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A B S T R A C T   

The main aim of this study was to create an automated method for the measurement of the scrotal circumference 
(SC) of Norwegian Red bulls using 3D images of the scrotum based on convolutional neural networks. The study 
population was bull calves recruited for performance testing before the selection of bulls for semen production in 
the breeding program. Bulls were measured at four different time points: upon arrival in quarantine (Q) and 
thereafter at approximately 6, 9 and 12 months of age. Both 3D images and manual SC measurements were 
performed at all time points. In our approach, SC could be calculated without direct contact with the bull, using 
only 3D images and a simple, user–friendly application into which mentioned images are uploaded. The results 
show that SC measurements obtained using semantic segmentation are comparable with manual measurements. 
The mean prediction error was significantly different between age groups Q, 6, 9 and 12, and it was -3.07 cm, 
-3.02 cm, -1.79 cm and -1.11 cm, respectively. The results show a significant difference in the measurement error 
of the SC based on the quality of the images. Images were categorised into three quality groups. For good 
prediction accuracy, we recommend capturing 3D images of quality 2 – full circle from individuals older than 6 
months.   

1. Introduction 

In dairy farms, automated herd control systems are used for multiple 
physiological and behavioural traits measurements such as estrus 
detection, calving time, lameness or pH of the rumen [1,2]. Scrotal 
circumference (SC) is an essential part of the breeding soundness eval
uation of bulls due to its high repeatability and moderate to high heri
tability (from 0.36 to 0.69) [3]. Automation of SC measurement and 
implementation into feeding stations would be a valuable tool for per
formance testing stations and bovine semen collection centre. SC of bulls 
follows the sigmoidal growth pattern starting with an increase before six 
months of age and rapid growth during the peripubertal phase. It is 
broadly agreed that larger SC is associated with early puberty onset, 
increased sperm output and better fertility outcomes [3–7]. SC is 
influenced by age, body weight, nutrition (especially before 6 months of 
age) and breed with individual differences [5–7]. Traditional measure
ments of scrotum circumference are based on manual handling, using a 
measuring scrotal tape. This activity is associated with HSE (Health, 
Safety and Environment) issues for the technician and a stressful 

situation for the animal. Using 3D cameras combined with automatized 
image analysis might possibly constitute a good alternative. 

Artificial Neural Networks (ANNs) are a type of mathematical model 
inspired by biological neural networks designed to mimic learning 
processes in the human brain. An ANN architecture is based on neurons 
(also called perceptrons) grouped in layers connected with each other 
using weights. The information is transferred from the input layer onto 
the output layer. ANN weights are fitted in a backpropagation process 
using a stochastic gradient descent algorithm to minimise a loss func
tion, which corresponds to "learning" how to perform a specific task 
(regression, classification) by an ANN. Convolutional Neural Networks 
(CNNs) are a subclass of ANNs designed to perform complicated tasks on 
visual imagery (e.g. images, videos, spectrograms, holograms). CNNs 
are widely used for image classification, image segmentation, object 
detection, optical character recognition, etc. In contrast to classical 
ANNs, CNNs learn local filters that can be applied to the image data to 
extract interesting features. In CNNs those filters are calculated auto
matically in the backpropagation process, similar to those in ANNs 
[8–10]. 
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3D camera scanning combined with Convolutional Neural Networks 
(CNNs) or other machine learning algorithms was already studied with 
success in the field of animal production for body condition scoring of 
dairy and beef cattle [11–13], pigs [14] and horses [15]. Recently the 3D 
imaging combined with CNNs was used for supernumerary teat classi
fication of Norwegian Red cattle udder [16]. Yang et al. [17] created a 
portable non–contact 3D measurement system for dairy cow body using 
smartphones. The point cloud hole completion method they used 
worked regardless of the posture of the animal, with relative errors for 
different traits from 2 to 6%. They showed that a low–cost method can 
be introduced for accurate non–contact measurement of livestock. 

Deep learning methods such as CNNs were used in the field of 
reproduction to classify the human spermatozoa into WHO [18] 
shape–based morphology categories [19]. Butola et al. [20] combined a 
partially spatially coherent digital holographic microscope (PSC–DHM) 
for quantitative phase imaging (QPI) with deep neural networks (DNN) 
to differentiate with high accuracy normal human spermatozoa from 
abnormal. Another research used U–net image segmentation to auto
mate the identification of the different stages of spermatogenesis in rats 
applied on stained testis tissue [21]. As seen in the presented examples, 
computer vision methods based on deep learning are increasingly used 
in fields of reproduction and other branches of biology, genetics, med
icine and agriculture. 

