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A B S T R A C T   

Mapping a specific tree species at individual tree level across landscapes using remote sensing is challenging, 
especially in forests where co-occurring tree species exhibit similar characteristics. In Central European mixed 
forests, silver fir and Norway spruce have been identified as a pair of coniferous tree species with similar spectral 
and structural characteristics, typically leading to a major misclassification error in mapping studies. Here, we 
aimed to accurately map individual silver fir trees in a spruce-dominated natural forest in the Bavarian Forest 
National Park using integrated airborne hyperspectral and LiDAR data. To accomplish this goal, we extracted a 
set of relevant spectral and structural features from the hyperspectral and LiDAR data and used them to build 
machine learning classification models. Specifically, we compared the performance of three one-class classifi
cation algorithms (i.e. one-class support vector machine, biased support vector machine, and maximum entropy) 
for mapping individual silver fir trees. Our results showed that the biased support vector machine classifier 
yielded the highest mapping accuracy, with the area under the curve for positive and unlabeled samples (puAUC) 
achieving 0.95 (kappa 0.90). We found that the intensity value of 95th percentile of normalized tree height and 
the percentage of first returns above 2 m high were the most influential structural features, capturing the main 
morphological difference between silver fir and Norway spruce at the top tree crown. We also found that the 
wavebands at 700.1 nm, 714.5 nm, and 1201.6 nm were the most robust spectral bands, which are strongly 
affected by chlorophyll and foliar water content. Our study suggests that discovering links between spectral and 
structural features captured by different remotely sensed data and species-specific traits can significantly 
improve the mapping accuracy of a focal species at the individual tree level.   

1. Introduction 

Information on tree species composition, distribution, and diversity 
is of primary significance in the planning and implementation of 
biodiversity conservation efforts (Suratman, 2012). Accurate tree spe
cies mapping is essential for a wide variety of applications, including the 
mapping of species composition (Cho et al., 2012; Ørka et al., 2013), 
rare or invasive species detection (Piiroinen et al., 2018; Somers and 
Asner, 2013a), forest inventories (Bouvier et al., 2015; Yin and Wang, 
2016), and biodiversity assessment and monitoring (Baldeck et al., 

2015; Vaglio Laurin et al., 2014). 
Silver fir (Abies alba), native to the mountainous regions of Europe, is 

considered an important ecological and functional element of European 
forests for maintaining high biodiversity in forested ecosystems because 
of its shade tolerance, adaptability to environmental conditions and 
ability to coexist with many other tree species (Dobrowolska et al., 2017; 
Tinner et al., 2013). Silver fir is also an important species in the context 
of climate change, due to its resistance towards natural disturbances and 
its ability to protect carbon stocks in forests under a warming climate 
(up to 1300 m3 of wood per hectare in silver fir forests) (Desplanque 
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et al., 1999). Furthermore, silver fir forms important protective forests 
in mountainous areas for infrastructure such as settlements, road, and 
railways and produces precious timber that is used in construction and 
furniture (Tinner et al., 2013). However, from the sixteenth century till 
the twentieth century, a widespread decline of silver fir has been re
ported in many mountain regions across Europe (e.g. Elling et al., 2009; 
Ficko et al., 2011; Senn and Suter, 2003; Vrška et al., 2009). For 
example, in the nineteenth century, the population of silver fir decreased 
significantly in France and Germany due to the clear cut system. In 
Franconia (Germany), proportions of silver fir declined from 80% in 
1700 to 3% in 1900 (Senn and Suter, 2003). In the Bavarian Forest 
National Park (BFNP) of Germany, the proportion of silver fir decreased 
from 60% in 1856 to 3% in 1970 (Heurich and Englmaier, 2010). Silver 
fir tends to grow as individuals interspersed among other tree species, 
which makes mapping a particularly challenging task. Furthermore, in 
Central European mixed forests, silver fir and Norway spruce have been 
identified as a pair of coniferous tree species with similar spectral and 
structural characteristics, typically leading to a major misclassification 
error in related studies (Klopčič et al., 2017; Shi et al., 2018a; Vallet and 
Pérot, 2011). At this point in time, comprehensive maps of silver fir 
distribution, or indeed methods to accurately and regularly map this 
important tree species, are lacking. 

The occurrence of individual tree species has conventionally been 
measured by field sampling, which is accurate but time-consuming and 
not feasible across large areas. Over the last four decades, advances in 
remote sensing technologies and machine learning methods have 
enabled the mapping of individual tree species from different sensor 
types (Marrs and Ni-Meister, 2019). Both active (Light Detection and 
Ranging (LiDAR), Synthetic Aperture Radar (SAR)) and passive (multi
spectral, hyperspectral, thermal) remote sensing systems have been 
investigated for tree species studies (Ørka et al., 2013; Simard et al., 
2000; Skowronek et al., 2018; Vauhkonen et al., 2014). Among those 

various remotely sensed data, very high resolution aerial photography, 
UVA-based data, airborne multispectral, hyperspectral and LiDAR data 
have been widely used for tree species classifications at the individual 
tree level (reviewed by Fassnacht et al. (2016)). Hyperspectral sensors 
and Light Detection and Ranging (LiDAR) systems are the most common 
sources of remotely sensed data used for the classification of tree species 
(Fassnacht et al., 2016). Hyperspectral sensors measure reflected radi
ation in hundreds of narrow bands and can detect subtle variations in the 
biochemical and biophysical properties of the forest canopy (Ferreira 
et al., 2016; Huber et al., 2008; Somers and Asner, 2013b). LiDAR is an 
active remote sensing technique that uses lasers to capture the three- 
dimensional structure of forests. Therefore, it is well-suited for indi
vidual tree delineation, while also providing valuable geometric and 
radiometric information for tree species discrimination (Heinzel and 
Koch, 2012; Muss et al., 2011; Vauhkonen et al., 2010). To capitalize on 
the datasets from various airborne sensors and their advantages for in
dividual tree species classification, it is necessary to establish connec
tions between spectral and structural features derived from remote 
sensing datasets and the species-specific traits of trees. However, an in- 
depth understanding of how remotely sensed information depicts the 
species of trees, in other words, how trees display differently in remote 
sensing data, is still poorly developed. 

