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Abstract

Kill rates are a central parameter to assess the impact of predation on prey

species. An accurate estimation of kill rates requires a correct identification

of kill sites, often achieved by field-checking GPS location clusters (GLCs).

However, there are potential sources of error included in kill-site identifica-

tion, such as failing to detect GLCs that are kill sites, and misclassifying the

generated GLCs (e.g., kill for nonkill) that were not field checked. Here, we

address these two sources of error using a large GPS dataset of collared Eur-

asian lynx (Lynx lynx), an apex predator of conservation concern in Europe, in

three multiprey systems, with different combinations of wild, semidomestic,

and domestic prey. We first used a subsampling approach to investigate how

different GPS-fix schedules affected the detection of GLC-indicated kill sites.

Then, we evaluated the potential of the random forest algorithm to classify

GLCs as nonkills, small prey kills, and ungulate kills. We show that the

number of fixes can be reduced from seven to three fixes per night without

missing more than 5% of the ungulate kills, in a system composed of wild prey.

Reducing the number of fixes per 24 h decreased the probability of detecting

GLCs connected with kill sites, particularly those of semidomestic or domestic

prey, and small prey. Random forest successfully predicted between 73%–90%
of ungulate kills, but failed to classify most small prey in all systems, with
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sensitivity (true positive rate) lower than 65%. Additionally, removing

domestic prey improved the algorithm’s overall accuracy. We provide a set

of recommendations for studies focusing on kill-site detection that can be

considered for other large carnivore species in addition to the Eurasian lynx.

We recommend caution when working in systems including domestic prey,

as the odds of underestimating kill rates are higher.

KEYWORD S
domestic prey, Eurasian lynx, GPS location clusters (GLCs), GPS-fix schedule, kill sites,
multiprey system, random forest

INTRODUCTION

Predation is a fundamental ecological process, with
direct implications for both predator and prey species,
consequently influencing community structure and
ecosystem regulation (Ripple et al., 2014). Predation in
large carnivores is usually quantified using two metrics,
kill rates and predation rates, which represent the preda-
tor and prey population’s perspective of predation,
respectively (Vucetich et al., 2011). The estimation of
both metrics, along with their functional responses, is
crucial for understanding the impact of predators on prey
populations and, therefore, relevant for the management
and conservation of both predator and prey species
(Hebblewhite et al., 2007; Sinclair et al., 1998). However,
accurate estimates of these metrics remain a key limita-
tion to answering many central ecological questions.

Early studies on predation and the estimation of kill
rates by terrestrial carnivores relied on finding prey
remains in the field (i.e., kill site) with the use of a wide
variety of field methods including field-checking with
VHF technology, aerial surveys, snow-tracking, or direct
observation of hunts (e.g., Boertje et al., 1988;
Breitenmoser & Haller, 1993; Carbyn, 1983). Recently,
advances in GPS tracking technology have improved the
quality of predation studies, introducing field-checking of
GPS location clusters (hereafter, GLCs) as a new method
(Merrill et al., 2010). Furthermore, the development of
GLC analysis has facilitated the identification of specific
behavioral states (e.g., Mahoney & Young, 2017), includ-
ing predation events, prior to field-checking. To date,
many predation studies have used at least one of these
two approaches, sometimes both (e.g., Knopff et al., 2009;
Krofel et al., 2013; Mattisson et al., 2011; Vogt et al., 2018;
Webb et al., 2008). These approaches are suitable for
several large predators that frequently kill prey larger
or similar to their body size, because they tend to
exhibit fidelity to the kill site for extended time periods
(i.e., returning often and/or staying close to the prey
remains for several hours or days until it is mostly

consumed). This is particularly true for solitary predators
such as most large felids (e.g., mountain lion, Puma
concolor), while other predators with a group-living social
structure (e.g., wolves, Canis lupus, and lions, Panthera
leo) tend to consume the prey remains faster (shorter
handling time), thus potentially leading to lower detec-
tion and prediction rates of kill sites (Merrill et al., 2010).
While GLCs field-checking is a reliable method for find-
ing medium-sized or large prey items in many predator–
prey systems, the detection of small prey items is more
difficult (Palacios & Mech, 2011; Vogt et al., 2018),
mainly because of the shorter handling times associated
with this type of prey, causing the predator to move
before a potential GLC is formed, especially with low
GPS-fix resolution. Furthermore, the shorter handling
times of small prey may hamper the predictive success of
GLC analysis, as consumption of small prey can be con-
fused with other types of behavior, such as resting.

