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ABSTRACT
 
Large herbivores constitute an important natural resource and are actively managed to 
meet economic, conservation and environmental objectives. To alleviate the potential of 
resource limitation and damage to commercially important habitats in areas with high 
population densities, the provisioning of artificial or supplementary forage has become a 
popular wildlife management intervention throughout Europe and North America. 
However, the usefulness of supplementary feeding is equivocal and little is known about 
how it affects spatiotemporal distribution patterns of large herbivores.  

The main aim of this thesis is to quantify the effect of supplementary feeding on 
the spatiotemporal distribution of moose (Alces alces L. 1758) living in southern Norway. 
I used locations of free-ranging GPS (global positioning system) collared moose (N = 26 
in summer and N = 32 in winter) with access to supplementary feeding stations to 
estimate habitat selection and home range size as a function of feeding status (i.e. feeding 
station users vs. non-users), variation in browse quantity and quality, and also in terms of 
local climate and individual characteristics. To evaluate fine-scale distribution patterns 
and foraging decisions around supplementary feeding stations I employed 2 independent 
datasets (GPS data and browsing estimates) from two study areas (in Telemark and 
Hedmark counties) that differ in the length of their feeding history. I apply central-place 
foraging theory to explain the observed patterns.  

My results indicate that supplementary feeding affects the spatiotemporal 
distribution of moose only at intermediate to fine spatial scales during winter, with 
feeding station users behaving as central-place foragers. However, feeding station users 
did not differ in their large-scale habitat selection patterns or home range size compared 
to non-users. Instead, moose habitat selection was driven by a scale-dependent trade-off 
between browse quantity (landscape-scale) and browse quality (within-home range-
scale). Moreover, depletion of high quality browse during winter lead moose to increase 
selection for lower quality browse within their home range. Variation in home range size 
was affected by several extrinsic (i.e. climate and natural browse) and intrinsic variables 
(i.e. individual characteristics) and their effects varied between and within spatiotemporal 
scales. After 6 years of feeding, moose that used feeding stations selected for 
commercially valuable browse (i.e. Scots pine) within their home range to the same 
extent as non-users, which questions the effectiveness of winter feeding in reducing 
browsing pressure over large spatial scales. In addition, as the time scale of feeding 
increased from 5-10 to 15-20 years, browsing pressure on commercially valuable browse 
(i.e. Scots pine and Norway spruce) was amplified at a fine spatial scale. At the same 
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time, resource depletion in the vicinity of feeding stations lead moose to forage at 
increasing distances from feeding stations and browsing damage occurred at least up to 1 
km from feeding stations. These findings suggest that when supplementary feeding is 
practised over longer time scales (more than 20 years) there is the potential for a trade off 
to occur between the energetic cost of returning to the central-place (i.e. feeding station) 
and the energetic benefits it provides.  

Evaluating management actions is important to determine whether the objectives 
and desired effects are realized. I have shown how supplementary feeding can affect the 
spatiotemporal distribution of moose and how subsequent browsing pressure around 
feeding stations can change over time. However, there are a variety of direct and indirect 
effects that follow the provisioning of supplementary forage that have not yet been 
adequately assessed. A holistic evaluation of the effectiveness of supplementary feeding 
as a wildlife management tool is required and needs to consider all the associated benefits 
and costs, especially considering long-term developments and potential ecosystem-level 
effects.  
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INTRODUCTION
 
In many parts of the world, large herbivores constitute an economically important natural 
resource, providing income through hunting and tourism, and consequently they are 
actively managed (Gordon et al. 2004). Populations of large herbivores have been 
expanding and increasing in density across much of Europe and North America in recent 
decades (Solberg et al. 1999, Côte et al. 2004, Milner et al. 2006) with various 
environmental and socio-economic consequences (Côte et al. 2004). Although high 
herbivore densities may increase economic benefits through increased hunting and 
tourism opportunities, there are associated costs too, such as an increase in traffic 
accidents, damage to forestry and agriculture and concern for overgrazing and general 
ecosystem impacts (Côte et al. 2004, Mysterud 2006). Some high density herbivore 
populations are now limited by competition for food with consequent negative density-
dependent effects on individual quality and performance (Skogland 1983, Kjellander et 
al. 2006, De Roos et al. 2009). To offset such problems and keep economic revenue high, 
the provisioning of artificial or supplementary forage has become a popular wildlife 
management intervention throughout Europe and Northern America. It is especially 
common in areas where herbivore densities are higher than the natural habitat can 
maintain (Peek et al. 2002, Putman and Staines 2004). The main goals of supplementary 
feeding are to increase body weight, survival rate, and/or reproductive performance in 
order to maintain high population densities (see Putman and Staines 2004 for a detailed 
review). However, feeding may also be carried out to control or reduce environmental 
damage, particularly to agriculture, forestry and habitats of high conservation value, or to 
reduce animal-vehicle collisions. The rationale behind such feeding (diversionary 
feeding), is to divert animals away from e.g. major traffic arteries, young forest stands or 
other valuable habitats via the provision of an alternative, strategically placed, food 
source (Putman and Staines 2004). However, herbivores that use feeding stations will 
often still consume natural forage which may lead to over-browsing or over-grazing in 
the vicinity of feeding stations (Schmitz 1990, Doenier et al. 1997, Gundersen et al. 2004, 
Putman and Staines 2004), though long-term browsing/grazing impacts have rarely been 
assessed. 

Whatever the effectiveness of winter feeding is in achieving its main objectives, 
there is little understanding about how supplementary winter feeding may affect foraging 
decisions of large herbivores or how selection criteria for habitat or natural forage 
resources change relative to the position of feeding stations. Forage variability in general 
is considered a crucial driver of habitat selection strategies in large herbivores 
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(Wilmshurst et al. 1999, Apps et al. 2001, Fortin et al. 2003, Hebblewhite et al. 2008). 
Forage resources required by large herbivores are patchily distributed over space and 
time, regardless of whether those herbivores are grazers that feed predominantly on 
graminoids, or browsers that feed on forbs, shrubs or branches of trees (Bailey et al. 
1996, Tufto et al. 1996, Fryxell et al. 2004). In addition, a common feature of food 
resource distribution is that quality and quantity are often inversely correlated (Demment 
and van Soest 1985, Fryxell 1991), with the most nutritious items tending to be the least 
common (Hansen et al. 2009). In highly seasonal environments, forage resources are, 
generally, of lower quality during winter (Shipley et al. 1998) and diminish through the 
season due to natural browsing, snow cover and lack of new vegetation growth (Edenius 
1991). As such, large herbivores should adopt a scale-dependent selection strategy that 
optimizes access to areas with sufficient abundance of high quality forage. Indeed, scale 
dependency in habitat selection as a function of forage variability has been observed in 
many grazing ungulates (Wilmshurst et al. 1999, Apps et al. 2001, Fortin et al. 2003, 
Anderson et al. 2005), though exceptions do occur (Schaefer and Messier 1995). In 
contrast, most studies investigating the spatiotemporal relationship between browsing 
herbivores and their natural food supply have focused on relatively fine spatial scales 
and/or during one particular season (Tufto et al. 1996, Hobbs 2003, Månsson et al. 2007). 

Due to the food limitation affecting many populations of large herbivores, and the 
important role of forage resources in habitat selection strategies, supplementary feeding is 
likely to affect distribution patterns of large herbivores. Indeed, there is some indication 
that feeding stations can serve as attraction points as regular feeding of deer can restrict 
space use patterns to the vicinity of feeding stations (Guillet et al. 1996, Doenier et al. 
1997, Kilpatrick and Stober 2002, Sahlsten et al. 2010). A better understanding of how 
animals select habitats or resources around supplementary feeding stations may help in 
the design of more effective feeding programs, especially in areas where both wildlife 
management and commercial land use practises need to produce benefits at the same 
spatial scale (Visscher and Merrill 2009).  
 

AIMS AND OBJECTIVES 

The Norwegian moose population is a good example of a growing and actively managed 
ungulate population, as described above. The annual harvest has increased from 7500 
individuals in 1960 to over 35000 in 2009 (Statistics Norway; www.ssb.no). The 
economic importance of the moose population in Norway is substantial with the annual 
income (incorporating revenue from tourism and hunting) estimated somewhere between 
70 – 90 million US dollars in 2000 (Storaas et al. 2001). In contrast, moose-vehicle 
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accidents, browsing damage in young forest stands (mainly of Scots pine [Pinus
sylvestris]) and management incentives taken to try and reduce these factors may result in 
annual costs of between 23 - 80 million US dollars (Storaas et al. 2001). Diversionary 
feeding to reduce forest damage and moose - vehicle collisions is popular in Norway 
(Gundersen et al. 1998, Andreassen et al. 2005). Supplementary feeding is also 
increasingly being used as a management practise to increase harvest yield by lowering 
food limitation. However, relatively little is known about the general impact of 
supplementary feeding on moose or its habitat. 

The main aim of this thesis is to quantify the effect of supplementary feeding on 
the spatiotemporal distribution of moose in southern Norway. 

First, I evaluate the effect of supplementary feeding stations on habitat selection 
patterns at intermediate spatial scales (i.e. within-home range) during winter in an area 
with a relatively short feeding history (6 years). I use central-place foraging theory (CPF; 
described below) as a basis to explain the observed patterns of space use around feeding 
stations (paper I). Furthermore, I evaluate the effectiveness of winter feeding as a 
management intervention to reduce the use of commercially valuable forest stands 
(paper I). I then continue to quantify space use and habitat selection of moose at multiple 
spatial and temporal scales. As noted, an important motivation to provide supplementary 
forage is to offset limitation or depletion of natural forage, in particular during winter 
when forage re-growth does not occur. In paper II, I explore, whether moose change 
their selection patterns during winter following depletion of natural forage resources, and, 
for the first time, determine whether the behavioural response to possible depletion of 
natural forage can be inferred from GPS-based habitat selection patterns. To do so, I 
assess habitat selection patterns at intermediate to coarse spatial scales during summer 
and winter seasons in relation to natural forage characteristics (i.e. browse quantity and 
quality). Supplementary feeding often reduces home range size of large herbivores 
(Guillet et al. 1996, Cooper et al. 2006). In paper III, I tested whether the home range 
size of moose varied with the intensity of feeding station use but also in terms of quality 
and density of natural browse, individual characteristics and climatic determinants. 
Lastly, to enable assessment of more long-term effects of supplementary feeding on 
moose selection patterns, as well as on the natural vegetation, I quantify how browsing 
pressure around feeding stations changed over time and space in an area with a feeding 
history of 15-20 years (paper IV).  

Clearly, to understand the role of supplementary feeding on the spatiotemporal 
distribution of moose, I need to put this into a more general ecological framework 
considering other factors also known to affect distribution patterns. I will therefore first 
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describe such a framework, namely that of habitat selection, central-place foraging theory 
and the effect of scale on animal space use. 
 

WHAT IS HABITAT SELECTION? 

Habitat selection occupies a basic but fundamental place in ecological research (Morris 
2003) and is concerned with the “where and how” animals are distributed relative to their 
environment (Rosenzweig 1981). Understanding this process is imperative because the 
distribution of individuals not only affects population dynamics (McLoughlin et al. 
2006), but also their interactions with other species through competition (Stewart et al. 
2002) and predation (Hebblewhite and Merrill 2009) or via cascading trophic effects 
(Ripple et al. 2001, Suominen et al. 2008). From a conservation perspective, habitat 
selection studies provide an essential source of information that can aid in the 
development of effective management strategies (Hobbs 2003, Gordon et al. 2004) and a 
valuable tool to evaluate species responses to habitat alterations (Saïd and Servanty 2005, 
Long et al. 2008) or management actions (Bergquist et al. 2009, Månsson et al. 2009).  
 Despite the widespread use of habitat selection analyses within ecological 
research, there is an ongoing debate about the most useful, operational definition of 
habitat selection in the literature. Moreover, the application of interrelated terms such as 
avoidance, availability, preference, resources, and even habitat is variable and 
inconsistent (Thomas and Taylor 1990, Morrison and Hall 2002, Thomas and Taylor 
2006, Gaillard et al. 2010). Because I use these terms regularly throughout my thesis I 
find it necessary to present and discuss the definitions that I have used. Hall et al. (1997) 
defined habitat as “the resources and conditions present in an area that affect occupancy, 
including survival and reproduction, by a given organism.” This intuitive description 
implies that each habitat holds a collection of specific resources that are important for 
individual survival and population growth (Morris 2003). But what exactly is a resource? 
Morrison & Hall (2002) defined this as “any biotic or abiotic factor directly used by an 
organism, and includes food, nutrients, water, atmospheric gas concentrations, light, 
soil, weather (i.e., precipitation, temperature, etc.), terrain, and so on”. Prins et al. 
(2008) argued that this definition is inaccurate because “….the essence of the concept 
‘resource’ is that organisms can compete for a resource (such as competing for food, 
nutrients, water, etc.)….”. For example, organisms can not compete for weather (or, in 
the case of large mammals, for light) which can therefore not be considered a resource. 
Instead, weather (and, for some species, light) may better represent environmental 
conditions. Furthermore, Prins et al. (2008) stress that the use of resources may lead to 
the (temporary) exhaustion of that resource. In other words; resources are depletable. 
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Because this thesis is about a large forest dwelling species, I will use the term 
habitat to refer to forest stands (paper I). I consider a resource as any biotic, depletable 
habitat component (mostly browse as in papers II, III & IV). Habitat selection, as 
originally defined by Johnson (1980), is the process by which an animal chooses which 
habitat or habitat components (i.e. resources) to use. In contrast, a large body of literature 
treats selection as a pattern, which is the consequence of the process described by 
Johnson (1980). Habitat selection is then defined as a situation in which habitat or 
resources therein, are used disproportionately to their availability (sensu Manly et al. 
2002). I have used the latter definition as much as possible (papers I, II & IV). 
However, I also regard spatiotemporal scaling of home range size as an indirect means to 
evaluate habitat selection (e.g. paper III), because home ranges are considered a spatial 
expression of an individual’s movement behaviour, driven by a complex interplay 
between environmental conditions and the internal state and requirements of an 
individual (Börger et al. 2008, Horne et al. 2008). I define preference as what an animal 
would prefer to eat in a controlled setting with access to known alternative forage (sensu 
Thomas and Taylor 2006). I have tried not to use the term avoidance too often, but I 
define it as lower use of a habitat or resource than would be expected from its availability 
or, alternatively, when use is low compared to that of another specified habitat or 
resource (a reference category; papers I & II). 

Although it would be convenient for ecologists to have one operational definition 
for habitat selection and interrelated terms, I believe that their meaning and interpretation 
is, to some extent, a matter of personal taste. To facilitate inter- and intradisciplinary 
comparisons and to avoid misinterpretation of results one should, therefore, at least 
provide a species- and study-specific definition of what is meant by habitat selection, 
something that is often ignored (Hall et al. 1997).  
 

CENTRAL-PLACE FORAGING THEORY 

Foraging decisions of large herbivores, such as predicted by optimal foraging theory 
(OFT; Charnov 1976, Stephens and Krebs 1986), are progressively being incorporated 
into habitat selection analyses (e.g. Fortin et al. 2003). The OFT focuses on how to 
maximize energy intake per unit of foraging time under various constraints, and is 
typically concerned with smaller scales than habitat selection theory. The central-place 
foraging theory (CPF; Orians and Pearson 1979) is a special case of the OFT and predicts 
space use and foraging decisions as a function of the distance from a focal point. In the 
classical case, the focal point is a nest or a den, but any key resource that acts as an 
attraction point may give rise to a space-use pattern resembling central-place foraging 

 11



(Rosenberg and McKelvey 1999). As such, CPF theory may prove useful in predicting 
habitat/resource selection around feeding stations, although in this case the central-place 
is a (non-natural) foraging hot-spot and movements are made away from this to meet 
other needs. Predictions of the CPF theory are largely based on biological mechanisms 
such as energy efficiency and resource depletion (Rosenberg and McKelvey 1999). 
Selection for habitat/resources by an individual exhibiting central-place behavior is 
typically a function of both the habitat’s or resource’s quality and proximity to the 
central-place. In this thesis I evaluate if moose that utilize feeding stations use their 
available space and select for habitat/resources as predicted for a central-place forager. 
To do so I focus on the following three predictions: 

1) Space use should be concentrated around the central-place and decline as 
distance increases. 

2.1) Differences in selection of available habitat (or resources) should be low close 
to the central-place and increase as distance increases. 

2.2) Differences in selection for preferred habitat (or resources) compared to lower 
ranked habitat should be small in the vicinity of the central-place and increase 
as distance increases, such that only highly preferred habitats are selected at 
long distances from the central-place. 

I will refer to these predictions again when I present the results and discussion of moose 
habitat selection during winter (paper I) and browsing pressure around long-term 
supplementary feeding stations (paper IV).  
 

THE EFFECT OF SCALE 

The effect of scale has been an increasingly important aspect of wildlife studies ever 
since the proposition that ecological processes are often connected to particular spatial or 
temporal scales (Johnson 1980, Senft et al. 1987, Wiens 1989, Levin 1992). In fact, the 
space and time dimensions in habitat selection are closely linked (Wiens 1989). Habitat 
selection is now widely accepted as being scale-specific and the incorporation of scale 
may be especially crucial when considering large and mobile species that can cover 
extensive distances over space and time (Boyce 2006).  

Johnson (1980) recognized four main hierarchical spatial levels of selection 
(Figure 1). Selection decisions at broad spatial scales typically reflect selection for a 
distribution range (first-order selection) or home range/territory establishment within a 
landscape (second-order selection). At the within-home range-scale, selection can be 
separated into selection for a habitat/patch (third-order selection) and selection for a site 
or food item (fourth-order selection). As such, habitat selection within a population can 
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be described as a hierarchical spatial process with landscape-level home range 
establishment and the final choice of a dietary item as the endpoints of a selection 
continuum (Johnson 1980, Morris 1987, Gaillard et al. 2010).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intermediate scale 

First-order selection 
      Distribution 

Second-order selection 
        Home range 

Third-order selection 
           Patch

Fourth-order selection 
             Site

Fine scale 

Coarse scale 

Figure 1: Habitat selection hierarchy. Johnson (1980) distinguished four levels of habitat selection: species 
distribution, home range, foraging patch and foraging site. 