A framework for multi-class tree species classification requires that 
representative training data must be collected for every class, regardless 
of whether a particular class is of interest to the researcher. In the case of 
remote tree species mapping, collecting adequate amounts of costly 
field-based training data for all species in an ecosystem is likely to be 
intractable (Baldeck and Asner, 2015). Consequently, when collected 
training datasets are not sufficient to adequately characterize every 
species, understanding of the connection between tree species and 
remotely senses signatures is limited and the performance of classifi
cation is difficult to evaluate. Meanwhile, there is an increasing demand 

Fig. 1. Airborne LiDAR and HySpex flight area and the location of two study sites in the Bavarian Forest National Park, Germany.  
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for efficient classification techniques that identify a focal class or spe
cies. In this scenario, one-class classification approaches, where labelled 
data are needed only for the positive class (that is, a single tree species) 
might be an efficient alternative (Muñoz-Marí et al., 2010). In remote 
sensing studies, one-class classification approaches have been used to 
detect focal tree species in tropical rainforests (Baldeck et al., 2015; 
Somers and Asner, 2013b), invasive species detection (Piiroinen et al., 
2018; Skowronek et al., 2017), and high nature value grassland habitats 
(Stenzel et al., 2017). However, the performance of one-class classifiers 
is highly dependent on the selection of parameters and thresholds 
(Waske, 2017). Further comparison of the discriminative potential of 
different one-class classifiers – that is, the best achievable performance 
overall models and thresholds – is still needed for accurate tree species 
mapping. 

Instead of focusing on data-driven approaches and pursuing an 
optimization of classification accuracy of multi-class tree species, as 
done by many existing studies, we aimed to identify the most relevant 
species-specific traits for mapping a relatively rare single tree species in 
a complex temperate forest. The overall objective of this study was to 
accurately identify and map individual silver fir trees in a spruce- 
dominated natural forest using airborne LiDAR and hyperspectral 
data. Specifically, we set out to: (1) generate and select a subset of the 
most relevant spectral and structural features for silver fir identification, 
(2) assess the performance of three one-class classifiers for silver fir 
mapping, and (3) identify the key spectral and structural features that 
contributed most to the identification of individual silver fir and un
derstand how they link to species-specific traits. 

2. Materials and methods 

2.1. Study area and tree species 

Our experiment was carried out in the Bavarian Forest National Park 
(49◦3′19′′ N, 13◦12′9′′ E), a mixed temperate forest situated in south- 
eastern Germany (Fig. 1). The park covers an area of 24,218 ha with 
elevations ranging from approximately 600 m to 1452 m. The mean 
annual temperature is between 6.5 ◦C in the valleys and 2 ◦C at higher 
elevations, and the climate is continental with an annual precipitation 
varying from 830 to 2230 mm (Heurich et al., 2010). The dominant tree 
species in the national park are Norway spruce (Picea abies) (67%) and 
European beech (Fagus sylvatica) (24.5%), with sliver fir (Abies abies) 
(2.6%), sycamore maple (Acer psudoplatanus) (1.2%), and mountain ash 
(Sorbus aucuparia) (3.1%) contributing to the remainder (Cailleret et al., 
2014). 

Within the park, two study sites were selected, each approximately 
25 ha (500 m × 500 m) (Fig. 1). Detailed information about the two 
study sites, including elevation, tree density, soil type and forest type is 
provided in Table 1. The field work was conducted in July 2016 and July 
2017, respectively. A Leica Viva GS14 Plus differential GPS (Leica 
Geosystems AG, Heerbrugg, Switzerland) was used to record the exact 
location of trees. As a result, 205 locations of trees at site one (T1) and 
198 locations of trees at site two (T2) were collected, resulting in 78 
beech trees, 58 birch trees, 108 fir trees, 70 maple trees and 89 spruce 
trees. The collected GPS data was post-processed to obtain differentially 

corrected coordinates with an accuracy less than 0.5 m. 

2.2. Remote sensing data acquisition and pre-processing 

2.2.1. Airborne LiDAR data 
The airborne LiDAR data was collected by Milan Flug GmbH on 18 

August 2016, covering four transects in the Bavarian Forest National 
Park (Fig. 1). The Riegl LMS-Q680i scanner (wavelength 1550 nm) in
tegrated in a full-waveform laser scanning system was employed in the 
campaign, featuring an average point density of 70 pts/m2, with the 
mean flight speed at 50 m s− 1. The flying altitude was approximately 
300 m above ground, with a pulse repetition frequency of 400 kHz. 