Regardless of the recent and widespread use of GLC
field-checking to detect kill sites and the development of
GLC analysis, there are several methodological sources of
error that can potentially introduce bias in predation
studies if disregarded. A first source of error refers to an
inappropriate GPS-fix schedule. Deciding on optimal GPS
schedules requires a trade-off between obtaining quality
data and saving the collar’s battery life. However, choos-
ing inappropriate GPS settings with respect to the preda-
tor’s behavior might lead to missed kills, because a kill
would not be detectable through GLCs (e.g., Webb
et al., 2008), resulting in an underestimation of kill rates.
Then, even if all potential predation events would lead to
the formation of GLCs, not all of them might be field
checked, which leads us to the second potential source of
error. Namely, if the generated GLCs are not validated in
the field (e.g., due to operational costs or terrain/weather
constraints) but still included in estimates of kill rates as
a “virtual kill” (e.g., Nilsen et al., 2009), there is a risk of
adding false positives, as the GLCs may be a result of
other behavioral states such as resting or reproductive
activity. Conversely, if excluded from the estimates
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(false negatives), kill rate may be underestimated. A
third source of error can be introduced during GLCs
field-checking. When no prey remains are found at a
GLC, it is not always possible to be certain whether
there was actually no kill or the predator stayed station-
ary for other reasons. Additionally, kills can be missed
when, for example, scavengers have consumed or
removed the prey completely (Krofel et al., 2013) or the
remains are covered with snow or vegetation. The detec-
tion of prey remains may also be influenced by the
elapsed time between the predation event and the field-
checking. While the third source of error is hard to con-
trol for (although it can be reduced by double-checking
GLCs and/or using a trained dog, among others;
see Blecha & Alldredge, 2015), the first two errors
can be addressed by improving study designs and statis-
tical approaches. Specifically, the problems associated
with a suboptimal GPS-fix schedule can be minimized
by adjusting it to the target predator–prey system.
The second source of error can be addressed using
cluster-specific attributes from known kill sites to train
classification algorithms and avoid removal or false clas-
sifications of nonchecked kill sites. Despite the recent
developments of several machine learning algorithms in
numerous research fields, including animal ecology and
species distribution (e.g., Tabak et al., 2019; Tatler
et al., 2018), few of the available classification algo-
rithms have been tested or applied in predator–prey
studies (e.g., Studd et al., 2021). Furthermore, hidden
Markov models have been applied to distinguish differ-
ent behavioral states, commonly relying on GPS and/or
accelerometer data (McClintock et al., 2020; van de
Kerk et al., 2015). However, few studies have relied
solely on GPS data to predict GLCs using this frame-
work (Franke et al., 2006).

In this study, we address the first two sources of error.
First, we test how different GPS-fix schedules influence
the detection of GLCs at confirmed kill sites. Specifically,
we subsampled data from collars with high-frequency
schedules and tested different GLC spatiotemporal
parameterizations. Then, we evaluated the potential of a
random forest algorithm to correctly predict GLCs as
nonkills, small prey kills, and ungulate kills. We focused
on three intensively studied ecosystems in Europe where
there is a large, solitary felid of conservation concern, the
Eurasian lynx (Lynx lynx), which acts as an apex predator
in different prey communities (multiprey systems):
(1) semidomestic reindeer only (Rangifer tarandus; here-
after, reindeer) (northern Scandinavia), (2) reindeer–roe
deer (Capreolus capreolus)–domestic sheep (Ovis aries;
hereafter, sheep) (central–south Scandinavia), and (3) roe
deer–Alpine chamois (Rupicapra rupicapra; hereafter
chamois) (central Europe). Due to the particular

