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Abstract
Expression of the extensively glycosylated Ebolavirus glyco-
protein (EBOV-GP) induces physical alterations of surface 
molecules and plays a crucial role in viral pathogenicity. Here 
we investigate the interactions of EBOV-GP with host surface 
molecules using purified EBOV-GP, EBOV-GP-transfected cell 
lines, and EBOV-GP-pseudotyped lentiviral particles. Subse-
quently, we wanted to examine which receptors are involved 
in this recognition by binding studies to cells transfected 
with the EBOV-GP as well as to recombinant soluble EBOV-
GP. As the viral components can also bind to inhibitory re-
ceptors of immune cells (e.g., Siglecs, TIM-1), they can even 
suppress the activity of immune effector cells. Our data show 
that natural killer (NK) cell receptors NKp44 and NKp46, se-
lectins (CD62E/P/L), the host factors DC-SIGNR/DC-SIGN, and 
inhibitory Siglecs function as receptors for EBOV-GP. Our re-

sults show also moderate to strong avidity of homing recep-
tors (P-, L-, and E-selectin) and DC-SIGNR/DC-SIGN to puri-
fied EBOV-GP, to cells transfected with EBOV-GP, as well as 
to the envelope of a pseudotyped lentiviral vector carrying 
the EBOV-GP. The concomitant activation and inhibition of 
the immune system exemplifies the evolutionary antago-
nism between the immune system and pathogens. Alto-
gether these interactions with activating and inhibitory re-
ceptors result in a reduced NK cell-mediated lysis of EBOV-
GP-expressing cells. Modulation of these interactions may 
provide new strategies for treating infections caused by this 
virus. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Ebolavirus (EBOV) and Marburg virus are two (2) 
genera of the Filoviridae family belonging to the most vir-
ulent viruses known, which in humans cause a rapidly 
fatal hemorrhagic fever [1, 2]. EBOV is able to infect al-
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most every cell type with a rapid rate of viral replication 
[3]. Treatment is still largely symptomatic, but there are 
currently 2 licensed Ebola vaccines: The first licensed 
Ebola vaccine was the rVSV-ZEBOV vaccine made by 
Merck which was approved by the US FDA in 2019. The 
heterologous 2-dose Ad26.ZEBOV/MVA-BN-Filo vac-
cine by Janssen received marketing authorization ap-
proval under exceptional circumstances by the European 
Medicines Agency in 2020. Both of these vaccines have 
undergone in phase 3/2 trials, respectively (WHO; https://
www.who.int/groups/global-advisory-committee-on-
vaccine-safety/topics/ebola-virus- vaccines). In addition, 
a series of monoclonal antibodies have been used success-
fully alone or in combination [4].

The EBOV genome contains 7 different genes (3′-NP-
VP35-VP40-GP-VP30-VP24-L-5′), out of which the GP 
gene forms at least 3 different glycoproteins (GPs) via al-
ternative open reading frames (2–4). The other 6 genes 
code for structural proteins and the polymerase L of filo-
virus particles.

These GPs can be modified by various enzymes. After 
N- and O-glycosylation, GP0 is cleaved by the enzyme 
furin to yield the GP1 and GP2 subunits [5, 6]. GP is 
structured in a chalice-like shape with a trimer of GP1/
GP2 heterodimers, out of which GP2 is forming the base 
and GP1 the cup [7]. This GP trimer can be cleaved from 
the viral surface via the tumor necrosis factor-α-
converting enzyme [7]. GP1 is mucin-like and contains 
N-glycosylated as well as O-glycosylated areas, where mu-
tations permanently take place, thus enabling immune es-
cape [8, 9], whereas GP2 has only 2 N-glycosylated areas 
[10, 11]. GP1 is responsible for receptor binding (includ-
ing α-dystroglycan, heparan sulfate, DC-SIGN, etc.) and 
GP2 mediates low pH-induced membrane fusion. Both 
proteins interact with each other to form a stable ho-
motrimer complex on the viral envelope [12, 13].

Fuller and colleagues have shown that both Marburg 
virus-like particles and EBOV-like particles trigger a con-
sistent upregulation of CD69 on the cell surface of poly-
clonal natural killer (NK) cells from different donors [14]. 
Upregulation of CD69 on NK cells is closely linked with 
activation of several signal transduction pathways includ-
ing survival and induction of cytokine production and cy-
tolysis of targets [15, 16]. In addition, EBOV infection in-
duces massive NK cell apoptosis, thus avoiding NK func-
tion and impairing NK-mediated DC maturation [17–19].

The killer cell immunoglobulin-like receptors (KIRs) as 
well as Siglecs, and CD94-NKG2A, are involved in the in-
hibitory signal cascade of NK cells. Most inhibitory recep-
tors recognize specific MHC class I isoforms and thereby 

ensure tolerance of NK cells against self [20]. NK cell acti-
vation is mediated by receptors such as KIR2DS1-5, NK-
G2D, CD16, or NCRs (natural cytotoxicity receptors 
NKp46, NKp44, and NKp30). In previous work, we were 
able to show that ligands for NKp30 and NKp44 can be de-
tected on the surface and in intracellular compartments of 
different tumor cells [21]. These ligands often contain hep-
aran sulfate linked to proteoglycans [22, 23]. Besides recog-
nizing tumor cells, activating NK cell receptors have also 
been shown to be involved in detecting virus-infected cells 
by the interaction with various viral surface proteins. As an 
example, NKp30 and NKp46 present on NK cells play a key 
role in the immune response against vaccinia virus and 
mouse poxvirus (ECTV/ectromelia virus), as they bind to 
hemagglutinin (HA) – a component of the vaccinia virus 
envelope [24]. It should be noted that NKp30-triggered ac-
tivation of NK cells is blocked by HA of vaccinia virus, 
whereas HA stimulates NK cells through NKp46 [24]. 
Moreover, the pp65 matrix protein of human cytomegalo-
virus binds NKp30 and inhibits its function [25]. The re-
sults indicate that NKp30 has a different role in NK-cell 
cytotoxicity [24, 26, 27]. NKp46 recognizes the sigma1 pro-
tein of reovirus [28]. In addition, the HA proteins of Sen-
dai-, influenza-, and Newcastle disease viruses are able to 
bind NKp46 and NKp44, and induce NK cell activation 
[29–32]. NKp44 interacts with envelope glycoproteins 
from the West Nile and dengue virus E/M proteins [33].