 
Just like spatial scales, the effect of temporal scale is of crucial significance for 

habitat selection analysis. For example, habitat selection patterns may vary between years 
or seasons, as well as within seasons, which requires separate models (or also 
management strategies) for each timescale or the explicit inclusion of temporal scales in 
the analyses (Boyce 2006). Furthermore, selection patterns can vary depending on the 
daily activity cycle of an animal, thereby requiring differentiation between e.g. foraging 
activities and resting periods.  

A thorough understanding of how, and at which spatiotemporal scales, large 
herbivores respond to their environment is of considerable interest from both scientific 
and management points of view (Hobbs 2003, Weisberg and Bugmann 2003, Gordon et 
al. 2004). Besides the importance of availability and quality of natural forage on habitat 
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selection strategies, abiotic factors such as local climate and intrinsic variables such as 
individual characteristics or current state may also produce scale-dependent 
spatiotemporal space use patterns (Figure 2). As such, identifying the appropriate scales 
for the analyses is of prime importance when conducting or interpreting studies of space 
use and habitat/resource selection. Failing to do so might result in false interpretations of 
the mechanisms involved (Kie et al. 2002, Börger et al. 2008, McLoughlin et al. 2009).  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Graphical overview of how space use patterns are influenced by both intrinsic and extrinsic 
conditions as experienced by an individual (image from Börger et al. 2008). 
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STUDY SPECIES 
 
The moose is the largest member of the deer family (Cervidae) with males being 
generally larger than females (Putman 1989, Bubenik 1998). Its distributional range 
(including all 8 subspecies of which 4 in Eurasia [Baskin & Danell 2003] and 4 in 
Northern America [Bubenik 1998]) covers most of the circumpolar boreal vegetation 
zone (Bergstrom and Hjeljord 1987). Adaptations such as large body size, tolerance to 
low temperatures, substantial flexibility in digestive processes, and long legs are some of 
the features enabling moose to thrive in areas with strong seasonal variations in 
temperature and forage quality as well as periods of deep snow cover (Bubenik 1998).  

The Eurasian moose evolved some 100 000 – 300 000 years ago (Bubenik 1998) 
and is currently found throughout Fennoscandia and in parts of Russia, the Baltic states, 
Belarus, Poland, Ukraine, China and Mongolia (Baskin and Danell 2003, Wilson and 
Reeder 2005). The Norwegian moose represents the westernmost population within the 
Eurasian range. Population sizes in Norway, as in the rest of Scandinavia, have grown 
considerably over the last few decades (since 1970s) and densities in local wintering 
areas can be extreme (e.g. 5-6 moose/km2: Lavsund et al. 2003). The decline of natural 
predators, regulated moose hunting, and decreased competition from free ranging 
livestock have all contributed to this increase (Cederlund and Markgren 1987). However, 
an important driving factor behind the increase of moose numbers has been attributed to 
changes in forest management due to the positive effects of clear cutting on forage 
availability (Cederlund and Markgren 1987). 
 The moose is a typical browser (Cederlund et al. 1980, Bergstrom and Hjeljord 
1987) and is regarded as an energy maximizer (i.e., the assumed goal of an individual's 
foraging strategy is to maximize the long-term rate of energy intake; Belovsky 1978, 
Stephens and Krebs 1986). To meet its nutritional requirements a moose needs 
approximately 5 kg of food (dry weight) per winter day and ~10 kg of food (dry weight) 
per summer day (Hjeljord et al. 1982, Persson et al. 2000). During summer, moose 
typically strip the leaves of deciduous trees and forage on shrubs and herbs. During 
winter, they feed predominantly on the twigs of deciduous trees and Scots pine 
(Bergstrom and Hjeljord 1987, Hjeljord et al. 1990) 
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STUDY AREAS  

TELEMARK AREA 

The majority of the data used in this thesis (papers I, II & III) was collected in southern 
Norway (Figure 3A) within parts of Telemark, Buskerud and Vestfold counties (referred 
to in the text as ‘Telemark area’). The area (1733 km2) ranges in altitude from 20 to 800 
m with the forest line at approximately 750 m. It is in the boreonemoral zone and is 
mostly covered by commercially managed coniferous forest (82%). Stands are dominated 
by Norway spruce (Picea abies) and Scots pine but some mixed deciduous stands of 
birch species (Betula pubescens and B. pendula), rowan (Sorbus aucuparia), willow 
(Salix spp.) and aspen (Populus tremula) occur throughout the area. Abundant field layer 
species include bilberry (Vaccinium myrtillus L.), cowberry (V. vitis-idaea L.), raspberry 
(Rubus idaeus L.) and, rosebay willowherb or fireweed (Epilobium angustifolium L.). 
The mean monthly temperature during summer (June through September in 2007-08) was 
14.5 °C (min: 10.6 °C in September, max: 16.4 °C in July), and during winter (January 
through April 2007-08) was 1.9 °C (min: -0.6 °C in February, max: 6.6 °C in April) 
(Siljan weather station at 100 m a.s.l., The Norwegian Meteorological Institute; 
http://www.met.no). Average (± SE) snow-depths in the centre of the study area (430 m 
a.s.l) during Jan.-Apr. 2007 and 2008 were 49 ± 2.4 cm and 72 ± 1.5 cm respectively and 
numbers of days with snow cover were 127 in 2007 and 143 in 2008 (Mykle weather 
station, The Norwegian Meteorological Institute). Moose densities in the area are 
estimated at 1.5 individuals per km2 (Norwegian Directorate for Nature Management; 
http://www.dirnat.no). Red deer (Cervus elaphus L.) and roe deer (Capreolus capreolus 
L.) densities are estimated at 0.5 and 0.2 individuals per km2 respectively. Large predator 
species are absent and hunting is the single most important cause of moose mortality in 
this area. 
 

HEDMARK AREA 

I used data collected in a different part of Norway for paper IV. This area is located in 
southeast Norway (Figure 3B), Stor-Elvdal municipality, Hedmark County (referred to in 
text as Hedmark area) and ranges in elevation from 250 to 1100 m with the forest line at 
approximately 800-900 m. The area (~1850 km2) is dominated by low-productivity, 
commercially managed, boreal forest with pure or mixed stands of Scots pine and 
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Norway spruce. In addition, deciduous species such as birch, rowan, willow and aspen 
occur at low densities throughout the area. The mean monthly temperature during 
summer (June through September in 2007-08) was 11.9 °C (min: 7.5 °C in September, 
max: 14.6 °C in July), and during winter (January through April 2007-08) was -2.5 °C 
(min: -8.3 °C in February, max: 4.4 °C in April) (Haugedalen weather station, Norwegian 
Meteorological Institute). Numbers of days with snow cover were 154 in 2007 and 182 in 
2008. The cervid community in the area is dominated by moose (> 1.1 moose/km2 during 
winter; Gundersen et al. 2008) with very low densities of roe deer and red deer. Transient 
individuals of wolf (Canis lupus) and brown bear (Ursus arctos) are occasionally 
observed in the area but hunting is the single most important cause of moose mortality in 
this area. 
 

SUPPLEMENTARY FEEDING PRACTICES 

The practice of supplementary feeding wild herbivores varies from place to place in 
terms of the type, quality and amount of forage offered. In both the study areas 
considered here, supplementary food is provided by local landowners and consists of 
baled roughage, predominantly mixed graminoids. One bale of silage weighs ~ 600 kg. 
Feeding stations are located at fixed (permanent) sites along snow-cleared forest roads 
with low human activity. The supplementary food is provided ad libitum for up to 6 
months of the year (i.e., November through April, with starting and ending time 
dependent on annual snow conditions). 

The feeding history in the Telemark area (Figure 3A) is relatively short as 
supplementary feeding of both moose and red deer was initiated in 2001-02. At present 
there are a total of 94 permanent feeding stations in the area and the amount of 
supplementary forage consumed by moose over a 4 month period was 182 ton during 
winter 2006/07 and 244 ton in 2007/08. 

Supplementary feeding of moose and red deer in the Hedmark area (Figure 3B) 
was initiated in the late 1980s. In this area, the total amount of supplementary food 
provided at feeding stations has increased greatly over the last years with ~ 150 ton 
(across 44 feeding stations) during winter 1997-98 and ~ 1700 ton (across 157 feeding 
stations) during winter 2007-08.  
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MATERIALS AND METHODS
 

MOOSE LOCATION DATA & SAMPLE SIZE 

Data on animal movement and space use can be collected by various direct and indirect 
techniques including snow tracking (Mysterud et al. 1999), camera traps (Kuijper et al. 
2009), live-trapping (Schradin et al. 2010) and browsing / grazing signs (Månsson et al. 
2007). Another method involves the use of animal-borne technology such as radio-
telemetry and global positioning system (GPS) devices. The majority of the moose 
location data used in this thesis was collected via GPS collars (Telemark area; papers I, 
II & III) while browsing signs were also used (Hedmark area; paper IV). A total of 34 
adult female moose (16 individuals in 2007 and 18 individuals in 2008) were fitted with 
GPS collars (Tellus Remote GSM, Followit AB, Lindesberg, Sweden) programmed with 
a 1-h relocation schedule. Collar data were collected from January-November in both 
years. However, GPS positions taken during spring and autumn were not included in this 
thesis, partly to avoid the inclusion of long distance movements during the migration 
period and those associated with the autumn breeding season. Long directional 
movements, such as during migration periods, can seriously affect home range size 
(Luccarini et al. 2006) and moreover, habitat use during the migration period may differ 
from that at other times of the year (Fryxell and Sinclair 1988). In this thesis, snow 
conditions in the Telemark area were used to define winter length (period with � 30 cm 
snow depth). As such, winter in 2007 stretched from Jan. 21st until Apr. 8th and in 2008 
from Jan. 4th until Apr. 30th. Summer was defined as the period 1st of June till 15th of 
September for both years.  

A recurrent problem in animal tracking studies using GPS technology is collar 
failure which may result in low sample size (Tomkiewicz et al. 2010). Indeed, my final 
sample size was reduced to 32 individuals during winter and to 26 individuals during 
summer because of collar malfunctions (n = 6) and the death (n = 2) of collared 
individuals during the study period. Although these numbers are above the mean sample 
size (18.1 GPS collared animals; min = 4, max = 82) used in 30 recent habitat selection 
and movement studies as reviewed by Hebblewhite & Haydon (2010), my sample size is 
likely too small to make strong population-level inference and I therefore caution against 
generalizing my results over larger spatiotemporal scales than used in my studies. 
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GPS BIAS 

GPS-based telemetry is now one of the most popular and widely used methods in animal 
tracking studies (Aarts et al. 2008, Tomkiewicz et al. 2010) and allows for frequent, 
automatic sampling of animal locations over long periods of time which easily leads to 
the acquisition of large datasets. However, large GPS based datasets bring various 
complexities and problems that need to be understood and addressed in order to make the 
data valuable. One important consideration when dealing with animal locations estimated 
with GPS technology is that they inherently contain errors (Frair et al. 2004, D'Eon and 
Delparte 2005, Bjørneraas et al. 2010), which may bias habitat selection and home range 
size analyses when not handled appropriately (Swain et al. 2008, Frair et al. 2010). Two 
common types of errors in GPS location data are missed locations (or “fixes”) and 
location errors of successfully acquired fixes (Frair et al. 2004, Lewis et al. 2007). The 
probability of successfully acquiring a location, as well as the magnitude of the 
associated location error, may be related to environmental conditions (D'Eon and 
Delparte 2005, Graves and Waller 2006) and/or behavioural characteristics of the study 
species (Moen et al. 1996, Bjørneraas et al. 2010). Hence, the first step before analyzing 
GPS data should be to screen and clean the data by exclusion or correction of location 
errors and missed fixes in the dataset.  

The GPS collars used in this thesis attained an average fix rate (with collars on the 
moose) of 92 % (range 72-99 %) during winter and 90 % (range 83-97 %) during 
summer. To correct for possible bias in GPS fix success prior to analyzing habitat 
selection (papers I & II), I employed an iterative simulation approach detailed by Frair 
et al. (2004). This method is based on a spatially predictive model of the probability of 
successfully acquiring a fix under certain environmental conditions. Using field tests in 
the Telemark area during early winter, I estimated how fix rates were biased across forest 
stands (with varying cutting class and dominant tree species), slopes and sky visibility. 
Unfortunately I was unable to test for GPS fix rate bias and location error under summer 
conditions as the collars were on the moose during this period. I therefore used winter 
conditions throughout my studies when correcting for GPS error. With the final 
predictive model, I was able to probabilistically fill in all missed locations during the 
study period (for more detail on this approach see paper I). 

The GPS location error, estimated during field testing, was calculated as the linear 
distance between the recorded GPS location and the assumed “true” location (determined 
from the average of 24 GPS positions) which resulted in a median location error of 16 m 
with 95 % of the locations within < 75 m (Nobs = 2590). Because my intention was to link 
moose locations to environmental data, the location error should, at least, be lower than 
the resolution e.g. pixel size, of the vegetation map (see section on Forage quantity and 
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quality below). As this was the case (resolution of all underlying environmental maps I 
have used was � 50x50 m.), I did not correct for location error. However, prior to habitat 
selection analyses (papers I & II), locations where movement between 2 successive GPS 
locations exceeded 30 km/hr were removed from the dataset and replaced with locations 
predicted by the iterative simulation approach described above. Moose are known to 
reach 30 km/h in gallop (Baskin & Danell 2003) but I thought it unlikely that an 
individual could maintain this speed for more than 1 hr. With this rule I was able to 
identify and re-position all large locational outliers. Prior to the home range size analyses 
(paper III) I adopted a more detailed technique to detect large locational outliers, based 
on non-movement characteristics (i.e. using knowledge of how animals do not move) of 
moose (Bjørneraas et al. 2010). This approach also classifies erroneous fixes based on a 
speed rule but the threshold is determined and calculated by the mean distance between 
21 GPS positions within a moving window. An additional criterion in this method is that 
the turning angle of the erroneous location should be greater than 166° but less than 194° 
(i.e. the animal is returning in roughly the same direction it came from; Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Two erroneous positions identified using non-movement characteristics. 
 

FEEDING STATION USE 

To evaluate the effect of supplementary feeding on habitat selection I categorized the 
GPS-collared moose as feeding station users or non-users (paper I). To do so, I 
calculated the total number of hours spent within a 100 m buffer around feeding stations 
for each moose separately. I then divided this by the total number of GPS locations 
obtained during winter for that individual. Because feeding stations are small (< 20 m2) 
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and because the location in between the hourly GPS fixes is not known, I assumed that 
moose located within a 100 m buffer from feeding stations had indeed visited the station. 
Using this approach I found that, of the 32 collared moose, 10 individuals did not use 
feeding stations at all, 7 individuals used feeding stations < 1% of the time, 2 individuals 
between 1 and 2% and 13 individuals used feeding station > 2% during winter. Because 
the proportion of time spent on feeding stations did not provide an unambiguous division 
between feeding station users and non users, I also employed an alternative classification 
method to facilitate the categorization of feeding station use. This method is based on a 
Euclidean distances analysis (EDA) as proposed by Conner & Plowman (2001). For 
methodological details of this approach I refer to paper I. The results of the EDA 
analysis established that 15 moose were associated with the position of feeding stations 
more than expected by chance while the remaining 17 were not. The 15 moose classified 
as feeding station users with the EDA analysis all used feeding stations > 1% as 
determined with the first approach and were therefore classified as feeding station users. 
‘Feeding status’ (feeding station users vs. non-users) was subsequently included as a 
covariate in the habitat selection analysis. 

When assessing the effect of supplementary feeding on indirect measures of 
habitat selection, such as spatiotemporal scaling of home range size (paper III), I did not 
categorize the GPS collared moose into distinct feeding use classes. Instead, I included 
feeding station use as a continuous variable into the analyses. Again, this was calculated 
by dividing, for each individual, the number of GPS locations within a 100 m buffer of 
feeding stations by the total number of locations. However, the number of GPS locations 
used in this calculation were not taken from the whole winter period but instead extracted 
from a specific spatiotemporal scale (i.e. from day to month and from total home range 
size and core home range size). 
 

HOME RANGE ESTIMATION 

A popular topic in wildlife tracking studies is assessing home range characteristics and 
identifying factors that cause home range size to vary between and within species (e.g. 
McLoughlin and Ferguson 2000, Börger et al. 2006, Saïd et al. 2009). There are 
numerous methods available to estimate home range size and new techniques are still 
being developed (Getz and Wilmers 2004, Getz et al. 2007). Over the last few decades 
there has been considerable debate about which method is most suitable to estimate 
animal home ranges (Worton 1987, Seaman and Powell 1996). Nevertheless, all available 
techniques contain unique advantages, disadvantages and assumptions. Deciding which 
home range estimator to use is mostly related to the question and study species under 
investigation (Huck et al. 2008). 
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 Throughout this thesis I have used 2 home range estimation techniques: the 
minimum convex polygon (MCP; Mohr 1947) and the non-parametric local convex hull 
polygon (LoCoH; Getz and Wilmers 2004, Getz et al. 2007). However, when and how I 
use a particular technique varies between study objectives as the spatial properties of 
these methods have important consequences for habitat selection and general space use 
analyses. For example, I use the MCP in habitat selection analyses (paper I & II) as a 
spatial boundary to sample availability of habitat and resources at the within-home range-
scale (see section on resource selection functions below for sampling design). However, 
MCPs are known to over-estimate home range size as it often includes large unused areas 
(White and Garrott 1990, Huck et al. 2008) so whenever I use MCP I do not present 
figures on moose home range size. For this purpose (paper III), I employ the LoCoH 
method. The main advantage of estimating animal home ranges with the LoCoH method 
is that it allows for holes and hard boundaries in the home range due to inaccessible 
terrain (e.g. lakes and rocky outcrops) and is therefore less likely to include areas that an 
individual cannot use compared to other estimators (Getz et al. 2007). 

To assess variation in home range size of moose as a function of individual-level 
characteristics, browse characteristics and local climate patterns (paper III); I calculated 
home range size across multiple spatial and temporal scales for each moose separately. I 
used days, weeks, biweeks and months within both summer and winter season as time 
units and total home range area (i.e. 90% isopleths) and core home range area (i.e. 50% 
isopleths) as spatial units. For methodological details on home range size calculations and 
assumption of the LoCoH method see paper III.  
 