combination of prey types within system 2, we further
tested if the detection and prediction of domestic prey dif-
fered from semidomestic and wild prey. We employed a
large GPS dataset of collared lynx, in combination with
extensive data from field-checked GLCs. This study is the
first addressing these two sources of error potentially
affecting lynx kill-site identification across different
multiprey systems, including domestic and semidomestic
prey. We provide recommendations on how to set the
schedules for GPS collars and GLC spatiotemporal
parameters to optimize the correct detection of GLCs
reflecting kill sites. Additionally, we show the first robust
application of a random forest algorithm in predicting
kill sites and compare its performance with previously
used methods.

METHODS

Study systems and data available

We used GPS and kill-sites data from three multiprey
systems (Figure 1). We generated GLCs using 92,315
GPS fixes obtained within a total of 10,139 days,
from 66 tracked lynx individuals. We considered 1818
confirmed kill sites and 1822 nonkills (i.e., field-checked
GLCs where no prey remains were found; Appendix S1:
Table S1). In addition to the main ungulate species
(reindeer, roe deer, sheep, chamois), lynx in all study
sites also prey on a range of smaller, medium-sized
mammals and birds (Appendix S1: Table S2). Data
were collected through the EUROLYNX network, a
collaborative bottom-up platform of lynx researchers
across Europe for sharing data and expertise (Heurich
et al., 2021). Further details on the data collection,
including field-checking, for each multiprey system are
provided in Appendix S1.

GPS-fix schedule requirements

We used a subsampling approach to identify the most
suitable GPS schedules and the minimum number of
GPS fixes needed to detect GLCs reflecting lynx kill
sites reliably. For each system, we gradually subsampled
the original datasets (Appendix S2: Table S1), until we
reached two fixes per 24 h (Appendix S2: Tables S2
and S3). The original fix schedules varied between
the three systems, in which systems 1 and 2 started at
24 fixes per day and system three at seven fixes
(Figure 2). When the dataset had been subsampled
down to six fixes per 24 h, we additionally created
different schedules depending on the time of the day:
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night only, day only, and mixed (i.e., with fixes equally dis-
tributed during 24 h). We considered GPS fixes between
5 p.m. and 7 a.m. as night, and the remaining as day.
Despite the daylight differences between the study
systems, we subsampled all data similarly across the year,
because the lynx exhibited a constant bimodal activity pat-
tern in all systems and across seasons (Heurich et al., 2014).

For each original and subsampled dataset, we applied
a clustering algorithm to generate GLCs (Clapp
et al., 2021). We tested each dataset with different scenar-
ios for generating GLCs in terms of: (1) spatial buffer
(from 100 to 500 m, with 50 m intervals), (2) temporal
window (0.5–5 days, with 12 h intervals), and (3) mini-
mum number of fixes per cluster (from 2 to 10, increasing
one fix at a time). All possible combinations of these
parameters resulted in 900 different scenarios. Second, we
obtained the proportion of field-checked kill sites

successfully identified as GLCs by the algorithm (hereaf-
ter, success rate) for each scenario. We selected the param-
eters from the scenario with the highest success rate for
further analyses.

We considered prey size, because GLCs are more
likely to be formed in association with larger prey due
to the lynx behavior of returning to such kills for longer
periods (Krofel et al., 2013; Mattisson et al., 2011).
Therefore, for each dataset, we grouped field-checked
kill sites considering three prey categories: (1) wild,
domestic and semidomestic ungulates excluding neo-
nates (i.e., ungulates with body mass >7 kg; hereafter,
ungulates), (2) nonungulate prey and ungulate neo-
nates <7 kg (hereafter, small prey), and (3) all prey (all
ungulates, including those with unknown body mass,
and small prey). We used a threshold of 7 kg to distin-
guish ungulates from small prey because this is

F I GURE 1 Spatial distribution of lynx GPS data within the three multiprey systems considered: (1) reindeer only, northern

Scandinavia; (2) reindeer–roe deer–sheep, central–south Scandinavia; and (3) roe deer–chamois, central Europe. Map projection: Lambert

Azimuthal Equal Area.
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approximately the weight of carcass that the lynx would
feed on for two nights (Jobin et al., 2000), which
increases the probability of a kill site being associated
with a GLCs. The ungulate kill sites of the unassigned
weight category were only included within the “all
prey” category to avoid introducing bias. We assigned
the weight category based on the date of the kill and
the estimated dates of birth per species in each study
system (system 1: Tallian et al. (Submitted); system 2:
Zimmermann et al. (2015); and system 3: Garel et al.
(2009), and approximations from the other study
systems).