Both point cloud data generated from Gaussian decomposition 
(Wagner et al., 2006) and raw full-waveform data were delivered by 
Milan Flug GmbH (Shi et al., 2018b). Up to eight returns can be recorded 
for each pulse. The point cloud data composed of planimetric co
ordinates (x and y), ellipsoidal heights (z), intensity, return number, 
number of returns, class label, scan angle, echo width, and GPS time
stamp of the return (Liu et al., 2018). Both a normalized digital surface 
model (nDSM) and a canopy height model (CHM) were generated from 
the LiDAR point cloud data using LAStools software (http://lastools. 
org/), with a resolution of 0.25 m. The digital surface model (DSM) 
was normalized by subtracting the elevation of the DSM below each 
LiDAR point. 

2.2.2. Airborne hyperspectral data 
Two hyperspectral flight campaigns were carried out by DLR 

(German Aerospace Centre) with the same HySpex sensor system, 
developed by Norsk Elektro Optikk (NEO), on 26 August 2015 and 25 
August 2016, respectively. The HySpex sensor consists of two imaging 
spectrometers covering spectral ranges of 400–992 nm (VNIR) and 
968–2498 nm (SWIR), with spectral resolutions of 3.6 nm and 6 nm, 
respectively. The acquisition time, flight altitude, spectral and spatial 
resolution for each dataset are displayed in Table 2. The HySpex datasets 
were supplied by DLR after the unified pre-processing procedures (see 
https://doi.org/10.15489/e8itv4uqol40 for detailed information). The 
pre-processing procedures included the following steps: radiance con
version and system correction using laboratory radiometric calibration 
information (Gege et al., 2009); atmospheric correction performed with 
the ATCOR4 model (Richter and Schläpfer, 2002); ortho-rectification of 
the radiance data based on the parametric model and flight path data in 
combination with a digital terrain model (DEM) (Müller et al., 2005) 
and co-registration of VNIR and SWIR data cubes using brisk and sensor- 
model-based RANSAC (Schwind et al., 2014). A Savitzky-Golay filter 
was applied to correct for random and systematic noise (Schläpfer and 
Richter, 2011). After eliminating the bands affected by strong noise or 
atmospheric effects (water vapour absorption), 290 bands for each 
dataset remained. Approximately 40 ground control points of each study 
site were chosen for the co-registration of hyperspectral and LiDAR data 
using a polynomial warp method (2 degree) and nearest neighbour 
resampling method in the ENVI software (version 5.2). The resulting 
geometric accuracy was higher than 0.20 m. 

2.2.3. Segmentation of individual trees 
The individual tree segmentation was performed using an enhanced 

Table 1 
Characteristics of the two study sites.  

Study 
sites 

Size 
(ha) 

Elevation 
(m) 

Tree 
density 
(per ha) 

Soil type Forest type 

T1 25 675–732 445 Brown forest 
soils and 
peat soils 

Mature 
coniferous and 
mixed stands 

T2 25 845–906 458 Loose brown 
soils and 
gley soils 

Mature 
deciduous and 
mixed stands  

Table 2 
The parameters of HySpex datasets.  

Acquisition date 26 August 2015 25 August 2016 

Acquisition time (UTC) 10:24 08:51 
Flight altitude (m. asl) 3544 2331 
Spectral resolution VINR (nm) 3.6 3.6 
Spectral resolution SWIR (nm) 6 6 
Spatial resolution VNIR (m) 2 1 
Spatial resolution SWIR (m) 4 2  
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3D tree detection algorithm (Yao et al. (2013) (Fig. 2). This object-based 
algorithm extracts 3D information from the decomposition of full- 
waveform data and then detects single tree crowns using feature deri
vation and normalized cut segmentation. A detailed description of the 
algorithm can be found in Yao et al. (2013). 

To match the field samples with the individual 3D LiDAR segmen
tations, we overlaid the collected GPS tree locations with the crown 
segments and a georeferenced very high-resolution aerial photograph 
(0.10 m spatial resolution). We then identified each sample tree by 
matching it with the crown shape interpreted from the aerial photo
graph, with the assistance of additional information recorded in the field 
(e.g. photos of the sample trees and the species of surrounding trees) (Shi 
et al., 2018b). To reduce linking errors, trees undetected by the 

segmentation or assigned to more than one segment were removed from 
further analysis. Finally, we visually verified the identified sample trees 
that were visible in the two hyperspectral images. In total, 90 fir trees, 
77 beech trees, 56 birch trees, 68 maple trees and 88 spruce trees from 
the two study sites were selected for further analysis. Once the sample 
trees were verified, the 3D points within each correct segment were 
extracted and assigned to the corresponding sample trees for the deri
vation of LiDAR metrics. 

2.3. Feature generation 

Previous studies demonstrated that sunlit pixels of hyperspectral 
images can often provide more accurate species information for 

Fig. 2. Segmented individual tree crowns for the two study sites.  

Table 3 
List of generated LiDAR metrics and hyperspectral features.  