DC-SIGN (CD209) and DC-SIGNR (DC-SIGN-relat-
ed, CD299, CLEC4M) bind to soluble EBOV-GPs with 
similar avidity [34], as well as soluble human immunode-
ficiency virus type-1 (HIV-1) gp120. This interaction is 
inhibited in an environment with increased pH [34]. DC-
SIGN and DC-SIGNR are calcium-dependent C-type lec-
tins, which have high avidity for ICAM3 (CD50) [35]. 
DC-SIGN binds to weakly polysialylated NCAM-1 [36]. 
Recently, it was found that TIM-1 (T-cell immunoglobu-
lin and mucin domain 1) is a filovirus receptor [37] and 
interacts by its phosphatidylserine (Ptd-L-Ser) binding 
pocket directly with Ptd-L-Ser located on the viral capsid 
[38–40]. Furthermore, TIM-1 binds the adhesion recep-
tor P-selectin and mediates T-cell trafficking during in-
flammation and autoimmunity [41, 42].

L-selectin is a cell adhesion molecule expressed on 
most circulating cells, including neutrophils, dendritic 
cells, monocytes, B cells, NK cells, and T cells. L-selectin 
is a major regulator of transendothelial migration of leu-
kocytes. E- and P-selectin are expressed on endothelial 
cells at sites of inflammation and interact with receptors 
on the surfaces of leukocytes. Also, selectins have been 
shown to interact with viral proteins. The glycoprotein 
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gp120 of HIV-1 binds L-selectin in solution and on the 
host cell membrane. Upon entry of HIV into CD4+ T 
cells, L-selectin is cleaved at the membrane proximal site 
by proteolysis, thus facilitating virus release from cells 
[43, 44]. Given that fact that many NK cell receptors can 
interact with viral proteins and that NK cells seem to be 
involved in EBOV infections, we wanted to investigate 
the interactions of EBOV-GP with different host cell sur-
face proteins. Here we use purified EBOV-GP, EBOV-
GP-transfected cells, and EBOV-GP-pseudotyped lenti-
viral particles to show an interaction with the NK cell re-
ceptors NKp44 and NKp46, Siglec-7, the host factors 
DC-SIGN and DC-SIGNR, P-selectin, and L-selectin. 
These interactions result in reduced NK cell-mediated 
killing of EBOV-GP expressing cells.

Materials and Methods

Cell Lines
Human embryonic kidney cells HEK-293 (ATCC CRL-3216) 

and CHO-K1 (ATCC CCL-61) were cultured in RPMI 1640 (Invi-
trogen, Karlsruhe, Germany) supplemented with 2 mM glutamine 
and 10% fetal calf serum (FCS). Human polyclonal NK cells were 
isolated by NK cell negative isolation kit (Miltenyi) from periph-
eral blood mononuclear cells or from healthy donor buffy coats. 
Between 95 and 99% of NK cells were CD3 negative and CD56 
positive. Cells were grown in Iscove’s modified Dulbecco’s medi-
um (Invitrogen) with 10% human serum, penicillin-streptomycin, 
and 100 IU/mL IL-2 (NIH Cytokine Repository, Bethesda, MD, 
USA).

Transfections
Prof. S. Becker (Institute of Virology, Marburg University, Ger-

many) kindly provided the expression vector pCAGGS-ZEBOV-
GP for transfection of HEK-293 cells together with empty pcD-
NA3.1(+) (Invitrogen) to provide for a neomycin resistance gene 
in trans. Furthermore, we used the expression vector pcDNA6/
V5-His-A/ZEBOV-GP (plasmid 7616.5) for transfection of HEK-
293 cells and CHO-K1 cells. Empty pcDNA6/V5-His-A was used 
for vector control transfectants. A total of 2.5 × 105 HEK-293 cells 
and CHO-K1 cells were cultured in 6-well plates and transfected 
with 4 μg of the mentioned plasmids using lipofectamine 2000 (In-
vitrogen) according to the manufacturer’s instructions. Two days 
later, cells were selected with geneticin (1 mg/mL) or blasticidin 
(10 μg/mL) and, after being sorted for high-level GP expression, 
maintained in 0.5 mg/mL geneticin or 5 μg/mL blasticidin. GP ex-
pression was detected via mouse monoclonal anti-ZEBOV GP an-
tibody 3B11 [45] (kindly provided by Prof. Stephan Becker, Insti-
tute of Virology, Marburg) and human monoclonal anti-ZEBOV 
GP antibody KZ52 [46] (dilution 1:200). KZ52 was purchased 
from IBT BioServices (Rockville, MD, USA).

