 2007), and thus increase δ15N ratio of 

all consumers (Harrington et al., 1998; Botrel et al., 2014). This large variation in isotopic 

signatures is common in many other eutrophic lakes (e.g. Vuorio et al., 2006). Carbon stable 

isotope values of crucian carp showed also a weak positive correlation with productivity. Yet, 

even after accounting for this variation in the baselines, productivity represented one of the 

main driver of fish resource use. Reliance on carbon enriched resources increased along the 

productivity gradient, and fish included higher proportions of detritus and plants in the most 

eutrophic lakes. Fish community structure was also shifting from dominance of trout to perch 

and finally to high densities of cyprinids along the productivity gradient, as previously 

observed on broader spatial scales (Hayden et al., 2017). In turn, fish species composition, and 

in particular progressively efficient gape-size limited predators, can determine an increase in 

crucian carp body height and size (de Meo et al., 2021). Thus, trying to tell apart the main 

drivers explaining crucian carp resource use can be hampered by the fact that productivity 

and community structure were highly interconnected, although explanatory variables were 

not directly correlated in our study. Still, crucian carp naturally inhabits heterogeneous 

environments, so that in order to understand variation in the observed dietary patterns, it is 

necessary to consider these biotic interactions within their abiotic framework, without 

drawing mechanistic conclusions.    

Body size was a determining variable in crucian carp resource use, as fish included more littoral 

prey in their diet with increasing size. In lakes where no potential predators were present, 

crucian carp occurred in high densities and small sizes. In these systems, fish relied mainly on 

pelagic resources. Diet analysis confirmed that pelagic zooplankton (mainly Bosmina sp.) 

represented an important food item in all lakes, while chironomids were always included in 

the diet in lower proportions. Crucian carp may undergo changes in diet during ontogeny 

associated with size-specific differences in their ability to ingest prey. Previous studies show 

that in allopatric lakes the preference for larger prey items increased with fish size, as large 

insect larvae (e.g. Odonata) were consumed exclusively by fish larger than 13 cm (Penttinen 

& Holopainen, 1992). Size-related shifts in feeding efficiency of crucian carp have also been 

demonstrated in the laboratory (Paszkowski et al., 1989). Our results confirm this pattern as 
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almost all fish from predator-free lakes were below 13 cm and did not include large 

invertebrates in their diet. However, fish from these lakes also relied on other low-quality 

resources such as plants and detritus. In particular, in the eutrophic lake Forkerudtjennet, fish 

included a large proportion of filamentous algae in their diet, potentially contributing to the 

enrichment of individual carbon values. Consumption of few prey items such as filter feeding-

zooplankton, detritus, or plant material and exclusion of large predatory benthic copepods or 

macroinvertebrates from the diet, could also explain the low trophic position and small niche 

size of crucian carp populations from these lakes. By contrast, larger crucian carp seemed not 

to be limited by gape size, as fish were including higher proportions of large 

macroinvertebrates in their diet with increasing body length.  

Moreover, higher reliance on zooplankton could be associated with an increase in use of the 

open water zone of the lakes in absence of predation risk, whereas fish may be confined to 

the littoral area when a predator was present (Pettersson & Brönmark, 1993; Diehl & Eklöv, 

1995). Nevertheless, fish included variable proportions of pelagic resources in their diet even 

in presence of predators, probably because large fish outside of the predation window would 

be able to move more freely between open water and shoreline and feed on resources from 

both lake areas (Werner & Hall, 1988).  

Interspecific competition played an important role in crucian carp resource use. In lakes 

Nusttjernet and Stomperudtjernet, where high densities of different cyprinid species were 

present, crucian carp showed low individual specialization and included large proportions of 

small benthic cladocerans in their diet. Previous studies show that omnivorous common carp 

(Cyprinus carpio) and roach are competitor species, where the latter has a higher competitive 

edge on zooplanktivory (Nahon et al., 2020; García-Berthou, 2001). On the opposite, bream is 

a more efficient benthivore than crucian carp and is able to penetrate deep into the sediment 

and feed on benthic macroinvertebrates at large sizes (Lammens 1986; Persson & Hansson, 

1999). Thus, crucian carp may have been limited to feed on a restricted subset of the total 

prey spectrum, as a result of resource partitioning with other cyprinids. Large proportions of 

small chydorids in the diet of crucian carp may also explain the low trophic position of fish 

from these lakes. Competition with minnow might also have influenced crucian carp resource 

use as they occupy mainly the shallower parts of the littoral zone and can maintain very high 

population density (Museth et al., 2002). Indeed, in Langmyrtjern, crucian carp occurred only 
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with minnow and had the lowest average body size and highest specialization among all the 

study lakes, since fish were feeding either on detritus or on zooplankton. This suggests that 

the combined effect of high intra- and interspecific competition might have constrained 

crucian carp diet breadth and favored individual specialization, with negative effects on 

individual growth. Moreover, these competitive interactions may be intensified in presence 

of trout or perch, as minnow increase their use of shallow waters in presence of piscivorous 

species (Eklöv et al., 1994; Museth et al., 2010). In lakes Bjørnmyrdammen, Øvresetetjern, and 

Bugårdsdammen, where no other cyprinid species were present and small perch represented 

the main competitor species, crucian carp had distinctly higher nitrogen ratio and included 

larger proportions of macroinvertebrates in their diet, indicating utilization of different 

resources compared to the other lakes. 

Moreover, as expected, in absence or low density of predators, intraspecific competition for 

food determined an increase of among-individual diet variation. By contrast, in productive 

lakes with predators, crucian carp occurred in low densities and resources were likely very 

abundant, resulting in low intraspecific competition and individual specialization (Svanbäck & 

Bolnick, 2007). At the same time, predation risk may have decreased the degree of individual 

diet variation as a consequence of restricted habitat availability and limitation of alternative 

food sources (Eklöv & Svanbäck, 2006). 

Interestingly, crucian carp managed to reach very large body sizes even in lakes with high 

interspecific competition. This suggests that filter-feeding on small benthic zooplankton may 

represent an advantageous strategy for growth (Persson & Brönmark, 2002), even if previous 

studies show that the feeding apparatus of large carp species may be unsuitable to effectively 

retain small prey (Sibbing, 1988). Moreover, benthic cladocerans may be very abundant in 

these productive lakes and thus represent an easily accessible prey. However, the lack of data 

on resource abundance prevents us from estimating habitat profitability. Diet analysis should 

also be interpreted carefully since sampling was carried out at different times in the lakes over 

the summer.  

Crucian carp changed resource use and food preferences according to variations in specific 

environmental variables. Fish included more littoral prey sources in their diet with increasing 

body size, fish community complexity, and lake productivity, all highly interconnected factors. 
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Small fish from allopatric populations, able to use the pelagic habitat in absence of predators, 

were relying predominantly on zooplankton. Big fish, probably released from gape-size 

limitation, were able to get larger proportions of benthic macroinvertebrates in their diet. 

Concurrently, predation risk likely determined an increase in littoral habitat use. Interspecific 

competition, in particular with other cyprinid species, was also an important factor 

determining resource preferences of crucian carp and should be considered in future studies 

in addition to the more recurrent predation risk. Resource partitioning with other cyprinids, 

however, did not seem to prevent crucian carp from growing to larger sizes. Previous studies 

revealed that variation in foraging preferences of cyprinids may have considerable 

implications for the ecology of freshwater communities, and caution against generalizing 

results from one size class to others (Driver, 2005; Nieoczym & Kloskowski, 2014), or from one 

system to others, since resource use seems highly context-dependent (Persson & Brönmark, 

2002). Crucian carp showed high plasticity in resource use that reflected specific changes in 

community structure and productivity, suggesting that overlooking the complex diet 

preferences of generalist fish may lead to an oversimplification of the dynamics of these 

systems. 
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FIGURE LEGEND 

 

Figure 1. Stable isotope biplots of δ15N and δ13C of crucian carp and basal food sources (means 

± SD) from twelve lakes ordered by increasing productivity.  