For each original and subsampled dataset, we verified
that there was a minimum number of two successful fixes
within two consecutive days for each field-checked kill
site, starting from the estimated time of the kill from the
original dataset. We considered this criterion to ensure
that the lack of a GLC being formed was not due to a fail-
ure in fix success, but to the actual setting of fix sched-
ules. For double kills, we considered only one kill (the
largest prey item) for the purpose of estimating the suc-
cess rate, because several kill sites within a short radius
are likely to be associated with the same GLC. We
defined double kills as any two or more prey killed and
consumed in parallel by the same lynx (Duľa &
Krofel, 2020). We generated GLCs using the package
GPSeqClus v1.2.0 (Clapp et al., 2021) in R software v4.1.0
(R Core Team, 2022).

Prediction of kill sites

We pooled all GPS data available from all schedules
(Appendix S2: Table S1) and generated GLCs using the
parameters that provided the best results in the previous
section for kill-site detection through GLCs of all prey.
We then associated GLCs to confirmed kill sites (classi-
fied as either small prey or ungulates; see “GPS-fix sched-
ule requirements”) or to field-checked nonkills.

We used random forest, a tree-based machine learn-
ing algorithm, for multiclass classification of GLCs. Ran-
dom forest consists of an array of decision trees that
grows based on bootstrap samples of the training data
and infers its aggregated coefficients and metrics
(Banerjee et al., 2012). Random forest is more stable and
predicts more accurately than single tree methods, and is
commonly used for classification tasks in ecology (Cutler
et al., 2012). Prior to deciding on using random forest, we
tested two other algorithms, logistic regression (GLM)
and gradient booting (xgboost), which provided overall
lower accuracy for multiclass classification (0.52–0.70).
We classified GLCs as nonkills, small prey, or ungulate
prey based on cluster attributes. We considered cluster
duration, number of visits and fidelity to the cluster, max-
imum foray from the centroid, cluster radius (maximum
and mean), proportion of night fixes, period of the day
when the cluster started, and number of 24-h periods as
cluster attributes (Appendix S3: Table S1). We added a

F I GURE 2 Success rate for the original (bold values) and subsampled datasets from Appendix S2: Table S3. Results are presented for

the three systems, taking into account different prey species assemblages (shown as full and empty circles of different colors) and distinct

day periods (mixed, night only, and day only). Three cut-off values of 80%, 90%, and 95% success rate are added as horizontal dashed lines

for reference.

ECOLOGICAL APPLICATIONS 5 of 12

 19395582, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2778 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



covariate on lynx sex to account for potential prey han-
dling differences between males and females. Addition-
ally, we included a binary covariate on season, separating
the period between 1 May until 1 November, to account
for the period when smaller prey would be most avail-
able. We further quantified the strength of random for-
ests using binary classification by comparing nonkills
versus ungulates, and nonkills and small prey versus
ungulates. We discarded correlated cluster attributes
(Spearman rank, ρ > 0.7).