Chromium Release Assay
EBOV-GP-transfected HEK-293 cells, which were used as tar-

get cells (0.5 × 106) in 100 μL of assay medium (Iscove’s modified 
Dulbecco’s medium with 10% FCS and 1% penicillin-streptomy-

cin), were labeled with 100 μCi (3.7 MBq) of 51Cr (Hartmann & 
Braun, Frankfurt, Germany) for 1 h at 37°C. Cells were washed 
twice and resuspended in assay medium at 5 × 104 cells/mL. Iso-
lated NK cells were seeded in 96-well round-bottom plates (Nunc) 
at a density of 1.5–2 × 106/mL with irradiated feeder cells (K562-
mbIL15-41BBL) in medium with 100 ng/mL IL-21 (Miltenyi Bio-
tec) and 200 U/mL IL-2 (National Institutes of Health Cytokine 
Repository). After the first week, NK cells were restimulated with 
fresh feeder cells. In the next weeks, NK cells were split to a den-
sity of 1.5–2 × 106/mL in the presence of 100 U/mL IL-2. On day 
14, 2.5 ng/mL recombinant IL-15 (PAN Biotech) was added. After 
3 weeks, NK cells were used for 51Chromium-release assay. These 
effector cells were resuspended in assay medium and mixed at dif-
ferent effector-to-target cell ratios with 5,000 labeled target cells/
well in a 96-well F-bottom plate. Maximum release was deter-
mined by the incubation of target cells in 1% Triton X-100 solu-
tion. Spontaneous 51Cr release was measured by incubating target 
cells in the absence of effector cells. All samples were prepared in 
triplicate. Plates were incubated for 4 h at 37°C. Supernatant was 
harvested, and 51Cr release was measured in a γ-counter. The per-
centage of cytotoxicity was calculated according to the following 
formula: ([chromium release for condition of interest − chromium 
release in spontaneous wells]/[max chromium release − chromi-
um release in spontaneous wells]) × 100. Representative examples 
from 3 similar experiments are shown.

Enzyme-Linked Immunosorbent Assay
For the direct detection of EBOV-GP via enzyme-linked im-

munosorbent assay (ELISA) plates, we obtained the human EBOV 
Zaire glycoprotein from Advanced Biomart (San Gabriel, CA, 
USA) and the recombinant human anti-EBOV GP antibody 
[KZ52] from Absolute Antibody (Oxford, GB). EBOV-GP was ex-
pressed with a polyhistidine-tag at the C-terminus and consists of 
629 amino acids, predicting a molecular mass of 69 kDa. This an-
tibody detects purified EBOV-GP coated on ELISA plates and 
HEK-293EBOV-GP cells by IF. MicroTest III ELISA plates (BD Bio-
sciences, Heidelberg, Germany) were coated overnight with EB-
OV-GP in 0.05 M NaHCO3-Na2CO3 buffer (pH 9.6). They were 
also blocked using 3% skim milk powder (Merck, Darmstadt, Ger-
many) in PBS-0.05% Tween 20 (PBS-T) (Sigma-Aldrich), as well 
as PierceTM Protein-Free (PBS) Blocking Buffer (Thermo Scientif-
ic), overnight at 4°C. The recombinant IgG-Fc fusion proteins 
NKp44-Fc (2249-NK-05), NKp46-Fc (1859-NK-025), NKp30-Fc 
(1849-NK-025), DC-SIGN-Fc/CD209-FC (161-DC-050), DC-
SIGNR-Fc/CD299-FC (162-D2-050), Siglec-2-Fc (1968-SL-050), 
Siglec-3-Fc (1137-SL-050), Siglec-4-Fc (8940-MG-050), Siglec-
5-Fc (1072-SL-050), Siglec-7-Fc (1138-SL-050), Siglec-10-Fc 
(2130-SL-050), PSGL-1-Fc (3345-PS-050), NKG2D-Fc (1299-NK-
050), E-selectin-Fc (ADP1-050), P-selectin-Fc (137-LS-050), L-se-
lectin-Fc (728-LS-100), TIM1-Fc (9319-TM-100), CD44-Fc (3360-
CD-050), and CD24-Fc (5247-CD-050) were obtained from R&D 
(Planegg, Germany), and syndecan 1-Fc (PKSH033514) from 
Elabscience. All were analyzed regarding their binding ability to 
EBOV-GP-coated ELISA plates. All purified recombinant proteins 
(1 μg/100 μL in PBS-T with 1% bovine serum albumin) were add-
ed in triplicates to EBOV-GP-coated wells at 2 μg/well for 1 h at 
room temperature. After washing 3 times with PBS-T, peroxidase-
conjugated goat anti-hIgG-Fc or goat anti-mouse IgG-Fc (Diano-
va, Hamburg) in PBS-T (1:2,000 with 1% bovine serum albumin) 
was added for 1 h at room temperature. After washing 3 times with 
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PBS-T, a peroxidase substrate solution (o-phenylenediamine [Sig-
ma-Aldrich] at 1 mg/mL in 0.1 M KH2PO4 buffer [pH 6.0]) was 
added for 20 min at room temperature in the dark. The substrate 
reaction was stopped with 50 μL of 4 N H2SO4, and results were read 
out with a Titertek Multiscan plus MKII ELISA photometer (MP 
Biomedicals, Heidelberg, Germany) at OD450 nm and 570 nm for 
reference. The whole experiment was repeated at least 3 times.

Flow Cytometry
Flow cytometry was used to analyze binding of recombinant fu-

sion proteins to EBOV-GP-transfected cell lines. For cell surface im-
munofluorescence staining, 0.5–1 × 106 cells were washed once in 
ice-cold fluorescence-activated cell sorter (FACS) buffer (D-PBS-2% 
FCS) and then incubated with a saturating amount of the primary 
mouse MAb for 45 min on ice. After 2 washes, cells were incubated 
with PE-labeled goat anti-mouse Ig for 30 min on ice. Complexes of 
the Fc fusion proteins listed above (1–2 μg per staining) and PE-la-
beled goat anti-hIgG Fc (Dianova; 1:100 in FACS buffer) were al-
lowed to form for 30 min before being added to cells for 60 min on 
ice. Cells were washed twice and resuspended in 200 μL of FACS 
buffer with 0.05% propidium iodide (Sigma-Aldrich). Cytofluoro-
metric analyses were done using a FACS Canto II or FACS LSR Fort-
essa flow cytometers and Diva software (Becton Dickinson, Heidel-
berg, Germany). For all FACS stainings, representative examples are 
shown from at least 3 repeats with similar results.