Figure 2. Relationship between crucian carp Δ13C and (a) productivity (PC1) and (b) individual 

body size (cm), and between (c) crucian carp Δ15N and individual body size (cm). The 95% 

confidence level interval for predictions from a linear model is shown for each plot.   

Figure 3. Littoral (LIT), pelagic (PEL), and pooled plant and sediment (SED) resource use of 

crucian carp for each lake according to the Bayesian isotope mixing models. The box is drawn 

around the 25th and 75th quartiles, representing 50% credible intervals, while whiskers 

represent 95% credible intervals. Lakes are divided into communities without (1-3) and with 

predators (4-12) and arranged from left to right by increasing productivity within these 

categories.  

Figure 4. Relative proportion of littoral prey, pelagic prey, and pooled plant and sediment in 

gut contents of crucian carp. Lakes are divided into communities without (1-3) and with 

predators (4-12) and arranged from left to right by increasing productivity within these 

categories. 

Figure 5. Standard ellipse areas (SEA) representing the core isotopic niche space (p=0.95%) of 

crucian carp as determined through SIBER models. Lakes are divided into communities 

without (1-3) and with predators (4-12) and arranged from left to right by increasing 

productivity within these categories. 
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TABLES 
 

Table 1. Environmental characteristics of the study lakes ordered by productivity gradient (PC1). Variables include latitude (Lat), longitude 

(Long), lake area (Area), maximum depth (MaxD), altitude (Alt), Secchi Depth (SD), littoral area (Lit), specific conductivity (SCond), total nitrogen 

(TotN), total phosphorus (TotP), total organic carbon (TOC). The first two axes of principal component analysis of environmental data are also 

included.

Lake  Lat 
(⁰N) 

Long 
(⁰E) 

Area 
(km2) 

MaxD 
(m) 

Alt  
(m a.s.l.) 

SD 
(m) 

Lit  
(%) 

SCond 
(S/cm) 

TotN 
(µg/L) 

 

TotP 
(µg/L) 

 

TOC 
(mg/L) 

 

PC1 
55% 

PC2 
18% 

Posttjernet 61.08 11.33 0.017 11 270.8 2.5 26 24.3 312 8 9.7 -3.00 -1.30 

Motjennet 60.23 12.11 0.009 11.3 166.5 3.0 41 11.4 688 23 11.2 -2.35 -1.93 

Karussputten 60.02 10.66 0.003 4.6 356.0 2.0 53 178.0 361 9 5.4 -1.97 2.01 

Øvresetertjern 59.98 10.67 0.031 3.5 478.0 1.7 84 109.1 446 13 6.6 -1.27 1.84 

Svartkulp 59.98 10.74 0.058 10 202.0 1.2 66 30.1 550 13 9.9 -0.97 -1.19 

Småvanna 59.80 10.31 0.005 3.8 222.3 1.8 70 114.6 616 14 10.1 -0.81 0.80 

Langmyrtjern 59.97 10.75 0.003 5 206.0 1.0 70 54.3 702 20 14.2 -0.33 -0.21 

Bjørnmyrdammen 60.18 11.98 0.021 3.5 256.0 0.4 80 24.9 672 26 6.5 -0.27 0.34 

Bugårdsdammen 59.13 10.19 0.050 2 42.0 1.5 100 129.4 980 54 9.5 1.32 0.47 

Forkerudstjern 60.45 12.08 0.012 2.2 152.4 0.5 100 82.7 1985 82 23.4 2.90 -0.59 

Stomperudtjern 59.32 11.40 0.038 1.5 103.4 0.4 100 186.0 1660 146 18.4 3.04 0.96 

Nusttjennet 60.28 11.66 0.110 1.5 131.0 0.4 100 49.6 1090 164 16.4 3.71 -1.19 
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Table 2. Mean (±SD) total length (TL) of crucian carp, mean (±SD) catch per unit effort (CPUE) 

of crucian carp, predator, and competitor fish and number of fish species present in the study 

lakes.  

 

 

 

Lake  Lake 
n. 

TL (cm) Crucian CPUE 
(n·net-1·h-1) 

 

Predator CPUE 
(n·net-1·h-1) 

Competitor CPUE 
(n·net-1·h-1) 

 

n. fish 
species 

Motjennet 1 11.9 (3.0) 7.80 (5.08) - - 1 

Langmyrtjern 2 10.7 (2.8) 2.07 (2.15) - 0.62 (1.08) 2 

Forkerudstjern 3 11.4 (1.9) 10.63 (6.5) - - 1 

Posttjernet 4 19.3 (3.6) 0.19 (0.19) 0.01 (0.02) 0.76 (0.90) 3 

Karussputten 5 14.5 (3.4)        0.99 (0.27) 0.01 (0.03) 0.14 (0.19) 2 

Øvresetertjern 6 28.8 (3.6) 0.42 (0.61) 0.23 (0.30) 1.55 (2.21) 3 

Svartkulp 7 19.8 (4.7) 0.30 (0.41) 0.16 (0.30) 0.64 (1.09) 4 

Småvanna 8 15.4 (2.2) 1.03 (1.39) 0.03 (0.05) 0.32 (0.43) 3 

Bjørnmyrdammen 9 18.0 (1.7) 2.11 (2.39) 0.02 (0.03) 0.20 (0.28) 3 

Bugårdsdammen 10 31.5 (6.8) 0.10 (0.06) 0.17 (0.12) 1.23 (0.59) 3 

Stomperudtjern 11 19.1 (9.5) 0.42 (0.34) 0.03 (0.03) 1.72 (2.51) 6 

Nusttjennet 12 33.1 (1.6) 0.45 (0.26) 0.11 (0.12) 2.13 (3.19) 5 
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Table 3. Diet composition of crucian carp in the study lakes. Standardized Levin’s index of trophic niche width, individual specialisation 

(WIC/TNW), number of full stomachs analysed (n), and Standard Ellipse Area (SEA) of crucian carp niche in isotopic space is also shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Pelagic prey (%) was calculated as the sum of I, II and III, Benthic prey (%) as the sum of IV, V, VI and VII and Sediment (%) as the sum of VIII and IX. 

 Lake            
 1.Mot 2.Lan 3.For 4.Pos 5.Kar 6.Øvr 7.Sva 8.Små 9.Bjø 10.Bug 11.Sto 12.Nus 

Prey items (%) 
(I) Pelagic cladocerans 

58.1 57.8 40.6 44.3 30.6 14.5 15.8 33.6 60.4 12.8 30.1 13.4 

(II) Copepods 16.1 0 5.1 0.1 0 3.6 2.1 3.2 0.6 0.3 2.5 3 
(III) Pelagic invertebrates 0 0.4 0.9 1.7 7.1 0 13.3 0 1.5 2.4 0 0.1 

(IV) Chironomid larvae 7.1 2.2 5.2 2.8 41.9 10.5 14.2 5.4 10.7 6.6 2.3 16.9 
(V) Gastropods 0 0 0 1.7 0 3.6 0 0 0.4 5.9 0 1 

(VI) Benthic cladocerans 6.5 1.7 0 8.2 8.5 6 6.2 5.3 9.3 4.5 58.8 50.8 
(VII) Benthic invertebrates             10.5 8.1 9.2 34 10 55.9 29.4 14.8 13.3 60.2 5.5 10.9 