Category Generated features Definition or formula Reference 

Point 
distributions 

Percent_first Percentage of first returns above 2 m (Puttonen et al. 2010)  

Percent_last Percentage of last returns above 2 m (Dalponte et al. 2012)  
Percent_all Percentage of all returns above 2 m (Korpela et al. 2010)  
Percent_first_mean Percentage of first returns above mean height   
Percent_all_mean Percentage of all returns above mean height   
All_counts Total counts of all returns   
First_counts Total counts of first returns   
Counts_returns (1st – 7th) The counts of different number of returns (1st − 7th returns)  

Radiometric 
metrics 

Imean, Isd, Ivar, Icv, Ikur, Iske, 
Ip_nth 

Intensity parameters in the tree crown, including mean value (Imean), standard deviation (Isd), 
variation (Ivar), coefficient variance (Icv), kurtosis (Ikur), skewness (Iske), and nth percentile 
of intensity (5th, 10th, …, 95th, 99th) 

(Dalponte et al. 2008) 
(Yao et al. 2012) 
(Heinzel and Koch 
2011)  

Imean_single, Imean_first The mean intensity value of single returns (Imean_single), the mean intensity value of the first 
returns (Imean_first)   

EWmean, EWsd, EWvar, EWcv, 
EWkur, EWske, EWp_nth 

Echo width parameters in the tree crown, including mean value (EWmean), standard deviation 
(EWsd), variation (EWvar), coefficient variance (EWcv), kurtosis (EWkur), skewness (EWske), 
and nth percentile of echo width (5th, 10th, …, 95th, 99th)   

EWmean_single, EWmean_first The mean echo width of single returns (EWmean_single), the mean echo width of the first 
returns (EWmean_first)  

Geometric 
metrics 

Height, Hmean, Hsd, Hvar, Hcv, 
Hkur, Hske, Hp_nth 

Height parameters of the tree, including tree height (Height), mean value (Hmean), standard 
deviation (Hsd), variation (Hvar), coefficient variance (Hcv), kurtosis (Hkur), skewness (Hske), 
and nth percentile of height (5th, 10th, …, 95th, 99th) 

(Li et al. 2013)(Lin 
and Herold 2016) 
(Puttonen et al. 2010)  

Hmean_single, Hmean_first The mean height of single returns (Hmean_single), 
the mean height of first returns (Hmean_first)   

CBH:H, C_volume:area, CNR Ratio of crown base height to height (CBH:H), ratio of crown volume to crown area (C_volume: 
area), and canopy relief ratio (CNR)  

Band 
reflectance 

B1-B290 Band reflectance from 415.7 to 2496.5 nm  

Vegetation 
indices 

ACI2 Anthocyanin Content Index, 
ACI2 = ρ650/ρ550 

(Gamon and Surfus 
1999)  

DWSI2 Disease-Water Stress Index, DWSI2 = ρ1660/ρ550 (Apan et al. 2004)  
RVSI Red-edge Vegetation Stress Index, RVSI= (ρ714 + ρ752)/2 − ρ733 (Merton 1998)  
SWIR_VI Shortwave-Infrared Vegetation Index, SWIR_VI = 37.72*(ρ2210-ρ2090) + 26.27*(ρ2280- 

ρ2090) + 0.57 
(Lobell et al. 2001)  
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classification (e.g. Clark et al., 2005; Dalponte et al., 2013; Richter et al., 
2016). To reduce the effect of shadowing, as well as the errors in indi
vidual tree crown delineation, we manually selected the sunlit pixels 
within each tree crown and extracted the spectral information. The 
mean spectral value of each waveband (B1, B2, …, B290) from each 
year’s hyperspectral data was calculated within each tree crown. Based 
on the results of our previous study (see Shi et al., 2018a), we also 
derived four vegetation indices: the Anthocyanin Content Index (ACI2), 
the Disease-Water Stress Index (DWSI2), the Red-edge Vegetation Stress 
Index (RVSI), and the Shortwave-Infrared Vegetation Index (SWIR_VI), 
which is related to plant pigment content, water content and stress 
(Table 3). 

To better understand how LiDAR metrics represent the structural 
characteristics of tree species, we classified the LiDAR metrics into three 
primary categories (Table 3). Specifically, these included (1) point dis
tributions, which reflect the structural features of different tree species 
with the number of laser points tend to decrease from tree top to bottom 
due to laser obstruction by crowns (Lin and Hyyppä, 2016); (2) radio
metric metrics (i.e. intensity and echo width), which suggest that laser 
amplitudes tend to deteriorate from tree top to bottom, and have 
different behaviours according to the foliage type, leaf size and density 
from different tree species; (3) geometric metrics, including tree height, 
crown shape and crown volume features. The derivation of LiDAR 
metrics was conducted using the “rLiDAR” package in the R language 
environment (http://www.r-project.org/). 

2.4. Feature selection 

Feature selection is a procedure that enables a meaningful inter
pretation of the selected predictors and, in the context of tree species 
classification, increases the understanding of what exactly drives the 
discrimination of the species (Fassnacht et al., 2016). To select the most 
valuable wavebands from the hyperspectral images, we aimed to opti
mize the spectral separability between fir and other species, and used 
the principles of the Uncorrelated Stable Zone Unmixing approach 
proposed by Somers and Asner (2013b) for spectral bands selection. The 
rationale for this method is to balance the relationship between the 
spectral separability and the spectral correlation in the final subset 
(Somers and Asner, 2013b). Firstly, the spectral separability between fir 
and the other species (i.e. fir and beech, fir and birch, fir and maple, and 
fir and spruce) was evaluated using the Separability Index (SI), defined 
as the ratio of the inter-species and the intra-species variability: 

SIi =
Δinter,i

Δintra,i
=

⃒
⃒Rmean,1,i − Rmean,2,i

⃒
⃒

1.96 ×
(
σ1,i + σ2,i

) (1)  

where Rmean,1,i and Rmean,2,i are the mean reflectance values at wave
length i for species 1 (i.e. fir) and species 2 (e.g. beech, birch, maple, and 
spruce), respectively, whereas σ1,i and σ2,i are the standard deviations of 
species 1 and 2, respectively. Higher SI values indicate greater separa
bility between the species in the specified waveband (Somers and Asner, 
2013b). Secondly, the spectral correlation (Corr) of the selected band 
with all the other wavebands was calculated according to Eq. (2): 

Corr(X,Y) =
cov(X, Y)

σXσY
(2)  

where cov(X,Y) is the covariance between the selected band (X) and the 
other wavebands (Y), and σ is the standard deviation of the wavebands. 
Finally, the selection of wavebands was done iteratively by repeatedly 
selecting the band with the highest separability index and removing the 
highest correlated band until no bands remained (Somers and Asner, 
2014). 