Heparanase and Neuraminidase Treatment of Cells
CHO-K1 transfected with pcDNA6/EBOV GP or empty pcD-

NA6 vector were treated with heparanase I and III (Sigma/Aldrich, 
100 mU/100 μL in PBS) or a2-3,6,8,9-neuraminidase (Merck/Cal-
biochem, 5 mU/100 μL PBS) for 1 h at 37°C, respectively. After 
enzymatic treatment and washing, cells were immediately stained 
on ice with Fc fusion proteins, complexed with goat anti-hIgG-PE 
secondary antibodies. The experiment was repeated 3 times.

P24 Antigen Capture Assay
Lentivirus particles based on the HIV-1 were produced in HEK-

293 cells through transient transfection of 2 plasmids encoding 
components of the virus envelope as described below. Cell culture 
medium containing viral particles produced by packaging cells was 
harvested after 72 h. HEK-293 cells stably transfected with the plas-
mid pcDNA6/V5-HisA/EBOV-GP and control HEK-293 cells sta-
bly transfected with pcDNA6/V5-HisA were used to produce len-
tiviral particles displaying EBOV-GP (lenti-EBOV-GP) and con-
trol particles devoid of EBOV-GP. Briefly, 1 × 106 cells of each cell 
line were seeded in 60-mm cell culture dishes 1 night prior to trans-
fection. The next day, 6 µg of a 3:2 ratio of lentiviral transfer vector 
(pLOX-CWgfp) and packaging plasmid (psPAX2) were transfected 
into each cell culture dish using Turbofect Transfection Reagent 
(Thermo Fisher Scientific). Seventy-two hours posttransfection, vi-
ral supernatants were collected and centrifuged at 3,000 g for 15 
min at 4°C to remove cell debris. To concentrate the viral particles, 
they were centrifuged at 48,000 g for 3 h at 4°C, and viral pellets 
were resuspended in cold PBS. Physical titration of the viral prepa-
ration was performed using p24 detection by sandwich ELISA. Mi-
crotiter plates precoated with anti-p24 Ab were incubated with in-
creasing dilutions of the lentiviral suspension. After incubation and 
washing, p24 was quantified using a biotinylated anti-p24 Ab and 
detected using HRP-streptavidin. Color development was mea-
sured at 450 nm in a Bio-Rad spectrophotometer.

ELISA (Lenti-EBOV-GP)
Lentiviral vector titers are expressed in transducing units per 

mL. After physical titration of viral vectors, we immobilized HIV-
lentiviral EBOV-GP particles (200 μg/mL) on 96-well microtiter 
plates (Nunc, Maxisorp) in 0.1 M sodium bicarbonate buffer (pH 
9.6) at 4°C for 18 h and blocked with protein-free blocking buffer 
(PBS) pH 7.4 (Thermo), which is recommended for viral particles 
with highly glycosylated proteins [47]. For the coating with EBOV-
GP and control lentiviral particles, equal amounts of particles were 
added to each well. After blocking, the plates were washed 3 times 
with PBS containing 0.05% Tween-20. Dilutions of 10 μg/mL of 
fusion proteins were prepared in PBS + 2% protein-free buffer, in-
cluding NKp44-Fc, NKp46-Fc, NKp30-Fc, DC-SIGN-Fc, DC-
SIGNR-Fc, Siglec2-Fc, Siglec3-Fc, Siglec4-Fc, Siglec5-Fc, Siglec7-
Fc, Siglec10-Fc, PSGL-1-Fc, NKG2D-Fc, E-selectin-Fc, P-selectin-
Fc, L-selectin-Fc, TIM1-Fc, CD44-Fc, CD24-Fc, syndecan 1-Fc 
(R&D), and human anti-Gp-Fc antibody as positive control. Each 
protein was added in triplicate to the respective wells and incu-
bated for 1 h at room temperature. After incubation, the plates 
were gently washed 3 times with PBS containing 0.05% Tween-20. 
Then, the secondary antibody (goat anti-human IgG-Fc) was add-
ed to the wells and the plates were incubated for 1 h at room tem-
perature. The plates were subsequently washed 3 times with PBS-T 
(PBS containing 0.05% Tween-20) and incubated with substrate 
(OPD) for 15–20 min. The reactions were stopped by adding 100 
μL of 1M sulfuric acid to each well. Finally, the absorbance of 
450/570 nm was measured by a BioTek Synergy 4 Multi-Mode Mi-
croplate Reader. The whole experiment was repeated twice.

Statistical Analysis
Experimental values were obtained in triplicates and repeated 

at least twice. The corresponding mean values with SD were used 
for analysis of data. Significance was tested by unpaired t test with 
2-sided p value. p values <0.05 were considered significant.

Results

EBOV-GP Binds NCRs, Homing Selectins, and 
Inhibitory Siglecs
We used ELISA plates coated with purified recombinant 