(VIII) Plant 0 1.5 37.2 0 0.7 1.4 0 3.2 1.3 5 0.2 1.6 
(IX) Sediment 1.6 28.3 1.7 7.2 1.2 4.5 19.1 34.5 2.6 2.4 0.7 2.3 

Pelagic prey  74.2 58.1 46.6 46.1 37.7 18.2 31.2 36.8 62.4 15.5 32.5 16.6 
Benthic prey 24.2 12.0 14.5 45.0 60.4 72.3 49.9 25.5 33.3 71.2 66.6 78.6 

Sediment 1.6 29.8 38.9 7.2 1.9 5.9 19.0 37.7 3.9 7.4 0.9 3.9  
            

Levins’ D standardized 0.52 0.4 0.52 0.44 0.57 0.41 0.89 0.63 0.31 0.32 0.38 0.39 
IS 0.53 0.22 0.54 0.78 0.52 0.76 0.72 0.54 0.55 0.81 0.68 0.9 
n 41 32 53 22 42 25 30 33 27 25 53 45 

SEA  1.18 0.80 0.94 1.14 0.97 1.19 0.59 1.58 1.43 2.82 1.79 0.05 
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Table 4. Results of the best linear mixed models explaining the relation between 

environmental variables and crucian carp Δ13C and Δ15N (‰).  

Selected model: Δ13C  ~ Size * Predators CPUE + Productivity 
 

Estimate (±SE) t-value P-value 

(Intercept) -0.26 (±0.31) -0.83 0.415 

Size -0.03 (±0.01) -3.36 0.001* 

Predators CPUE  0.15 (±0.32)  0.47 0.642 

Productivity (PC1)  0.96 (±0.24)  3.91 0.003* 

Size : Predators CPUE  0.03 (±0.01)  2.96 0.003* 

Selected model: Δ15N ~ Size * Competitor CPUE 

 

 
Estimate (±SE) t-value P-value 

(Intercept)  4.01 (±0.65)  6.17 0.000* 

Size  0.08 (±0.01)  8.84 0.000* 

Competitor CPUE 

Size : Competitor CPUE 

-1.11 (±0.63) 

  0.01 (±0.01) 

-1.76 

 2.45 

0.11 

0.015* 

                     *p-value < 0.05 
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SUPPLEMENTARY MATERIAL 

 
 

 
 
Figure S1. PCA bi-plot of the environmental variables lake area (Area), maximum depth 
(MaxD), altitude (Alt), Secchi Depth (SD), littoral area (Lit), specific conductivity (SCond), total 
nitrogen (TotN), total phosphorus (TotP), total organic carbon (TOC). 
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Figure S2. Scatterplots outlining the relationship of δ15N and δ13C of crucian carp and basal 
sources with productivity gradient (PC1), where nutrients increase towards more positive 
values. The shaded area represents the 95% confidence level intervals for predictions from 
linear models. 
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Figure S3. Mean density (CPUE) of each fish species in the study lakes. PerchL and troutL 
represent the density of large piscivorous perch (>17cm) and brown trout (>20cm), 
respectively.   
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Figure S4. Estimates of Bayesian standard ellipse areas (SEAc) for crucian carp at each lake. 
Black dots correspond to the mean SEA for each group, and boxes represent the 50%, 75%, 
and 95% credible intervals Lakes are divided into communities without (1-3) and with 
predators (4-12) and arranged from left to right by increasing productivity within these 
categories. 
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Abstract  

Predation is a major evolutionary mechanism on life-history traits in prey organisms, but 

very little is known about trait responses with increasing predation risk in real-world 

settings. Here, we focus on the widely distributed species crucian carp (Carassius 

carassius). Crucian carp is known to be particularly vulnerable to predation and develops 

a deep body as an inducible morphological defense against gape-limited predators in 

experimental studies. We examined variation in growth and reproductive traits in 15 

crucian carp populations along a predation risk gradient. We expected fish to attain 

higher growth rate, larger adult size, and later age at maturity with increasing predation. 

In absence of predators, we expected high adult mortality caused by strong intraspecific 

competition, which would lead to early sexual maturity and increased reproductive 

effort. We found that crucian carp life-history traits were clearly related to the presence 

of piscivores: fish grew older, attained larger asymptotic length and size at maturity with 

increasing predation risk. This size increment was evident at young age, especially in 

productive lakes with pike, and it suggests that fish quickly outgrew predator gape to 

reach a size refuge. Contrary to our predictions, populations had similar age at maturity, 

and reproductive effort was increasing with predation risk. Fish from predator lakes may 

experience high levels of resource availability as an indirect consequence of reduced 

intraspecific competition. High-predation lakes were also highly productive with high 

structural complexity due to macrophytes. These results suggest that profitable 

environmental conditions may favor a reduction in fish foraging activity and the 

allocation of energy to both growth and reproduction.  

 

Keywords: Growth, reproductive effort, gape-limited predators, size refuge, predator-

induced defenses, predation gradient 
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INTRODUCTION 

In animals with indeterminate growth such as fish, there is a trade-off between somatic 

growth and reproductive allocation since fecundity increases with body size (Roff, 2002). 

Postponing maturity leads to higher fecundity in the future, but it is also associated to a 

potential decrease in fitness because of mortality prior to first reproduction (Stearns, 1992). 

In general, life-history theory predicts that fast growth and high mortality should lead to early 

maturity (Stearns, 1992; Haugen & Vøllestad, 2000). Moreover, once an organism reaches 

maturity, it has to allocate a certain amount of energy into reproduction that might not be 

available for growth or maintenance metabolism, with dramatic effects on future fecundity 

and survival (Bell, 1980). An individual with high reproductive effort early in life should have 

relatively short life span because the high investment in reproduction leaves no energy for 

surviving after spawning. By contrast, a species that invests little in reproduction should have 

higher life expectancy (Charnov, 1993).  

Life-history strategies can vary greatly among fish populations of the same species and are 

strongly dependent on environmental factors such as latitude, length of the growing season, 

seasonal and interannual fluctuations, food availability, and interspecific interactions (Fox & 

Keast, 1991; Heibo et al., 2005; Blanck & Lamouroux, 2007; Walsh & Reznick, 2009). Predation 

has a central role in determining prey life-history traits, which will depend on the life stage at 

which predators prefer to select their prey (Belk & Hales 1993; Abrams & Rowe, 1996). In 

general, mortality on small individuals will select for late maturity and lower reproductive 

effort (Crowl & Covich, 1990; Reznick et al., 1990). Several mechanisms have been 

hypothesized to influence the direction of prey energy allocation in response to predation. In 

many species, prey growth or development of defensive structures (e.g. spines, plates) can be 

triggered directly by alarm cues associated with the presence of potential predators (Tollrian, 

1995; Januszkiewicz & Robinson, 2007). These induced anti-predator defenses are considered 

a direct adaptive response to predation risk (Tollrian & Harvell, 1999; Beckerman et al., 2007). 

Predation can also determine an increase in individual growth rate of prey by reducing fish 

density, and thus, intraspecific competition (Tonn et al., 1992; Persson et al., 1996; Van Buskirk 

& Yurewicz, 1998). Predation risk can also indirectly induce shifts in prey behavior, such as a 

reduction in foraging activity or a switch to unprofitable habitats, resulting in lower growth or 

reproductive allocation (Lima et al., 1990; Heins et al., 2016). Alternatively, prey can increase 
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foraging activity and undergo higher predation risk at small sizes in return for faster growth 

and low mortality as soon as they outgrow predator’s handling abilities (Urban, 2007). 