To select the final set of features (i.e. from both the hyperspectral and 
LiDAR metrics) we employed a wrapper algorithm using Support Vector 
Machines (SVM), a method proposed by Maldonado and Weber (2009). 
It is based on a sequential backward selection, which uses the number of 

errors in a validation subset as the measure to decide which feature to 
remove in each iteration. This approach has several advantages with 
respect to the objectives of the current study, including (1) it determines 
the contribution of each feature to the respective classifier, (2) it is 
capable of measuring the validation error while avoiding overfitting by 
doing a random split of the dataset in each iteration, and (3) it can be 
easily generalized to variations of SVM classifiers (Maldonado and 
Weber, 2009). The feature selection procedure was carried out with the 
packages “caret” and “e1071” in the R language environment (http:// 
www.r-project.org/). 

2.5. One-class classifiers 

Among various one-class classifiers, one-class support vector ma
chine (OCSVM), biased support vector machine (BSVM) and Maxent 
have been frequently used (Mack and Waske, 2017). The OCSVM 
(Schölkopf et al., 1999) uses only data from the class of interest to train 
the classifier, while the BSVM is a semi-supervised classification algo
rithm that utilizes both positive and unlabelled samples (Liu et al., 
2003). The BSVM is a special form of a binary SVM and is adapted to 
one-class classification with a positive and unlabelled data training set 
(Stenzel et al., 2017). The Maxent classifier is based on the maximum 
entropy approach (Sethna, 2006), which is able to perform efficiently 
even with few occurrence records (Pearson, 2007). 

We used only positive and unlabelled data (PU-data) during the 
model training. The spectral features derived from each hyperspectral 
image, along with the LiDAR metrics, were used in three different one- 
class modelling approaches, tuned with optimal parameters for fir 
classification (Table 4). The classification was carried out using the R 
package “oneClass” (Mack, 2015). More information on the kernel pa
rameters, the method and the criteria can be found in the description of 
the R package “oneClass” (https://github.com/benmack/oneClass) and the 
corresponding publication (Mack et al., 2014). 

2.6. Accuracy assessment 

The classifiers were trained using a 10-fold cross-validation strategy. 
The training samples were split into ten independent sets (folds), in 
which nine were used for training and the remaining one for validation. 
After repeating ten times, the best combination of parameters was 
chosen by minimizing an average error measurement computed with the 
predictions on the ten different validation sets (Muñoz-Marí et al., 

Table 4 
Description of one-class classifiers.  

One-class 
classifiers 

Training 
mode 

Parameters Tuning 
settings 

OCSVM P-classifier Sigma (σ): the width of Gaussian 
radial basis function (RBF) kernel  

Nu (ν): rejection fraction 

2− 10, 2− 9, 
…, 22   

0.01, 0.02, 
…, 0.5 

BSVM PU- 
classifier 

Sigma (σ): the width of Gaussian 
radial basis function (RBF) kernel  

cNeg: penalty parameter for 
unlabeled samples  

cMultiplier: penalty parameter for 
positive samples 

2− 4, 2− 3, 
…, 22   

2− 7, 2− 5, 
…, 22    

20, 21, …, 
26 

Maxent PU- 
classifier 

Fc: feature class (lineal (L), quadratic 
(Q), product (P), threshold (T), and 
hinge (H))  

Beta (β): regularization multiplier 

LQHPT    

1, 2, …, 40  
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2010). We selected the best performing model based on the ranking of 
puAUC (Phillips et al., 2006; Phillips and Dudík, 2008), which resembles 
the area under the receiver operator characteristic curve (AUC) as an 
independent measure using randomly sampled observations (Piiroinen 
et al., 2018). The Kappa coefficient was also measured for each model. In 
comparative studies, it is rare to see Kappa reported, due to lack of 
absence samples in the validation data. However, it remains informative 
since it reveals the relative accuracy of the PU data-based model selec
tion approaches (Waske, 2017). 

3. Results 

3.1. Differences in spectral and structural features between silver fir and 
four other tree species 

Fig. 3 shows the mean spectral signatures (400–2498 nm) of five tree 
species, derived from the hyperspectral data of 2015 and 2016. The 
spectral signature of fir is clearly distinguishable from the deciduous 
trees (i.e. beech, birch, and maple), but the difference between fir and 
spruce is minor. The difference between the spectral signatures of fir and 
spruce was larger in the 2016 data than that of 2015. 

Fig. 3. The mean reflectance value (×1000, ± 1 standard deviation) of five species (beech, birch, fir, maple and spruce) at 400–2498 nm wavelengths derived from 
HySpex data acquired in 2015 and 2016, respectively. 