Our research’s main aim was to explore the potential of using con
volutional neural networks for automated SC measurements. Which 
would be of great interest to breeding companies and increase the ac
curacy of the SC measurements during breeding soundness evaluation. 
Our second objective was to investigate differences in prediction accu
racy between age groups and image quality. Further, our practical goal 
was to create a framework of what is a good quality image to be directly 
uploaded into our user–friendly app and provide a quick and easy way of 
SC measurement in bulls without direct contact with the animals. 

2. Materials and methods 

2.1. Animals 

Geno (Geno), the breeding organisation for Norwegian Red (NR), 
each year buys approximately 150 NR bull calves for their performance 
testing program [22]. Individuals aged 3-5 months arrive in 5-6 groups 
per year at the testing station and are quarantined for two weeks upon 
arrival. After isolation, they are housed in groups of 10 and consequently 
kept in the same group for the whole duration of the performance testing 
period. Bulls are subject to temperament, conformation, and andrology 
testing at the station. Around 12 months of age, they are approved or 
rejected to the bovine semen collection centre. Bulls are fed concentrate 
according to the age and grass silage ad libitum. This study was per
formed during a period for 1.5 years and included bulls enrolled in the 
performance testing program during this period. 

2.2. Manual Scrotal Circumference measurements 

The SC of NR bulls were measured manually at four–time points: 
upon arrival at the performance testing station (3-5 months) and later at 
approximately 6, 9 and 12 months of age. The bulls were restrained 
during the procedure. Three qualified veterinarians under the supervi
sion of centre veterinarian measured the SC manually by scrotal tape for 
all bulls and time points. 

2.3. 3D Scrotal Circumference measurements 

After manual SC measurements, each bull’s scrotum was photo
graphed using a handheld device consisting of an Intel Real Sense d415 
camera connected with a tablet by a stick [23]. The camera was carefully 
placed on the floor between the bull’s legs. Qualified personnel assisted 
the procedure by keeping the tail of the restricted animal. One image per 

bull was captured at each time point. In total, four images per bull were 
taken. For five individuals, multiple images on the same day were 
captured and used for quality control of the method. Depth images were 
saved in the OneDrive cloud and used for further analysis. The number 
of animals per age group per measurement is shown in Table 1. Due to 
technical issues, the schedule of the project, and losses in animals, a few 
observations in each age group were lost. The proportion of the training, 
validation and test data were 60%, 20%, and 20%, respectively. 

2.4. Artificial Neural Network (ANN) 

In our approach, we decided to use CNNs, specifically the U–Net 
architecture; it is already successfully used in biomedicine biology and 
genetics for image semantic segmentation [24–26]. In an image classi
fication task, we are interested in predicting the correct label for the 
whole image (e.g. cat or dog). In the semantic segmentation task, this 
approach was extended for each pixel of the image. This created a 
ground truth segmentation mask, showing the localisation of pixels 
(objects) belonging to the same class. This predicted segmentation mask 
was compared with the ground truth segmentation mask to check if a 
prediction was correct or not (Fig. 1). This task’s most common 
compatibility measures are the Dice coefficient, the IoU coefficient and 
the Tversky coefficient which represents coverage between ground truth 
and predicted segmentation masks. In our approach, we created ground 
truth segmentation masks of the bull scrotum using the ‘labelme’ tool 
[27]. For each image the scrotum boundary was outlined using 30 to 40 
unique points. Pixels inside the boundary were marked as ‘scrotum’ and 
outside the boundary as ‘background’. Those segmentation masks were 
used to train, validate and test the U–Net model. 

Table 1 
Number of animals per age group (Q1,6,9,12 months) per method of mea
surement used in our study.  

Age group n SC 2 n 3D 3 

Q 96 76 
6 111 99 
9 137 131 
12 123 116  

1 Quarantine - age 3-5 months 
2 Number of bulls from which scrotum circumference (SC) was manually 

measured 
3 Number of bulls from which 3D pictures of scrotum were collected 

Fig. 1. Image segmentation visualisation. An example of a true scrotum seg
mentation mask (1) overlapped with the original 3D image of bull. 
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2.5. Model architecture 

In the U–Net model used in our study for scrotum segmentation, the 
input image was a tensor of shape 256 × 512 × 1, rescaled from the 
original image 640 × 480 × 1. Our model was composed of 5 double
–convolutional downscaling blocks – each block included two iterations 
of 2D convolution with the same padding (the activation map had the 
same shape as input) and batch normalisation layers with ReLU acti
vation followed by 2D max–pooling and dropout layers – and 5 decon
volutional upscaling blocks – each block included 2D deconvolution and 
concatenation layers followed by two iterations of 2D convolution with 
same padding (the activation map had the same shape as input) and 
batch normalisation layers with ReLU activation. Downscaling and 
upscaling blocks were connected with a bridge composed of two itera
tions of 2D convolution with same padding (the activation map had the 
same shape as input) and batch normalisation layers with ReLU acti
vation. The model was fitted using Adam optimizer with a Focal loss 
function (Fig. 2). The model was build, trained and validated using 
’pyplatypus’ software (https://github.com/maju116/pyplatypus). 