EBOV-GP produced in HEK-293 cells to assess the binding 
to different IgG1-Fc recombinant fusion proteins (Fig. 1). 
In accordance with previous results [34], DC-SIGN 
(CD209) and its related C-type lectin DC-SIGNR (CD299) 
bound strongly to EBOV-GP. Also, the activating NK cell 
receptors NKp44 and NKp46 but not NKp30 and NKG2D 
showed an interaction with EBOV-GP. Furthermore, P-se-
lectin, L-selectin (CD62 P/L), and the inhibitory receptors 
Siglec-5 and Siglec-7 showed significant binding to EBOV-
GP. However, we observed only weak or no binding of Si-
glec-3, E-selectin, PSGL-1, CD44, and CD24. These results 
were confirmed repeatedly under different conditions and 
with different batches of proteins, and the binding tenden-
cies were reproducible throughout all experiments.
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Interactions with EBOV-GP Expressed in HEK-239 
and CHO-K1 Cells
To confirm these interactions in a cellular context, we 

stably transfected HEK-239 cells with plasmids carrying 
the EBOV-GP gene. GP expression efficiency was con-

firmed using the human monoclonal anti-ZEBOV GP 
antibody KZ52 [46] (Fig. 2a). We then used the various 
Fc fusion proteins for immunofluorescence staining  
of the transfected HEK-293EBOV-GP cells and analyzed  
the binding by flow cytometry (Fig. 2a; online suppl. Fig-
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Fig. 2. NCRs, homing selectins, and inhibi-
tory Siglecs bind to EBOV-GP-transfected 
HEK-293 and CHO-K1 cells: HEK-293 (a) 
or CHO-K1 (b) cells were stably transfect-
ed with EBOV-GP or with empty vector as 
control. GP expression efficiency was de-
tected by anti-ZEBOV GP human antibody 
KZ52. The insets show peaks derived from 
the original flow cytometry analyses con-
sisting of at least 3 repeats, which indicate 
the binding of the respective fusion pro-
teins to EBOV-GP-transfected HEK-293 
(a) or CHO-K1 (b) cells in relation to their 
binding to the vector control-transfected 
cells. Significance was calculated by 2-sided 
t test for paired samples, comparing the 
binding of recombinant proteins to vector- 
and GP-transfected cells. (*): p < 0.1; *: p < 
0.05; **: p < 0.001. EBOV-GP, Ebolavirus 
glycoprotein; NCRs, natural cytotoxicity 
receptors.
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ure 1; see www.karger.com/doi/10.1159/000517628 for 
all online suppl. material). Similar to our results with EB-
OV-GP-coated ELISA plates, we observed significantly 
enhanced binding of recombinant NKp44-Fc, NKp46-Fc, 
L-selectin-Fc, P-selectin-Fc, Siglec-7-Fc, and Siglec-5-Fc 
proteins to HEK-293EBOV-GP cells in comparison to vector 
control-transfected cells. However, we could not confirm 
the binding of DC-SIGN-Fc and DC-SIGNR-Fc. Siglec-3, 
which only showed weak binding to the EBOV-GP-coat-

ed ELISA plates, exhibited similar binding in this cellular 
assay. For NKp30-Fc, NKG2D-Fc, E-selectin-Fc, PSGL-
1-Fc, CD44-Fc, and CD24-Fc, we observed no increased 
binding to HEK-293EBOV-GP cells exceeding the staining 
of endogenous ligands expressed by HEK-293 vector-
transfected controls, confirming the ELISA results. Ex-
tending this analysis, we also did not observe enhanced 
binding of recombinant Siglec-2-Fc, Siglec-4-Fc, Siglec-
10-Fc, L1-CAM-Fc, or TIM-1-Fc proteins to HEK- 
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Fig. 3. Treatment of EBOV-GP-transfected CHO-K1 cells with 
heparanase I and III or sialidase. EBOV-GP- or vector control-
transfected CHO-K1 cells were pretreated with heparinase I and 
III, or sialidase, or left untreated as a control. The binding of the 
indicated fusion proteins to the differential treated cells was ana-
lyzed by at least 2 experiments. Shown are the fluorescence inten-
sities for binding (a), the corresponding s ratios of GP- and vector-
transfected CHO-K1 cells (b) in relation to the respective ratio in 

binding to vector control- (c) and GP-transfected (d) cells, which 
had been pretreated with either heparinase or sialidase. Signifi-
cance was calculated by 2-sided t test for paired samples, compar-
ing the binding of recombinant proteins to vector- and GP-trans-
fected cells. (*): p < 0.1; *: p < 0.05; **: p < 0.001. These results were 
also used for indicating significance of ratios. EBOV-GP, Ebolavi-
rus glycoprotein.
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293EBOV-GP cells (data not shown). Interestingly, we even 
observed reduced binding of some fusion proteins when 
comparing HEK-293EBOV-GP to vector control-transfect-
ed cells. For example, binding of NKG2D to its cellular 
ligands was reduced in GP-transfected HEK-293 cells, 
which suggests a reduced availability of its ligands MIC-
A/B, as it has been demonstrated before [48].

In addition to the HEK-293EBOV-GP cells, we used EB-
OV-GP-transfected CHO-K1 cells to assess the binding 
of some of the recombinant fusion proteins to EBOV-GP 
in a nonhuman cell line (Fig. 2b and online suppl. Fig. 2). 
HEK-293 and CHO share similar posttranslational pro-
tein modifications in the endoplasmic reticulum and Gol-
gi apparatus [49]. More importantly, CHO cells are able 
to produce complex types of recombinant proteins with 
human-compatible glycosylation. CHO cells, however, 
do not express Gal α-2,6-sialyltransferase, α-1,3/4-
fucosyltransferase, or β-1,4-N-acetylglucosaminyl-
transferase III (GnT-III), which are enzymes expressed in 
human cells [50–52]. In agreement with the previous re-
sults, we found enhanced binding of NKp44-Fc, NKp46-
Fc, L-selectin-Fc, P-selectin-Fc, and Siglec-7-Fc to EB-
OV-GP-transfected CHO-K1 cells. Again, DC-SIGN-Fc 
and DC-SIGNR-Fc did not show significant binding 
compared to control cells in this cellular assay. Also, we 

found no enhanced binding of PSGL-1-Fc, NKp30-Fc, 
and Siglec-3-Fc, which is in agreement with the results of 
the ELISAs. However, in contrast to results mentioned 
above we observed strongly enhanced binding of E-selec-
tin to EBOV-GP-transfected CHO-K1 cells. In summary, 
the cellular assays confirmed NKp44, NKp46, L-selectin, 
P-selectin, Siglec-7, and Siglec-5 as binding partners for 
EBOV-GP.