Fig. 4. Box plots of four vegetation indices (i.e. ACI2, DWSI2, RVSI and SWIR_VI) derived from 2015 (first row) and 2016 (second row) among sample tree species.  
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Fig. 4 shows the four vegetation indices (ACI2, DWSI2, RVSI and 
SWIR_VI), derived from 2015 and 2016, for the five species. The dif
ferences between conifers and deciduous trees were more distinct in 
RVSI and SWIR_VI than in ACI2 and DWSI2. The variation pattern of 
vegetation indices among the five species was similar in 2015 and 2016, 
while for each single species, the distribution of vegetation indices 
varied between 2015 and 2016. 

Fig. 5 shows the variation of derived LiDAR metrics between fir and 
the other four tree species. Six metrics from each LiDAR category (i.e. 
“Percent_first” and “Percent_all” from point distributions, “Ip95” and 
“EWmean_single” from radiometric metrics and “Hp99” and “Hmean_
first” from geometric metrics) are displayed as examples. Fig. 5a shows 
that the variation of “Percent_first” (i.e. the percentage of first returns 
above 2 m) of fir is the smallest among the five species. Fig. 5c and f 
show distinct differences for the 99th percentile of tree height (Hp99) 
and the mean height of first returns (Hmean_first) between fir and de
ciduous trees. However, the differences between fir and spruce were 
minor. 

3.2. Feature selection 

Based on the spectral separability and correlation assessment, we 
selected a set of bands maximizing the separability between each com
bination of two species. Fig. 6 shows the spectral separability index (SI) 
between fir and the other four tree species (i.e. maple, beech, birch, and 
spruce) based on each year of HySpex data. The most distinguishable 
wavelengths between all pairs were located at 689.3–743.3 nm, 
1087.7–1219.6 nm, and 2244.7–2412.6 nm. After feature selection, 
using the Uncorrelated Stable Zone Unmixing approach and the wrapper 
SVM algorithm (see Section 2.5), 18 wavebands from the 2015 HySpex, 
19 wavebands from the 2016 HySpex, five vegetation indices calculated 
from both years, and 14 LiDAR metrics, were selected for fir classifica
tion (Table 5). 

We firstly tested the performance of LiDAR and HySpex data solely 
for silver fir classification. The selected LiDAR metrics (14), spectral 
features from 2015 (22), and spectral features from 2016 (23) were used 
separately as input for three one-class classifiers. The selected spectral 
features included both band reflectance and vegetation indices. Sec
ondly, we combined the selected LiDAR metrics with spectral features 
from 2015 and spectral features from 2016 respectively. Given the 

Fig. 5. Box plots of the percentage of first returns above 2 m (a), the percentage of all returns above 2 m (b), 99th percentile of tree height (c), the intensity of 95th 
percentile of normalized tree height (d), the mean echo width of single returns (e), and the mean height of first returns (f) among sample tree species. 
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similar acquisition dates, we did not combine two HySpex images for the 
classification of silver fir. 

3.3. Performance of classification 

Table 6 shows the one-class classification results of silver fir using 
different dataset and classifiers. Using LiDAR data solely provided 
slightly higher puAUC and Kappa value than using HySpex data, 
regardless of the classifier was chosen. Classification using BSVM 
generated higher accuracy than OCSVM and Maxent when the same 
dataset was used. The classification result using BSVM with LiDAR and 
HySpex data from 2016 achieved the highest accuracy (puAUC 0.95 and 
Kappa 0.90), while the model using LiDAR and 2015 HySpex data had 
the same puAUC and a slightly lower Kappa value (0.89). 

Table 7 shows the significant levels between classification results 
generated from the combined dataset based on p values in McNemar’s 
test. The classification results from BSVM showed statistically significant 
improvements compared to the results from OCSVM or Maxent while 
using the combined LiDAR and HySpex dataset (both from 2015 and 
2016). 

Fig. 7 shows the normalized importance of selected features (top 20) 
from hyperspectral and LiDAR data for fir classification. The most 
important spectral bands for fir classification varied between the 
different HySpex acquisitions: for 2015, the most important bands were 
700.1 nm, 714.5 nm, 1201.6 nm, 1219.6 nm, 2262.7 nm, and 2382.6 
nm, while for 2016, the most important bands were 700.1 nm, 714.5 nm, 

1201.6 nm, 1591.3 nm, 1723.2 nm, 1771.1 nm, 2070.9 nm. However, 
there were several bands that were considered important in both years 
(700.1 nm, 714.5 nm, and 1201.6 nm) (Fig. 7). The percentage of first 
returns above 2 m (Percent_first) and the intensity of 95th percentile of 
normalized tree height (Ip95) were the most important LiDAR metrics 
for fir classification. 

Fig. 8 shows the maps of fir trees in two study sites (500 m × 500 m 
for each site) using BSVM classifier with selected features derived from 
LiDAR and HySpex data from 2016. The crown of fir trees are high
lighted in yellow. The point clouds of mapped fir are highlighted in red. 

4. Discussion 

This study accurately mapped individual silver fir trees in a Norway 
spruce dominated forest using one-class classification methods, 
employing key spectral and structure features closely linked to species- 
specific traits. Results of this study demonstrate that the biased support 
vector machine classifier yielded the highest mapping accuracy, with 
the area under the curve for positive and unlabeled samples (puAUC) 
achieving 0.95 (kappa 0.90). 