GEOGRAPHIC INFORMATION SYSTEM (GIS) AND FIELD DATA 

Map accuracy

Throughout this thesis I used habitat (i.e. forest stand) characteristics derived from 8-
year-old GIS maps. Dussault et al. (2001) recommend evaluating the accuracy of 
important habitat characteristics represented on forest maps via field observations, which 
may be especially important in habitat selection studies (Frair et al. 2010). For instance, 
when map misclassification rates exceed 10%, habitat selection coefficients are seriously 
affected, which might lead to false conclusions (Johnson and Gillingham 2008). To 
evaluate forest map accuracy I randomly sampled 180 forest stands throughout the 
Telemark area and found that 94.8 % of the forest stands were correctly classified with 
regard to cutting class and dominant tree species. The biggest part of the misclassification 
(2.7 %) was attributed to recent clear cut felling of cutting class 5 in spruce dominated 
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forest stands. Overall, I considered the accuracy of the GIS maps adequate for my 
purposes. 
 

Browse quantity and quality

An important objective of this thesis is to quantify habitat selection and home range size 
of moose as a function of changes in spatial (landscape level) and temporal (seasonal 
level) variability of browse quantity and quality (papers II & III). Estimating forage 
quantity and quality across a forested landscape is not easy and detailed field data on 
plant distribution, availability and quality has only been collected in a few study sites 
(Hebblewhite et al. 2008, Zweifel-Schielly et al. 2009). Most studies presume habitat 
quality and forage availability on the basis of forest stand productivity (Bo and Hjeljord 
1991) stand age (Dussault et al. 2005) or stem density (Visscher et al. 2006). The 
remotely-sensed Normalized Difference Vegetation Index (NDVI) can also be used to 
link vegetation productivity and phenology with animal movement and space use (Boone 
et al. 2006, Hansen et al. 2009). Indeed, the NDVI is strongly correlated with above-
ground vegetation biomass (Pettorelli et al. 2005), but it remains difficult to determine 
how much of the vegetation biomass is truly available for herbivores and to accurately 
assess vegetation quality (Herfindal et al. 2006). 

Instead, I developed spatially explicit forage availability maps, based on extensive 
field data collected in the Telemark area, and for both summer and winter seasons for 
each of the 6 most common tree species browsed by moose in southern Norway. I 
included silver birch, downy birch and Scots pine. Rowan, aspen and willow were also 
included but I combined them into 1 RAW species group. Norway spruce was excluded 
because of its negligible use as a food item by moose (Cederlund et al. 1980, Hornberg 
2001, Kalen and Bergquist 2004) although exceptions do occur (Faber and Pehrson 2000, 
Gundersen et al. 2004). Species-specific forage availability was measured during summer 
2007. To do so I used measurements of tree characteristics, browsing patters as observed 
for moose in the Telemark area (i.e. site-specific strip length and bite diameter), and 
sampling of trees in different forest stands across the area to predict and spatially map the 
availability of species-specific forage quantity (for methodological details see paper II).  

To express forage quality for moose in terms of single measures of digestibility, 
nutrient content or secondary compounds is complicated and rarely straightforward when 
analyzing multiple species (Bergstrom and Danell 1986). Instead, what I refer to as 
forage quality is based on selection ranks as reported in previous studies of species-
specific forage resource selection patterns of moose in the boreonemoral or boreal zone 
of Scandinavia (results of the literature review are summarized in Table S1 in paper II). 
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I only included studies with a use-availability sampling design to be able to assess if 
species were actively selected, avoided or used proportional to their availability (Thomas 
and Taylor 2006). Based on this review, I refer to rowan; aspen and willow (termed 
RAW species group) as higher quality browse species and silver birch, downy birch and 
Scots pine as lower quality species during summer. During winter Scots pine is 
considered to be of higher quality than silver birch and downy birch. 
 

Moose browsing around feeding stations 

To quantify changes in the spatial scale of moose winter browsing pressure around 
supplementary feeding stations over a 20 year time period (paper IV), I used field data 
from 1998 (Gundersen et al. 2004) and 2008, both collected in the Hedmark area. The 
tree species I considered here (i.e. target species) were the same as for the forage 
availability maps (given above). In addition, I included Norway spruce because of 
previously observed leader stem browsing by moose in the vicinity of feeding stations 
(Gundersen et al., 2004). Moose browsing pressure in 2008 was recorded around the 
same 30 feeding stations as surveyed in 1998 using sampling plots (n = 420) located at 
12.5, 25, 50, 100, 200 m from feeding stations (for methodological details see Gundersen
et al. 2004). Additional browse surveys were carried out at 500 and 1000 m from feeding 
stations in 2008 as I expected browsing pressure to have expanded spatially over time. 
For each target species present in a sampling plot (trees < 0.5 m high were assumed to be 
unavailable to moose during winter due to snow cover), one tree was selected, based on 
the average height of that particular species within a plot. For each selected tree I 
recorded i) presence / absence of leader stem browsing during the previous winter, ii) the 
number of lateral twigs available within moose browse height (0.5 - 3 m: Danell et al. 
1985), and iii) the number of lateral twigs browsed during the previous winter.  
 

STATISTICAL ANALYSES 

Resource selection functions 

Available methods and statistical models to quantify habitat selection include 
compositional analysis (Aebischer et al. 1993), K-select analysis (Calenge et al. 2005), 
habitat suitability models (Dussault et al. 2006), Maxent models (Baasch et al. 2010), and 
related resource utilization functions (Millspaugh et al. 2006). Perhaps the most popular 
technique to quantify relative use of habitat resources is the resource selection function 
(RSF) defined as any function proportional to the probability of use by an organism 
(Manly et al. 2002). RSFs are typically used to link animal distribution to spatial patterns 
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of habitat or forage resources within an area by contrasting the characteristics of used 
animal locations with those of a set of randomly drawn locations (Poole and Stuart-Smith 
2006, Godvik et al. 2009, Zweifel-Schielly et al. 2009). As such, RSFs are often 
estimated using logistic regression with used animal locations (response variable coded 
as ones) and available (or non-use) locations (response variable coded as zeros).  

Similarly, I quantify habitat and forage resource selection patterns at different 
spatiotemporal scales by estimating RSFs based on use-availability designs. I considered 
GPS locations (papers I & II) and browsing signs of moose (paper IV) as measures of 
utilized habitat/forage resources. A more challenging aspect of estimating RSFs at 
different spatial scales with use-availability designs is the definition of availability. How 
availability is sampled and the inferred scales of selection are, by default, related. For my 
purposes, I adopted sampling designs described by Thomas & Tailor (1990, 2006). For 
coarse-scale habitat selection patterns (second-order of selection; paper II) I compared 
seasonal home range characteristics of individual moose with characteristics of the 
Telemark area. As such, the total landscape delineated what was considered available to 
the moose. Availability was sampled by randomly drawing locations at the population 
level (i.e. design 2; availability is equal for all individuals). For intermediate-scale habitat 
selection patterns (third-order of selection; papers I & II) I compared moose location 
characteristics in the Telemark area with characteristics of their individual home ranges. 
In this case, home range delineates availability and was sampled by randomly drawing 
locations from within seasonal 95% MCP home ranges (i.e. design 3; availability is 
sampled for each individual separately). For fine-scale habitat selection patterns (fourth-
order of selection; paper IV) I compared the number of browsed lateral twigs with 
available twigs at a certain distance from feeding stations. In this case, the utilized 
(browsed) trees delineate availability which was sampled by counting the number of 
twigs available (i.e. design 4; availability is sampled around each used site). Leader stem 
browsing was not quantified with a use-availability but rather with a use-nonuse design. 
Availability (or non-use) sampled for each use, is what distinguishes design 4 from 
design 3 (Thomas and Taylor 2006).  

Recent advances in mixed-effects models have improved the usefulness of RSFs 
which have been successfully applied to various species e.g., grey seals (Halichoerus
grypus; Aarts et al. 2008), wolves (Canis lupus; Hebblewhite and Merrill 2008), red deer 
(Cervus elaphus; Godvik et al. 2009), and woodland caribou (Rangifer tarandus caribou; 
Koper and Manseau 2009). All RSFs estimated here were solved using logistic 
regressions; either with generalized linear mixed models (GLMM; sensu Gillies et al. 
(2006); paper I & II) or with generalized additive mixed models (GAMM; sensu Wood 
2006, Aarts et al. 2008; paper IV). Incorporation of a random intercept into RSFs is 
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especially beneficial with unbalanced sampling designs (Gillies et al. 2006) such as in 
papers I & II. To reduce the risk of type I errors as a result of correlated used and 
availability data, I calculated 95% Highest Posterior Density intervals as they are more 
conservative compared to standard 95% confidence intervals (Baayen et al. 2008). For 
methodological details on RSF estimation, confidence intervals and model prediction 
procedures see methods in papers I, II & IV. 
 

Home range size analysis 

The issue of spatiotemporal scale in home range size modeling has only been considered 
in a few, recent studies (Kie et al. 2002, Mitchell and Powell 2004, Börger et al. 2006, 
Rivrud et al. in press) with Spencer et al. (1990) as an exception. In addition, many 
studies consider only a single or a few factors to quantify variation in home range size 
(Cederlund and Sand 1994, Relyea et al. 2000, Kilpatrick and Stober 2002) though 
animals clearly scale their home range size in response to a variety of intrinsic and 
extrinsic conditions (Börger et al. 2006, Saïd et al. 2009). 
 To quantify how moose home range size, and variation therein, changes over 
space and time I used an established multi-scale approach developed by Börger et al. 
(2006). As such, I estimated home ranges (LoCoH) of moose using GPS locations 
collected at successively larger temporal scales (i.e. from daily to monthly scales in both 
summer and winter seasons) and spatial scales (i.e. from core home range area to total 
home range area). Home range size at the various spatiotemporal scales was subsequently 
analysed using linear mixed-effects modeling to decompose the variation of home range 
size into individual-level, forage and climatic processes (Table 1 in paper III).  

All statistical analyses used in this thesis were performed in R (R Development 
Core Team 2008). 
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RESULTS AND DISCUSSION
 

HABITAT SELECTION AND SUPPLEMENTARY WINTER FEEDING (PAPER I) 

Supplementary winter feeding of cervids as a management tool is increasing, but its 
effect on space use and habitat/resource selection has rarely been assessed. Here I 
evaluate whether space use and habitat selection patterns of moose using feeding stations 
during winter conform to the CPF predictions given in the introduction above.  

Firstly, I found that despite the low feeding station usage of the GPS collared 
moose in the Telemark area (the percentage of time spent at feeding stations during 
winter was, on average, 5% per feeding station user), the probability of a location being 
used decreased markedly as distance from feeding stations increased (conforming to CPF 
prediction 1). For example, the likelihood that a feeding station user selected habitat 
within 500 m of feeding stations was almost 5 times higher than selecting habitat beyond 
1.5 km from feeding stations. This is indicative that feeding stations serve as central 
attraction points within moose wintering ranges. Secondly, variation in habitat selectivity 
(as indicated by the red arrows in figure 5) between stands of Scots pine forest of 
differing age close to feeding stations was low but increased as feeding station users 
ventured further away (conforming to CPF prediction 2.1). The only notable exception 
was that recent clear-cut areas (cutting class 1) were selected less compared to older 
forest stands at all distances from feeding stations, increasing the overall selectivity close 
to feeding stations. This is to be expected as clear-cut areas mostly contain small trees 
and shrubs that are unavailable during winter due to snow cover. I did not find any 
evidence to support CPF prediction 2.2 in the Telemark area. Instead, young Scots pine 
stands (cutting class 2) were selected most from all available pine habitat at distances of 
up to 1 km from feeding stations but not thereafter. This inconsistency with CPF theory 
indicates that intraspecific competition and potential resource depletion close to feeding 
stations was not of concern to feeding station users in this study area. However, this 
finding is likely to be related to the low local moose densities around feeding stations 
arising from the short feeding history in the Telemark area (~6 years at the time of this 
study). Local animal densities may become increasingly high when winter feeding is 
practised over longer time frames (Peek et al. 2002). Under such conditions space use 
patterns and selection decisions in the vicinity of feeding stations may radically change.  
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Figure 5: Log(odds ratio) of selecting for available Scots pine stands as a function of distance from feeding 
station. All estimates are in comparison to the reference category cutting class 2 at 0-500 m from feeding 
stations. Variation in habitat selectivity is depicted by the red arrows. 
 

When I compared habitat selection estimates of GPS collared feeding station 
users and non-users at the within-winter home range-scale (see Figure 1 in paper I) this 
revealed that feeding station users continued to select for commercially valuable forest 
stands (i.e. young Scots pine stands) to the same extent as non-users. Although I did not 
assess browsing damage in these forest stands, this finding may suggest that pine 
remained an important part of the diet for moose that used feeding stations. As such, 
supplementary feeding stations were not successful in diverting moose away from 
valuable natural browse, at least when evaluated at this temporal scale (~6 years). 
 

LARGE-SCALE HABITAT SELECTION (PAPER II) 

An important question for supplementary feeding programmes is whether or not natural 
browse in wintering areas is limited or depletes over time. Here I evaluated whether 
moose selection for browse quantity and quality both at the landscape-scale (second-
order of selection) and the within-home range-scale (third-order of selection) was scale-
dependent and affected by forage depletion (paper II).  

I found that forage selection patterns by moose in the Telemark area varied across 
spatial and temporal scales in a manner that suggests a scale-dependent trade-off between 
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available browse biomass (i.e. quantity) and browse quality (paper II). Moose actively 
selected for habitat with a high abundance of lower quality browse species at the 
landscape-scale. In contrast, at the within-home range-scale moose selection was for high 
quality browse species, at least during summer and at the beginning of winter (Figures 2 
& 3 in paper II). Indeed, I found evidence for depletion of high quality browse during 
winter. The initial positive selection for habitat containing high quality browse biomass 
in early winter (at the within-home range-scale) decreased as winter progressed (Figure 3 
in paper II). At the same time, selection for areas with high biomass of lower quality 
species increased, suggesting depletion of high quality species biomass. Similar changes 
in selection criteria of moose following reduced availability of high-quality forage have 
been observed in Sweden (Edenius 1991, Shipley et al. 1998) despite the differences in 
scale and method of observation from my approach. The forage availability maps I have 
used were based on forage availability estimates recorded during one time period, giving 
only a static snap-shot of spatial variation in availability. As such, I cannot provide 
tangible evidence that resource depletion indeed occurred. However, I also observed low 
site fidelity during winter months (see Figure 4 in paper II) which suggests that resource 
depletion of quality browse necessitated moose to move more in order to acquire 
sufficient forage. In contrast, during the growing season when resources are constantly 
renewed, moose showed high site fidelity and selection for high quality resources 
remained fairly stable over time. This suggest that temporal changes in browse quality 
during the growing season did not seriously affect selection decisions made by moose 
(but see next section for a discussion on changes in browse quality and the effect on 
home range size). 
 Although not presented in paper II, I have also assessed whether feeding station 
users differ in their selection for natural browse compared to non-users. Based on the low 
feeding station use and similar selection for Scots pine habitat of feeding stations users 
and non-users described above (paper I), I expect similar selectivity of natural browse 
regardless of feeding status, both at the within-home range-scale (at least for Scots pine 
browse biomass) and at the landscape-scale, especially during summer. I found no major 
differences in seasonal selection for natural browse between feeding station users and 
non-users (Table 1). At the within-home range-scale, feeding station users selected less 
for habitat with high downy birch biomass than non-users but only during winter. The 
remaining selection estimates for natural browse species, including Scots pine, were not 
significantly different between feeding station users and non-users (Table 1). These 
results suggest that feeding stations were not successful in reducing the use of 
commercially valuable natural browse (Scots pine) at the within-home range-scale, 
supporting the results found in paper I, but also that the effect of feeding stations on the 
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spatiotemporal distribution of moose at the landscape level is low. Moreover, selection 
patterns during summer were highly comparable between feeding station users and non-
users indicative that there were no lagged effects of supplementary feeding. 
 
Table 1: Summary statistics of the landscape-scale and within-home range-scale RSF models for summer 
and winter, predicting habitat selection for feeding station users (in reference to non-users) as a function of 
species-specific browse availability. The model includes a random intercept for each individual (moose ID) 
and selection estimates are presented as log odds ratio ± 95 % HPD intervals. Significant differences 
between groups (where the HPD interval does not overlap with 0) are indicated in bold. 

   HPD interval
Landscape-scale - winter � SE lower upper
RAW species biomass x feeding status (yes) 0.008 0.009 -0.010 0.026 
Scots pine biomass x feeding status (yes) 0.008 0.007 -0.003 0.023 
Silver birch biomass x feeding status (yes) -0.081 0.111 -0.299 0.131 
Downy birch biomass x feeding status (yes) -0.010 0.005 -0.020 0.003 
     
Landscape-scale - summer     
RAW species biomass x feeding status (yes) 0.006 0.008 -0.010 0.022 
Scots pine biomass x feeding status (yes) 0.017 0.012 -0.004 0.041 
Silver birch biomass x feeding status (yes) -0.102 0.144 -0.372 0.197 
Downy birch biomass x feeding status (yes) -0.005 0.013 -0.033 0.019 
     
Within-home range-scale - winter    
RAW species biomass x feeding status (yes) 0.003 0.014 -0.026 0.029 
Scots pine biomass x feeding status (yes) 0.002 0.008 -0.014 0.018 
Silver birch biomass x feeding status (yes) 0.006 0.156 -0.310 0.303 
Downy birch biomass x feeding status (yes) -0.023 0.007 -0.037 -0.010
     
Within-home range-scale - summer    
RAW species biomass x feeding status (yes) 0.012 0.009 -0.006 0.031 
Scots pine biomass x feeding status (yes) 0.103 0.146 -0.178 0.391 
Silver birch biomass x feeding status (yes) -0.029 0.010 -0.049 0.009 
Downy birch biomass x feeding status (yes) -0.019 0.013 -0.045 0.007 
 
 The spatiotemporal distribution of animals is expected to be driven by attempts to 
maximize individual fitness through the selective use of forage resources across a range 
of scales (Senft et al. 1987). Here I have shown how habitat selection of moose as a 
function of browse availability and quality changed across scales. This agrees with 
findings from Månsson et al. (2007) who demonstrated that the relationship between 
moose winter browsing and forage availability (estimated as % cover) is also scale-
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dependent. It seems that for large herbivores in areas with no direct predation risk, high 
forage availability is the main determinant for seasonal home range establishment within 
a landscape (Jiang et al. 2009, Zweifel-Schielly et al. 2009). Elsewhere, habitat selection 
decisions at large spatial scales may be constrained by avoidance of direct (Frair et al. 
2005, Hebblewhite and Merrill 2009) or indirect (perceived) predation risks e.g. 
proximity to humans (Kittle et al. 2008). Human presence is not considered a major 
constraint on landscape-scale habitat selection patterns of moose in Scandinavia, due to 
indirect benefits such as roads and higher forage availability associated with commercial 
forestry practices (Herfindal et al. 2009).  