Moreover, variation in life-history strategies within the same species has been related to 

personality and physiological traits (Biro et al., 2004; Réale et al., 2010). The choice of a certain 

behavior is also highly dependent on predation tactics (Van Buskirk, 2001; Wood & Moore, 

2020) and resource availability since scarce food generally forces individuals to increase 

foraging activity or use of risky habitats (Werner & Hall 1988; Anholt & Werner, 1995).  

A fast growing life-history strategy can be particularly advantageous in presence of gape-

limited predators. Gape-limited predators usually select prey below a certain size that 

maximizes their capture and handling ability (Hambright, 1991; Nilsson & Bronmark, 2000). 

This size-selective mortality on small individuals may favor prey species growing rapidly into a 

‘‘size-refuge’’ (Lundvall et al., 1999; Taborsky et al., 2003). Accordingly, prey reaching a size-

refuge to elude gape-limited predators are subject to higher juvenile mortality, and rapid 

somatic growth may be achieved by postponing reproduction. This strategy was observed 

among populations of bluegills (Lepomis macrochirus), which grew faster and reached sexual 

maturity at a relatively larger size and older age when occurring with high abundances of large 

predators (Arendt & Wilson, 1999). Other studies showed that different populations of 

guppies changed their life-history patterns depending on the type of predation. In lakes with 

gape-limited predators, guppies matured at a later age and larger size and had lower 

reproductive effort when compared to guppies occurring with large predators feeding mostly 

on adult individuals (Reznick & Endler, 1982).  

Crucian carp (Carassius carassius) is a widespread cyprinid fish particularly vulnerable to gape-

limited predators such as perch (Perca fluviatilis) and pike (Esox lucius) (Brönmark & 

Pettersson, 1994; Vinterstare et al., 2020). Crucian carp develops a deep body when exposed 

to cues from predators feeding on conspecifics, representing an inducible morphological 

defense against predation risk (Nilsson & Brönmark, 2000). In natural populations, crucian 

carp has usually been described as occurring with a distinct dichotomy in morphology, biology, 

and population structure, depending on piscivore presence (Holopainen et al., 1997a). This 

fish has physiological adaptations to survive anoxic conditions under ice cover during winter. 

In autumn, it builds up a glycogen storage that can be used for anaerobic metabolism (Blažka, 

1958; Piironen & Holopainen, 1986). Since most other fish species are sensitive to oxygen 
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depletion, a lake may change from a multispecies assemblage to a monospecific assemblage 

of crucian carp under severe winter conditions. In lakes without predators, crucian carp can 

reach very high densities, and have low relative body depth and small size. By contrast, in lakes 

with piscivores, crucian carp have greater relative body depth and typically occur in low 

density and large sizes (Brönmark et al., 1995; Poléo et al., 1995). However, variability in 

crucian carp body form seems to range within these two morphotypes, as increasingly efficient 

predator communities induce progressively deeper body shape and larger size (de Meo et al., 

2021). Experimental studies have shown that this change in body depth could be associated 

with resource availability and fish behavior rather than with predation cues only. High 

densities of crucian carp in predator-free lakes are subject to strong intraspecific competition, 

eventually leading to a stunting of populations (Tonn et al., 1994). Moreover, crucian carp 

respond to alarm cues by decreasing swimming activity, suggesting an alteration in energy use 

with allocation to somatic growth in presence of predators (Holopainen et al., 1997b; 

Pettersson & Hedenström, 2000). Whether these changes in growth and morphology are 

directly or indirectly mediated by predation, a deep body and large size seem to be the result 

of better growth conditions (Vøllestad et al., 2004). However, to our knowledge, there are no 

studies testing the effect of different predation risk levels on life-history traits of crucian carp 

in the wild. 

In this study, we examined variation in life-history traits of crucian carp from 15 lakes along a 

gradient of predation risk represented by piscivore populations with increasing gape size. The 

different predator communities included brown trout (Salmo trutta), perch, and pike. Studies 

on growth and life-history traits of crucian carp populations in northern Europe are currently 

limited to predator-free populations (Tarkan et al., 2016 and references therein). With 

increasing predation risk on small individuals, we expected fish to attain higher growth rate 

and larger adult size. We supposed that this increase in growth may be achieved by delaying 

age and size at maturity. On the opposite, in absence of predators, we expected higher 

mortality of adult individuals because of strong intraspecific competition, associated with 

early age and size at maturity. We also examined how reproductive effort, in terms of relative 

gonad weight, varied with predation risk and we predicted that it would be higher in absence 

of predators because of shorter life span and opportunity for reproduction. 

  



116 
 

METHODS 

Study lakes and data collection 

The 15 study lakes were located in southeastern Norway and were surveyed between June 

and August in 2018 and 2019 (Table 1). All lakes were small (0.25 - 11 ha), had a high 

proportion of littoral zone, and variable productivity. Abiotic parameters included lake surface 

area (ha), maximum depth (m), total nitrogen (μg/l), total phosphorus (μg/l), and total organic 

carbon (mg/l). These were collected directly in the field, or retrieved from the Norwegian 

Environment Agency and the Norwegian Institute for Water Research.  

Lakes presented different communities of piscivorous fish. Six lakes were completely predator 

free (Forkerudtjern, Mottjernet, Langmyrtjern, Nordre Sætertjern, Skråtjernet, Brynitjernet), 

whereas nine lakes had different gape-size limited predators: brown trout (Karussputten, 

Småvanna, Posttjernet), perch (Bjørnmyrdammen), perch and brown trout (Svartkulp and 

Øvresetetjern) or perch and pike (Nusttjernet, Bugårdsdammen, Stomperudtjern). Fish were 

caught with various sets of gillnets, baited traps, and kick nets to maximize the chance to 

capture small crucian carp. The relative fish density was assessed using Nordic multimesh 

gillnets 1.5 m deep and 30 m long, consisting of 12 equidistant panels with mesh sizes of 5, 

6.25, 8, 10, 12.5, 15.5, 19.5, 24, 29, 35, 43 and 55 mm from knot to knot. We calculated CPUE 

(n fish·net−1·h−1) for littoral and pelagic habitats (for details see de Meo et al., 2021). After 

capture, fish were euthanized with an overdose of the anesthetic tricaine methanesulfonate 

(MS-222) by prolonged immersion, transported to the laboratory, and frozen for subsequent 

analysis. Permission to catch fish was given by the Norwegian Environmental Agency 

(2018/4155) and fish were sampled after oral approval by the local landowners. 

 

Laboratory work 

We measured crucian carp for total length (TL) and body depth (BD) to the nearest mm, and 

wet weight (W) to the nearest 0.1 g. Body depth was measured from the anterior insertion of 

the dorsal fin to the insertion of the pelvic fin. We determined sex and maturation stage of 

crucian carp by gonad inspection. We considered females mature when gonads were turgid 

and presented visible oocytes. We recorded wet weight of mature gonads to the nearest 0.001 

g. For age determination, we took a sample of scales from the area between the dorsal fin and 
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the lateral line. We also removed and cleaned both opercular bones for aging. Age was 

determined by counting true annuli along the primary radius of scales (n ~ 6) using a 

Microfiche Reader (Eyecom 1000). We excluded damaged or regenerated scales from the 

reading. For large individuals, we used both scales and opercula to increase aging reliability. 

In addition, we measured total length and gape height of brown trout, perch, and pike (Table 

1). We considered gape height as the maximum distance between the tip of the upper jaw and 

the mandible. We calculated the mean maximum gape height for each lake by selecting the 

piscivores with the largest gape (n = 10). A large proportion of brown trout and perch in the 

study lakes was small-sized and probably did not undergo ontogenetic shifts to piscivory 

(Hjelm et al., 2000; Jensen et al., 2012). Thus, we selected maximum gape size over mean gape 

height to avoid potential underestimation of the maximum predation window. 

