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Abstract
1.	 Convolutional neural networks (CNNs) and deep learning are powerful and ro-

bust tools for ecological applications, and are particularly suited for image data. 
Image segmentation (the classification of all pixels in images) is one such appli-
cation and can, for example, be used to assess forest structural metrics. While 
CNN-based image segmentation methods for such applications have been sug-
gested, widespread adoption in ecological research has been slow, likely due 
to technical difficulties in implementation of CNNs and lack of toolboxes for 
ecologists.

2.	 Here, we present R package imageseg which implements a CNN-based work-
flow for general purpose image segmentation using the U-Net and U-Net++ 
architectures in R. The workflow covers data (pre)processing, model training and 
predictions. We illustrate the utility of the package with image recognition mod-
els for two forest structural metrics: tree canopy density and understorey veg-
etation density. We trained the models using large and diverse training datasets 
from a variety of forest types and biomes, consisting of 2877 canopy images 
(both canopy cover and hemispherical canopy closure photographs) and 1285 
understorey vegetation images.

3.	 Overall segmentation accuracy of the models was high with a Dice score of 
0.91 for the canopy model and 0.89 for the understorey vegetation model (as-
sessed with 821 and 367 images respectively). The image segmentation models 
performed significantly better than commonly used thresholding methods, and 
generalized well to data from study areas not included in training. This indicates 
robustness to variation in input images and good generalization strength across 
forest types and biomes.
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1  |  INTRODUC TION

Technological advances over the last few decades have led to un-
precedented increases in the amount of data available for ecological 
research, necessitating efficient and reproducible analytical work-
flows (Christin et al.,  2019). Methodological developments in ma-
chine learning paired with improvements in computational power 
have enabled an increasingly widespread use of deep learning meth-
ods to make use of these data in a multitude of ecological applica-
tions, particularly for visual recognition (Kattenborn et al., 2021).

Convolutional neural networks (CNN) have been at the core 
of many of these innovations for their ability to analyse complex 
nonlinear data and performance at near-human or even exceed-
ing human capabilities in specific tasks (Grace et al.,  2018; Mnih 
et al., 2015). CNNs are multilayered artificial neural networks that 
consist of an input layer, stacked hidden layers (e.g. convolutional 
and pooling layers) and the final output layer (Minaee et al., 2021). 
The number of the hidden layers defines the depth of the network. 
Convolutional layers use filters to set every pixel in relation to its 
surrounding pixels, producing so-called feature maps. Feature maps 
are then downsampled and generalized using pooling layers (LeCun 
et al., 2015). Pooling reduces the dimensions of feature maps and 
therefore the number of parameters to learn. Convolutional layers 
introduce translation equivariance, whereas pooling layers intro-
duce translation invariance.

One prominent domain of CNNs is image segmentation, which 
classifies each pixel of an image, providing locality information for 
each label class. Here, we primarily focus on two ecological appli-
cations of image segmentation in the context of forest structural 
metrics from colour photographs, the assessment of (i) tree canopy 
density (canopy closure and canopy cover) and (ii) understorey vege-
tation density. Moreover, we provide an outlook on how the package 
imageseg can be used for grayscale images or more complex multi-
class applications.

Canopy density and understorey vegetation density are im-
portant metrics of forest structure and are therefore important for 
a number of ecological applications from biodiversity surveys to 
forest monitoring and ground-truthing remote sensing data (Dupuy 
& Chazdon, 2008; Latifi et al., 2016). Canopy density is related to 

canopy architecture, forest condition, carbon and stand density, and 
affects light regime and microhabitat structure (Jennings et al., 1999). 
Understorey vegetation is composed of immature trees, shrubs and 
herbaceous vegetation, and is thus linked to forest regrowth and 
plant succession (e.g. after disturbances), while also providing es-
sential resources and shelter for wildlife (McShea & Rappole, 1992; 
Nilsson & Wardle, 2005). Both measures are thus related to carbon 
sequestration and storage, biodiversity conservation and ecosystem 
regeneration. Furthermore, due to their importance for forestry and 
agriculture, both measures are also economically relevant.