We split each dataset into 75%/25% to create train/test
datasets to build the model and to evaluate model perfor-
mance, respectively. The proportions of the different
types of clusters varied within each study system
(Appendix S1: Tables S1 and S2). As this is known to
cause problems in learning algorithms, we used the
Synthetic Minority Oversampling Technique (SMOTE)
method to generate artificial data within the training
dataset for the unbalanced classes (Chawla et al., 2002).
SMOTE oversamples the minority class by creating new,
plausible examples based on the existing data from the
minority class. After exploring different parameter com-
binations for the random forest model, we used 500 trees
for the array of decision trees, and one as the minimum
size (number of splits) for each tree. We measured accu-
racy, specificity (true positive rate) and sensitivity (true
negative rate) of each model. Additionally, we used con-
fusion matrices to summarize the prediction results and
generated multiway importance plots to understand the
influence of each cluster attribute in GLCs classification.
These plots displayed three measures of importance
based on the structure of the forest: mean depth of the
first split on a given variable (x), the number of trees in
which the root is split on the variable (y), and number of
nodes that use the variable for splitting (z). High values
of y and low values of x indicate a stronger association
with the response variable. A higher number of nodes for
a given attribute suggests a greater relevance for classifi-
cation. We used the R packages suncalc v0.5.0
(Thieurmel & Elmarhraoui, 2019) to obtain the day
period, UBL v0.0.7 (Branco et al., 2016) to apply the
SMOTE method, randomForest v4.6-14 to build and eval-
uate the models, and randomForestExplainer v0.10.1 to
obtain the importance of each variable.

RESULTS

GPS-fix schedule requirements

The success rate (i.e., the proportion of field-checked kill
sites successfully detected by the clustering algorithm)
decreased when using fewer fixes per day, but depended

on size of prey, prey system, and time of the day
(Figure 2). System 1 (reindeer only) reached less than
50% when using two fixes during the day, or for 24 h. In
system 2 (reindeer–roe deer–sheep), the use of three fixes
per night was enough to detect >80% of the kill sites.
When excluding sheep from the analyses (30% of adult
ungulates in system 2), we observed an overall increase
in success rate in all subsampled datasets, by up to 10%.
System 3 (roe deer–chamois), with an original dataset of
seven fixes per 24 h, obtained similar success rates across
all subsampled datasets, with two fixes per night success-
fully identifying 88% of all prey, and 94% of ungulates.
Using fixes during the night period resulted in the
highest success rate across all subsampled datasets
(increasing up to 20%), followed by mixed and then day
period. When reducing the number of fixes to two fixes
per 24 h, the success rate in detecting kill sites of small
prey decreased to 35% in systems 1 and 2, and 65% in
system.

We found variation in the cluster parameters consid-
ered to detect GLCs reflecting kill sites. The parameters
that provided the best results for all prey, when consider-
ing the original schedules, were 150 m for spatial buffer,
3 days for temporal window, and a minimum of two
fixes. In all systems, a reduction in the number of fixes
led to an increase of up to 400–500 m in spatial buffer.
The temporal window parameter varied less within and
among systems, with an increase to 5 days only in system 1
(Appendix S3: Figure S1).

Prediction of kill sites

The accuracy of the multiclass random forest ranged
between 0.66 and 0.75 (Table 1). Specificity (proportion
of true negatives) was higher than 0.60 for all systems,
and reached a maximum of 0.80 and 0.94 for nonkills
and ungulates, respectively. Sensitivity (proportion of
true positives) was the lowest for small prey in systems 1
and 3, and system 2 when excluding sheep (0.13–0.52).
In these cases, most of the misclassified small prey were
classified as nonkills (Table 2). In system 2, sensitivity for
ungulates increased from 0.41 to 0.75 when excluding
sheep from ungulate kills. For nonkills and ungulate clas-
ses, sensitivity reached 0.81 and 0.76, respectively. For
binary random forest, we obtained overall higher accura-
cies, particularly when comparing nonkills with ungu-
lates only, with values up to 0.75 in system 1, 0.92 in
system 2, and 0.88 in system 3 (Appendix S3: Tables S2
and S3). For these models, the effects of removing sheep
were less clear.

We found differences across systems in the impor-
tance of cluster attributes that explained the GLC
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multiclass classification (Figure 3). Cluster duration was
the most important of the cluster attributes across the
three systems. Maximum foray and the number of re-
visits were also important attributes, although of varying
importance between/across systems. The average cluster
radius and proportion of night fixes were of moderate
importance in all systems, whereas season, time of day at
the first fix cluster (day period), and sex were of overall

low importance for classifying GLCs. For binary classifi-
cation, cluster duration was the most harmonious attri-
bute as well, followed by maximum foray and night
proportion (except for system 1). Fidelity was relevant for
system 3, while day period, season, and sex showed no
relevance within any system (Appendix S3: Figures S2
and S3).