Overall, I would argue that selection for high abundance of lower quality species 
at the landscape-scale highlights a habitat selection strategy that allows herbivores (in the 
absence of predation risk) to compensate for unfavourable temporal variation in resource 
availability (e.g., depletion of quality resources) at smaller spatial scales. In foraging 
theory, depletion of resources at fine spatial scales is often the basis for predicting patch 
departure (Charnov 1976). Predictive models of herbivore patch use and departure in 
response to resource depletion are typically based on data from small spatial scales using 
an experimental approach (Kohlmann and Risenhoover 1994). However, more and more 
emphasize is being placed on predicting patch use based on animal movement occurring 
at larger scales using GPS data (Fryxell 2008, Owen-Smith et al. 2010). I have 
demonstrated how the behavioural response to a dynamic process such as resource 
depletion can be inferred from RSFs using GPS data collected over large spatiotemporal 
scales. 
 

VARIATION IN HOME RANGE SIZE (PAPER III) 

Home range size is expected to be inversely related to forage availability (Tufto et al. 
1996, Relyea et al. 2000, Saïd et al. 2009). Indeed, supplementary feeding has earlier 
been found to reduce home range size in roe deer and red deer (Schmidt 1993, Guillet et 
al. 1996) and I therefore expect to find similar results for moose. Besides the importance 
of forage availability, abiotic factors such as local climate can also seriously influence 
space use patterns and consequently home range size (Börger et al. 2006). However, 
concurrent analyses of the effect of both intrinsic and extrinsic conditions on home range 
size are rare and often scale-specific (Börger et al. 2006, Saïd et al. 2009).  
 I found that the effect and relative importance of various individual-level, forage, 
and climatic determinants on variation in moose home range size changed depending on 
the spatiotemporal scale under investigation, suggesting a scale-dependent relationship 
(see figure 2 in paper III). For example, home-range size increased with body weight 
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but only during winter at biweekly scales. Although, an increase in metabolic 
requirements is known to affect home range size at the interspecific level (Harestad and 
Bunnell 1979), the scale-specific effect found here supports the idea that body size is not 
a vital determinant of intraspecific variation in female home range size (Saïd et al. 2005, 
Saïd et al. 2009), in contrast to findings for males (Relyea et al. 2000). Furthermore, the 
effects of temperature, precipitation and snow depth varied spatially, being more 
influential on total home range size than on core area size. Similarly, Börger et al. (2006) 
found that peripheral home range areas are influenced more strongly by climatic 
variability than the more heavily used core areas. Nevertheless, some variables such as 
reproductive status (i.e. calf at heel or not) were consistently important in explaining 
home range size across scales. I found that the mobility of female moose in the period 
shortly after parturition was constrained by the presence of a calf (i.e. home range size 
was smaller for females with a new born calf than those without), but this limitation 
gradually decreased over time as offspring became more mobile and independent (i.e. 
similar home range size at the end of summer for both groups; see Figure 3 in paper
III). The extent to which differences in reproductive status affect the summer habitat 
selection patterns presented above (i.e. paper II) remains to be evaluated.  
 The proportion of time spent in the vicinity of feeding stations did not affect home 
range size at any of the spatiotemporal scales I considered, which contrasts with findings 
for other deer species. This suggests that moose in the Telemark area did not use 
supplementary feeding stations to a sufficient extent to affect home range size. However, 
data from the Hedmark area indicate that home range size of moose is hardly affected 
even when use of feeding stations is as high as 60% (Slangen 2010). In contrast, density 
of natural browse explained a large part of the observed variation in moose home range 
size during summer, though the expected negative correlation was only observed at the 
daily scale (see Figures S3 in Supporting Information of paper III). At longer temporal 
scales the effect gradually became positive towards the end of summer. Similar results 
have been found for seasonal home ranges of moose in Canada (Dussault et al. 2005). I 
expect this result to be a consequence of a decrease in nutritional quality of available 
forage as it matures over summer. Most of the evidence of seasonal changes in forage 
nutritional quality is based on grasses (Demment and van Soest 1985) though similar 
changes can also be expected to occur in browse species (Hjeljord et al. 1990, Bo and 
Hjeljord 1991). As such, this process may have caused moose to periodically (i.e. over 
longer time scales than one day) change feeding sites in search of new patches with 
browse of sufficient high quality in much the same way as is typically observed during 
periods of forage scarcity (i.e. winter). Indeed, I found a positive effect of browse density 
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on monthly home range size towards the end of winter (see Figures S4 in Supporting 
Information of paper III).  
 Local climate influenced home range size of moose mainly at short temporal 
scales (weekly and daily; see Figure 2 in paper II) suggesting that direct effects were 
more important than indirect effects associated with plant growth. This contrasts with 
findings for red deer (Rivrud et al. in press). Moose are well adapted to live in cold 
environments but easily suffer from heat stress, which may seriously constrain their 
movement (Dussault et al. 2004). Nevertheless, the effects of temperature and 
precipitation on variation in home range size were not as strong as I initially expected. 
This may suggest that habitat with good thermal shelter is sufficiently abundant in the 
Telemark area or, alternatively, that the climatic conditions experienced by the moose 
during my study period were below the levels at which heat stress becomes a major 
concern.  

Despite the large number of variables included in the analyses, considerable 
variation in home range size remained unaccounted for. It is plausible that other 
environmental conditions such as landscape heterogeneity (Kie et al. 2002) or 
competition (Kjellander et al. 2004) play an important role in scaling of home range size 
in large herbivores. Clear multiple effects on home range size lead me to conclude that 
both intrinsic and extrinsic variables are important drivers of scaling of home range size. 
My results therefore highlight the importance of considering multiple spatial and 
temporal scales when investigating animal movement and activity (Kie et al. 2002, 
Börger et al. 2006, Rivrud et al. in press).  
 

LONG-TERM BROWSING PRESSURE AROUND FEEDING STATIONS (PAPER IV) 

In the 3 previous sections I have investigated the spatiotemporal distribution of GPS 
collared moose exposed to supplementary feeding over a relatively short time period (i.e. 
6 years). However, for management purposes it is often necessary to evaluate long-term 
effects, yet this may be difficult to achieve as short-term ecological effects are not always 
good predictors of effects over the longer term. For example, the increased use of habitat 
in the vicinity of feeding stations (paper I) is likely to increase browsing impact on the 
natural vegetation. But how does this develop over time? Do the CPF theory predictions 
given above, still hold for space use patterns and forage resource selection decisions after 
long-term winter feeding of moose? To assess these questions, I compared pellet group 
counts and browsing pressure around feeding stations as recorded after 5-10 years of 
feeding and 15-20 years of feeding (Hedmark area; paper IV). 

In agreement with the results found in the Telemark area (paper I), browsing 
pressure estimated after 5-10 years of feeding in the Hedmark area largely conformed to 
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my CPF predictions 1 and 2.1. Browsing pressure declined with distance from feeding 
stations and variation in browsing pressure between species was low close to feeding 
stations but increased with distance (as indicated by the red arrows in figure 6). Again, I 
found no support for CPF prediction 2.2 as browsing pressure on preferred forage species 
(i.e. rowan, aspen and willow) was not highest at the greatest distance from feeding 
stations (200 m). After 10 years of additional winter feeding (i.e. 15-20 years of feeding), 
I found 2-3 fold higher faecal pellet group numbers in the vicinity of feeding stations (see
Figure 2 in paper IV), which suggests an increase in local moose densities or an overall 
increase in use of feeding stations. Concurrently, browsing pressure on leader stems at 
the same spatial scale was no longer negatively correlated with distance from feeding 
station (up to 200 m) and variation in browsing pressure did not amplify with distance 
(see Figure 4, paper IV). These results therefore do not fit well with CPF predictions 1 
and 2.1.  

 
Figure 6: Proportion of lateral twigs browsed after 5-10 years of winter feeding as a function of distance 
from feeding station. Variation in habitat selectivity is depicted by the red arrows. 
 
However, in contrast to the results from the Telemark area and the Hedmark area after 5-
10 years of feeding, when assessing selection decisions at a slightly larger spatial scale 
(up to 1 km) I did find evidence to support CPF prediction 2.2. Browsing pressure on 
preferred species (rowan aspen and willow) was highest at 1 km from feeding stations, 
lower for medium preference species (Scots pine) and completely absent for the least 
preferred Norway spruce (see Figure 5 in paper IV).  
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I found little support for the effectiveness of supplementary feeding as a tool to 
reduce or control habitat damage, at least on a fine spatial scale. I observed a spatial shift 
in peak browsing pressure on commercially valuable trees (i.e. Scots pine) when the 
timeframe of feeding was increased from 5-10 to 15-20 years of feeding (see Figure 6 in 
paper IV). I would argue that this is a direct result of intense browsing over a long time 
period (15-20 years) causing fine-scale depletion of this forage resource, or at least 
reducing its availability below acceptable levels for moose. Depletion of available 
resources around a central-place is often reported (Fryxell 1992, Elliott et al. 2009). In 
addition, browsing pressure on Norway spruce, a species normally avoided by moose but 
of considerable economic value, increased markedly over time and space. Browsing 
pressure on Scots pine leader stems were of such levels that economic losses could be 
expected up to at least 1 km from feeding stations (Ward et al. 2004).  

Although providing supplementary food may reduce intake of natural vegetation 
to nearly zero in some species (Putman and Staines 2004 and references therein), 
browsing herbivores typically continue to forage on natural vegetation. This is likely to 
be related to a shortage of essential nutrients or fibre in the supplied forage (Schwartz and 
Hundertmark 1993). However, as I have shown here, over the short-term, moose 
concentrate their space use and foraging activity to the vicinity of feeding stations as 
predicted by CPF theory, and browsing damage to forest stands will therefore be 
restricted to a fine spatial scale. However, when winter feeding is continued over 
extended time periods (20 years or more) and in permanent locations there is serious 
potential for resource depletion at increasingly larger spatial scales. At some point in time 
this may result in a situation where the energetic cost of returning to the central-place (i.e. 
feeding station) will outweigh the energetic benefits it provides. Such a trade-off could 
result in the abandonment of feeding stations and central-place foraging behaviour. This 
will subsequently lead to an increase of browsing damage at the landscape-scale and 
completely undermine the initial purpose of diversionary feeding. A potentially valuable 
approach that deserves further attention is to provide supplementary food within a spatial 
rotation scheme. Such an approach would allow certain areas to recuperate until 
sufficient re-growth is available to withstand browsing pressure for a new period of time. 
An alternative approach is to supply browsing herbivores with the harvest residue that 
remains after tree logging, which has been shown to substantially increase the availability 
of natural winter browse for moose (Månsson et al. 2010). Although more evidence is 
required, this could be a potentially useful approach to control browsing pressure because 
the location of such sources of natural forage will frequently change over space and time 
and, as such, lowers the risk of fine-scale resource depletion and severe browsing damage 
to surrounding forest stands.  
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CONCLUSIONS AND FUTURE PERSPECTIVES
 
My results clearly indicate that supplementary feeding affects the spatiotemporal 
distribution of moose at intermediate to fine spatial scales during winter, with feeding 
station users concentrating their space use around feeding stations and behaving as 
central-place foragers (papers I & IV). By contrast, supplementary feeding had no effect 
on habitat selection at intermediate to coarse spatial scales (paper II) or on home range 
size (paper III). Nor were there any lagged effects of supplementary feeding during the 
summer season. Instead, availability and quality of natural browse and, to a lesser extent, 
local climate and individual characteristics appeared important in habitat selection and 
scaling of home range size across a range of spatiotemporal scales. Additional evidence 
from regions with longer feeding traditions is needed to assess whether these findings are 
typical or whether habitat selection patterns evolve over time and change with winter 
severity and intensity of feed use. Nevertheless, my results demonstrate how, after 
relatively few years of feeding, feeding station users continued to select for commercially 
valuable browse (i.e. Scots pine) to the same extent as non-users (paper I & table 1) 
which raises a serious concern about the effectiveness of winter feeding in reducing 
browsing pressure over large spatial scales. Although a more definite conclusion in this 
respect would benefit from a comparison of browsing pressure at the landscape-scale 
before and after the inception of feeding programmes, this may be difficult to achieve as 
baseline data is rarely collected. At least at a fine spatial scale, I demonstrated a 
considerable increase in browsing pressure on the natural vegetation associated with 
long-term supplementary feeding (paper IV). Resource depletion close to long-term 
feeding stations lead to higher browsing pressure at distances further away. In addition, 
browsing pressure on commercially valuable species such as Scots pine but also Norway 
spruce, which is normally avoided by moose, increased considerably. Overall, 
supplementary feeding as a diversionary tactic to reduce moose browsing on 
commercially valuable species was therefore not supported.  

In my studies I have focussed on assessing the role of supplementary feeding and 
other factors on the spatiotemporal distribution of moose. Although such assessments are 
important to understand how animals perceive and exploit their available forage 
resources across scales, there is a growing need to translate and couple an individual’s 
space use and habitat selection strategies to fitness indices (Gaillard et al. 2010). For 
management purposes, a logical next step is therefore to assess the effect of 
supplementary feeding on e.g. body weight, survival and reproduction. This is crucial as 
more and more property managers are investing substantial resources into winter 
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supplementary feeding programs without adequate knowledge of the consequences. In 
contrast to birds (Robb et al. 2008) and large carnivores (Lopez-Bao et al. 2009), there is 
little consensus about the general impact of supplementary feeding on fitness or 
nutritional status of grazing herbivores (Putman and Staines 2004) and very little is 
known about the long-term physiological and life-history consequences of such feeding 
on browsing herbivores. Many questions are still unanswered. Are central-place foraging 
moose gaining more or less body mass than those feeding solely on the natural 
vegetation? Are parasite or disease transmission exacerbated? How do such patterns 
change over time and with feeding intensity? What is the effect of the supplied forage on 
physiological condition? There is concern that supplying browser herbivores with silage 
might increase tooth wear (Kaiser et al. 2009), which could subsequently reduce 
longevity. Furthermore, long-term supplementary feeding can affect the spatial genetic 
structure of large herbivores (Blanchong et al. 2006), and may reduce natural selection 
(Schmidt and Hoi 2002) and social learning (Mysterud 2010). A holistic evaluation of the 
effectiveness of supplementary feeding as a wildlife management tool is required and 
needs to consider all the associated benefits and costs, especially considering 
developments on the long-term. High moose densities, such as those occurring around 
long-term feeding stations, can seriously alter ecosystem properties with knock-on effects 
for other trophic levels. For example, severe moose browsing over extended time 
negatively affects tree productivity (Persson et al. 2005) and can change the vegetation 
composition of the field layer (Mathisen et al. 2010). These processes have already been 
shown to impact the abundance and composition of invertebrates (Suominen et al. 2008) 
and subsequently the breeding success of insectivorous birds around feeding stations 
(Pedersen et al. 2007). Managing moose is about managing ecosystems. Therefore, 
supplementary feeding of moose, or any other large herbivore, should be viewed in this 
wider perspective. Much exciting research remains to be done before this can be achieved 
on a firm scientific platform. 
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ABSTRACT The practice of feeding cervids in winter, either as a supplement to enhance nutritional status or to divert animals away from

roads, railways, or vulnerable habitats, is rising noticeably. Moose (Alces alces) densities in Scandinavia are currently at historically high levels,

resulting in amplified damage to economically important young Scots pine (Pinus sylvestris) forest stands. Nevertheless, there is limited

information as to how diversionary feeding affects herbivore space use and habitat selection. We followed 32 female moose marked with Global

Positioning System collars to evaluate 1) if feeding stations serve as attraction points to the extent that habitat-selection patterns resemble those

of central-place foragers (i.e., high usage and more uniform selection close to the attraction point), and 2) if moose using feeding sites select

young pine stands less than those not using feeding sites. Moose that used diversionary forage concentrated their space use around feeding

stations and selected habitats as predicted for a central-place forager with a decreasing probability of using areas away from feeding sites and a

low degree of habitat selectivity close to feeding sites. However, moose that used feeding sites continued to select young pine stands to the same

extent as moose that did not use feeding sites. Feeding sites were, therefore, not successful in diverting moose away from valuable natural

browse, so we recommend wildlife managers establish feeding sites in sacrifice areas where moose browsing is permissible and, if possible,

.1 km from young pine plantations.

KEY WORDS Alces alces, central-place foraging, deer, diversionary winter feeding, habitat use, mixed-effect logistic regression,
resource selection function, southern Norway.

The supplementary winter feeding of large herbivores is a
widespread, yet controversial, wildlife management practice
(Boyce 1989, Smith 2001, Putman and Staines 2004).
During the past decade, this practice has increased
noticeably throughout Europe and North America. Al-
though there are many reasons for diversionary feeding
(reviewed by Putman and Staines 2004), an important goal
is the prevention of environmental damage, particularly to
agriculture and forests of commercial or conservation value
(Smith 2001, Peek et al. 2002, Gundersen et al. 2004,
Putman and Staines 2004). The rationale behind such
feeding is either to reduce the amount of natural forage
required by wintering herbivores via the provision of
alternative forage or to redirect animals toward less-
vulnerable habitats. However, ungulates will often still
consume natural forage, and evidence of the effectiveness of
winter feeding as a diversionary tactic is equivocal (Schmitz
1990, Doenier et al. 1997, Gundersen et al. 2004, Putman
and Staines 2004).

