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Abstract

Hušek et al. (2013, Popul Ecol 55:363–375) showed that the numerical response of storks to vole prey

was stronger in regions where variability in vole density was higher. This finding is, at first sight, in

contradiction with the predictions of life-history theory in stochastic environments.  Since the stork

productivity-vole density relationship is concave, theory predicts a negative association between the

temporal variability in vole density and stork productivity. Here, we illustrate this negative effect of

vole  variability  on  stork  productivity  with  a  simple  mathematical  model  relating  expected  stork

productivity to vole dynamics. When comparing model simulations to the observed mean density and

variability of thirteen Czech and Polish vole populations, we find that the observed positive effect of

vole  variability  on  stork  numerical  response  is  most  likely  due  to  an  unusual  positive  correlation

between mean and variability of vole density. 
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In a recent issue of Population Ecology (55:  363–375), Hušek et al.  (2013) reported on the spatial

variation in the strength of the numerical response of white storks (Ciconia ciconia Linnaeus, 1758) to

common voles (Microtus arvalis Pallas, 1778). In thirteen regions of Czech Republic and Poland, the

numerical response of storks, measured as the correlation between nestling productivity and local vole

density, was shown to be stronger in regions where vole numbers were more variable (see Fig. 4 in

Hušek et al. 2013).

Life-history theory predicts that temporal variability in resource abundance can positively affect

individual  fitness  (approximated  by  the  long-run  population  growth  rate,  ln(λ),  or  some  other

appropriate fitness measure; Brommer 2000), but only when the relationship is convex (Pásztor et al.

2000; Koons et al. 2009; Barraquand and Yoccoz 2013). This is due to Jensen's inequality, which we

illustrate  with  a  simple  graphical  model  in  Fig.  1.  Yet,  the  overall  relationship  between  stork

productivity and vole density in the Czech and Polish populations was not convex, but concave (i.e., a

logarithmic function fits the data, and this function is concave; see Fig. 2b in Hušek et al. 2013). This

finding is at odds with the theory, assuming that variation in fitness in long-lived storks is mainly

determined by productivity and less so by high and constant survival (Schaub et al. 2004, Schaub et al.

2005). 

Here  we  discuss  an  alternative  explanation  for  the  positive  relationship  under  the  lack  of

convexity. Namely, we suggest that the positive effect of variability in vole density on the numerical

response of storks arises from its co-variation with mean vole density. A major effect of mean density

and a smaller effect of variability in prey numbers on population dynamics of predators has been shown

in  for  example  the  arctic  fox  (Alopex  lagopus;  Henden  et  al.  2008)  and  the  long-tailed  skua

(Stercorarius longicaudus; Barraquand et al. 2014).

In Fig. 2, we plot the expected productivity E[P] against both the mean and variability (CV) in

vole density over the period 1982–1988 for the thirteen populations of voles studied in Hušek et al.



(2013).  E[P]  is  computed as  stork productivity  for  a  given vole  density  (not  accounting  for  local

specialization), and is multiplied by the probability density for the particular vole density value v, and

integrated over the whole probability distribution f(v) (Eq. 1; see also Barraquand et al. (2014) for the

use of a similar technique). The numerical integration was performed in Matlab using adaptive Gauss-

Kronrod quadrature ('quadgk' function).  The formula is as follows: 

E[P] = ∫ P(v) f(v) dv ; P(v) = α+β ln(v)  (1)

with  α = 0, β = 0.6118 (estimated from the GAM regression in Hušek et al. 2013). 

CV is a somewhat better measure of variability than the S-index (Krebs 2013), unless log-linear

models for observation error are used (McArdle and Gaston 1995), even though S-index and CV are

rather tightly related. We realistically assume that vole densities follow a lognormal distribution.  

Fig. 2 reveals that while the effect of the mean vole density on E(P) is positive and rather large, the

effect of CV is negative and small  (this small  negative effect is  due to the abundance distribution

asymmetry, see Fig. 5 in Barraquand et al. 2014). The observed increase of productivity with CV and

S-index can therefore only be due to the correlation between mean and CV (Pearson's  correlation

coefficient = 0.76).  Note that the use of indices reconstructed from density categories might have

removed some noise present in the true CV - mean density relationship (see Tkadlec et al. 2006 for a

detailed methodology), thus the reported correlation is only approximate. However, we focus here on

the positive sign of the correlation, which is not sensitive to this empirical procedure.

From an empirical perspective, our results suggest that storks are more likely to choose their

diet based on an “estimation” of the average abundance over several years (or using some other “rule of

thumb”), than by specializing on voles in places with more temporal variability. From a more general

perspective, our results also relate to Taylor's law (its temporal version, see e.g., Kilpatrick and Ives

2003). Taylor's law suggests that most populations fulfill a relationship Variance = a * Meanb, with the

exponent b lying mostly between 1 and 2, which is another way of expressing the correlation between



mean and CV, more familiar to most ecologists. Indeed, CV = (a Meanb)1/2/Mean = a1/2 Meanb/2-1 and is

thus negatively related to the mean if b/2 < 1, or b < 2. There are exceptions to Taylor's law though, and

in our  particular  case,  CV is positively related to  the mean (Fig.  2),  which means  b  > 2.  Best-fit

estimates of b, for the Czech and Polish populations, can be 4 to 6 depending on the estimation method

(the log-log regression log(Var) ~ log(Mean) yields a 95% confidence interval [2.22; 7.00]; in any case,

it is above 2). Theoretical results show that an exponent of 1 occurs under pure sampling variation,

while many population dynamics models generate an exponent closer to 2 (e.g., cyclic autoregressive

models). Clearly not all the observed variation in estimates of Taylor's exponent is due to sampling

error,  and it  has recently been suggested that  interspecific  differences  in  life  histories  might  drive

differences in Taylor's law exponent (Linnerud et al. 2013).  Given that a mean-CV positive spatial

correlation  as  observed  here  drives  predator  specialization,  it  seems  interesting  to  check  whether

positive covariation (equivalently, Taylor’s exponent > 2) could occur in more populations. 

Even more generally, recent work has focused on whether the environment changes mostly in mean or

variability (Garcia-Carreras and Reuman 2013). Our results suggest that spatial covariation between

mean and variability of environmental variables, such as food resources or climatic variables, can be

paramount to understanding population fluctuations and the evolution of life histories.
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Figures

Fig 1. Illustration of Jensen's

inequality  with  a  two-point

sample.  The  x-axis  can

represent  any  environmental

variable,  here  it  is  best

interpreted  as  vole  density,

while  the  y-axis  should  be

interpreted  as  a  measure  of

individual  fitness  (here,  stork

productivity).  In  the  convex

part (red in the online version)

of  the  sigmoid  curve,  the

mean function  fA is above the

function of the mean f(xA), and

any increase  in  variance  will

therefore  increase  the  mean

function fA.  It is the reverse in

the concave  part (blue in the

online version) .  



Fig 2. Expected productivity and its comparison with empirical data. The surface and contour plot shows E[P] as a function of mean and

CV of vole density, under the classic assumption of a log-normal distribution of vole density values (v). P(v) = α+β ln(v), α = 0, β =

0.6118 (estimated from the GAM regression in Hušek et al. 2013). Black circles represent the empirical mean and CV values for the

thirteen Czech and Polish populations over the period 1982–1988, which are positively correlated (Pearson's r = 0.76). 