DISCUSSION

GPS-fix schedule requirements

Whereas the number of GPS fixes needed to generate a
GLC had been addressed in previous studies, but mostly
limited to wolves (Sand et al., 2005; Webb et al., 2008) and
mountain lions (Knopff et al., 2009), it had never been done
considering different multiprey systems, with different com-
binations of domestic, semidomestic, and wild prey. We
observed a steady decrease in the success rate within sys-
tems 1 and 2, where domestic and semidomestic prey are
predominant. The results for system 2 showed that GLCs
reflecting sheep were more difficult to detect when reduc-
ing the number of fixes. This supports previous findings
that the domestic/semidomestic nature of many prey in
these systems influences lynx handling behavior (Odden
et al., 2002; Tallian et al., Submitted). In system 3, mostly
composed of wild prey, more than 95% of the GLCs
representing ungulate kill sites were correctly identified
with three fixes per night. The highest resolution schedule
available in system 3 was seven fixes per day, with four fixes
taken around dusk. While it is impossible to know how
many kills were missed in system 3 compared with a sched-
ule with 24 locations per day, our results suggested that not

TAB L E 1 Random forest accuracy per multiprey system, for multiclass classification. Sensitivity measures the proportion of true

positives, and specificity measures the proportion of true negatives.

Multiprey system Accuracy [95% confidence interval] Sensitivity Specificity

System 1 0.66 [0.59–0.72] Nonkills 0.76 0.69

Small prey 0.13 0.93

Ungulates 0.67 0.80

System 2 0.71 [0.64–0.78] Nonkills 0.81 0.63

Small prey 0.65 0.85

Ungulates 0.41 0.94

System 2 (without sheep) 0.75 [0.68–0.82] Nonkills 0.80 0.73

Small prey 0.52 0.86

Ungulates 0.75 0.90

System 3 0.70 [0.66–0.75] Nonkills 0.79 0.80

Small prey 0.33 0.87

Ungulates 0.76 0.87

TAB L E 2 Confusion matrix per system for the test dataset.

The GPS location cluster (GLC) has been classified correctly when

the class of a reference GLC (field data) matches the class predicted

for the same GLC by the model (diagonal).

Prediction Reference

Nonkills Small prey Ungulates

System 1

Nonkills 95 15 19

Small prey 6 3 9

Ungulates 24 6 58

System 2

Nonkills 97 (97) 8 (9) 13a (3)

Small prey 15 (13) 17 (13) 7b (2)

Ungulates 8 (11) 1 (3) 14 (15)

System 3

Nonkills 155 28 13

Small prey 24 22 19

Ungulates 18 17 104

Note: Parentheses in system 2 reflect the values when excluding sheep from
the dataset.
aSix sheep.
bFour sheep.
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only the number of fixes, but also their timing, is crucial for
the optimization of GPS-fix schedules designed for preda-
tion studies. The typical lynx behavior is to leave the kill
during the day to find a resting site, and then return at dusk
for feeding (Krofel et al., 2013, 2019; Molinari-Jobin
et al., 2007). Indeed, we stress that the success rate drops
when including only daytime fixes within the two systems
where this could be evaluated (systems 1 and 2).

Nevertheless, we should stress that the success rate at
detecting GLCs reflecting kill sites may not directly trans-
late into the detection probability of finding a kill during
GLC field-checking. Kill sites were originally found with
high fix rate schedules, which facilitates finding the prey
remains. Therefore, using a reduced number of fixes may
negatively affect the detection of kills in the field. Addi-
tionally, the use of a dataset with few fixes per 24 h could
result in fewer fixes in proximity to the kill site, leading
to additional bias when detecting GLCs. Using such
datasets may require increasing the cluster radius for
detecting GLCs, which is supported by our results.