2.6. Connected–component labeling (CCL) algorithm 

For most of the images, the predicted segmentation mask contained 
one solid object, which was expected and desirable. Some artefacts that 
created a second smaller object for the remaining images were found in 
the predicted segmentation mask (Fig. 3). To solve this problem, we 
used a connected–component labeling (CCL) algorithm (also known as 
blob extraction or region labeling) to count the number of solid objects 
in a predicted segmentation mask [28]. In the case of finding more than 

Fig. 2. Learning curves for Focal loss, IoU coefficient, Categorical Crossentropy, Tversky coefficient and Dice coefficient, respectively for training (red) and vali
dation (blue) sets. 

Fig. 3. Multiple objects as a result of segmentation. Example of predicted 
scrotum segmentation mask containing 2 objects (scrotum and incor
rect artefact). 
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one object, only the object with the highest area would stay on the 
segmentation mask. 

2.7. Direct Linear Least Squares fitting of an ellipse 

After segmentation and cleaning faze, the Direct Linear Least Squares 
algorithm was used to fit an ellipse onto the boundary of a segmented 
mask (Fig. 4) [29,30]. 

From this fit, semi–major and semi–minor axes of the ellipse were 
calculated using angles per pixel from the median camera to object 
distance. The angles used in the angles per pixel calculation 66.5◦ x 
40.5◦ were selected from the metafile. The ellipse perimeter was 
calculated using the Pade approximation [31]. 

2.8. Validation of capturing the 3D SC images and statistical analysis 

To validate the method, multiple images from the same individuals 
were analysed and subsequently compared with their predicted 3D SC. 
The results were repeatable with a difference of +/-1cm. If the differ
ence was higher, the quality of the image was low. Metafiles from the 3D 
camera contained angle range DPFOV: 65◦±2◦ x 40◦±1◦, identical for 
every image. The angles are required to calculate the angle per pixel, 
which were further used for the 3D SC calculations. To choose one pair 
of angles, we predicted the 3D SC for a combination of angles and 
compared the results, which showed a difference of +/-1cm. We chose 
the following pair of angles based on this validation: 66.5◦ x 40.5◦. 

The predicted 3D SC values and their corresponding manual mea
surements were used for the calculation of mean prediction error (MPE), 
mean squared prediction error (MSPE) and mean percentage prediction 
error (MPPE) adjusted by the mean of the group for different age groups 
(Q,6,9,12 months) and different image quality categories (0,1,2). The 
data were tested for normality, and the nonparametric Scheir
er–Ray–Hare test was performed to evaluate significant differences in 
MPE p < 0.01 between age groups and the image quality categories in 
each age group. 

3. Results 

The values of Dice, IoU and Tversky coefficients for the training, 

validation and test sets are represented in the Table 2. Mean prediction 
errors for each age group Q, 6, 9, 12 were -3.07 cm, -3.02 cm, -1.79 cm 
and -1.11 cm respectively. Fig. 7 shows the distribution of prediction 
error for each age group. Mean and percentage prediction errors were 
significantly different (p < 0.05) between the age groups (Table 3). Age 
group 12 showed significantly lowest MPE and MPPE.  While capturing 
3D images, we observed that natural or artificial light influenced the 
quality of the images significantly. Fig. 5 shows the 3D images and their 
matching RBG images of one individual in two different light conditions. 

To improve future prediction accuracy, we conducted a test of image 
quality control. Each 3D image was rated based on the quality of the 
image. The scale was the following: 2 – full circle, 1– partial circle / 
"hanging testicle", 0 – not enough information/scrotum not well pro
nounced (Fig. 6). 

The results show that the quality of image category 2 shows 

Fig. 4. Direct Linear Least Squares fitting of an ellipse. An example of an ellipse 
fitted onto the predicted scrotum segmentation mask using the Direct Linear 
Least Squares method is plotted onto the original depth image. The colour scale 
represents the camera to object distance in mm. The grey represents NA. 