Binding of the Chimeric Soluble Receptors to Their 
Ligands Depends on Sialic Acid and Heparan Sulfate
P- and L-selectin recognize clustered sulfated O-sialo-

glycan epitopes, for example, on the proteoglycan CD44. 
L-selectin, like other selectins, recognizes sialylated Lew-
isx and sialylated Lewisa glycans (sLea; Neu5Acα2–
3Galβ1–3[Fucα1–4] GlcNAc) [53, 54]. All 3 selectins rec-
ognize sulfated and sialylated derivatives [54]. In addi-
tion, L-selectin binds to O-glycosylated proteins [55]. 
Many enveloped viruses, for instance, influenza virus and 
Newcastle disease virus (NDV), bind to sialic acid resi-
dues located on the surface of target cells [32]. In order to 
analyze the involvement of sialic acid and heparan sulfate 
moieties in the binding of the fusion proteins to EBOV-
GP-transfected CHO-K1 cells, we treated the GP- and 
mock-transfected cells with heparanases I and III, and si-
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alidase. Interestingly, GP-transfected cells showed in-
creased binding in terms of median fluorescence inten-
sity of all fusion proteins shown compared to vector con-
trol cells (Fig. 3 top and online suppl. Fig. 3). Following 
treatment, we analyzed the impact of these enzymes on 
the binding of fusion proteins to EBOV-GP- and mock-
transfected CHO-K1 cells (Fig.  3, middle and bottom; 
and online suppl. Fig. 3). Treatment with heparanase re-
sulted in a significantly decreased binding of selectins to 
EBOV-GP-transfected CHO-K1 cells. Similarly, binding 
of NKp44 and NKp46 was reduced following heparanase 
treatment, as was expected since it is known that heparan 
sulfate is a ligand for these receptors [22, 23]. In contrast, 
binding of Siglec-7 was less (though still significantly) af-
fected by heparanase, yet strongly sensitive to sialidase I/
III treatment, which reduced its binding significantly by 
more than 90%, as can be explained by the fact that sialic 
acid is the main ligand of Siglecs.

Binding of Fusion Proteins to Lentiviral Particles 
Displaying EBOV-GP
The GP glycoprotein serves the EBOV to infect host 

cells by binding to various docking proteins. After trans-
duction, viruses can incorporate or co-package many 
hosts cell-derived nonviral surface proteins into their 

newly formed envelope [56–58]. Lately, this was demon-
strated for infectious clones of HIV-1 propagated in 
HEK-293T cells [59]. We therefore produced recombi-
nant lentiviral particles in HEK-293 cells stably transfect-
ed either with EBOV-GP or empty vector control. After 
concentrating the lentiviral particles, they were used for 
coating ELISA plates and coating efficiency was con-
firmed using an anti-GP antibody (Fig. 4). We then tested 
the binding of the different fusion proteins to the coated 
lentiviral particles (Fig. 4). We found significant binding 
to lenti-EBOV-GP by NKp44-Fc, NKp46-Fc, E-selectin-
Fc, L-selectin-Fc, P-selectin-Fc, Siglec-7-Fc, Siglec-5-Fc, 
Siglec-3-Fc, DC-SIGN-Fc, and DC-SIGNR-Fc, essential-
ly confirming our previous results. Consistent with ex-
periments reported above, we found no binding of 
NKp30-Fc, CD24-Fc, or syndecan-1-Fc to the lenti-EB-
OV-GP. TIM-1-Fc bound to the lentiviral particles irre-
spective of their content of EBOV-GP. This may be due 
to the fact that TIM-1 binds to PtdSer, which originated 
from the cell surface of host HEK-293 cells and was taken 
up by the virus envelope [57]. Likewise, CD44-Fc and PS-
GL-1-Fc interacted with vector envelopes independent of 
GP expression, which can be explained by their binding 
to cellular ligands from the host plasma membrane, which 
were taken up by the lentiviral envelopes.
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HPV-L1 Binds NCRs, Selectins, and Inhibitory Siglecs
To investigate if the proteins that we found to interact 

with EBOV-GP also bind to other viral surface proteins, 
we assessed the binding of the fusion proteins to purified 
human papillomavirus (HPV)-L1 virus-like particles 
(online suppl. Fig. S4). Interestingly, we observed specific 
binding of NKp44-Fc, NKp46-Fc, P-selectin-Fc, L-selec-
tin-Fc, Siglec-7-Fc, and Siglec-5-Fc and no binding of 
NKp30-Fc, DC-SIGN-Fc, DC-SIGNR-Fc, E-selectin-Fc, 
Siglec-3-Fc, or PSGL-1-Fc, a pattern which was similar to 
the binding to EBOV-GP-pseudotyped lentiviral parti-
cles.

EBOV-GP Protects HEK-293 Cells from Lysis by 
Polyclonal NK Cells
Our data show that many NK cell receptors can inter-

act with EBOV-GP. Therefore, we wanted to test how the 
expression of GP can influence the killing of target cells 
by NK cells. We used HEK-293EBOV-GP or mock-trans-
fected HEK-293 cells as targets for primary NK cells ob-
tained from different donors in a 51Cr release assay. As 
shown in Figure 5, HEK-293EBOV-GP cells were signifi-
cantly less susceptible to NK cell-mediated lysis com-
pared to mock-transfected cells, suggesting that the pleio-
tropic effects of EBOV-GP on the cell surface have an 
overall suppressive result on NK cells. Altogether, these 
results suggest a crucial role of EBOV-GP in mediating 
immune escape of transduced/infected cells.