Identifying key features that can reflect the specific traits of tree 
species is an important issue for tree species classification. Our study 
revealed that the most robust spectral bands from HySpex datasets for 
mapping of silver fir were located at wavebands 700.1 nm and 714.5 
nm, which are strongly affected by leaf chlorophylls (Ustin et al., 2009), 
as well as the waveband of 1201.6 nm, which is sensitive to foliar water 
content (Kokaly et al., 2009). This result is in line with Gitelson et al. 
(2003) and Ustin et al. (2009), who indicated that the total chlorophyll 
content in leaves is closely related to the green (540–560 nm) and red 
edge (700–730 nm) wavelengths. In the study of Shi et al. (2018a), 
conducted in the same study area, leaf chlorophyll (Cab) and equivalent 
water thickness (Cw) were measured from field samples of five tree 
species (i.e. beech, birch, fir, maple and spruce); fir showed the highest 
leaf chlorophyll (mean: 56.3 μg cm− 2, sd: 11.0 μg cm− 2) and equivalent 

Fig. 6. The upper image shows the spectral separability index (SI) between fir 
and the other four tree species (i.e. maple, beech, birch, and spruce) in the year 
of 2015 and 2016. 0 indicates the lowest SI and 1 indicates the highest SI be
tween two species. The lower image shows the mean reflectance value (×1000, 
± 1 standard deviation) of fir at 400–2498 nm wavelengths derived from 
HySpex data acquired in 2015 and 2016, respectively. 

Table 5 
Selected features derived from hyperspectral and LiDAR data.  

Input variables Index or description 

LiDAR metrics 
Imean_first Mean intensity of first-or-single returns 
Imean_single Mean intensity of single returns 
Imean Mean intensity 
Ivar Variation of intensity 
Isd Standard deviation of intensity 
Ip95 Intensity of 95th percentile of normalized tree height 
EWmean_single Mean echo width of single returns 
EWp55 Echo width of 55th percentile of normalized tree height 
Hmean_first Mean height of first-or-single returns 
Hmean_single Mean height of single returns 
Hvar Variation of height 
Hp99 99th percentile of normalized tree height 
Percent_first Percentage of first returns above 2 m 
Percent_all Percentage of all returns above 2 m 
Spectral features (HSI) 
Band reflectance 

(nm)  
2015 HySpex 415.7 nm, 433.7 nm, 502.1 nm, 527.3 nm, 692.9 nm, 700.1 

nm, 714.5 nm, 732.5 nm, 764.9 nm, 872.9 nm, 1201.6 nm, 
1219.6 nm, 1597.3 nm, 2106.8 nm, 2262.7 nm, 2382.6 nm, 
2400.6 nm, 2418.6 nm 

2016 HySpex 419.3 nm, 437.3 nm, 458.9 nm, 678.5 nm, 689.3 nm, 692.9 
nm, 700.1 nm, 707.3 nm, 714.5 nm, 746.9 nm, 854.9 nm, 
883.7 nm, 1195.6 nm, 1591.3 nm, 1723.2 nm, 1771.1 nm, 
2070.9 nm, 2406.6 nm, 2412.6 nm 

Vegetation Indices  
ACI2 ACI2 = ρ650/ρ550 
SWIR_VI SWIR_VI = 37.72*(ρ2210-ρ2090) + 26.27*(ρ2280-ρ2090) +

0.57 
DWSI2 DWSI2 = ρ1660/ρ550 
RVSI RVSI= (ρ714 + ρ752)/2 − ρ733  
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water thickness (mean: 0.0166 cm; sd: 0.0012 cm) among the five tree 
species. Norway spruce, as the other conifer, caused the main confusion 
in fir classification. However, it showed a comparatively low leaf chlo
rophyll (mean: 34.5 μg cm− 2, sd: 6.4 μg cm− 2) and equivalent water 
thickness (mean: 0.0140 cm; sd: 0.0024 cm). This highlights that opti
mizing spectral separability between the focal tree species and others 
can help discriminating them, since absorption features caused by 
biochemical composition control the shapes of leaf reflectance spectra. It 
is worth noting that the specific wavebands that contribute most in a 
focal species mapping are highly depend on the species of interest and 
the neighboring species (e.g. the species with similar reflectance) as well 

Table 6 
One-class classification results of fir trees from hyperspectral and LiDAR data using three different classifiers.   

LiDAR 2015 HySpex 2016 HySpex LiDAR + 2015 HySpex LiDAR + 2016 HySpex  

puAUC Kappa puAUC Kappa puAUC Kappa puAUC Kappa puAUC Kappa 

OCSVM 0.72 0.61 0.68 0.58 0.70 0.60 0.89 0.87 0.90 0.87 
BSVM 0.75 0.62 0.70 0.60 0.73 0.61 0.95 0.89 0.95 0.90 
Maxent 0.67 0.56 0.59 0.48 0.66 0.55 0.83 0.82 0.87 0.85  

Table 7 
McNemar’s test for pairwise comparison between classification results using 
different classifiers. NS: p > 0.05. ***p < 0.001.**p < 0.01. *p < 0.05.   

LiDAR + 2015 HySpex LiDAR + 2016 HySpex  

OCSVM Maxent OCSVM Maxent 

BSVM * ** * * 
Maxent * – NS –  

Fig. 7. The normalized importance of selected features (top 20) from the combination of each year HySpex and LiDAR data for fir classification.  