Traditionally, tree canopy density was often assessed using man-
ual methods such as spherical densiometers or photometric tech-
niques requiring specialist equipment (see Paletto & Tosi, 2009 for 
comparison of methods). Traditional methods for quantification of 
understorey vegetation density include vegetation density boards 
or profile boards (Nudds,  1977). These methods are slow, labor-
intensive and often require special equipment. Moreover, manual 
approaches are rarely reproducible, can be subject to observer bias 
and dependent on experience. Remote sensing technologies such as 
airborne or terrestrial laser scanning have been successfully used to 
determine forest structural attributes (Campbell et al., 2018; Latifi 
et al.,  2016; Li et al.,  2021; Wing et al.,  2012; Zong et al.,  2021). 
These methods, however, whilst powerful and accurate, remain con-
strained by logistical challenges and often prohibitive costs (Hummel 
et al., 2011).

Deep learning methods have been developed to help ad-
dress these shortcomings and streamline analyses of forest struc-
tural metrics using easy-to-collect digital photographs (Abrams 
et al., 2019; Díaz et al., 2021; Li et al., 2020). The approaches out-
lined in Abrams et al. (2019) and Li et al. (2020) apply image segmen-
tation based on the U-Net architecture introduced by Ronneberger 
et al. (2015), whereas the model of Diaz et al. (Díaz et al., 2021) uses 
deep learning regression to assess plant area index (PAI) and is thus 
not an image segmentation approach (i.e. it does not retain pixel-
level information). These deep learning methods achieve higher 
accuracy than manual methods whilst being much faster and more 
cost-efficient (Abrams et al., 2019; Li et al., 2020). Uptake of deep 
learning methods in ecological applications, however, has been con-
strained by technical difficulties in implementation and the lack of a 

4.	 The package and its workflow allow simple yet powerful assessments of forest 
structural metrics using pretrained models. Furthermore, the package facilitates 
custom image segmentation with single or multiple classes and based on colour 
or grayscale images, for example, for applications in cell biology or for medical 
images. Our package is free, open source and available from CRAN. It will enable 
easier and faster implementation of deep learning-based image segmentation 
within R for ecological applications and beyond.

K E Y W O R D S
canopy density, canopy hemispherical photography, computer vision, convolutional neural 
network, forest monitoring, machine learning, UNet, vegetation density
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readily available workflow or software package to easily apply these 
methods. Furthermore, training datasets are often relatively homo-
geneous (i.e. from a single forest ecosystem), potentially impairing 
applicability of such models is across ecosystems.

Here, we present the R package imageseg, which implements a 
complete workflow for binary and multiclass image segmentation 
using deep learning models implemented in TensorFlow (Abadi 
et al., 2016). It works with grayscale as well as colour input images. 
We illustrate the workflow with new models for two forest struc-
tural metrics, canopy density and understorey vegetation density. 
Both models were built using the largest and most diverse dataset 
for these applications to date. The canopy density model is the first 
to be explicitly trained on both canopy closure and canopy cover 
images. Both models yielded highly accurate predictions. The pre-
trained models for canopy and understorey vegetation density, 
along with the simple workflow of imageseg, will enable faster and 
more reproducible assessment of these important forest structural 
metrics from easily obtainable data.

The imageseg R package presents a critical advancement in 
deep learning-based image segmentation. While imageseg and the 
pretrained models are particularly relevant to applied research in 
forestry, ecology and conservation, we believe the accessibility and 
versatility of the package and workflow can facilitate the develop-
ment of custom image segmentation workflows in other fields such 
as microscopy or cell biology.

2  |  PACK AGE DESCRIPTION

2.1  |  Overview

We present imageseg, an R package which implements a general-
purpose image segmentation workflow based on convolutional neu-
ral networks using the U-Net architecture (Ronneberger et al., 2015) 
or the U-Net++ architecture (Zhou et al., 2018). The package is suit-
able for binary and multiclass image segmentation for both grayscale 
and colour images. Models are implemented in R via Keras (Allaire 
& Chollet, 2021; Chollet et al., 2015) using a TensorFlow backend 
(Abadi et al., 2016).