Table 2 
Values of Dice, IoU and Tversky coefficients for the training, validation and test 
sets.  

Metric Training set Validation Set Test Set 

Dice 99,8% 99,5% 99,3% 
IoU 99,3% 99,4% 99,2% 
Tversky 99,4% 99,3% 99,2%  

Table 3 
Mean prediction error (MPE), mean squared prediction error (MSPE) and mean 
percentage prediction error (MPPE) adjusted by mean of the group for different 
age groups (Q1,6,9,12 months). Based on the nonparametric Scheirer–Ray–Hare 
test, significant differences in MPE p < 0.05 between the age groups are marked 
by letters a-d.  

Age group n images 2 MPE 3 MSPE4 MPPE 5 mean SC (cm) 6 

Q a 57 -3.07 cm cd 16.6 -19.9 % 15 cm 
6 b 88 -3.02 cm cd 13.9 -14.0 % 22 cm 
9 c 124 -1.79 cm abd 7.89 -6.16 % 29 cm 

12 d 101 -1.11 cm abc 7.46 -3.28 % 34 cm  

1 Quarantine – age 3-5 months 
2 Number of analysed images 
3 MPE – Mean of (SC-prediction) 
4 MSPE – Mean of (SC-prediction)^2 
5 MPPE – Mean of [(SC-prediction)/group_mean * 100%] 
6 Mean manually measured SC in cm 

Fig. 5. Influence of natural light on 3D image quality for the same individual. 
1a: 3D image with high exposure to natural light. 1b: RGB image matching 3D 
image, scrotum not visible. 2a: 3D image with the covered back of the bull to 
block natural light in the area of interest. 2b: RGB image matching 3D image, 
scrotum visible. 
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significantly lower mean prediction error and mean percentage predic
tion error in age groups 6, 9 and 12 compared to image quality 0 and 1 as 
well as the mix of all images (Tables 3 and 4). For group Q, we can 
observe the lowest MPE and MPPE for image quality 0. 

4. Discussion 

Our results show that the quality of the image and the age of the bull 
are important variables affecting the accuracy of the prediction of SC 
based on 3D images. Three–month–old bull calves have small testicles 
that are not very well pronounced in the picture compared to older bulls. 
Furthermore, the intensity and quantity of natural and artificial light 
seem to influence the images’ quality, as shown in Fig. 5. The Intel 
RealSense d415 depth sensor is mainly based on stereoscopy. Therefore, 
it is differently dependent on light conditions than sensors using struc
tured light (like e.g. Kinect v1) or time of flight (like e.g. Kinect v2). In 
our case, strong backlight (Figs. 5, 1a and 1b) gave poorer image quality 
because it generates too large light contrasts in the scene, with a very 
light background compared with the relative dark scrotum area. On the 
other hand, outdoor light should improve the quality of depth images 
taken by the Intel RealSense d4XX cameras [32], but this probably re
quires that the object of interest is properly illuminated. Similarly, based 
on other types of depth camera technology, previous research has 
observed that strong illumination affects the quality of the depth images 
[33–35]. Azzari, Goulden and Rusu [33] showed that the quality of 
images increased with decreasing light exposure. Azzari, Goulden and 
Rusu, [33] observed that sunlight and infrared radiation influenced the 
contrast of the camera’s laser pattern, which caused the lower quality of 
the images. 

Dice, IoU and Tversky coefficients used in our study as a performance 
measure for semantic segmentation were chosen already by others 
[36–41]. A high Dice, IoU and Tversky coefficients of our model can be 
explained by the fact that a scrotum is a big object easily detectable by 
the human eye, which could imply that it should be just as easy for an 
advanced computer vision algorithm as a convolutional neural network. 

Fig. 6. Image quality categories. Examples of the 3D images from the category 
2 – full circle (A), 1 – partial circle/" hanging testicle" (B), 0 – not enough in
formation/scrotum not well pronounced (C). 