Fig. 8. Maps of fir trees in two study sites (500 m × 500 m for each site) in the Bavarian Forest National Park. The crown of fir trees are highlighted in yellow. The 
point clouds of mapped fir are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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as the forest characteristics (e.g. homogeneity and heterogeneity). 
Our results indicated that the most important LiDAR metrics for fir 

identification were the percentage of first returns (Percent_first) and the 
intensity of 95th percentile of normalized tree height (Ip95). The per
centage of first returns reflects the shape of “crown shell” and the pattern 
of outer layers of a tree. Similarly, the intensity of 95th percentile of 
normalized tree height is related to the distribution of branches at the 
top of the canopy. From an autecological point of view, silver fir has a 
pyramidal crown that becomes flat-topped with age – the so-called 
stork’s nest – while spruce displays a conic crown with an ascending 
upper level and drooping lower level (Farjon, 1990; Silba, 1986) (Fig. 9). 
The variation of the “Percent_first” captured the “flat-topped” crown 
traits of fir, which was the smallest among other tree species. Our results 
suggest that the structural differences at the top of canopy among tree 
species that can be captured by airborne LiDAR are valuable for tree 
species discrimination. Moreover, combining the complementary in
formation from both airborne hyperspectral and LiDAR data provides 
additional perspectives for the discrimination of the focal species. 

We did not find a significant difference between the classification 
results using HySpex at 4 m (2015) and HySpex at 2 m (2016) 
(0.03–0.06 improvement of puAUC and 0.02–0.04 improvement of 
Kappa). The slight difference between the results may be due to the 
variances in illumination conditions, the number of reference pixels as 
well as the spatial resolution from different years. Given that the crown 
size of the sample trees in this study were 5–12 m, a spatial resolution 
smaller than the scale of tree crowns was found to be adequate for in
dividual tree species discrimination, as also indicated by Clark et al. 
(2005). Our reason for using two HySpex images in this study was to 
evaluate the robustness of the selected features and classification 
methods. Given the similar acquisition date of the year and the focal 
species (i.e. fir as a conifer species), we did not attempt to capture 
phenological changes among different years for classification. However, 
it is notable that our study was situated in a natural temperate forest in 
Central Europe, the optimal spatial resolution for individual tree species 
mapping in other forests is closely related to the ecosystem and the focal 
species under consideration. 

In this study, the BSVM classifier produced the highest mapping 
accuracies under all dataset combinations, especially in comparison to 
Maxent. Similar results have been reported in previous studies. For 
example, Waske (2017) showed that BSVM had the highest discrimi
native potential, followed by Maxent (with parameter tuning), Maxent 
(with default parameters) and OCSVM. This result is in line with Stenzel 
et al. (2017), who found that BSVM outperformed Maxent (with default 
parameters) and OCSVM in the classification of high nature value 
grassland areas. Although the model performance has been optimized by 
searching for the best combination of parameters in our study, it should 
be noted that input feature combinations may also influence the per
formance of classifiers, as mentioned by Skowronek et al. (2017). This 
suggests that the correlation between input features as well as the 
optimization of parameters within the models should be both considered 
for improving classification results. 

Our study accurately mapped silver fir in a natural temperate forest 
using one-class classification, however, broadly speaking, identification 
and mapping of a specific tree species at the individual tree level across 
landscapes using remote sensing remain challenging. The mapping ac
curacy of the focal species is highly dependent on the tree species di
versity in the study area, the similarity between the species of interest 
and co-existing species, and the amount of field data available. More 
presence and absence field data may be required before the model can be 
applied over a larger extent. Furthermore, as mentioned by Budei et al. 
(2018), having a diversity of tree ages in the sampled crowns compar
atively increases the intra-species variability and the classification error 
probability because of the changes in tree architecture, leaf shapes and 
reflectance with tree age. Given the architectural variability of the top 
crown of fir between different ages, for example, an understanding of 
whether stratification by tree age or environmental factors (e.g. soil type 
and topographic condition) could improve classification performance 
should be explored in future research. 

5. Conclusions 

In this study, we evaluated a set of relevant spectral and structural 

Fig. 9. The crown shape of a silver fir tree (a) and a Norway spruce tree (b). (Photos by Rainer Simonis).  
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features derived from the hyperspectral and LiDAR data, and used them 
to train three one-class machine learning algorithms for individual silver 
fir trees mapping. Based on the results, we conclude that the biased 
support vector machine is the best classifier. The LiDAR intensity value 
of 95th percentile of normalized tree height and the percentage of first 
returns are the most influential structural features, capturing the main 
morphological difference between silver fir and Norway spruce at the 
top tree crown. The wavebands at 700.1 nm, 714.5 nm, and 1201.6 nm 
are the most important spectral bands, which are strongly affected by 
chlorophyll and foliar water content. Our study suggests that discov
ering links between spectral and structural features captured by 
different remotely sensed data and species-specific traits can signifi
cantly improve the mapping accuracy of a focal species at the individual 
tree level. The methodology we demonstrated in this study could be 
applied in the mapping of other tree species, which can inform man
agement strategies to assist forest inventory in larger spatial scales and 
protect important species such as the silver fir. 
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Puttonen, E., Suomalainen, J., Hakala, T., Räikkönen, E., Kaartinen, H., Kaasalainen, S., 
Litkey, P., 2010. Tree species classification from fused active hyperspectral 
reflectance and LIDAR measurements. For. Ecol. Manage. 260, 1843–1852. 

Richter, R., Reu, B., Wirth, C., Doktor, D., Vohland, M., 2016. The use of airborne 
hyperspectral data for tree species classification in a species-rich Central European 
forest area. Int. J. Appl. Earth Obs. Geoinf. 52, 464–474. 
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