The workflow covers data processing, model training and pre-
dictions for image segmentation tasks applied to digital images. In 
total, the package contains eight main functions for image process-
ing, model creation, predictions, as well as the extraction of relevant 
information from predictions (see Table 1). The package workflow is 
explained in a detailed vignette and illustrated in Figure 1.

Our package is intended for two main purposes:

1.	 General purpose model training for image segmentation, in-
cluding both de novo training with custom model architectures 
and continued training of existing models.

2.	 Model predictions using pretrained models that allow users to 
easily perform image segmentation on digital images. We provide 
pretrained models for two types of forest structural metrics (tree 
canopy density and understorey vegetation density) along with 
respective training data for download.

Here, we demonstrate the utility of the package for image seg-
mentation and illustrate its application for forest structural metrics, 
namely a model for canopy density (differentiating canopy and sky) 
and a model for understorey vegetation density. Both of these ap-
plications perform binary classifications of all pixels in input images. 
In addition, the imageseg package also supports multiclass image 
segmentation (see the example showing the detection of bacteria, 
erythrocytes and background in dark-field microscopy images in 
Figure 2).

2.2  |  Data processing

The imageseg package accepts jpg, tif and png images as input. Image 
processing in R is mainly performed by the magick package (the R 
interface to ImageMagick, Ooms (2021)), allowing for easy viewing 
of images in R.

Data processing is divided into a logical sequence of steps, im-
plemented in select functions (see Table 1 and Figure 1). resizeImages 
resizes original images to the dimensions expected by the models 
while also allowing flexibility to prepare input for custom models. The 
function can optionally crop images or remove uninformative image 

Function Description

resizeImages Resize and save images

findValidRegion Subset image to valid (informative) region

loadImages Load image files with magick

dataAugmentation Image data augmentation: rotating and mirroring images, adjusting 
colours

imagesToKerasInput Convert magick images to keras input (4D arrays)

u_net Create a U-Net architecture

u_net_plusplus Create a U-Net++ architecture

loadModel Load TensorFlow model and custom objects from hdf5 file

imageSegmentation Model predictions from images based on TensorFlow model

TA B L E  1  List of functions in the 
imageseg package
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regions. The findValidRegion function can help identify the valid (in-
formative) image region for cropping of images (e.g. for removing un-
informative black borders from hemispherical canopy photos taken 
with fisheye lenses) by converting images to grayscale, threshold-
ing and identifying informative rows/columns above the threshold. 

loadImages loads images into R as magick objects, allowing for easy 
viewing of images in R. dataAugmentation performs optional and ad-
justable data augmentation (rotation, mirroring, modulating bright-
ness, saturation and hue) to increase the amount and variability of 
available training data and thus the robustness and invariance of the 

F I G U R E  1  Workflow of the R package imageseg showing the main steps and their relevant functions. The steps at the top show the 
model training workflow and the steps at the bottom show the model deployment workflow.

F I G U R E  2  Example input and output of imageseg models, with two examples per model type (input left, output right). The canopy 
and understorey vegetation density models convert colour images to binary predictions of sky/vegetation and red flysheet/vegetation 
respectively. The package workflow is furthermore suitable for custom image segmentation tasks. The examples at the bottom show a 
multiclass image segmentation of a (colour) microscopy image, and a binary segmentation of a (grayscale) ultrasound breast cancer scan 
image (see package vignette for code and data sources).
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CNN (only relevant for model training, not for model predictions). 
imagesToKerasInput converts the images to model input required by 
the CNN (4D array with dimensions: image–row–column–channel).

2.3  |  Model training

Users who wish to train their own model can create a U-Net-based 
architecture with the u_net function, which was slightly modified 
from the original function in the platypus package (Maj, 2020). It sup-
ports flexible image sizes, data types, number of U-Net blocks, lay-
ers per block, convolution filters, the optional inclusion of dropout 
layers and supports binary and multiclass classifications (thus also 
allowing general purpose image segmentation as shown in Figure 2).

Furthermore, users can create U-Net++ architectures with the 
u_net_plusplus function. It was ported from Python code on GitHub 
(Sokol, 2022).

As mentioned above, the dataAugmentation function can perform 
various data augmentation tasks prior to model training to increase 
the amount and diversity of available training data. Users who wish 
to only apply pretrained models can skip the model training steps.