 

Data analysis 

Total length, relative body depth, and condition  

We calculated individual crucian carp relative body depth (RBD) as the ratio of body height to 

total length. Fish body condition was assessed using Fulton’s condition factor (K=body 

mass/total length3 × 100). Differences in mean total length (TL) and relative body depth (RBD) 

among crucian carp from different lakes were tested with Kruskal-Wallis test. Fulton’s 

condition factor was highly correlated with relative body depth (Pearson: r=0.91, p-value 

<0.001) and was excluded from further analysis. Differences in mean total length and relative 

body depth between males and females from each lake were tested with a Mann-Whitney 

test. Significant deviations from the expected male-to-female sex ratio (1:1) were tested using 

the chi-squared (χ2) test. When possible, we used only data from gillnets to avoid sampling 

bias in sex ratio, as females entering a trap may attract several males. All statistical analyses 

were conducted using R version 4.0.1 (R Core Team, 2020). 

Growth 

In this study, we estimated growth parameters using a Bayesian approach through the 

‘BayesGrowth’ package (Smart & Grammer, 2021) in R statistical software. In general, fish 

sampling was biased towards large individuals, as small crucian carp show an elusive behavior, 

especially in lakes with predators. In this case, Bayesian models can be particularly useful since 
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they can account for underrepresentation of the smallest size classes. The ‘BayesGrowth’ 

package uses the ‘Stan’ computer program (Carpenter et al., 2017) to build Markov-Chain 

Monte Carlo (MCMC) models via the ‘rstan’ R package (Stan Development Team, 2020). We 

fitted three common growth models to the data from each lake: the von Bertalanffy growth 

function (VBGF), the Logistic function, and the Gompertz function (see Table S1 in 

Supplementary material). We used informative priors on L0 and L∞ parameters with a normal 

distribution. L0, which represents the length-at-birth, was set at 0.5 cm for all lakes (Laurila et 

al., 1987). L∞, which represents the asymptotic length at which growth is zero, was set at 38.1 

cm, the maximum individual length recorded from all lakes. Standard error on priors was set 

at 10%. We used the same prior for the three growth functions. We ran four MCMC chains 

with 10000 iterations and a burn-in period of 5000 iterations. Model selection was achieved 

through leave-one-out-cross-validation (LOOCV) method using the ‘loo’ R package (Vehtari et 

al., 2017). LOO-weights were calculated for each model, and the candidate model with the 

highest LOOICw was considered the most appropriate. In subsequent analysis, we considered 

only the parameters estimated from the best growth model. When enough data were 

available, we fitted two different growth curves for males and females for each lake. We 

checked for model convergence using the Gelman–Rubin test and with diagnostic plots using 

the ‘Bayesplot’ R package (Gabry, 2020).  

Reproductive biology  

The length (LM) and age (AM) at which 50% of individuals became sexually mature was 

determined by fitting a logistic model to the proportion of mature vs immature using 

generalized linear models. Confidence intervals for the model parameters of the logistic 

regression were estimated via bootstrapping (n=1000). LM and AM were determined for both 

sexes combined, males and females in predator-free lakes (Forkerudtjern, Mottjernet, 

Langmyrtjern, Skråtjernet and Brynitjernet) and in Karussputten. In the other lakes, most of 

the fish were mature and we were able to estimate length and age at maturity only for 

combined sexes for Stomperudtjern and Svartkulp. Moreover, we calculated gonadosomatic 

index (GSI) for females as (gonad mass/somatic mass*100), where somatic mass (g) is the total 

mass excluding gonad mass (Bagenal & Tesch, 1978). 
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Mortality 

The instantaneous (Z) and total annual (A) mortality rates were estimated by catch-curve 

regression method. Z is the negative slope of a linear regression model fit to the natural 

logarithm of catch at age. We included only those age classes that were presumably fully 

recruited to the gear considering the descending limb of the catch-curve (Miranda & Bettoli, 

2007). We used combined data from gillnets and traps, as there were no significant differences 

in mean total length of fish collected by the two gears (paired t-test; t = -1.31, p-value = 0.22). 

Lakes with small sample size or a narrow range of recruited ages were excluded from the 

analysis. We used the ‘FSA’ R package for analysis (Ogle et al., 2021).  

Relating predation risk with life-history traits  

We related predator maximum gape size to growth and reproductive parameters using 

Spearman’s rank correlation. We used Bootstrapped estimates (n bootstraps = 1000) for the 

estimates of correlation coefficients. Spearman correlation analysis was selected over more 

complex approaches as sample sizes were low in some cases. Growth parameters included the 

growth coefficient (k), asymptotic body length (L∞), length at age 1 (L1) and age 3 (L3), and 

maximum life span (TMax). Length at age 1 and 3 were chosen as representative of initial 

growth effort to avoid predation. Maximum life span was calculated as the average maximum 

age observed in each population (n=10). Reproductive parameters comprised length (LM) and 

age (AM) at maturity, gonadosomatic index (GSI), and sex ratio. We also calculated the 

reproductive life span (RT) as the difference between the observed maximum life span and 

estimated age at maturity. Relative body depth (RBD) was also included in the analysis. 

 
 
RESULTS 

Total length and relative body depth 

Crucian carp mean relative body depth differed significantly among lakes (χ2 = 1473.7, d.f. = 

14, p < 0.001) and ranged from 0.27 in Langmyrtjern to 0.40 in Bugårdsdammen, Nusttjennet, 

and Stomperudtjernet, where both perch and pike were present (Table 2). Mean total length 

was also significantly different among lakes (χ2 = 1467.7, df = 14, p < 0.001). Maximum total 

length ranged from 11.7 cm in Politihøgskolen to 38.1 cm in Bugårdsdammen. In all lakes 
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without predators, Karussputten and Småvanna, females were significantly larger than males, 

but relative body height did not differ between sexes (Figure 1). In the other lakes, females 

had similar mean total length or were slightly larger than males (Bjørnmyrdammen and 

Nusttjernet). By contrast, males had similar or higher relative body depth than females, with 

the exception of Øvresetetjern (Figure 1). Sex ratio was significantly different among lakes (χ2 

= 91.97, df = 14, p < 0.001). Females were always dominant in predator-free lakes, with the 

exception of Mottjernet. In presence of predators, sex ratio was generally in favor of males 

and presented the highest values in lakes Bugårdsammen and Stomperudtjernet (Table 2). 

Growth 

For each lake, results of model selection by LOOIC showed that the von Bertalanffy growth 

function was the best‐fit growth model for age estimation (LOOICw =1), while there was no 

support for the Logistic (LOOICw = 0) and the Gompertz growth functions (LOOICw = 0). Thus, 

all parameters used in the following analysis were estimated from the von Bertalanffy growth 

function. Mean parameter estimates varied greatly among the various lake (Table 2 and Figure 

2). L∞ ranged from 12.6 cm in N.Sætertjern to 42.0 cm in Bugårdsdammen. The growth 

coefficient was the highest in N.Sætertjern (k = 0.32 year-1) and lowest in Brynitjernet (k = 0.07 

year-1). It has to be noted that in lake Brynitjernet fish seemed to reach very large asymptotic 

length compared to other predator-free lakes (L∞=31.9 ± 4.1). However, large standard 

deviation suggests that adult fish might be undersampled in this lake. L∞ and k were negatively 

correlated (r = - 0.62, p < 0.013). L∞ values were generally higher for females, while males had 

higher growth coefficient (Table S2). Maximum life span ranged from 6.1 years in N.Sætertjern 

to 16.2 years in Bugårdsdammen. 