Central-place foraging theory predicts space use and
foraging decisions as a function of the distance from a focal
point (Orians and Pearson 1979). In the classical case, the
focal point is typically a nest or a den, but any key resource
that acts as an attraction point may give rise to a space-use
pattern resembling central-place foraging (Rosenberg and
McKelvey 1999). The central-place foraging theory, a

special case of the wider optimal-foraging theory, is,
therefore, likely to be useful for predicting ungulates’
habitat-selection patterns if artificial feeding sites can be
assumed to serve as attraction points. A typical feature of
central-place foraging is a declining probability of use of
locations with increasing distance from the focal point
(Rosenberg and McKelvey 1999). Also, central-place
foragers are expected to show both lower selection for
preferred resources and a lower overall variation in selection
of resources close to the focal point (Schoener 1979). There
is limited information as to whether feeding stations restrict
space use of individual ungulates and how that, in turn,
affects habitat-selection patterns. For ungulates that use
feeding stations, habitat selection may vary with distance to
feeding site because of locally high densities and amplified
competition for assumed high-quality habitat types close to
feeding sites. Studies on smaller cervids have shown that
providing artificial winter feed can change migratory
movement for white-tailed deer (Odocoileus virginianus;
Lewis and Rongstad 1998) and restrict natural space-use
patterns to the vicinity of feeding stations for roe deer
(Capreolus capreolus; Guillet et al. 1996) and white-tailed
deer (Kilpatrick and Stober 2002). For managers, it is
important to know the spatial scale at which winter feeding
affects space use and habitat selection so that effective
winter feeding programs can be designed for various goals.

Moose (Alces alces) populations in Norway, as in the rest of
Fennoscandia, have grown considerably during the past1E-mail: floris.vanbeest@hihm.no
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decades, and densities in local wintering areas can be
extreme (e.g., 5–6 moose/km2; Lavsund et al. 2003). A
concurrent problem with high moose densities is the
excessive winter browsing in regenerating, young Scots pine
(Pinus sylvestris) stands, resulting in substantial economic
losses to forestry (Andren and Angelstam 1993, Ball and
Dahlgren 2002). Gundersen et al. (2004) demonstrated how
winter feeding of moose in Norway may reduce browsing
damage to forestry interests at a local scale (up to 5 km) but
may lead to serious habitat damage at a forest-stand scale
(e.g., severe browsing and bark-stripping

M

200 m).
Our objectives were to quantify how the provisioning of

winter forage affects space-use and habitat-selection pat-
terns of moose. When additional feed at least partly
compensates for intake of natural preferred browse, we
predicted that (P1) artificial forage would reduce the
selection for commercially valuable young pine stands
among moose that used feeding stations, because time spent
in pine stands would likely decrease. If moose experience
feeding sites as attraction points in their seasonal home
range, we predicted (P2) that space use would be
concentrated in the vicinity of feeding stations and (P3)
low habitat selectivity in the vicinity of feeding stations with
selectivity increasing with distance.

STUDY AREA

The study area (1,733 km2) was located in southern Norway
within parts of Telemark, Buskerud, and Vestfold counties
in the boreonemoral zone (Fig. 1). The area was mostly
covered by commercially managed, coniferous forest (82%),
dominated by Norway spruce (Picea abies; 72%) and, in the
drier and poorer locations, by Scots pine (17%). In addition,
a few mixed deciduous stands (6%) of birch (Betula spp.),
mountain ash (Sorbus aucuparia), willow (Salix spp.), and
aspen (Populus tremula) occurred throughout the area. The
topography was rugged with steep slopes, and the altitude
ranged from sea level to 800 m. Monthly normal temper-
atures during January and April were 25u C and 4.3u C,
respectively (Norwegian Meteorological Institute 2008).
Average (6SE) snow depths in the center of the study area
during January–April 2007 and 2008 were 49 6 2.4 cm and
72 6 1.5 cm, respectively, with deeper accumulation at
higher elevations (Norwegian Meteorological Institute
2008). Large predator species were absent, and hunting
was the most important cause of moose mortality in this
area.
Local landowners have been feeding moose and red deer

(Cervus elaphus) ad libitum with ensilaged bales of mixed
graminoids for M6 winters. There were 94 permanent
feeding stations, and during the 4-month winter, moose
consumed 182 tonnes of forage in 2006–2007 and
244 tonnes in 2007–2008.

METHODS

Moose Telemetry Data and Habitat Maps
We fitted 32 adult female moose with Global Positioning
System (GPS) collars, programmed with a 1-hour relocation
schedule during 2 winters. We tranquilized moose by

dart gun from a helicopter, using established techniques
(Arnemo et al. 2003). We used annual snow conditions to
define winter length (.30-cm snow depth), which corre-
sponded with the period that artificial forage was supplied.
In 2007, winter was from 21 January to 8 April, and in 2008,
it was from 4 January to 30 April. We excluded all GPS
locations collected within 24 hours of marking a moose.

We used forest-stand indices from 6-year-old Geographic
Information System (GIS) maps. Dussault et al. (2001)
recommend evaluating the accuracy of important habitat
characteristics represented on forest maps via field observa-
tions, which is especially important for fine-scale habitat-
selection studies. To assess the forest-stand classification
accuracy of our GIS maps, we randomly sampled 180 forest
stands throughout the study area and determined whether
the forest stands were correctly classified with regard to
cutting class and dominant tree species. We partitioned
cutting classes (cc) by tree height: cc.1 5 stands with trees
,1 m; cc.2 5 stands with trees of 1–7 m tall; cc.3 5 8–
14 m tall; cc.4 5 15–20 m tall, and cc.5 5 trees

L

20 m in
height.

Correcting for GPS Bias
A recurring problem in studies reliant on data obtained with
GPS technology is variable fix rates in location accuracy
(D’Eon and Delparte 2005, Graves and Waller 2006).
Because the average GPS-collar fix rate during our study
was 91.9% (range among collars: 72–99%), we investigated
whether fix rates were biased across habitat types and
corrected for it in the habitat-selection analysis. We placed
collars 1.5 m above the ground for 24 hours with the
antenna pointed directly upwards, during early winter (Nov
2007). We made positioning attempts each hour. We

Figure 1. Map of the study area in southern Norway (part of Telemark,
Buskerud, and Vestfold counties). The map shows the spatial distribution of
permanent moose feeding stations (n 5 94) during the winters of 2007 and
2008, the lakes, rivers, and boundary of the study area.
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repeated trials 4 times for each combination of habitat
variables (see below), a total of 120 trial sites. We selected
trial sites by stratified random sampling across 3 habitat
characteristics that we suspected could affect the GPS fix
rate: 1) dominant tree species (Scots pine vs. Norway spruce;
we did not include mixed deciduous stands because they
comprise a minor habitat type [6% of all stands]); 2) slope
(flat, ,4u; moderate, 4–8u; steep, .8u); and 3) cutting class.
Furthermore, we determined sky visibility, defined as the
percentage of sky obstructed by terrain features for each trial
location. We calculated sky visibility in ArcView GIS 3.2
(script developed by D. O. Wallin, Department of
Environmental Science, Western Washington University,
Bellingham, WA), and we derived slope from a Triangu-
lated Irregular Network grid (50-m cell size) in ArcMAP
9.2.
We defined and calculated location accuracy as the linear

distance between the recorded GPS location and the
assumed true location (i.e., the average of 24 GPS
positions). The median location error at trial sites was
16 m with 95% of the locations within ,75 m. These
results are considered acceptable (Hebblewhite and Merrill
2008) and similar to the spatial resolution of our GIS
habitat variables.
To test and account for habitat-specific bias in GPS fix

rate, we did the following: at each trial site, we knew the
number of successes and failures of GPS positioning
attempts (average fix success, 96.9%; range, 87.8–100%)
and the combination of habitat characteristics. From these
data, we built a mixed-effect logistic regression model with
success (1) or failure (0) for each location attempt as the
response variable, with habitat characteristics as fixed-effect
predictor variables, and collar identity as a random intercept
(to account for systematic differences in collar quality). Our
results indicated that the odds ratio of acquiring a GPS fix
were lowest in the spruce-dominated forest of cc.3,
compared with the open pine stands of cc.1. The odds of
a GPS collar successfully acquiring a location were positive
for increased sky visibility and negative for increased slope
and cutting class. From this model, we predicted the
probability of attaining a fix for all combinations of habitat
characteristics. Habitat variables were available as layers in
GIS maps, and we could, therefore, use the model to predict
the probability of obtaining a GPS fix at every location in
the study area (i.e., a probability value for every pixel of a
GIS raster map). Pixels of mixed deciduous stands received
the same probability as pine-dominated stands (i.e., the
reference category). To correct for GPS bias, we used an
iterative simulation method (Frair et al. 2004). For each
missing location in the moose GPS data set, we randomly
selected a location and a randomly drawn probability value
of a uniform distribution within a rectangle defined by the
previous and next known locations. We compared the
predicted value of acquiring a fix for that location (found on
the GIS probability map) to the randomly drawn probability
value. If the random value was greater than the predicted
value, we retained the random location; otherwise we
selected a new random location and probability value.

Therefore, we retained locations with the lowest predicted
probability of obtaining a fix, and thus the higher probability
of being a missed location, more often. In this manner, we
filled in 2,483 missed locations with 60.5% assigned to
spruce-dominated forest (26.4% within cc.3). Pine and
mixed deciduous forest received 37.5% and 2% of the filled
in locations, respectively.

Feeding Site Use
To categorize individual moose as feeding-site users or
nonusers, we used the Euclidean distances analysis (EDA)
proposed by Conner and Plowman (2001): di 5 ui/ri. Here,
ui represents a vector of distances from feeding stations to
used positions within the wintering home range, and ri is a
vector of distances from the feeding stations to randomly
selected points within the winter home range. When the
ratio is di , 1.0, the animal is associated with the feeding
stations more than is expected by chance (Conner and
Plowman 2001). We used 95% minimum convex polygons
(MCPs) to delineate moose wintering home ranges (Mohr
1947). For moose with a range overlapping

L

1 feeding
station, we randomly selected 2,000 points with replacement
from the MCP (i.e., Design III sampling; Boyce et al. 2002,
Manly et al. 2002, Thomas and Taylor 2006). The number
of random points we chose was comparable with the average
number of used locations per individual moose. We
excluded individuals without feeding stations in their
seasonal home range from the EDA. We calculated
distances to the closest feeding station for ui and ri using
Spatial Analyst in ArcMAP 9.2. We used a bootstrap
procedure to calculate di 10,000 times and classified an
individual as a feeding-site user when the upper limit of the
95% confidence interval did not overlap with 1, where 1 5
no selection of feeding sites. We subsequently included
feeding status (i.e., feeding-site user vs. nonuser) as a
covariate in the habitat-selection analysis.

Dussault et al. (2005) demonstrate that results from
distance-based analyses do not disclose habitat preference
and, moreover, do not necessarily quantify actual habitat
use. We, therefore, determined the proportion of time spent
within 100 m of feeding stations to quantify feeding site use
for each individual separately and to confirm our EDA
results with an alternative classification method. We
considered that moose located within a 100 m buffer from
feeding sites had visited the station because feeding stations
were small (,20 m2) and because the location in between
the hourly fixes is not known. As such, we calculated the
number of hours spent within a 100-m buffer around
feeding stations for each moose separately (each unique
location represented a visit of 1 hr because we used a 1-hr
GPS relocation schedule) and divided that by the number of
GPS locations obtained during winter for that individual.

We used independent sample t-tests to estimate differ-
ences in forest road density, proximity to human settlement,
proximity to cc.2 of Scots pine stands, and proximity to
tractor roads between used and unused feeding stations. We
also used independent sample t-tests to test for differences
in home range size (95% MCPs) between feeding-site users
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and nonusers. All variables fulfilled the assumptions of
normality and homogeneity of variance between groups.
Moreover, we evaluated whether feeding stations within
Norway spruce–dominated forests were used to the same
extent as feeding stations within Scots pine–dominated
forests with Fisher’s Exact Test.

Habitat Selection
We assessed habitat selection by modeling resource selection
functions (RSF), defined as any function proportional to the
probability of use of a habitat by an animal (Manly et al.
2002). We employed mixed-effect logistic regression models
and adopted the extension of the fixed-effect, exponential
RSF by Manly et al. (2002), as proposed by Gillies et al.
(2006): w(x) 5 exp(b0 + b1x1ij + b2x2ij +, … , + bnxnij + c0j).
Here xn are covariates with fixed regression coefficients bn,
the b0 is the mean intercept, and c0j is the random intercept,
which is the difference between the mean intercept b0 for all
groups and the intercept for group j (Skrondal and Rabe-
Hesketh 2004, Gillies et al. 2006). Incorporation of a random
intercept into RSFs is especially beneficial with unbalanced
sampling designs because it adjusts the overall average
probability of use, which depends on an arbitrary number of
randomly sampled points (both used and available) for each
individual (Gillies et al. 2006, Godvik et al. 2009). Based on
parsimony, the final mixed-effect RSF models contained only
a random intercept for moose identification (because the
inclusion of a second random intercept for year did not
improve model fit (Dlog-likelihood, ,3.84; Hilborn and
Mangel 1997, Gillies et al. 2006).

We estimated habitat availability by drawing a random
sample of points from within each individual’s wintering
home range (i.e., the third-order scale of selection; Johnson
1980). The number of available points selected equaled the
number of points used by each individual. Thus the response
(dependent) variable in our RSF models consisted of used
(1) and available (0) locations. We selected the independent
variables included in the RSF models a priori to answer our
predictions. Variables were 1) dominant tree species (a 3-
level factor: Norway spruce, Scots pine, and mixed
deciduous), 2) cutting class (as described above), and 3)
feeding-status (feeding-site user vs. nonuser). To quantify
differences in selection between feeding-site users and
nonusers for the various habitat types (P1), we included
them as second-order interactions. We did not include the
interaction between dominant tree species and cutting class
because of some missing category combinations within the
study area.

To analyze selection patterns of feeding-site users (P2 and
P3), we excluded all nonusers from the analysis. Moreover,
because we used distance from feeding stations as an
explanatory variable, we excluded all simulated positions
associated with unsuccessful fixes to ensure that no bias
toward distance from feeding stations entered the analysis.
We categorized distance from feeding stations for all used
and available locations into 4 classes of 500-m intervals.

We developed mixed-effect RSF models using R version
2.7.0 (R Foundation for Statistical Computing, Vienna,

Austria). The outcome of all these models is the log odds of
using a pixel in the map; therefore, we could not derive
absolute probabilities of selection. However, calculation of
log-odds ratios relative to a reference category consisting of
a chosen combination of levels of the categorical indepen-
dent variables is informative and reliable (Godvik et al.
2009). We set the reference category in our mixed-effect
RSF models to pine-dominated stands of cc.2 because
differences in selection for this habitat type were our
primary interest. To evaluate the properties of the individual
coefficients in the mixed-effect models, we used 10,000
Markov Chain Monte Carlo samples and 95% Highest
Posterior Density (HPD) intervals. The use of Bayesian
HPD confidence intervals is preferred when analyzing large,
unbalanced data sets with mixed-effect models because the
resulting inferences are more conservative compared with
standard 95% confidence intervals (Baayen et al. 2008). For
example, the 95% HPD interval for parameter t is the
shortest interval where the posterior probability that t lies
within the interval is 0.95. We used HPD intervals to
evaluate whether selection estimates were significantly
different from zero and plotted parameter estimates to
assess biological importance (Baayen et al. 2008).

RESULTS

Feeding Site Use
No moose or collars were lost during the study period, but
the malfunction of one collar resulted in fewer data points
for one individual during winter 2007. After we corrected
for GPS bias, the average (6SE) number of GPS locations
used per moose (n 5 32) and year (n 5 2) were 2,022 6 93
and 32,354 6 1,984, respectively.
Of the 32 collared adult female moose, we classified 15

individuals (47%) as feeding-site users, and 17 animals as
nonusers, including 8 individuals (25%) that did not have
feeding stations within their wintering range (Fig. 2). All
feeding-site users spent

L

35 hours each at feeding stations
within the 3-month study, whereas all nonusers were far
below that threshold (max. 12 hr). The mean proportion of
time (6SE) spent within 100 m of feeding stations for
feeding-site users was 4.85 6 0.98% (i.e., 92 6 17.3 hr),
and for nonusers with feeding stations in their wintering
range, it was 0.19 6 0.06% (i.e., 3.8 6 1.29 hr). Of the 61
feeding stations located in wintering home ranges of the
feeding-site users, we recorded that 31 (51%) were never
used by the collared moose (i.e., no locations within 100-m
circular buffer). Feeding site users had a mean of 12 feeding
stations available within the winter home range (min. 5 1,
max. 5 24), with a mean of 3 feeding stations used per
individual (min. 5 1, max. 5 6). Feeding stations used by
the GPS-collared moose were located in areas with higher
forest road density (1.37 6 0.08 km2) than feeding stations
not used by collared moose (1.14 6 0.07 km2, t58 5 2.019,
P 5 0.042). We found no difference between used and
unused feeding stations in relation to proximity to human
settlement (t58 5 1.579, P 5 0.119), proximity to cc.2 of
Scots pine stands (t58 5 0.432, P 5 0.667), or proximity to
tractor roads (t58 5 0.828, P 5 0.411). Furthermore, we
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found no difference in home-range size between feeding-
site users (mean 6 SE; 34.5 6 5.4 km2) and nonusers (27.8
6 4.2 km2; t30 5 21.227, P 5 0.229). The odds of using a
feeding station in Norway spruce–dominated habitat were
2.8 times higher than in Scots pine, but this was not
significantly different (Fisher’s Exact Test, P 5 0.142).