2.4  |  Model predictions

loadModel loads a pretrained model from a hdf5 file (containing the 
entire architecture and training state of the model in a single file) 
and ensures the relevant custom objects are loaded (custom loss 
functions and metrics). imageSegmentation is the main function for 
predictions and performs image segmentation using the model and 
images provided by the user. It returns the pixelwise probabilities for 
the predictions, the classified image segmentation masks based on 
the input images, and summary tables. In binary predictions (such 
as the vegetation structure models we present), these summaries 
represent the desired vegetation metrics (openness/gap fraction) 
along with their inverse (canopy closure/cover, or understorey veg-
etation density). It allows for adjustable masking of hemispherical 
canopy images (e.g. circular masks to exclude uninformative corners 
in hemispherical images). In models with multiple output classes, it 
returns classified image segmentation masks, probability layers for 
each class, and summarizes prevalence and probabilities of all pre-
dicted classes.

3  |  VEGETATION STRUC TURE MODEL S

We demonstrate the utility of the imageseg package for image seg-
mentation of two types of forest structural metrics: a model for tree 
canopy density (differentiating canopy and sky in canopy cover im-
ages and hemispherical canopy closure images) and a model for un-
derstorey vegetation density. Both models use colour photographs 
as input and were trained on the largest and most diverse training 
dataset for these forest structural metrics to date.

Here, we follow Jennings et al. (1999) in defining canopy closure 
as the proportion of sky hemisphere obscured by vegetation when 
viewed from a single point. It is commonly recorded using canopy 
hemispherical photography (CHP), for example, via fisheye lenses. 
In contrast, canopy cover is the percent forest floor occupied by the 
vertical projection of tree crowns. It is recorded using canopy cover 
photography (CCP) (Chianucci, 2016; Macfarlane et al., 2007). While 
cameras cannot technically record the exact vertical projection of 
tree crowns (due to the camera sensor being essentially a single 
point), the narrower field of view and higher focal length ensure the 
canopy cover images approximate actual canopy cover well.

We define understorey vegetation density analogously to can-
opy cover as the percent area covered by the lateral obstruction 
from understorey vegetation. It is assessed using a red flysheet of 
1 × 1.5 m held at a distance of 10 m from the camera. The red back-
ground colour was chosen to provide a strong colour contrast with 
vegetation. The method is similar to the cover board photography 
method in Campbell et al. (2018).

3.1  |  Model architecture and training

Both models (canopy and understorey vegetation density) share 
the same underlying U-Net architecture (Ronneberger et al., 2015). 
They use colour images as input and only differ in the dimensions 
of the input images. Both models perform binary classification with 
one output class. The model architecture is a standard U-Net with 
32 feature maps in the first convolution (the number of feature 
channels doubles at every downsampling step along the contracting 
path). We chose U-Net over more recent or more complex architec-
tures like U-Net++ because it is still a capable and flexible model ar-
chitecture which is well suited to the relatively simple segmentation 
tasks at hand and has lower memory requirements during training 
than U-Net++ models of comparable size.

During model training, we used BCE-Dice loss (sum of binary 
cross-entropy and soft-Dice loss) and the ‘Adam’ model optimiza-
tion algorithm (Kingma & Ba, 2017) with the following parameters: 
initial learning rate  =  0.001, Beta_1  =  0.9, Beta_2  =  0.999, decay 
rate = 0. To avoid overfitting, we reduced the learning rate by a fac-
tor of 5 when validation loss stopped decreasing (with patience 3), 
employed an early stopping strategy with patience 5 and used the 
model weights from the epoch with the lowest validation loss for 
the final model (Caruana et al., 2000). We used a batch size of 12 
for the canopy model and 16 for the understorey model. Maximum 
number of epochs was set to 100, but early stopping led to shorter 
model training.

In all models, 70% of the original images were used for training, 
10% for model validation during training and 20% of images were 
used as test data for model evaluation. Training images were sub-
ject to data augmentation to increase robustness of the network and 
invariance (e.g. to lighting conditions and image geometry). Model 
accuracy was evaluated using two similarity scores, Dice similar-
ity coefficient and Jaccard index. See Table 2 for details on model 
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training and results. We assessed the generalization strength of the 
canopy and understorey models by holding out data from individ-
ual study areas, fitting models with the remaining data and evalu-
ating model performance against the withheld data (see Supporting 
Information S3 for details).