Our results revealed lower success rates when
detecting small prey through GLCs, compared with
ungulates, when reducing the number of daily fixes,
mirroring previous findings for lynx and other carnivore
species (e.g., Palacios & Mech, 2011; Svoboda et al., 2013;
Vogt et al., 2018). This suggests the need to use a high

number of fixes per day to identify prey smaller than
7 kg, but it nevertheless requires extensive fieldwork, as
short-duration GLCs can also be confused with daybeds
or other activities besides feeding (Vogt et al., 2018).

Besides differences in prey composition, the land-
scape varied significantly between systems, especially in
terms of climate, topography, forest cover, human den-
sity, and the presence of other predators and/or scaven-
gers (Krofel et al., 2019; Mattisson et al., 2011). These
factors can affect lynx behavior while handling a kill; for
example, in areas with less vegetation cover and topo-
graphic complexity, the lynx might need to move further
away from the kill when not feeding (e.g., for resting,
which usually happens nearby the kill in densely forested
habitats; Krofel et al., 2013).

Prediction of kill sites

Our second main goal was to classify GLCs as nonkills,
small prey kills and ungulate kills, with a particular focus
on cluster attributes, which we accomplished using the
random forest algorithm. We ran a multiclass classification
algorithm for each system, which obtained an accuracy of
63%–73%, and two different binary classification algo-
rithms with higher accuracy levels (75%–90%), varying

F I GURE 3 Multiway importance plots for multiclass classification, for each system. The x-axis shows the mean minimal depth of the first

split on a given variable and the y-axis shows the number of times a variable is used to split the root node. Circle area is proportional to the

number of nodes that use a variable for splitting. Higher values on y, lower values on x, and larger symbols indicate the higher importance of

the cluster attribute for classification. Thus, variables in the top left corner are more important for GPS location cluster classification.
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among systems. The main reason for this difference is the
inclusion of small prey in the multiclass classification
model, which underperformed when compared with the
classification of nonkills and ungulates, thus reducing
overall accuracy. Previous studies have mentioned the pre-
diction of smaller prey as a caveat, due to the shorter han-
dling times (e.g., Franke et al., 2006; Knopff et al., 2009;
Mahoney & Young, 2017; Sand et al., 2005; Webb
et al., 2008). We also observed that most of the small prey
kills incorrectly identified were mistaken for nonkills, sim-
ilar to Webb et al. (2008), suggesting that the movement
behavior while handling a small prey kill is comparable
with other behaviors (e.g., resting). Although random for-
est is an algorithm with high performance for classifica-
tion tasks in noisy datasets, such as ours, we believe that
an accurate prediction of small prey would most likely
require other input parameters, such as fine-scale acceler-
ometer data that would capture the feeding bouts within a
GLC. Environmental layers, such as slope, forest cover,
and prey density, may also improve accuracy and facilitate
distinguishing between resting sites and kill sites, because
lynx may use distinct microlocations for foraging and
resting.

When considering the binary algorithms and cluster
attributes only, we obtained similar or higher accuracy
than previously reported for other carnivore species that
exhibit high site fidelity to the kill sites (86%, Knopff
et al., 2009; 82%, Blecha & Alldredge, 2015; 88%, Webb
et al., 2008; 75%, Franke et al., 2006; 88%, Pitman
et al., 2012). Our algorithm is based on variables that can
easily be extracted from GLCs, increasing its usefulness in
classifying GLCs prior to field-checking. Nevertheless,
despite similar model accuracy between systems, we found
that the importance of cluster attributes varied among
areas, suggesting that extrapolation between different sys-
tems should be done with caution. Variation may depend
on the lynx’s behavioral differences around kill sites and
nonkills, which can also be influenced by the different
environmental settings among the three systems. There-
fore, in order to test the transferability and broader appli-
cation of these models, we would like to stress that an
external validation should be conducted, as suggested by
Knopff et al. (2009), considering similar prey systems.

Applications and recommendations

We addressed two potential sources of error for the
identification of kill sites (i.e., failing to detect GLCs
that are kill sites, and misclassifying the generated GLCs)
in three different prey systems, making this the first
study attempting to do so with Eurasian lynx, an apex
predator with high conservation priority in Europe.