Discussion/Conclusion

Our data show that EBOV-GP binds to the chimeric sol-
uble proteins L- and P-selectin, Siglec-7 and Siglec-5, 
NKp44 and NKp46, and, to a lesser extent, to Siglec-3, DC-
SIGN, and DC-SIGNR, which are known cellular receptors 
for EBOV [37, 39, 60–62]. We were able to demonstrate the 
binding of DC-SIGN-Fc and DC-SIGNR-Fc to purified re-
combinant EBOV-GP on ELISA plates, but not to HEK-
293EBOV-GP cells. A possible explanation is that EBOV-GP, 
which is highly glycosylated in human host cells, interacts 
with neighboring surface proteins. This, in turn, will block 
many epitopes, which are recognized by recombinant fu-
sion proteins, including DC-SIGN-Fc and DC-SIGNR-Fc. 
In contrast, GP on the viral envelope remains free for inter-
action with both proteins. Like the HIV-1 gp120, the high-
ly glycosylated EBOV-GP utilizes the C-type lectin receptor 
DC-SIGN (CD209) to infect dendritic cells, which are a ma-
jor reservoir of EBOV [60–62]. We could not prove binding 
of TIM-1-Fc to HEK-293EBOV-GP cells or to purified EBOV-

GP, yet we showed binding of TIM-1-Fc to lentiviral par-
ticles displaying EBOV-GP on their envelope (lenti-EBOV-
GP), as well as to mock lentiviral particles. The binding of 
TIM-1-Fc to lentiviral particles irrespective of their content 
of EBOV-GP is due to the fact that TIM-1 binds to cohesive 
PtdSer, which was incorporated by the virus envelope. It 
originates from the inner plasma membrane of mock- or 
EBOV-GP-transfected HEK-293 cells [57]. TIM-3, TIM-4, 
and TIM-1 together inhibit HIV and EBOV release from 
infected cells [63]. TIM-1 also serves as a pattern recogni-
tion receptor on invariant NK cells, which mediate cell ac-
tivation by TIMs binding to PtdSer on the surface of cells 
undergoing apoptosis [64]. It is likely that TIM-3, an in-
hibitory checkpoint receptor on effector cells, binds also to 
PtdSer of the EBOV envelope [41, 42]. We hypothesize that 
the integration of PtdSer into the virus envelope plays also 
a role in infected patients. Here, TIMs will elicit eventually 
a strong reaction (cytokine storm) when they are triggered 
by their ligand PtdSer. This will depend on the amount of 
PtdSer available and on the activation of stimulating recep-
tors, which can cause that TIMs act as costimulatory recep-
tors [65]. For NK cells, this can imply that the inhibitory 
activity caused by interaction of GP with Siglecs is dimin-
ished, and thus they contribute to the uncontrolled cyto-
kine storm that has been observed after Ebola infection. 
This assumption is in line with reports showing a better 
survival of TIM1 double-knockout mice, which showed re-
duced cytokine release and better survival after infection 
with EBOV [66].

Our data show that L- and P-selectins and possibly also 
E-selectin bind to purified EBOV-GP coated on ELISA 
plates and to EBOV-GP-transfected cells (HEK-293 and 
CHO-K1). This is in line with recently published data that 
the viral particle gp120 of HIV-1 binds L-selectin (CD62L) 
[43, 44, 53, 67]. Similarly, human P-selectin glycoprotein 
ligand-1 is a functional receptor for enterovirus 71 [68]. 
Therefore, we believe that selectins play an important role 
in EBOV release from infected cells, as it has been shown 
for HIV, which binds L-selectin and CD34 to co-localize 
with ADAM17 [43, 44, 53, 67].

Siglecs often function as sensor for sialylated glycopro-
teins. Through their intracellular ITIM, they induce 
strong inhibitory signaling upon binding to different 
linkages of sialic acid [69]. Interestingly, this mechanism 
is used by tumor cells and pathogens to escape the im-
mune system, by adding sialic acid residues to their gly-
can structures, thus highlighting that the sialic acid-Siglec 
interaction is key to the immune function against patho-
gens and cancer [70, 71]. NK and other effector cells ex-
press various Siglecs, for example, Siglec-3, 7, 8, and 9 [72, 
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73]. We observed binding of Siglec-7 and -5 to EBOV-GP 
in ELISA as well as to CHO-K1 EBOV-GP-transfected 
cells and lentiviral particles. Siglec-7 binding to EBOV-
GP-transfected CHO-K1 is dependent on 2,6-sialic acid 
linkage, since treatment with sialidase reverts the bind-
ing. We have not tested Siglec-8 and Siglec-9, but assume 
that Siglec-8 and Siglec-9 might also bind to GP because 
of their similar avidity for 2,6- and 2,3-sialic acid linkages. 
In addition, they are MHC class I-independent inhibitory 
receptors on immune effector cells, which – when stimu-
lated – prevent the activation of these cells.

The current study shows that Ebola-GP binds to several 
immune receptors. Notably, the binding differs between the 
principal assays: for example, EBOV-GP-overexpressing 
HEK-293 cells do not bind to E-selectin-Fc, while CHO-K1 
cells bind strongly (Fig. 2). This might be explained by dif-
ferences in the nature of these cells. EBOV-GP is highly 
glycosylated and therefore undergoes strong interactions in 
cis. As a consequence, there can be massive rounding and 
detachment of infected/transfected cells [74–76]. Concom-
itantly, the expression of receptors differs qualitatively and 
quantitatively between human HEK-293 and hamster 
CHO-K1 cells. Further, there are differences in glycosyl-
ation and accessibility of these receptors. Finally, human 
cells are more susceptible for EBOV infection than hamster 
cells. All these factors contribute to a (slightly to pro-
nounced) different binding behavior of our recombinant 
proteins. For all these reasons, the binding behavior differs 
between cell lines from 2 different species.