Fig. 7. Distribution of prediction errors. Histograms of prediction errors (SC – prediction) for different bull age groups (Q, 6, 9, 12) with the distinction of image 
quality (0, 1, 2). 
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Images used in the study are standardised since the scrotum, in most 
cases, can be found in the centre of the image. Similar methods to the 
ones used in our study were applied to the field of horticulture for the 
growth rate, size and yield measurement of the fruits and vegetables [33, 
42–46]. The successful easy–to–use prediction of the in–field mango 
fruit size was performed with high accuracy by Wang, Walsh and Verma 
[46]. As a scrotum, the mango has an approximately elliptical shape. 
The authors used this to predict the mango’s length and width, 
concluding that measurement error is caused by the not entirely ellip
tical shape of the fruits, which agrees with our findings. In our study, 
during manual measurement, bulls were moving from side to side, and 
as a reaction to the stressful situation, some bulls pulled the scrotum 
closer to the body using cremaster muscle, which might have influenced 
the measurements. Above mentioned variables assess our prediction 

error complex since we do not know the "real true" value. We believe 
that the best way of reducing prediction error is to standardise image 
quality. As our results demonstrate, the lowest MPE and MPPA were 
achieved for the image quality 2 in age groups 6, 9 and 12, making it the 
best candidate for the reference image quality for future analysis. The 
quality category 0 exhibits the lowest error measurements in age groups 
Q and 9, which we consider false due to the significant lack of infor
mation on the images of quality 0 (Fig. 8). This result could speak for the 
excellent performance of our segmentation model (dice coefficient – 99, 
8%, 99,3%), which succeeded in classifying the scrotum of the incom
plete image correctly. It is of importance to point out a very low number 
of images analysed in image quality category 0 in all age groups, which 
can explain this result. Future research should be devoted to the vali
dation of the results described in this paper by capturing 3D SC images of 
only image quality 2 and performing manual SC measurements of the 
same individuals. Our results indicate that the mean prediction error 
and mean percentage prediction error in all age groups will not increase 
if the quality of the image, including light conditions, is taken into 
consideration. On top of a collection of new samples, data augmentation 
methods could be beneficial to model performance. Another interesting 
development opportunity would be machine learning model ensem
bling. We noticed that applying even a simple linear model (Fig. 9) on 
top of the previously described modelling methodology could poten
tially decrease prediction even more. This hypothesis, however, has to 
be confirmed. 

5. Conclusion 

To our knowledge, this is the first time SC measurements of bulls 
were automated with the use of convolutional neural networks and 3D 
images. This innovative approach, combined with a user–friendly 
application, allows a fast integration into breeding soundness evaluation 
of Norwegian Red bulls at the performance testing and bovine semen 
collection centres. To keep a high prediction accuracy, we recommend 
analysing individuals older than 6 months, paying attention to light 
conditions and capturing 3D images of quality 2 only. 
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Table 4 
Mean prediction error (MPE)), mean squared prediction error (MSPE) and mean 
percentage prediction error (MPPE) adjusted by mean of the group for different 
age groups (Q1,6,9,12 months) and different image quality categories (02,13,24). 
Based on the nonparametric Scheirer–Ray–Hare test, significant differences in 
MPE p < 0.01 between the image quality categories in each age group are 
marked by letters a-c.  

Age 
group 

Image quality 
category 

n 
images 5 

MPE 6 MSPE7 MPPE 
8 

mean SC 
(cm) 9 

Q 0 a 14 -1.5 cm 
bc 

16.9 -10 % 15 cm 

Q 1 b 30 -4.1 cm 
ac 

20.1 -26.3 
% 

15 cm 

Q 2 c 13 -2.5 cm 
ab 

8.31 -15.6 
% 

15 cm 

6 0 a 14 -3.9 cm 
bc 

17.4 -18.9 
% 

22 cm 

6 1 b 31 -4 cm ac 22.2 -19.3 
% 

22 cm 

6 2 c 43 -2 cm ab 6.80 -8.9 % 22 cm 
9 0 a 7 -1.1 cm 

bc 
11.7 -3.8 % 29 cm 

9 1 b 33 -3.7 cm 
ac 

15.5 -12.8 
% 

29 cm 

9 2 c 84 -1.1 cm 
ab 

4.58 -3.8 % 29 cm 

12 0 a 8 -1.63 
cm bc 

20.1 -4.8 % 34 cm 

12 1 b 18 -2.97 
cm ac 

11.1 -9.1 % 34 cm 

12 2 c 75 -0.6 cm 
ab 

5.21 -1.8 % 34 cm  

1 Quarantine – age 3-5 months 
2 Full circle 
3 Partial circle/”hanging testicle” 
4 Not enough information/scrotum not well pronounced 
5 Number of analysed images 
6 MPE – Mean of (SC-prediction) 
7 MSPE – Mean of (SC-prediction)^2 
8 MPPE – Mean of [(SC-prediction)/group_mean * 100%] 
9 Mean manually measured SC in cm 

Fig. 8. Age differences and 3D image quality. Examples of 3D pictures of a 
three–month–old NR bull calf (A) and twelve–month–old NR bull (B). 
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