Habitat Selection
In our assessment of forest-stand classification accuracy, we
found that 94.8% of the forest stands were correctly
classified with regard to cutting class and dominant tree
species. A substantial part of the misclassification (2.7%)
was attributed to recent clear-cut felling of cc.5 in Norway
spruce–dominated forest stands. We considered the accuracy
of the GIS layers adequate for our purposes.
Among moose that did not use feeding stations, selection

was highest for young Scots pine stands (cc.2), indicated by
HPD intervals of other cutting classes below zero and not
overlapping with the reference category for this group
(Fig. 3). Among moose using feeding sites, selection was
higher for older pine-dominated stands (cc.2–cc.5) than it
was for nonusers (P1) and lower for spruce and deciduous

stands (Table 1; Fig. 3). However, estimates of selection for
the critical habitat type cc.2 within pine stands was not
statistically different between feeding-site users and non-
users, with HPD intervals between groups overlapping
(Fig. 3).

For feeding-site users, the likelihood of using a location
was highest close to feeding stations and decreased markedly
with distance from feeding station, as expected from central-
place foraging theory (P2; Table 2; Fig. 4). This pattern was
not a result of confounding spatial elements (such as other
types of attraction points systematically located close to
feeding stations) because overall space use by nonusers with
feeding stations available in their home range (n 5 10) was
unrelated to distance from feeding sites (Table 2; Fig. 4).
Also as predicted (P3), variation in selection for the different
pine cutting classes (with the exception of recently felled areas
of cc.1) was relatively small in the vicinity of feeding stations
(HPD intervals overlap the most

M

1.5 km), but increased at
locations .1.5 km from feeding stations (Table 3; Fig. 5).
Moreover, as distance from feeding stations increased, the use
of mixed deciduous forest and Norway spruce stands by
feeding-site users increased (Table 3).

Figure 2. Map showing winter home ranges (95% minimum convex polygons [MCP]) of moose using feeding stations (feeding-site users, n 5 15) and
those not using feeding stations (nonusers, n 5 17) in southern Norway during the winters of 2007 and 2008. The spatial distribution of all cutting class 2
Scots pine stands and the proportional use of feeding stations by the collared moose are also shown. We calculated the proportional use of a feeding station as
the percentage of moose–hours spent within 100 m of a particular feeding station divided by the number of hours spent at all feeding stations.
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DISCUSSION

Although feeding was initiated with the aim of reducing
browsing damage to the commercially important young
Scots pine, we found that moose using feeding sites selected
these stands to the same extent as moose not using feeding
sites (rejecting P1). Unfortunately, we had no control over
the spatial positioning of the feeding stations, so, as with
any correlational study, there is the potential for confound-
ing factors. However, the observed patterns emerged despite
most feeding sites used by the collared moose being located
within spruce-dominated, rather than pine-dominated,
habitat. This could be attributed to the availability of
shelter habitat and abundant forage within close range of the
feeding stations.

In the classical case of central-place foraging theory, an
animal’s foraging trip starts at a central place (e.g., a nest or
den) and continues until the animal captures a prey, after
which, the animal returns to the central place (Orians and
Pearson 1979). The application of distance-based models is
preferred when analyzing habitat selection for animals for
which a central place can be identified (but see Dussault et
al. 2005) because they incorporate potential spatial cluster-
ing of habitats surrounding the central place and, thus,
account for potential bias in selection estimates (Rosenberg
and McKelvey 1999). An artificial feeding site can be
regarded as an additional component in the habitat selection
of ungulates using such sites, and we argue that a feeding
site resembles a central-place attraction point. How to
analyze this specific case has not been addressed before.

Consistent with our predictions, the relative probability of a
location being used decreased significantly as distance from
feeding sites increased (supporting P2). In addition, the
variation in selection for pine-dominated habitat increased
with distance from feeding stations (as expected by P3).
Several observational studies report that herbivores devel-
oped an increased reliance on artificial feed and reduced
natural forage intake to near zero (Putman and Staines
2004). Nonetheless, persistent use of natural forage has been
observed in white-tailed deer (Schmitz 1990, Doenier et al.
1997) and moose (Gundersen et al. 2004) while being
offered supplementary forage. This behavior may be related
to a shortage of essential nutrients or fiber in the supplied
forage (e.g., hay is not considered high-quality forage for
moose; Schwartz and Hundertmark 1993).

Feeding sites attracted approximately half of the individual
moose marked in our study area: 25% did not have feeding
sites within their home range, and 28% had feeding stations
available in their winter home range but did not use them.
This may be due to several factors, such as individual
variation in vigilance (White et al. 2001), migration status
(Luccarini et al. 2006), or social rank (Schmidt and Hoi
1999). Also, severity of winter conditions (e.g., increasing
snow depth) is an important factor influencing the use of

Figure 3. Selection estimates (log odds ratio 6 95% Highest Posterior
Density [HPD] intervals) for cutting class within Scots pine–dominated
forest stands by moose using feeding stations (feeding-site users, n 5 15)
and those not using feeding stations (nonusers, n5 17) in southern Norway
during the winters of 2007 and 2008. All estimates are in comparison with
the reference category: cutting class 2 for nonusers; HPD intervals .0
indicate selection and ,0 indicate avoidance of habitat compared with the
reference category. Habitat categories with HPD intervals overlapping with
the reference category are used at a similar rate.

Table 1. Selection estimates (log odds ratio 6 95% Highest Posterior
Density [HPD] intervals) of mixed-effects, logistic-regression model
predicting selection for habitat (i.e., cutting class, dominant tree species)
by moose using feeding stations (feeding-site users, n 5 15) and those not
using feeding stations (nonusers, n 5 17) in southern Norway during the
winters of 2007 and 2008 (Fig. 3). All estimates are in comparison to the
reference category.a–c The model includes a random intercept for each
individual (moose identification; SD 5 0.275 [HPD interval 0.221–
0.380]).

Variable b SE

HPD interval

Lower Upper

Intercept 0.699 0.071 0.546 0.844

Dominant tree speciesa

Mixed deciduous 20.492 0.070 20.626 20.354
Norway spruce 20.956 0.022 21.000 20.913

Cutting class (cc.)b

cc.1 20.693 0.074 20.836 20.551
cc.3 20.204 0.023 20.249 20.159
cc.4 20.288 0.037 20.361 20.216
cc.5 20.331 0.029 20.390 20.277

Feeding statusc

Feeding-site user 0.151 0.103 20.064 0.370

Dominant tree species 3 feeding status

Mixed deciduous 3
feeding-site user 20.577 0.099 20.781 20.389

Norway spruce 3 feeding-
site user 20.115 0.031 20.175 20.056

Cutting class 3 feeding status

cc.1 3 feeding-site user 20.203 0.104 20.405 20.003
cc.3 3 feeding-site user 0.119 0.032 0.053 0.180
cc.4 3 feeding-site user 0.224 0.052 0.121 0.324
cc.5 3 feeding-site user 0.151 0.040 0.073 0.229

a Reference category 5 Scots pine.
b Reference category 5 cc.2.
c Reference category 5 nonuser.
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supplementary feed by cervids (Doenier et al. 1997). Snow
conditions may have been sufficiently mild for moose not to
need the feeding stations during the winters studied.
Moreover, feeding history in this area is relatively short
(6 yr). It is, therefore, possible that some individuals with
feeding stations in their wintering range have not discovered

them simply because they have not visited all parts of the
area we define as their winter range (95% MCP area) or
have not yet learned to feed on the supplied forage.
Although the proportion of time spent on feeding stations
during winter was, on average, only 5% per individual,
diversionary winter feeding as a management intervention
has nonetheless altered space-use and habitat-selection
patterns of moose, even throughout this relatively short
period. Changes in behavior patterns can be expected to be
even stronger in situations where animals use feeding
stations more intensively.

Local densities around feeding stations can become
exceedingly high (

M

80% of a local population; Peek et al.
2002 and references therein). In agreement, we found that
the likelihood that habitat selected by a feeding-site user
within 500 m from feeding sites was almost 5 times higher

Figure 4. Space-use estimates (log odds ratio 6 95% Highest Posterior
Density [HPD] intervals) for distance from feeding stations by moose using
feeding stations (feeding-site users, n 5 15) and those not using feeding
stations that were available within their wintering range (nonusers, n 5 10)
in southern Norway during winters 2007 and 2008. All estimates are in
comparison with the reference category: .1,500 m from feeding stations
for feeding-site users; HPD intervals .0 indicate selection and ,0 indicate
avoidance of distance classes compared with the reference category.

Table 2. Estimates (log odds ratio 6 95% Highest Posterior Density
[HPD] intervals) of mixed-effects logistic-regression model predicting
space-use patterns for 25 Global Positioning System–collared moose in
relation to distance from feeding stations in southern Norway during the
winters of 2007 and 2008 (Fig. 4). The model includes moose using feeding
stations (feeding-site users, n 5 15) and those not using feeding stations
that were available within their wintering range (nonusers, n 5 10). All
estimates are in comparison to the reference category.a,b The model includes
a random intercept for each individual (moose identification; SD 5 0.530
[HPD interval 0.417–0.763]).

Variable b SE

HPD interval

Lower Upper

Intercept 20.835 0.148 21.154 20.516

Distance class (m)a

d1 1.517 0.031 1.457 1.577
d2 1.449 0.029 1.390 1.504
d3 1.154 0.032 1.091 1.214

Feeding statusb

Nonuser 0.742 0.214 0.277 1.198

Distance class 3 feeding status

d1 3 nonuser 21.700 0.050 21.798 21.602
d2 3 nonuser 21.572 0.045 21.665 21.490
d3 3 nonuser 21.982 0.050 22.083 21.891

a Reference category 5 d4 (.1,500 m).
b Reference category 5 feeding-site user.

Table 3. Selection estimates (log odds ratio 6 95% Highest Posterior
Density [HPD] intervals) of mixed-effects logistic regression model
predicting selection for habitat by moose using feeding stations (feeding-
site users, n5 15) in southern Norway during the winters of 2007 and 2008
(Fig. 5). All estimates are in comparison to the reference category.a–c The
model includes a random intercept for each individual (moose
identification; SD 5 0.346 [HPD interval 0.249–0.569]).

Variable b SE

HPD interval

Lower Upper

Intercept 1.581 0.112 1.326 1.823

Dominant tree speciesa

Mixed deciduous 21.486 0.200 21.880 21.108
Norway spruce 21.183 0.051 21.286 21.083

Cutting class (cc.)b

cc.1 21.471 0.222 21.926 21.049
cc.3 20.315 0.054 20.423 20.212
cc.4 20.183 0.072 20.325 20.042
cc.5 20.672 0.095 20.854 20.482

Distance class (m)c

d2 20.178 0.075 20.323 20.024
d3 20.588 0.086 20.746 20.409
d4 22.067 0.077 22.221 21.917

Dominant tree species 3 distance class

Mixed deciduous 3 d2 0.842 0.237 0.385 1.307
Norway spruce 3 d2 0.180 0.069 0.047 0.317
Mixed deciduous 3 d3 20.698 0.298 21.301 20.140
Norway spruce 3 d3 0.259 0.075 0.115 0.409
Mixed deciduous 3 d4 1.183 0.254 0.669 1.670
Norway spruce 3 d4 0.653 0.069 0.518 0.787

Cutting class 3 distance class

cc.1 3 d2 0.178 0.264 20.341 0.699
cc.3 3 d2 20.172 0.073 20.315 20.028
cc.4 3 d2 20.171 0.111 20.387 0.043
cc.5 3 d2 0.526 0.113 0.308 0.742
cc.1 3 d3 1.108 0.261 0.613 1.636
cc.3 3 d3 0.240 0.083 0.079 0.401
cc.4 3 d3 20.128 0.126 20.374 0.124
cc.5 3 d3 0.548 0.118 0.311 0.773
cc.1 3 d4 1.142 0.283 0.585 1.698
cc.3 3 d4 0.357 0.073 0.212 0.497
cc.4 3 d4 20.992 0.139 21.257 20.713
cc.5 3 d4 0.992 0.108 0.786 1.208

a Reference category 5 Scots pine.
b Reference category 5 cc.2.
c Reference category 5 d1 (0–500 m).
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than selecting locations beyond 1.5 km from the feeding
sites. However, we did not observe an increase in selection
of assumed high-quality habitat types with increasing
distance from feeding sites, which is inconsistent with
predictions from central-place foraging theory. Instead,
selection for assumed high-quality winter foraging habitat
(i.e., pine stands of cc.2) by moose was highest closer to
feeding stations (,1 km) and decreased as distance from
feeding stations increased. This suggests that intraspecific
resource competition, potentially leading to resource deple-
tion near feeding stations, was not a major factor influencing
habitat selection of feeding-site users. Moreover, our results
indicate that selection for older pine stands and spruce-
dominated forest increased with distance from feeding
stations. These habitat types are generally characterized by
reduced snow cover, which facilitates traveling, provides
shelter (Dussault et al. 2006), and holds important forage
resources, such as dwarf shrubs (Heikkila et al. 1996).

MANAGEMENT IMPLICATIONS

Diversionary winter feeding as a management intervention
can greatly alter space-use and habitat-selection patterns.
However, it may not be effective in protecting valuable
stands if the valued species (in our case, Scots pine) remains
an important part of the diet of individuals using feeding
stations. Because feeding-site users concentrated their
movements around feeding stations, we recommend estab-
lishing feeding sites in sacrifice areas where browsing is
permissible and, if possible, .1 km from valuable stands.
Future assessment of the effectiveness of diversionary

feeding as a tool to reduce browsing damage would benefit
from a detailed analysis of the cost of supplying additional
feed and the benefits it may generate in reduced forestry
losses. Additional evidence from regions with longer feeding
traditions is needed to assess how space-use and habitat-
selection patterns evolve over time and change with winter
severity and intensity of feed use.
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Summary

1. Mechanisms that affect the spatial distribution of animals are typically scale-dependent and

may involve forage distribution. Forage quality and quantity are often inversely correlated and a

much discussed trade-off is whether or not to select for high-quality forage at the expense of forage

abundance. This discussion has rarely involved scale-dependence or been applied to Northern

browsing herbivores. At small spatial scales, browsers are assumed to select for the best quality for-

age. But, as high-quality forage resources are often scarce and may become depleted, coarse-scale

habitat selection is assumed to be driven by forage availability.

2. To evaluate if moose selection for forage quantity and quality is scale-dependent we modelled

summer and winter habitat selection of 32 GPS-marked female moose (Alces alces) at two spatial

scales (landscape-scale vs. within-home range-scale). We used mixed-effects resource selection

functions (RSFs) and landscape-scale forage availability models of six tree species of varying

quality for moose. We considered silver birch (Betula pendula), downy birch (Betula pubescens.),

Scots pine (Pinus sylvestris) as low quality browse species and rowan (Sorbus aucuparia), aspen

(Populus tremula), willow (Salix spp.) as high-quality species.

3. As expected, the overall selection patterns for available browse biomass and quality varied

across spatiotemporal scales. At the landscape-scale, moose selected for habitat with high available

browse biomass of low quality species while at the within-home range-scale moose selected for sites

with the highest quality browse species available. Furthermore, selection patterns during summer

remained fairly stable, while during winter, selection at the within-home range-scale switched from

sites with high quality to sites with lower quality browse species which suggests depletion of high-

quality species. Consistent with expectations from seasonal resource depletion, site fidelity

(bimonthly home range overlap) wasmuch lower in winter than in summer.

4. Coarse-scale habitat selection by moose as a function of forage variability revealed a scale-

dependent trade-off between available browse quantity and browse quality. Moreover, resource

depletion changed the winter selection criteria of free-ranging moose and we demonstrate how the

behavioural response to such a dynamic process can be inferred fromRSFs.

Key-words: Alces alces, deer, grazing, global positioning system, mixed models, patch quality,

resource selection function, site fidelity

Introduction

Resource variability over time and space and its effect on the

spatial distribution of animals has been the focus of much

recent work (Bergman et al. 2001; Fortin et al. 2003; Fryxell,

Wilmshurst & Sinclair 2004; Boone, Thirgood & Hopcraft

2006). A common feature of food resource distribution is that

quality and quantity are often inversely correlated (Demment

& van Soest 1985; Fryxell 1991), with the most nutritious

tending to be the least common (Hansen et al. 2009). Amuch

discussed trade-off faced by large ruminants is the selection

of high-quality forage at the expense of forage abundance.

Indeed, at the patch scale grazing herbivores typically select

for higher quality species instead of highly available forage*Correspondence author. E-mail: floris.vanbeest@hihm.no
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(Langvatn & Hanley 1993; Wilmshurst, Fryxell & Hudson

1995), although exceptions have been reported at high lati-

tudes (Van derWal et al. 2000).

Considerably less effort has been devoted to assessing

whether such trade-offs are scale-dependent (Johnson 1980;

Senft et al. 1987; Wiens 1989; Levin 1992). At fine spatial

scales, resource selection by wildebeest (Connochaetus tau-

rines) is for grass quality rather than biomass. However, sea-

sonal rainfall patterns affecting grass growth (i.e. forage

biomass in savanna ecosystems) is regarded as a main driver

of the mass migration of several grazing ungulate species at

coarser spatial scales (Wilmshurst et al. 1999; Fryxell et al.

2005). This provides evidence for scale-dependence in selec-

tion for forage resources and suggests that large-scale selec-

tion patterns may constrain the options available at smaller

spatial scales (Wilmshurst et al. 1999). Much of the evidence

of trade-offs between food quantity and quality comes from

studies on either grazers or mixed feeders (Fritz & de Garine

Wichatitsky 1996; Bergman et al. 2001; Fortin et al. 2003;

Fryxell, Wilmshurst & Sinclair 2004; Boone, Thirgood &

Hopcraft 2006). At northern latitudes, the spatial relation-

ship between browsing herbivores and their food supply has

predominantly focused on relatively fine spatial scales such

as habitat patches or single trees (see Hobbs 2003 and refer-

ences therein) or through indirect evidence of space use pat-

terns via pellet group counts (Månsson et al. 2007a). Much

less is known about how the distribution of browse of varying

quality affects habitat selection at intermediate to coarse spa-

tial and temporal scales based on individually marked ani-

mals. This is partly due to the logistical difficulties of

sampling animal locations and estimating mixed-plant com-

munity biomass and quality at large spatial scales in hetero-

geneous environments (Fryxell et al. 2005; Pettorelli et al.

2006; Hebblewhite,Merrill &McDermid 2008).