NK cells are effector cells of the early innate immune 
response that play a critical role in the lysis of virus-in-
fected cells and tumor cells without requiring prior anti-
gen stimulation [77, 78]. We and others have previously 
shown the interaction of NCRs with HA-neuraminidase 
of NDV, poxviral HA, and influenza viruses [24, 29, 32]. 
Recently, it was reported that blocking NKp30 by a spe-
cific antibody reduced lysis of EBOV-infected dendritic 
cells by NK effector cells [14]. Our data show that NKp44 
and NKp46 but not NKp30 directly bound with EBOV-
GP if tested as soluble hIgG1 fusion proteins, while all 3 
NCR Fc fusion proteins stained endogenous ligands on 
control cells. This interaction was likely dependent on 
heparan sulfate as it was reduced by heparinase treatment 
(see Fig. 4). Heparan sulfate binds many microorganisms 
and interacts with many viral envelope components, for 
example, from HIV-1 [79], hepatitis viruses [80, 81], fla-
viviruses [82, 83], vaccinia virus [84], HPV [85], human 
herpesvirus [86], HSV-1 [87], and EBOV [88]. The bind-
ing of NCRs to EBOV-GP as well as other viral envelope 
proteins led us to examine their binding also to HPV-L1. 

NKp44 and P- and L-selectins showed strong binding to 
HPV-L1, while NKp46 and Siglec-5 and Siglec-7 showed 
low binding. Therefore, we hypothesized that NK cell re-
ceptors play a key role in the recognition of structural 
glycoproteins of virtually any virus by NK effector cells 
and thus facilitate the elimination of pathogens.

The mechanism by which EBOV-GP modulates the ac-
tivity of NK cells may simultaneously involve (i) the binding 
of different inhibitory Siglecs, (ii) the interaction with the 
activating receptors NKp44 and NKp46, and (iii) a reduc-
tion of NKG2D ligands (MICA/B) as we observed a lower 
binding of NKG2D-Fc chimeric soluble receptors to EB-
OV-GP-transfected HEK-293 cells, as has been reported 
before [48]. The net result of the expression of EBOV-GP 
by HEK-293 cells was a reduction in NK cell-mediated lysis. 
This suggests that the reduced stimulation of NKG2D to-
gether with the engagement of inhibitory Siglecs outweighs 
the binding to the activating receptors NKp44 and NKp46.

For the observed cell growth inhibition of NK cells in 
response to EBOV-GP interaction, the binding to inhibi-
tory Siglec receptors (e.g., Siglec-7 or Siglec-9) is decisive. 
In mock-transfected HEK cells, only heparan sulfate 
chains of proteoglycans, including CD44, will interact 
with NKp44 or NKp46 receptors of NK cells and thus ac-
tivate them, which leads to an efficient cell kill. In GP-
transfected cells, these groups are also available, but they 
are engaged by the cis interaction with GP. Therefore, 
these glycoproteins are less active in the interaction with 
activating receptors on NK cells, for example, NCRs and 
L-selectin. In addition, GP proteins bind with high affin-
ity to inhibitory receptors, such as Siglecs. This causes an 
altered balance of activating and inhibitory receptors and 
in summary reduces the activation of NK cells. However, 
these thoughts are to be complemented with experiments 
involving the blockade of NK cell cytolytic activity to ex-
plore how the sublying forces act together.

The reduced cell kill activity caused by the altered bal-
ance in NK cells based on activating and inhibitory recep-
tors will be explored by blocking experiments in the fu-
ture. The interaction of highly glycosylated GP in cis with 
other proteoglycans and their heparan sulfate chains will 
influence the interaction between target and effector cells 
(NK cells). Although it has been described that infection 
with EBOV is able to induce massive NK apoptosis, thus 
avoiding NK function and impairing NK-mediated ef-
fects [89], we have not observed massive apoptosis in our 
NK cells. We can only speculate that the GP load on our 
transfected HEK cells was lower than that of cells infected 
with the wild-type virus [24], which helped the NK cells 
to avoid induction of apoptosis.
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To explain the reduced killing of GP-infected cells by 
NK cells (Fig. 5), we hypothesize that GP may interact in 
cis with certain adhesion molecules by binding to their 
heparan-sulfate chains. This is important, as in mock-
transfected HEK-293 cells the heparan sulfate chains of 
proteoglycans, including CD44, will interact with NKp44 
or NKp46 receptors of NK cells and thus activate them, 
which leads to an efficient cell kill. However, when en-
gaged by the cis interaction with GP, these glycoproteins 
are less active in the interaction with activating receptors 
on NK cells, for example, NCRs and L-selectin. In addi-
tion, GP proteins bind with high affinity to inhibitory re-
ceptors, such as Siglec-3 or Siglec-7. This causes an al-
tered balance of activating and inhibitory receptors and 
in summary reduces the activation of NK cells and thus 
prevents interaction and subsequent polarization of ef-
fector cells with their virus-infected targets. Alternatively, 
the blockade of receptors responsible for apoptosis in-
duction may also be the reason for reduced killing of in-
fected target cells, as described for filovirus particles [90]. 
More in-depth knowledge about the mechanisms by 
which EBOV-GP-expressing cells are able to directly 
switch off NK cell functions will certainly be helpful to 
develop an efficient therapy for EBOV infections [91].

Finally, we propose a possible therapeutic treatment 
for EBOV infections. We hypothesize that an anti-GP an-
tibody retargeted to neuraminidase activity could reduce 
the virus’s sialylation, thus reducing the binding to inhib-
itory Siglecs of immune effector cells and increasing the 
recognition of their activating receptor NCRs (see Fig. 4). 
This will bring about a higher sensitivity toward immune 
effector cells. Such a therapeutic approach is certainly in-
teresting and must be followed up by future experiments.
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