Reproductive traits 

We found no significant differences in length (paired t-test; t = 2.17, p-value = 0.082) or age at 

maturity (paired t-test; t = 0.349, p-value = 0.74) between males and females from the 

predator-free lakes and Karusputten (Table S2). Thus, we considered only combined males 

and females for subsequent analysis. Overall, age at-maturity for both sexes combined ranged 

from 2.6 years in Forkerudtjern to 4.0 years in Mottjernet (Table 2). Gonadosomatic index was 

highly variable among lakes and ranged from 1.86 in Brynitjernet to 16.09 in Øvresetetjern. 

Reproductive life span ranged from 3.1 years in Brynitjernet to 9.6 years in Stomperudtjern. 
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Gonadosomatic index and reproductive life span were positively correlated (r = 0.79, p < 

0.028). 

Relating predation risk with life-history traits  

Predator gape size was positively correlated with crucian carp relative body depth (r = 0.93, p 

< 0.001) and negatively correlated with fish density (r = -0.88, p < 0.001). In absence of 

predators, fish populations consisted of abundant shallow-bodied individuals (Figure 3). By 

contrast, in presence of piscivores, catches were dominated by low densities of deep-bodied 

individuals, which were mostly well above predator gape size, especially in lakes with perch 

and pike. Growth traits L∞ (r = 0.86, p < 0.001), L1 (r = 0.81, p < 0.001), L3 (r = 0.89, p < 0.001) 

and maximum life span (r = 0.85, p < 0.001) were all positively correlated with predator gape 

size, with the exception of the growth coefficient k (r = -0.24, p = 0.39; Figure 4a-e). Among 

reproductive traits, length at maturity showed positive correlation with gape size (r = 0.82 p = 

0.008; Figure 4g), contrary to age at maturity (r = -0.22, p = 0.60; Figure 4h). Gonadosomatic 

index (r = 0.65, p = 0.008) and sex ratio (r = 0.69, p = 0.004) also increased significantly with 

gape size (Figure 4f, 4i). Reproductive life span (r = 0.63; p = 0.096) and mortality were not 

significantly correlated with predation risk (r = -0.29; p = 0.42). However, mortality analysis 

included mostly allopatric populations with highly variable values, while several high-

predation lakes were excluded (Figure S1), which might have prevented us to detect a clear 

pattern.  

 

DISCUSSION 

Crucian carp population structure and life-history traits were clearly related to the presence 

or absence of piscivorous fish. As expected, fish achieved larger size, older age, and higher 

relative body depth with increasing predation risk.  This size increment was evident at young 

age, especially in productive lakes with pike. Contrary to our predictions, populations had 

similar age at maturity and reproductive effort was increasing with predation risk. Crucian carp 

also showed small differences in growth between sexes. Predator-free lakes were largely 

dominated by females. 

Young crucian carp attained larger body length with increasing predator gape size, showing 

clearly a higher growth rate during the first years of life in presence of predators. This suggests 
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that fish quickly outgrew predator gape size to reach a size-refuge. However, the growth 

coefficient was not correlated to gape size and was generally low in lakes with piscivores. 

Indeed, the growth coefficient was inversely related to asymptotic length, probably because 

of increased time to reach very large maximum body sizes. Fish populations had also a larger 

life span with increasing predation risk. In predator-free lakes there could be two main 

constraints preventing fish from growing to older age: a food constrain and a seasonality 

constrain. Dense allopatric populations suffer high intraspecific competition and adult 

mortality, with a few fish reaching large sizes (Tonn et al., 1994). This food constraint might 

be lowered by the thinning of the populations in presence of increasingly efficient predators. 

Thus, predation can have an indirect positive effect on prey growth by reducing the density of 

prey population and releasing survivors from competition (Van Buskirk & Yurewicz, 1998).  

These dynamics are expected to be highly dependent on resource availability (Day et al., 

2002). Interestingly, in Lakes Posttjernet and Karussputten, crucian carp had the lowest length 

at age 1 and 3 compared to the other predator-lakes, including Småvanna, which had a similar 

fish community. These lakes had the lowest nutrient values, suggesting that growth might be 

limited by resource availability. By contrast, pike lakes were very productive and supported 

communities with different species. These lakes also presented a great proportion of complex 

vegetated littoral habitats, which may provide fish with a habitat refuge from predators.  

Resource and refuge availability may favor crucian carp body growth even after fish have 

outgrown predator gape size. Predator-free lakes with high productivity such as Forkerudtjern 

and Mottjernet supported dense crucian carp populations. In absence of predators, however, 

growth and reproductive traits were particularly variable and may depend on other factors in 

addition to resource availability. Lake structure is particularly important as small ponds at 

northern latitudes are subject to extreme seasonal changes, such as abrupt rising 

temperatures during summer and anoxic conditions during winter. Water temperature 

regulates crucian carp growth (Tarkan et al., 2011) and spawning (Aho & Holopainen, 2000), 

and interannual changes in temperatures likely have strong effects on life-history traits of fish 

living in small systems (Dembski et al., 2006). Moreover, while the main growth period for 

crucian carp is summer, in autumn fish need to build up reserves for overwintering (Piironen 

& Holopainen, 1986). Small crucian carp from allopatric populations have been observed to 

store a significantly higher proportion of glycogen reserves compared to large fish from multi-
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species communities (Vornanen et al., 2011). The liver was also the main glycogen store for 

small fish, while large fish used white muscle as main deposit. Fish from allopatric populations 

might invest more energy and time in building up winter reserves as they inhabit ponds with 

harsh environmental conditions. Moreover, energy reserve requirements are expected to vary 

greatly even among predator-free populations because of different lake structure, and thus 

oxygen availability during winter, with consequences on fish mortality, growth, and population 

dynamics (Fox & Keast, 1990). 

Age at sexual maturity was variable among lakes, with values ranging between 3 and 4 years. 

These results were comparable to the values of populations from similar latitudes (Holopainen 

& Pitkänen, 1985), although studies on length and age at maturity of crucian carp are very rare 

in Fennoscandia. Contrary to our predictions, age at maturity was not increasing with 

predation risk. By contrast, fish reached length at maturity at larger sizes with predators, as a 

result of increased growth at young age. Gonadosomatic index values (GSI) of fish populations 

were increasing with predation risk. This variation may partly reflect differences in sampling 

time, as crucian carp is a batch spawner and the number of eggs might decrease after the first 

batch is released (Aho & Holopainen, 2000). However, previous studies found that large 

females from multispecies communities had higher gonadosomatic index, absolute and 

relative fecundity, and larger eggs, and proposed that reproductive effort increases with body 

size (Moisander, 1991; Holopainen et al., 1997a). The number of batches during each 

spawning season seems to depend on water temperature rather than predation risk or other 

environmental factors (Aho & Holopainen, 2000). Moreover, the gonadosomatic index was 

positively correlated with the reproductive life span. These results seem to contrast with life-

history theory since a high reproductive effort should happen at the expense of growth or 

survival (Stearns, 1992). However, previous studies on crucian carp considered mainly large 

females that were probably already well outside of the predation window. Small fish from 

predator lakes may mature early but still invest more energy in growth than reproduction in 

order to reach a size refuge from predation. Then, they may slow down growth and allocate 

more energy to reproduction.  

Moreover, we observed slight differences in growth between sexes. In some predator-lakes 

females had lower relative body depth compared to males, suggesting a potential higher 

investment in reproduction. Interestingly, the adult sex ratio was female-biased in lakes 
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without predators and male-biased in lakes with predators. Since sexes did not differ in their 

age at maturity, we can exclude the effect of higher density of the sex that matures earlier. 