Habitat conditions at northern latitudes are strongly sea-

sonal (Dussault et al. 2005a). During winter, forage

resources for large herbivores are, generally, of low quality

(Shipley, Blomquist & Danell 1998) and diminish through

the season due to natural browsing, snow cover and lack of

new vegetation growth (Edenius 1991). Loss of high-quality

forage can be expected to change habitat selection patterns

and to lower within-season site fidelity (Wittmer, McLellan

& Hovey 2006). For example, if herbivores intensively select

for plant species with high quality and low abundance, these

food items may be depleted forcing an individual to increase

selection for habitat that contains abundant forage of lower

quality. The incorporation of such insights to RSFs (Manly

et al. 2002) using global positioning system (GPS) technol-

ogy has currently not been attempted.

The moose (Alces alces L.) is a typical browser (Cederlund

et al. 1980; Bergstrom&Hjeljord 1987) and is regarded as an

energy maximizer (i.e. the assumed goal of an individuals’

foraging strategy is to maximize the long-term rate of energy

intake; Belovsky 1978; Stephens &Krebs 1986). Summer die-

tary nitrogen greatly affects moose body mass (Hjeljord &

Histol 1999; McArt et al. 2009) and highlights the impor-

tance of summer habitat selection strategies. Nevertheless,

the majority of studies exploring resource selection and for-

aging strategies of moose have been biased towards winter

behaviour (Vivas & Saether 1987; Danell, Edenius & Lund-

berg 1991; Andersen & Saether 1992; Shipley, Blomquist &

Danell 1998; Poole & Stuart-Smith 2006). Previous findings

of Månsson et al. (2007a) showed that the relation between

moose browsing and forage availability of themost abundant

browse species changed from use lower than expected from

availability at small spatial scales (i.e. habitat patch scale) to

proportional use at larger scales (i.e. landscape-scale). This

suggests that a multi-scale approach is appropriate when

studying moose-resource relationships (Poole & Stuart-

Smith 2006;Månsson et al. 2007a).

Here we estimated habitat selection of moose across two

spatiotemporal scales; (i) seasonal selection at the landscape-

scale (the second order of Johnson 1980) and (ii) intra-sea-

sonal selection at the within-home range-scale (the third

order of Johnson 1980). The objective of our study was to

determine whether habitat selection by moose as a function

of available browse biomass (i.e. forage quantity) and quality

is scale-dependent. If habitat selection is not scale-dependent,

we predicted that moose would select for areas with high bio-

mass of high-quality browse regardless of temporal and spa-

tial scale (P1). However, if selection patterns at coarse spatial

scales are constrained by forage quantity-quality decisions,

we predicted that at the landscape-scale moose would select

for sites containing browse species of high abundance (fol-

lowing Månsson et al. 2007a) and lower quality (P2.1), but

focus selection on higher quality browse at the within-home

range-scale (P2.2). Moreover, as high-quality forage is con-

stantly renewed during summer, we expected selection pat-

terns to remain stable throughout the season (P3.1) and the

degree of site fidelity to be high (i.e. large overlap between

monthly home ranges; P3.2). Contrastingly in winter, we pre-

dicted a decline in selection for higher quality browse species

at the within-home range-scale due to resource depletion

(P4.1; Edenius 1991; Shipley, Blomquist & Danell 1998) and

the degree of site fidelity to be low (i.e. small overlap between

monthly home ranges; P4.2). To compensate for depleted

high-quality resources we expected moose to increase selec-

tion for habitat with lower quality species as winter pro-

gressed (P4.3).

Materials andmethods

STUDY AREA

The study area (1733 km2) is located in southern Norway within

parts of Telemark, Buskerud and Vestfold counties (Fig. 1). The area

is in the boreonemoral zone and is mostly covered by commercially

managed coniferous forest (82%). Stands are dominated by Norway

spruce (Picea abies) and Scots pine (Pinus sylvestris) but some mixed

deciduous stands of birch species (Betula pubescens and B. pendula),

rowan (Sorbus aucuparia), willow (Salix spp.) and aspen (Popu-

lus tremula) occur throughout the area. Abundant field layer species

include bilberry (Vaccinium myrtillus L.), cowberry (V. vitis-idaea

L.), raspberry (Rubus idaeusL.) and, fireweed (Epilobium angustifoli-

um L.). The mean monthly temperatures in June and September (i.e.
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summer period) are 15Æ4 and 10Æ6 �C, and in January and April (i.e.

winter period) are – 5 and 4Æ3 �C respectively (Siljan weather station

at 100 m a.s.l., The Norwegian Meteorological Institute; http://

www.met.no). Average (±SE) snow-depths in the centre of the study

area (430 m a.s.l) during January–April 2007 and 2008 were

49 ± 2Æ4 cm and 72 ± 1Æ5 cm (Mykle weather station, The Norwe-

gian Meteorological Institute). Moose densities in the area are esti-

mated at 1Æ5 individuals per km2 (Norwegian Institute for Nature

Management; http://www.dirnat.no). Red deer (Cervus elaphus L.)

and roe deer (Capreolus capreolus L.) densities are 0Æ5 and 0Æ2 indi-

viduals per km2, respectively. Large predator species are absent and

hunting is the single most important cause of moose mortality in this

area.

FORAGE QUALITY AND QUANTITY

During summer moose strip the leaves of deciduous trees and forage

on a wide range of shrubs and herbs. During winter, they predomi-

nantly feed on twigs of deciduous trees and Scots pine (Bergstrom &

Hjeljord 1987; Hjeljord, Hovik & Pedersen 1990). For this study we

considered six tree species (i.e. target species) that occur throughout

the study area and are reported to be frequently browsed bymoose in

Scandinavia, but that are likely of variable quality to moose. To

express forage quality formoose in terms of singlemeasures of digest-

ibility, nutrient content or secondary compounds is complicated and

rarely straightforward when analysing multiple species (Bergstrom&

Danell 1986). For example, Shipley, Blomquist & Danell (1998) con-

cluded that broad categories of chemicals for our six target species

were not reliable indicators of forage quality formoose as they poorly

predicted diet selection. Therefore, what we refer to as forage quality

is rather based on selection ranks as reported in previous studies of

species-specific forage selection patterns of moose in the boreone-

moral or boreal zone of Scandinavia (results of the literature review

are summarized in Table S1, Supporting Information). We assume

that such a ranking of selection at a fine scale reflects moose prefer-

ence, i.e. what they would prefer to eat in a controlled setting with

access to known alternative forage (Thomas&Taylor 2006).We only

included studies with a use-availability sampling design to assess if

species were actively selected, avoided or used proportional to their

availability (Thomas & Taylor 2006). Based on this review, we refer

to rowan, aspen and willow as higher quality browse species and sil-

ver birch, downy birch and Scots pine as lower quality species during

summer. During winter Scots pine is considered to be of higher qual-

ity than silver birch and downy birch. Norway spruce was excluded

from this study because of its negligible use as a food item by moose

(Cederlund et al. 1980). At the onset of the study we also included

various field layer species (e.g. % cover of bilberry, other berries,

herbs and grasses). However, due to a high correlation between

browse biomass and cover of the field layer (Table S2; Supporting

Information) we restricted the mixed-effect RSFs (described below)

to the six tree species as logistic regression is sensitive to collinearity

between explanatory variables (Nielsen et al. 2002). Collinearity

between available browse biomass for the six target species was suffi-

ciently low (all values were Pearson r < 0Æ35) to include them in one

RSF model. To quantify and predict seasonal variation in species-

specific forage availability throughout the study area our approach

consisted of several parts.

The first phase involved themodelling of available browse biomass

for the six target species as a function of tree characteristics. After the

peak of the growing season when maximum biomass is attained (first

2 weeks of August 2007), we sampled 50 unbrowsed trees per target

species with available shoots evenly distributed across the height

interval 0–3Æ0 m, as this interval offered the largest amount of avail-

able browse per tree for moose (Danell, Huss-Danell & Bergstrom

1985). Trees were sampled at locations distributed widely across the

study area to minimize the impact of individual site influences and

ensure the available biomass models would be general for the area.

For each tree we measured height (cm), an index of canopy volume

Fig. 1. Map of the study area in southern

Norway (part of Telemark, Buskerud and

Vestfold counties). The map shows the

spatial distribution of forest stands sampled

for browse biomass availability (n = 189),

lakes, rivers, major roads and boundary of

the study area.
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(m3: two perpendicular measurements of canopy diameter (cm) · the

difference between tree height and the height (cm) at the bottom of

the canopy) and stem diameter (mm; mean of two perpendicular

measurements, 20 cm above-ground). To estimate available summer

biomass (i.e. leaf biomass) we stripped all leaves from shoots at the

mean strip length measured for that species in the study area

(Table S3, Supporting Information). To estimate winter biomass (i.e.

twig biomass) we clipped living shoots>50 cm above-ground (mean

annual snow depth) at the mean bite diameter measured for that

species in the study area (Table S3, Supporting Information) and

discarded the leaves. All samples were dried at 80 �C to constant

mass and weighed to the nearest 0Æ1 g. We used multiple regression

models to predict available browse biomass (for leaf and twig

biomass separately) per target species with tree height, canopy

volume and stem diameter as predictors. The response variable was

log-transformed to fulfil the assumptions of normality. To find the

most parsimonious model predicting leaf and twig biomass (Table 1)

we used backwards selection with F tests (Crawley 2007; Murtaugh

2009) using P = 0Æ05 as the threshold for inclusion or exclusion of

predictor variables. Model selection using F tests is a more conserva-

tive method than AIC or BIC based model selection procedures

(Murtaugh 2009). Analyses were performed using the statistical soft-

wareR version 2.8.0 (RDevelopment Core Team 2008) throughout.

The second phase involved sampling target species within various

forest stand types throughout the study area, in order to calculate

species-specific seasonal forage biomass spatially using the predictive

leaf and twig biomass equations (Table 1). We sampled 189 forest

stands (Fig. 1) during June and July 2008 using a random stratified

sampling design. Stands were selected from 7-year-old GIS-based

forest maps with good identification accuracy of the main habitat

characteristics (see van Beest et al. 2010 for more details on map

accuracy). Selection was based on cutting class (5 class factor; based

on standard national forest evaluation of Norway), dominant tree

species (3 class factor; Scots pine, Norway spruce or mixed decidu-

ous) and aspect (4 class factor constituting the four cardinal direc-

tions). We sampled each habitat factor combination (n = 60) at least

three times, using five 50 m2 circular plots per forest stand (i.e. total

of 945 plots over 189 forest stands). The plots were placed in the four

cardinal directions with one in the centre, at least 25 m apart and

>15 m from forest stand edges. Within each plot we recorded the

abundance of all tree species >20 cm tall and for the target species

we measured the variables that best predicted leaf and twig biomass

below 3 m height for a particular species (Table 1). We were then

able to estimate total available summer biomass for each target

species in every plot by calculating leaf biomass. For the winter bio-

mass calculations we calculated twig biomass assuming a 50 cm deep

snow layer and considered all biomass below this threshold

unavailable.

The final part of our forage availability assessment was to link the

ground-based vegetation measurement with GIS-based covariates to

spatially predict and map the species-specific variation in forage bio-

mass availability for summer and winter. We used generalized linear

mixed models (GLMM) to predict the amount of forage biomass

within forest stands for each species separately. Spatial covariates

included cutting class, dominant tree species, stand productivity (2

class factor; high and low), altitude (m), slope (�), aspect, hill shade
(index of solar incidence), and sky view (percentage sky not

obstructed by terrain features). Covariates were screened for collin-

earity using r < 0Æ5. Species biomass was transformed using the log-

link function and forest stand ID was included as a random factor to

account for dependence between plots within forest stands. To find

the most parsimonious model predicting biomass availability across

the study area, we used backward selection with F tests (Murtaugh

2009) as described above. Before model development, we randomly

withheld 20% of the data for model cross-validation (Johnson et al.

2006; Hebblewhite, Merrill &McDermid 2008) to compare observed

with predicted biomass values using Pearson r (all models > 0Æ35)
andR2

adj (all models > 0Æ31). Due to low predictive power and simi-

lar quality of the rowan, aspen and willow models we pooled these

species together and created one model (RAW species group), as is

typical in moose browse surveys (Solbraa 2003). The final forage

availability models are presented in Table 2 for summer and Table 3

for winter. Following Hebblewhite, Merrill & McDermid (2008), we

used the fixed effects estimates of the forage availability models to

map species-specific biomass (g ⁄ 50m2) throughout the study area

using RASTER calculator in ArcGIS v.9.2 (2006 ESRI, Redlands,

CA,USA).

MOOSE DATA

A total of 34 adult female moose were tranquilized by dart gun

from a helicopter, using established techniques (Arnemo, Kreeger

& Soveri 2003). We fitted the moose with GPS collars (Tellus

Remote GSM, Followit AB, Lindesberg, Sweden) programmed

with a 1-h relocation schedule. Collars were equipped with dual-

axis motion sensors which record vertical and lateral head and neck

movements. During each location attempt the total number of

movements (range = 0–250) was stored in the collar memory. Col-

lar data were collected from January to November 2007 (n = 16)

and 2008 (n = 18) but the sample size was reduced to 32 individu-

als during winter and to 26 individuals during summer due to collar

malfunctions. All GPS locations collected within 24 h of marking

Table 1. Variables that best predict species-specific forage biomass availability for moose during winter and summer

Season Species Intercept

Log(canopy

volume) inm3
Mean stem

diameter (cm) R2
adj F d.f. P

Summer Rowan 3Æ40 0Æ54 – 0Æ68 102Æ0 1,48 <0Æ0001
Aspen 2Æ63 0Æ30 0Æ25 0Æ63 28Æ9 2, 47 <0Æ0001
Willow species 1Æ97 0Æ16 0Æ45 0Æ64 39Æ3 2, 47 <0Æ0001
Silver birch 3Æ18 0Æ58 – 0Æ79 166Æ4 1,48 <0Æ0001
Downy birch 3Æ25 0Æ62 – 0Æ70 155Æ3 1,48 <0Æ0001

Winter Rowan 1Æ89 0Æ42 0Æ42 0Æ63 39Æ3 2, 47 <0Æ0001
Aspen 2Æ44 0Æ34 0Æ26 0Æ64 42Æ2 2, 47 <0Æ0001
Willow species 2Æ02 0Æ32 0Æ21 0Æ66 46Æ2 2, 47 <0Æ0001
Silver birch 2Æ28 0Æ39 0Æ31 0Æ72 78Æ9 2, 47 <0Æ0001
Downy birch 2Æ34 0Æ40 0Æ33 0Æ75 71Æ8 2, 47 <0Æ0001
Scots pine 4Æ34 0Æ48 0Æ24 0Æ92 327Æ8 2, 47 <0Æ0001
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Table 2. Summary of the mixed-effects regression models and model evaluation (Pearson r and R2
adj) predicting summer forage availability

across the study area for each target species. Scots pine biomass during summer was considered to be similar to winter biomass availability

(Table 3). All estimates are made in comparison to the reference categories

Summer Downy birch Silver birch RAW species

Fixed effects b SE b SE b SE

(Intercept) )0Æ756 0Æ488 )1Æ663 0Æ868 2Æ515 0Æ355
Cutting classa

2 1Æ188 0Æ526 0Æ262 0Æ136 )0Æ315 0Æ364
3 )0Æ576 0Æ526 )0Æ128 0Æ135 )0Æ908 0Æ359
4 )1Æ252 0Æ555 )0Æ174 0Æ137 )0Æ042 0Æ365
5 )2Æ292 0Æ574 )0Æ29 0Æ136 )0Æ747 0Æ362

Dominant tree speciesb

Scots pine – – )0Æ15 0Æ113 )2Æ018 0Æ306
Norway spruce – – )0Æ294 0Æ113 )0Æ993 0Æ277

Productivityc

Low 1Æ669 0Æ42 – – 1Æ048 0Æ289
Altitude (m) – – )0Æ001 < 0Æ001 – –

Skyview – – 0Æ027 0Æ01 – –

Random effect SD SD SD

Forest stand ID 2Æ186 0Æ995 1Æ537
Model evaluation

r (Pearson) 0Æ410 0Æ445 0Æ520
R2

adj 0Æ309 0Æ314 0Æ372

aReference = cutting class 1.
bReference = deciduous stands.
cReference = high productivity.

Table 3. Summary of the mixed-effects regression models and model evaluation (Pearson r and R2
adj) predicting winter forage availability

across the study area for each target species. All estimates aremade in comparison to the reference categories

Winter Downy birch Silver birch RAW spp Scots pine

Fixed effects b SE b SE b SE b SE

(Intercept) )1Æ182 0Æ661 )1Æ465 0Æ827 2Æ425 0Æ421 )3Æ867 0Æ916
Cutting classa

2 2Æ244 0Æ538 0Æ207 0Æ13 )0Æ313 0Æ433 0Æ689 0Æ69
3 0Æ386 0Æ538 )0Æ142 0Æ128 )1Æ05 0Æ429 )1Æ694 0Æ756
4 )0Æ417 0Æ569 )0Æ117 0Æ13 )0Æ307 0Æ436 )1Æ456 0Æ789
5 )1Æ075 0Æ59 )0Æ254 0Æ13 )0Æ994 0Æ433 )1Æ899 0Æ805

Dominant tree speciesb

Scots pine – – )0Æ274 0Æ105 )2Æ52 0Æ364 3Æ846 0Æ624
Norway spruce – – )0Æ373 0Æ099 )1Æ831 0Æ33 )0Æ364 0Æ71

Productivityc

Low 1Æ787 0Æ438 – – 0Æ707 0Æ343 1Æ931 0Æ81
Aspectd

North )0Æ998 0Æ509 – – – – – –

South )0Æ831 0Æ493 – – – – – –

West 0Æ173 0Æ485 – – – – – –

Slope (�) )0Æ043 0Æ022 – – – – – –

Skyview – – 0Æ023 0Æ01 – – – –

Random effect SD – SD – SD – SD –

Forest stand ID 2Æ137 – 0Æ893 – 1Æ798 – 2Æ547 –

Model evaluation

r (Pearson) 0Æ351 – 0Æ431 – 0Æ589 – 0Æ593 –

R2
adj 0Æ358 – 0Æ405 – 0Æ335 – 0Æ439 –

aReference = cutting class 1.
bReference = deciduous stands.
cReference = high productivity.
dReference = East facing slopes.
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were excluded. Annual snow conditions in the study area were used

to define winter length (time with ‡30 cm snow depth). As such

winter in 2007 stretched from 21 January until 8 April and in 2008

from 4 January until 30 April. Summer was arbitrarily defined as

the period 1 June till 15 September for both years. Spring and

autumn were not included in this study.