Training was conducted in R 4.1.2 with keras 2.4.3 and 
TensorFlow 2.2.0 on a Windows workstation with 128 Gb of RAM 
and an Nvidia GeForce GTX1660 Super GPU.

3.2  |  Training data

Compared to previous approaches, our models use a larger and 
more diverse training dataset. Both canopy and understorey data 
have broader geographical scope by including training data from 
Viet Nam, Laos, Sabah (Malaysian Borneo), and in the case of CCP 
data, Germany. The canopy model was trained on CCP and CHP 
images. Images were taken under varying illumination conditions. 
Image masks were created manually in the GNU Image Manipulation 
Program (GIMP; The GIMP Development Team, 2019). See Table 2 
and Supporting Information S1 for more details on the training data 
used in both models and their processing.

3.2.1  |  Canopy model

For the canopy model, we used a total of 4109 canopy photo-
graphs (and their respective segmentation masks). Of these, 1310 
were hemispherical CHP images (from Sabah, Malaysian Borneo) 
and 2799 were CCP images (from Malaysia, Viet Nam, Laos and 
Germany). Sixty-nine of the CCP images were sky photos for which 
we assessed segmentation accuracy separately.

CHP images cover multiple habitat types along a gradient from 
primary tropical rainforest, over secondary forest subjected to vary-
ing degrees of logging, to oil palm plantations within the Stability of 
Altered Forest Ecosystems (SAFE) project area in Sabah, Malaysian 

Borneo (Ewers et al.,  2011). CCP images cover primary and sec-
ondary tropical rainforests in three countries (along an elevational 
gradient from 60 m to 1420 m a.s.l.), and also include temperate co-
niferous and mixed mountain forests of the Bavarian Forest National 
Park, Germany (covering an elevational gradient from 600 to 1450 m 
a.s.l; Cailleret et al., 2014).

All canopy images were resized to 256 × 256 pixel resolution 
while preserving the original aspect ratio (thus slightly cropping 
the rectangular original images to obtain square images). We in-
creased the number of images available for training and validation 
via data augmentation, which included image rotation (90, 180 and 
270 degrees) and mirroring along the horizontal and vertical axes, 
resulting in a total of 17,262 images for training and 411 for vali-
dation (see Table 2). We used 821 unaugmented images for model 
evaluation.

For reference, we compared the results of the canopy model with 
threshold-based image segmentation results from the R packages 
image.Otsu and coveR (Chianucci et al., 2022; Wijffels et al., 2020).

3.2.2  |  Understorey model

For the understorey vegetation density model, we used 1835 im-
ages and their respective segmentation masks (866 from Malaysia, 
842 from Viet Nam and 127 from Laos). Images were taken of a 
1 × 1.5 m red flysheet held at a distance of 10 m from the cameras 
and cropped to contain only the extent of the flysheet (and the 
vegetation covering it). Cropping could not be automated due to 
high variation in images and was thus done manually (the need for 
cropping can be avoided if images are taken zoomed in and the 
flysheet fills the image frame). All understorey images were resized 
to 160 × 256 pixels (aspect ratio 5:8). Data augmentation included 
mirroring images along the vertical axis (to preserve image orienta-
tion), resulting in a total of 2570 images for training and 183 images 
for validation. Model evaluation was done with 367 unaugmented 
images (see Table 2).

Canopy model
Understorey 
vegetation model

Original images 4109 (CHP: 1310, CCP: 2799) 1835

Training imagesa 2877 (17262) 1285 (2570)

Validation imagesb 411 183

Test imagesb 821 367

Image size (W × H) 256 × 256 160 × 256

Data augmentation

Rotation 90°, 180°, 270° —

Mirroring Horizontal and vertical axes Vertical axis

Dice score 0.91 (CHP: 0.91, CCP: 0.91) 0.89

Jaccard index 0.86 (CHP: 0.85, CCP: 0.86) 0.84

aBefore (after) data augmentation.
bWithout data augmentation (only original images).