Sex ratio can be the result of differences in adult mortality (Arendt et al., 2014). Experimental 

studies showed that crucian carp females lose the typical predator avoidance behavior just 

before spawning (Lastein et al., 2008). This bolder behavior might increase predation risk for 

females but is displayed for a short time. On the contrary, females might be less active and 

take refuge in the littoral vegetation compared to males (Estlander & Nurminen, 2014), which 

also may have reduced their catchability. In lakes without predators, males had generally 

smaller sizes than females, suggesting that they might be subject to higher mortality early in 

life and females would eventually result more abundant.  

Crucian carp is exceptionally vulnerable to predation (Tonn et al., 1991) and displays specific 

adaptations to elude predation risk (Nilsson & Brönmark, 2000). Our study shows that fish can 

achieve a size refuge by increasing both body depth and size, and the degree of growth is 

highly proportional to the gape size of the predators present in a lake. Growth is evident at 

young age when fish are most vulnerable to predation. Crucian carp allocate more energy to 

reproduction, grow older, and attain larger asymptotic sizes in presence of predators, which 

strongly suggests higher food availability in these lakes. Fish from predator lakes experience 

higher levels of resource availability as an indirect consequence of reduced intraspecific 

competition caused by predation. High-predation lakes are also highly productive systems 

with structural complexity, which may favor growth and reproductive allocation even after 

fish have outgrown predator gape size. Future studies should specifically address variation in 

reproductive effort with age in presence of predators. Moreover, crucian carp seem to 

decrease their activity levels, rather undergo risky behaviors, when exposed to piscivores 

(Holopainen et al., 1997b). Thus, fish may reduce foraging activity and the energy saved is then 

allocated to both growth and reproduction. This energy-saving mechanism is boosted by the 

effects of reduced intraspecific competition and increased favorable environmental 

conditions. On the contrary, high resource competition in allopatric populations will likely 

force individuals to active foraging to increase survival. High variability in life-history traits 

among populations suggests that biotic factors play a decisive role in regulating population 

dynamics of these lakes and should be better investigated.  
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FIGURE LEGEND 

 

Figure 1. Variation in relative body depth (RBD) between female (F) and male (M) crucian carp 

from the fifteen study lakes. Asterisks (*) denote significant differences (p < 0.05) between 

females and males. The dashed line separates lakes without predators (left side) from lakes 

with predators (right side). 

Figure 2. Von Bertalanffy growth curves for crucian carp from 15 lakes without predator fish 

(first and second upper rows), with brown trout (second upper row), perch or perch and brown 

trout (second lower row), and pike and perch (first lower row). Shaded areas around the 

growth curves correspond to the 95% credibility intervals. 

Figure 3. Body depth distribution of female (red) and male (blue) crucian carp from 15 lakes 

without predator fish (first and second upper rows), with brown trout (second upper row), 

perch or perch and brown trout (second lower row), and pike and perch (first lower row). 

Dashed lines indicate maximum predator gape size (GS; see Table 1). 

Figure 4. Correlations between different maximum predator gape size and life-history traits of 

15 populations of crucian carp from southern Norway. Life-history growth traits include (a) 

asymptotic length (L∞), (b) growth coefficient (k), (c) length at age 1 (L1), (d) length at age 3 

(L3) and (e) maximum life span (Tmax). Reproductive traits include: (f) sex ratio (m:f), (g) length 

at maturity (Lm) and (h) age at maturity (Am), and (i) gonadosomatic index (GSI). The shaded 

area corresponds to the 95% bootstrapped confidence interval.  
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TABLES 

 

Table 1. Environmental characteristics of 15 study lakes. Abiotic variables include latitude 

(Lat), longitude (Long), lake area (Area), maximum depth (MaxD), total nitrogen (TotN), total 

phosphorus (TotP), total organic carbon (TOC). Maximum predator gape size (GS) and crucian 

carp density (CPUEcc) are also included.  

 

Lake  Predators Lat 
(⁰N) 

Long 
(⁰E) 

Area 
(ha) 

MaxD 
(m) 

TotN 
(µg/L) 

 

TotP 
(µg/L) 

 

TOC 
(mg/L) 

 

GS 
(cm) 

CPUEcc 
(n·net−1h−1) 

Nusttjennet Pike 
Perch 

60.28 11.66 11.00 1.5 1090 164 16.4 4.7 0.45 

Bugårdsdammen Pike 
Perch 

59.13 10.19 5.04 2 980 54 9.5 6.1 0.10 

Stomperudtjern Pike 
Perch 

59.32 11.40 3.85 1.5 1660 146 18.4 5.6 0.42 

Øvresetertjern Perch 
Trout 

59.98 10.67 3.05 3.5 446 13 6.6 4.4 0.42 

Posttjernet Trout 61.08 11.33 1.72 11 312 8 9.7 3.8 0.19 

Svartkulp Perch 
Trout 

59.98 10.74 5.80 10 550 13 9.9 3.5 0.30 

Bjørnmyrdammen Perch 60.18 11.98 2.10 3.5 672 26 6.5 2.7 2.11 

Småvanna Trout 59.80 10.31 0.50 3.8 616 14 10.1 3.3 1.03 

Karussputten Trout 60.02 10.66 0.25 4.6 361 9 5.4 3.3 0.99 

Skråtjernet - 60.20 11.14 0.88 12.0 431 15 5.3 - 1.83 

N.Sætertjern - 60.22 12.01 0.57 2.5 - - - - 7.93 

Forkerudstjern - 60.45 12.08 1.24 2.2 1985 82 23.4 - 10.63 

Brynitjernet - 60.72 11.27 4.29 1.5 572 22 15.4 - 4.08 

Motjennet - 60.23 12.11 0.94 11.3 688 23 11.2 - 7.80 

Langmyrtjern - 59.97 10.75 0.30 5 702 20 14.2 - 2.07 
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Table 2. Life-history characteristics of 15 populations of crucian carp from southern Norway. Mean Fulton’s condition factor (KConF) and relative 

body depth (RBD). Total number of individuals used for length-at-age estimation (n). Mean asymptotic length (L∞), growth coefficient (k), length 

at age 1 (L1) and 3 (L3) estimated from the von Bertalanffy function, where values in brackets are the SD of the respective parameters from their 

posterior distributions. Maximum life span (TMax). Mean length (LM) and age (AM) at maturity, where numbers in parentheses are the 95% 

Bootstrapping confidence intervals. Reproductive life span (RT). Sample distribution and size prevented some of the maturity calculations and 

were marked with -. Sex ratio (males:females) and mean gonadosomatic index (GSI) for mature females. All lengths (L) refer to total body length 

(TL) in cm. TMax, AM, and RT are in years and k is in year-1. 

Lakes Predators KConF RBD n L∞  k L1 L3 TMax SexR LM AM RT GSI 

Nusttjernet Pike, Perch 2.35 0.40 86 38.3 (0.6) 0.16 (0.01) 6.0 14.7 15.2 1.02 - - - 4.18 

Bugårdsdammen Pike, Perch 2.31 0.40 31 42.0 (0.9) 0.12 (0.01) 5.5 13.2 16.2 7.00 - - - 4.46 

Stomperudtjern Pike, Perch 2.31 0.40 99 38.9 (1.2) 0.13 (0.01) 5.3 13.2 12.6 6.33 11.6 (11.3-11.9) 3.0 (2.5-3.5) 9.6 8.39 

Øvresetetjern Perch, Trout 2.22 0.37 49 37.0 (1.0) 0.15 (0.01) 5.7 14.0 13.3 1.23 - - - 16.09 

Posttjernet Trout 2.03 0.35 47 33.6 (2.5) 0.10 (0.01) 3.7 9.1 11.8 2.81 - - - 6.19 