Understanding its predation patterns is increasingly
important, because one of the factors hindering lynx con-
servation is the perceived or real competition between
lynx and hunters or livestock owners, as a result of lynx
predation on wild and domestic ungulates (Boitani
et al., 2015). Therefore, identifying potential biases
included in predation studies and considering them in
future predation studies is of utmost importance. This
said, we provide the following recommendations for
future studies focusing on identifying ungulate kill sites,
which should also be considered for other solitary
carnivores:

1. For GPS collar settings, in order to acquire reliable kill
rate estimates and diets, the higher frequency of daily
fixes the better. However, there is always a trade-off
between battery life and the number of fixes, as well
as the amount of fieldwork possible to conduct. In a
prey system including only wild ungulates, our data
suggest that the number of fixes can be reduced to as
low as three fixes per night without missing more
than 5% of the ungulate kills. However, to get the
same accuracy in a system with domestic prey, at least
10 fixes/day may be needed. We do recommend
starting with more intensive schedules for potential
readjustments, and then detecting the minimum num-
ber of fixes to get the best trade-off between battery
life and data quality.

2. According to the number of fixes considered in the pre-
vious step, test and adjust the input parameters (spatial
radius, temporal window, and minimum number of
fixes per cluster) to generate GLCs. If a low-resolution
schedule is used, we recommend increasing the cluster
radius and testing different values rather than using
the 100–200 m commonly considered.

3. We propose the use of classification models as an
ancillary tool to increase fieldwork efficiency and
minimize costs, by prioritizing GLCs with the highest
probabilities of being kill sites prior to field checks.
This, as well as using these models to avoid discarding
nonchecked GLCs, can be used to complement kill-
site datasets, thus improving kill rates estimation.
Additionally, this would allow generating comparable
datasets across larger scales, where similar predator–
prey systems exist. However, they should be mostly
applied to detect kills >7 kg, as detecting smaller prey
using classification models is not optimized yet.

Conclusion

Prediction of behavioral status from GPS data can be
challenging, particularly when considering potential
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differences among different areas and individuals. How-
ever, the rapidly increasing number of technological and
analytical tools allows for larger scale analyses, as well as
the use of unbalanced datasets. Our approach for
detecting and predicting GLCs can be applied to identify
kill sites of other carnivores, particularly large, solitary
species with longer feeding times, such as the mountain
lion, tiger (Panthera tigris) or leopard (Panthera pardus).
Furthermore, it can also be generalized to species that
occasionally consume ephemeral but high-quality food
sources (e.g., scavenging; Ebinger et al., 2016), as well as
to other behaviors, such as hibernation, scent-marking,
mating and maternal behavior (Krofel et al., 2013, 2017;
Mahoney & Young, 2017; Melzheimer et al., 2020), pro-
vided that collar schedules are appropriate to generate
enough data (i.e., number of fixes) for a GLC to form.

The current limitations of this approach are
connected with detecting and predicting GLCs associated
with shorter feeding times, mostly connected with the
consumption of small prey, or larger prey that is removed
by large scavengers early in the consumption process.
Additionally, distinguishing between scavenging and
predation events could be further complicated, as both
can involve feeding behavior for extended periods. The
outcome of these limitations can have consequences for
management, particularly when estimating ungulate kill
rates (Brockman et al., 2017; Jansen et al., 2019; Krofel &
Jerina, 2016). Potential solutions could rely on including
additional information to GLCs, namely by incorporating
accelerometer, audio-loggers, or video data within GLC
duration, as well as environmental characteristics
(Brockman et al., 2017; Studd et al., 2021). Using tech-
niques such as supervised/unsupervised machine learn-
ing, these alternative sources of data can further help to
distinguish between different activities (e.g., resting from
feeding on smaller prey; Studd et al., 2021), hence consid-
erably assisting in the identification of target behaviors.
Future research on feeding and behavioral ecology will
likely include this information, as ancillary data collec-
tion becomes progressively more efficient and less energy
demanding.
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