TA B L E  2  Overview of training data 
and results of the canopy density and 
understorey vegetation density models
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3.3  |  Model results

The canopy model achieved an overall Dice similarity coefficient of 
0.91 and Jaccard index of 0.87. The respective scores were 0.91 and 
0.85 for CHP images, and 0.91 and 0.86 for CCP images. Both indi-
ces were 1 for sky photos. These scores are considerably higher than 
those achieved in the image segmentation methods implemented in 
the R packages coveR and image.Otsu, which had overall Dice co-
efficients of 0.80 and 0.66 and Jaccard indices 0.66 and 0.49 re-
spectively. See Supporting Information S4 for more details on the 
method comparison.

The understorey vegetation density model achieved an overall 
Dice coefficient of 0.89 and Jaccard index of 0.84 (Table  2). See 
Figure 2 and Supporting Information S2 for additional examples of 
model input and output of both models.

The models in which individual study areas were withheld as a 
test of generalization strength performed well on the withheld data, 
with Dice scores only 0.02–0.03 units lower than in the global model, 
even if the model was only trained with tropical rainforest images 
and predicted to images from temperate forests in Germany. Even 
for CHP data, Dice score was only 0.10 lower, despite this model 
only being trained on CCP data. This suggests overall good general-
ization strength to unseen data, tolerance to variable image geom-
etry and no overfitting. See Supporting Information S3 for details.

3.4  |  Performance

Model predictions can be created quickly with standard hardware 
and on CPU alone. A laptop with an Intel i7-7500U CPU created 
predictions for about 100 canopy images per minute. A workstation 
with a dedicated graphics card created predictions for >1000 images 
per minute.

4  |  APPLIC ATION E X AMPLES

Our pretrained forest structure models are suitable for quickly 
deriving habitat metrics from easy-to-collect data using powerful 
CNNs. The diversity of the model training datasets allows for greater 
flexibility and generalization strength than previous models. They 
can be applied to record canopy cover and vegetation density in bio-
diversity studies (Asad et al., 2020; Tilker et al., 2020), for ground-
truthing in remote sensing applications (Campbell et al.,  2018; 
Hansen et al.,  2019), or in monitoring of forest pathology, forest 
conditions or stresses (e.g. under drought conditions). Researchers 
in crop sciences might also find such models helpful for assessments 
of crop growth using photographic data.

Furthermore, the package and workflow are not restricted to 
forest structural metrics and binary classifications, but are universal 
and can also be applied to image segmentation tasks in other do-
mains, including for multiclass image segmentation (e.g. in micros-
copy or cell biology, see Figure  2). The package and its workflow 

were designed to be accessible and simple to use in order to facili-
tate simple and quick experimentation without the need for in-depth 
technical knowledge about CNNs.

The generalization strength of CNNs ensures that the methods 
are robust and not dependent on optimal lighting conditions, thus 
allowing greater flexibility in data collection, for example, under field 
conditions in which waiting for optimal conditions is often not an 
option, or for cellular and microscopic images which are often highly 
variable.

5  |  CONCLUSION

This paper presents an R package for image segmentation using 
deep convolutional neural networks based on the powerful and 
flexible U-Net architecture (Ronneberger et al.,  2015). The pack-
age implements a complete workflow including image processing, 
model creation and prediction. It was designed to be accessible and 
provide a simple and intuitive user experience that does not require 
specialist-level technical understanding of deep learning models and 
CNNs. imageseg constitutes a major advancement toward making 
deep learning-based image classification available to non-specialists 
in a convenient and easy-to-use R package.

We demonstrate the usefulness of the package for deriving for-
est structural metrics (canopy and understorey vegetation density) 
from colour photographs and provide pretrained models for these 
metrics. The models were trained on large and diverse training data-
sets and achieved high segmentation accuracy (Dice similarity coef-
ficient of 0.91 for canopy images and 0.89 for understorey images). 
Beyond this immediate application, the workflow and functions we 
provide are flexible and allow for general purpose image segmenta-
tion, making the package a versatile tool for simple implementation 
of complex image segmentation workflows in R.
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