Svartkulp Perch, Trout 1.85 0.33 124 33.5 (1.5) 0.12 (0.01) 4.3 10.7 11.4 1.11 12.8 (11.6-13.8) 3.2 (2.2-3.9) 8.2 4.03 

Bjørnmyrdammen Perch 1.82 0.33 179 21.1 (0.4) 0.22 (0.01) 4.5 10.4 11.1 1.82 - - - 5.25 

Småvanna Trout 1.77 0.32 95 19.7 (0.5) 0.23 (0.01) 4.5 10.1 9 1.14 - <4 - 5.40 

Karussputten Trout 1.67 0.31 112 27.5 (2.4) 0.13 (0.02) 3.8 9.2 8.3 1.27 10.6 (10.0-11.3) 3.6 (3.2-3.9) 4.7 3.44 

Skråtjernet - 1.63 0.31 143 15.2 (0.5) 0.25 (0.02) 3.7 8.2 6.5 0.58 7.9 (7.7-8.1) 2.9 (2.8-3.0) 3.6 2.13 

N.Sætertjern - 1.57 0.31 105 12.6 (0.5) 0.32 (0.03) 3.8 7.8 6.1 0.74 - - - 5.42 

Forkerudtjern - 1.61 0.30 192 16.1 (0.6) 0.20 (0.01) 3.4 7.7 9.6 0.55 7.0 (6.5-7.7) 2.6 (2.3-3.0) 7 2.73 

Brynitjernet - 1.75 0.30 107 31.9 (4.1) 0.07 (0.01) 2.6 6.4 7 0.83 8.1 (7.5-8.6) 3.9 (3.4-4.3) 3.1 1.86 

Mottjernet - 1.43 0.29 185 21.0 (1.0) 0.14 (0.01) 3.2 7.5 9.9 1.29 9.0 (8.8-9.2) 4.0 (3.8-4.2) 5.9 3.29 

Langmyrtjern - 1.36 0.27 179 21.3 (2.3) 0.11 (0.02) 2.6 6.2 8.8 0.51 7.2 (7.0-7.4) 3.7 (3.5-4.0) 4.8 2.81 
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SUPPLEMENTARY MATERIAL 

 

Table S1. Equations of the candidate growth models used in leave-one-out-cross-validation 

(LOOCV) procedure, where La is the length-at-age a, L0 is the length-at-birth, L∞ is the 

asymptotic length at which growth is zero, and k is the growth completion parameter. 



140 
 

Table S2. Reproductive traits of male and female crucian carp from the 15 study lakes. Total number of individuals used for length at-age-

estimation (n). Mean asymptotic length (L∞), growth coefficient (k), estimated from the von Bertalanffy function, where the values in brackets 

are the SD of the respective parameters from their posterior distributions. Mean length (LM) and age (AM) at maturity, where the values in 

parentheses are the 95% Bootstrapping confidence intervals. Sample distribution and size prevented some of the maturity calculations and were 

marked with -. 

 

Lakes Predators Females Males 

n L∞ k LM AM n L∞ k LM AM 

Nusttjernet Pike, Perch 42 40.3 (1.0) 0.14 (0.01) - - 46 36.5 (0.5) 0.18 (0.01) - - 

Bugårdsdammen Pike, Perch 4 37.6 (3.2) 0.16 (0.04) - - 26 42.2 (0.9) 0.12 (0.01) - - 

Stomperudtjern Pike, Perch 26 39.3 (2.5) 0.13 (0.02) - - 87 38.3 (1.2) 0.14 (0.01) - - 

Øvresetetjern Perch, Trout 21 38.5 (1.4) 0.14 (0.01) - - 28 34.8 (1.3) 0.18 (0.02) - - 

Svartkulp Trout 55 35.6 (2.5) 0.11 (0.01) - - 69 33.3 (1.8) 0.13 (0.01) - - 

Bjørnmyrdammen Perch, Trout 94 22.2 (0.9) 0.19 (0.02) - - 85 20.3 (0.4) 0.24 (0.02) - - 

Posttjernet Perch 18 34.4 (3.4) 0.10 (0.02) - - 29 35.6 (3.0) 0.09 (0.01) - - 

Småvanna Trout 46 21.9 (1.5) 0.19 (0.02)  <4 49 18.7 (0.5) 0.26 (0.02)  <4 

Karussputten Trout 49 30.9 (3.6) 0.11 (0.02) 10.6 (9.4-12.0) 3.6 (3.0-4.1) 46 33.7 (4.0) 0.10 (0.02) 10.6 (10.0-11.3) 3.8 (3.3-4.1) 

Forkerudtjern - 128 16.9 (0.8) 0.19 (0.02) 7.4 (6.8-8.1) 2.9 (2.6-3.3) 69 13.2 (0.7) 0.29 (0.03) 7.4 (6.8-8.0) 2.8 (2.5-3.1) 

Mottjernet - 120 23.1 (1.5) 0.12 (0.01) 9.5 (9.1-10.0) 4.3 (4.0-4.6) 126 16.2 (0.9) 0.21 (0.02) 8.9 (8.7-9.1) 4.1 (3.8-4.3) 

Langmyrtjern - 102 25.1 (3.8) 0.09 (0.02) 7.3 (7.0-7.7) 3.7 (3.5-4.0) 56 29.47 (5.75) 0.07 (0.02) 7.3 (7.0-7.6) 4.0 (3.9-4.0) 

N.Sætertjern - 59 12.8 (0.7) 0.30 (0.04) - - 46 27.70 (0.81) 0.20 (0.06) - - 

Skråtjernet - 76 15.7 (0.8) 0.24 (0.02) 8.2 (7.9-8.4) 3.0 (2.9-3.2) 45 15.8 (1.1) 0.24 (0.02) 7.8 (7.6-8.2) 2.9 (2.8-3.1) 

Brynitjernet - 61 34.1 (3.9) 0.07 (0.01) 8.7 (8.0-9.3) 4.2 (3.9-4.6) 59 33.6 (4.4) 0.07 (0.01) 8.2 (7.5-8.8) 3.9 (3.2-4.5) 
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Figure S1. Scatterplots of the natural logarithm of catch at age for crucian carp from 15 lakes 

without predator fish (first and second upper rows), with brown trout (second upper row), 

perch or perch and brown trout (second lower row), and pike and perch (first lower row). The 

solid circles represent the descending limb of the catch-curve and were used to estimate total 

annual mortality rate (A) and instantaneous mortality rate (Z). 
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The crucian carp (Carassius carassius) is a well-studied model organism 
in regard to phenotypic plasticity in anti-predator defenses, as it develops 
a deep body shape to decrease vulnerability to predation. Very few studies, 
however, have investigated the mechanisms underlying the defense res-
ponse of crucian carp in a broader ecological and environmental context. 
This work explored the effects of predation risk on crucian carp morphology, 
resource use, and life-history traits. We considered fifteen small lakes from 
southern Norway along a natural gradient of predation risk: no predators or 
brown trout, perch, or pike. Crucian carp showed a fine-tuned morphologi-
cal defense response against increasingly efficient predators. Predation risk 
determined an increase in crucian carp body depth, rapid juvenile growth, 
larger lifespans, and higher reproductive investment. Predation pressure likely 
reduced crucian carp density, relaxing intraspecific competition and support-
ing individual growth. Higher productivity and habitat complexity associated 
with high-predation lakes and plastic diet preferences may also have favored 
energy allocation to growth and reproduction. Thus, the expression of the  
defense response in crucian carp was likely triggered by the combined  
effects of predation risk and resource availability. Investigating how different 
environmental factors affect inducible defense responses can give new 
insights into the evolution of phenotypic plasticity. Finally, the understanding 
of these processes is important as current human activities can have strong 
impacts on ecological interactions in freshwater ecosystems.
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