In this study, the average GPS-collar fix rate was 96% (range 87–

99%) during winter and 90% (range 83–97%) during summer. We

used an iterative simulation method (Frair et al. 2004) to correct for

possible bias in GPS fix success prior to analysing habitat selection

(van Beest et al. 2010).

MOOSE ACTIV ITY AND HABITAT SELECTION ANALYSIS

We estimated habitat selection patterns by moose as a function of

species-specific forage availability using RSFs, defined as any func-

tion proportional to the probability of use of a resource by an ani-

mal (Manly et al. 2002). Resource selection functions reflect

habitat use and not foraging activity as such. To focus our habitat

selection analyses on foraging behaviour, we used GPS-based

motion sensor data (described above) to estimate moose activity as

a function of species-specific forage availability. Large herbivores

spend the majority of their active time feeding (Mysterud 1998). It

is therefore reasonable to assume that high movement counts in

the collar reflect foraging bouts while low movement counts mirror

ruminating or bedding (Moen, Poster & Cohen 1996b; Dussault

et al. 2004). Using activity as a proxy for foraging behaviour we

expected moose activity to increase with available forage biomass

and quality (i.e. good foraging habitat). We used mixed-effects

logistic regression with moose ID as a random intercept to estimate

the probability of moose being active (response variable) as a func-

tion of species-specific forage availability (predictor variables).

GPS positions were classified into inactive (i.e. locations with

<10 movement counts ⁄ unit time) or active (i.e. ‡ 10 movement

counts ⁄ unit time). The cut-off value of 10 movement counts ⁄ unit
time was subjectively chosen to minimize the potential of small

head or neck movements while lying down, to be included as active

(foraging) locations. The results indicated that moose activity was

positively related to forage availability and quality as expected

(Fig. S1 Table S4; Supporting Information). To remove potential

bias of inactive (resting) positions to the habitat selection analyses

we restricted the RSF models to active positions only (64Æ9% of all

used locations). After this procedure the average (±SE) number of

(GPS) locations used per moose during summer and winter were

1005 ± 159 and 917 ± 109, respectively.

RSFs were estimated with use–availability logistic regression

(design III data; Thomas & Taylor 2006) with random intercepts for

each individual to account for unbalanced sampling design (Gillies

et al. 2006; Hebblewhite & Merrill 2008; Godvik et al. 2009; van

Beest et al. 2010). Based on parsimony, the mixed-effect RSFmodels

contained only a random intercept for moose ID because the inclu-

sion of a second random intercept for year did not improve model fit

based on AIC (Burnham&Andersen 1998). Mixed-effect RSFs were

fitted using the library ‘lme4’ (Bates 2007) implemented in R (R

Development Core Team 2008).

Habitat availability at the within-home range-scale was estimated

by drawing a random sample of points from within each individuals’

wintering and summer home range (delineated by a 95% Minimum

Convex Polygon; MCP). The number of available points selected

equalled the number of active points used by each individual. Habitat

availability at the landscape-scale was estimated similarly but ran-

dom points were sampled from within the study area boundaries and

used points were considered what was available at the within-home

range-scale (Aebischer, Robertson&Kenward 1993).

To test our predictions we developed four mixed-effects RSFmod-

els; one for each combination of season and spatial scale. At the

within-home range-scale the fixed effects included: browse biomass

for all target species (three species and one species group in summer

and winter), month (4-class factor) and their interaction to assess

intra-seasonal changes in selection. At the landscape-scale the mixed-

effects RSF models contained only browse biomass of all target spe-

cies as covariates, as we did not expect large differences in monthly

selection estimates at this spatial scale. This was supported by a

model selection procedure based on D AIC\ (Burnham & Andersen

1998) which also confirmed that the use of a random intercept (moose

ID) increased model fit across all spatiotemporal scales (Table S5;

Supporting Information).

The outcome of all our final mixed-effect RSF models (i.e. selec-

tion estimates) is the log odds of moose using a pixel in the study area

maps (resolution of 50 · 50 m) as a function of the predictor vari-

ables. Because of the arbitrary number of randomly sampled points

(both used and available) in our RSF models (as is typical in design

III data sampling) we can not derive absolute probabilities of selec-

tion. Insteadwe calculated log odds ratios relative to a reference cate-

gory which is informative and reliable (Godvik et al. 2009; van Beest

et al. 2010). To visualize moose selection patterns we set the reference

point to the mean available biomass value for each target species

depending on the spatiotemporal scale in question (e.g. summer, win-

ter, landscape or home range-scale). This will give a clear indication

if moose use areas that contain more (i.e. selection), the same (i.e.

proportional use) or less (i.e. avoidance) available biomass then the

scale-dependent mean. Thus, a regression line with a slope of 0 indi-

cates a proportional relationship (i.e. random use). To evaluate

whether selection estimates were significantly different from 0 (i.e.

reference point) we used 10 000 Markov Chain Monte Carlo

(MCMC) samples and 95% Highest Posterior Density intervals

(HPD intervals) using the library ‘coda’ (Plummer et al. 2008) imple-

mented in R (RDevelopment Core Team 2008). The use of Bayesian

HPD confidence intervals is preferred when analysing large, un-

balanced data sets with mixed-effect models because any uncertainty

in both fixed- and random-effect parameters is taken into account

(Bolker et al. 2009), leading to more conservative inference com-

pared to standard 95% confidence intervals (Baayen, Davidson &

Bates 2008). To assess the predictive performance of our RSFmodels

we calculated the area under the ROC (Receiver Operating Charac-

teristic) curve, which varies between 0Æ5 (no predictive power) and 1

(perfect predictive power; Boyce et al. 2002).

QUANTIFY ING SITE F IDELITY

Site fidelity can be defined as the tendency of an animal to remain

within the same area for an extended period of time (White&Garrott

1990) and is typically quantified by the degree of overlap between

consecutive home ranges (Doncaster &Macdonald 1991; Kernohan,

Gitzen & Millspaugh 2001; Edwards, Nagy & Derocher 2009). We

calculated the proportion of bimonthly home range overlap using

95% MCPs within each season and for each individual moose.

Because the use of MCP as a home range estimator has been ques-

tioned (Kernohan, Gitzen &Millspaugh 2001) we additionally calcu-

lated and report bimonthly home range overlap using the volume of

intersection of the 95% kernel utilization distributions (kernel UDs;

Millspaugh et al. 2004). Home range overlap was calculated using

the library ‘adehabitat’ (Calenge 2006) implemented in R (R Devel-

opment Core Team 2008).
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Results

LANDSCAPE-SCALE SELECTION

In general, habitat selection by moose at the landscape-scale

increased with biomass of the lower quality species (Fig. 2;

Table S6 in Supporting Information), suggesting that the

availability of high-quality species at coarse spatial scales was

not sufficiently high to affect selection (as expected by P2.1).

During summer, selection for higher quality species biomass,

represented by the RAW species group and silver birch

(Fig. 2; Table S6 in Supporting Information), did not differ

significantly from proportional use as HPD intervals over-

lapped with 0 (Fig. 2a). Selection for the lower quality downy

birch increased with available biomass, as expected (P2.1) but

decreased with biomass of Scots pine (Fig. 2a). In contrast,

during winter we found negative selection estimates for

increasing biomass of high-quality RAW species and lower

quality silver birch, and positive selection estimates for the

low quality downy birch and Scots pine (Fig. 2b). The areas

under the ROC curve for the landscape-scale RSF models

were 0Æ717 and 0Æ751 for summer and winter respectively.

HOME RANGE-SCALE SELECTION

At the within-summer home range-scale, moose selection

increased with biomass of the higher quality RAW species (as

expected by P2Æ2 and P3Æ1) but also with biomass of the lower

(a)

(b)

Fig. 2. Selection estimates (log odds ratio of

use ± 95% highest posterior density inter-

vals) for available browse biomass for each

target species at the (a) summer and (b) win-

ter landscape-scale, where the log odds ratios

are calculated relative to the average avail-

able browse biomass for that target species

(reference circle). Selection estimates above

0 (reference level) indicate higher selection

relative to the reference, whereas values

below 0 indicate lower selection. Grey stars

in the plots represent the raw data of used

points (upper) and available points (lower)

over the range of species-specific available

forage biomass.
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quality silver birch (Fig. 3a; Table S7 in Supporting Infor-

mation). Selection for low quality downy birch biomass

changed slightly from proportional use in early summer

(June) to negative selection in late summer (September;

Fig. 3a). Selection for available Scots pine biomass remained

negative throughout summer. The mean proportion of

bimonthly home range overlap using 95% MCPs was 0Æ78
(CI: 0Æ71–0Æ86, n = 66) and 0Æ7 (CI: 0Æ63–0Æ78, n = 26) for

the 95% kernel UDs (Fig. 4a). Overall, within-summer site

fidelity was rather high and the selection patterns remained

fairly constant (as expected by P3Æ1 and P3Æ2) suggesting that

the renewal of resources throughout the growing season

allowed moose to adopt a stable selection strategy (see

Fig. S2a in Supporting Information for complete selection

patterns during summer).

This was not the case during winter. In early winter (Janu-

ary) moose selection increased with biomass of the high-qual-

ity RAW species but as expected (P3Æ2) this pattern was

negative in late winter (April; Fig. 3b). Selection for lower

quality silver birch biomass also decreased over winter from

positive in January to proportional in April (HPD intervals

overlap with 0). The reversed was observed for downy birch

(b)

(a)

Fig. 3. Selection estimates (log odds ratio of use ± 95% highest posterior density intervals) for available browse biomass for each target

species at the (a) within-summer, and (b) within-winter home range-scale, where the log odds ratios are calculated relative to the average

available browse biomass for a target species (reference circle). The figure shows the first and last month of each season (see Fig. S3 for

selection estimates across all months during summer and winter). Only locations where moose were active were included in the models.

Selection estimates above 0 (reference level) indicate higher selection relative to the reference, whereas values below 0 indicate lower selec-

tion. Grey stars in the plots represent the raw data of used points (upper) and available points (lower) over the range of species-specific

available forage biomass.
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with negative selection for high biomass habitat in early win-

ter (January) to proportional in late winter (April; Fig. 3b).

Selection for Scots pine available biomass was positive

throughout winter, with a peak during mid-winter (Fig. S2b

in Supporting Information). The mean proportion of

bimonthly home range overlap using 95% MCP was 0Æ33
(CI: 0Æ19–0Æ48, n = 32) and 0Æ25 (CI: 0Æ17–0Æ33, n = 92) for

the 95% kernel UDs (Fig. 4b). Overall, within-winter site

fidelity was lower than in summer and selection for high-

quality species declined markedly over time (as expected by

P4Æ1 and P4Æ2) suggesting that depletion of higher quality food

resources forced moose to change their selection strategy by

increasingly selecting for lower quality species as winter pro-

gressed (P4Æ3; see Fig. S2b in Supporting Information for

complete selection patterns during winter). The areas under

the ROC curve for the within-home range-scale RSF models

were 0Æ719 and 0Æ766 for summer andwinter respectively.

Discussion

Habitat selection can be envisaged as a hierarchical spatial

process with landscape-level home range establishment and

the final choice of a dietary item as the endpoints of a selec-

tion continuum (Morris 1987; Senft et al. 1987). Our study of

spatiotemporal habitat selection as a function of forage vari-

ability in a large browser, the moose, shows that selection cri-

teria are affected by a scale-dependent trade-off between

forage quality and quantity (rejecting P1, supporting P2Æ1 and

P2Æ2). We found that the pattern of habitat selection within-

home ranges changed during winter but remained stable dur-

ing summer (supporting P3Æ1 and P4Æ1). Furthermore,

bimonthly home range overlap within seasons (an index for

site fidelity) was high in summer and low in winter (support-

ing P3Æ2 and P4Æ2).We interpret these results as direct effects of

the depletion of higher quality food resources during winter.

The initial positive selection for habitat containing higher

quality browse biomass switched to avoidance as winter pro-

gressed while selection for areas with high biomass of lower

quality species increased (supporting P4Æ3). To our knowledge

this study is the first to demonstrate how a behavioural

response to depleted resources can be inferred from RSFs

usingGPS data.

SCALE-DEPENDENT TRADE-OFFS IN FORAGE QUALITY-

QUANTITY

Scale dependency in habitat selection as a function of forage

variability is increasingly reported, especially in grazing un-

gulates (Wilmshurst et al. 1999; Apps et al. 2001; Fortin

et al. 2003; Anderson et al. 2005), although exceptions do

occur. For example, muskoxen (Ovibos moschatus) selected

for the same food resource (Carex aquatilis) across several

spatial scales (Schaefer & Messier 1995). However, this gen-

eralization could be an effect of the hierarchical levels being

chosen from within one scaling domain (Wiens 1989; Schae-

fer & Messier 1995) or due to an absence of trade-offs, as

observed in domestic sheep (Ovis aries) (Mysterud et al.

1999). Scale dependency for moose-resource relationships

has previously been highlighted by Månsson et al. (2007a)

who showed that forage availability (using % cover as an

index) influenced winter browsing patterns across multiple

spatial scales.

Selection decisions for forage quantity (expressed as avail-

able forage biomass) and quality by moose (a large browser)

were also scale-dependent in our case. Moose selected for

higher quality browse at the within-home range-scale, at least

during summer. However, because these resources are rela-

tively scarce and widely dispersed across the study area, the

energetic costs associatedwith movement and searching seem

to constrain selection for higher quality food resources at the

landscape-scale. Instead, moose selected for high abundance

of lower quality browse species that could still serve as ade-

quate bulk feed. As such, we argue that coarse-scale habitat

selection by moose as a function of forage variability can be

explained by a scale-dependent trade-off between available

browse biomass (i.e. quantity) and browse quality.

Selection patterns for the lower quality species also var-

ied across spatial and temporal scales. For example, selec-

tion for habitat with a high availability of Scots pine

biomass was high during winter, at both spatial scales, but

low during summer. This is what we would expect from the

literature as Scots pine is considered an important compo-

nent of the moose winter diet (Kalen & Bergquist 2004;

Månsson et al. 2007b) and is typically avoided as a food

item during summer, although exceptions have been

reported (Faber & Lavsund 1999). Selection for silver birch

and downy birch biomass also varied and changed across

scales which may be explained by differences in quality and

growth rate between the two birch species (Danell, Huss-

Danell & Bergstrom 1985). Silver birch, which represents

(b)

(a)

Fig. 4. Mean (and 95% confidence intervals) proportion of

bimonthly home range overlap within-summer (a) and winter (b)

using 95% MCP and 95% kernel UD. Sample size (n = total num-

ber of monthly home ranges for all moose) = 66 and 92 for summer

and winter, respectively.
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only a small proportion of the available biomass in our

study area, was highly selected at the within-home range-

scale in a similar way to the high-quality RAW species

group. In contrast, the abundant but lower quality downy

birch was highly selected at the landscape-scale only. Irre-

spective of season, moose in southern Norway typically

choose to feed on the fast growing and higher quality silver

birch (Danell & Ericson 1986; Shipley, Blomquist & Danell

1998) and selection for this species should, therefore, be

higher at smaller spatial scales as explained above. The pre-

dictive performance of our RSF models, evaluated with the

area under the ROC curve, was acceptable (Dussault et al.

2004). Nevertheless, some variability in selection for forage

quantity and quality was not accounted for by the models,

especially during summer. Moose are known to forage on a

wide variety of species found in the field layer (Hjeljord,

Hovik & Pedersen 1990; Bo & Hjeljord 1991; Heikkila

et al. 1996) and the absence of field layer vegetation in our

analyses may have contributed to the unexplained variation

in the summer habitat selection models. Future studies

assessing moose-resource relationships would benefit from

incorporating the field layer vegetation into RSF analyses

to get a more complete understanding of scale-dependent

habitat selection strategies and foraging behaviour. How-

ever, this is not a trivial task due to collinearity between

field layer vegetation and available browse biomass as

observed in this study.

Constraints in habitat use and trade-offs associated with

non-dietary goals such as human disturbance (Hebblewhite

& Merrill 2008), predator avoidance (Frair et al. 2005)

and, or shelter (Mysterud et al. 1999; Choquenot & Ruscoe

2003) are well known and may cause habitat selection to

vary across scales (Boyce 2006). It is plausible that selection

for higher quality browse by moose regardless of temporal

and spatial scale (P1) was constrained due to factors such

as topography (Kittle et al. 2008) or snow cover (Dussault

et al. 2005b; Månsson 2009). Identifying the appropriate

spatial scales of analysis for RSFs for a given biological

question is critical, due to the effect that environmental

heterogeneity and other large-scale processes have on a spe-

cies’ habitat selection patterns across multiple scales (Boyce

2006), and will facilitate more biologically relevant inter-

pretations of the mechanisms involved. Furthermore, as

individual-based data sets that contain both life-history

and GPS-based animal movement data are increasingly

available, an important area for future research is to

address fitness consequences (e.g. survival and reproduction

rate; Moen et al. 1996a) associated with individual varia-

tion in habitat selection strategies and their links to scale

(Bowyer & Kie 2006).

DEPLETION AND RENEWAL OF FORAGE RESOURCES

In foraging theory, depletion of resources at fine spatial scales

is the basis for predicting patch departure (Charnov 1976)

and giving-up-densities (Brown 1988). Documentation on

forage depletion and the behavioural response by browsing

herbivores is mostly based on fine scale experimental studies.

For example, white-tailed deer (Odocoileus virginianus)

altered foraging behaviour and diet selection as a result of

forage depletion (Kohlmann & Risenhoover 1994) at the

patch level. However, predicting patch use through forage

biomass alone appeared difficult and patch quality was pro-

posed as an important additional predictor. Edenius (1991)

showed that, during winter, moose initially selected for

higher quality aspen trees and when available biomass was

depleted moose steadily increased selection for lower quality

and more abundant Scots pine trees. Similarly, Shipley,

Blomquist & Danell (1998) observed an increase of low qual-

ity species in the moose winter diet when plant abundance of

high-quality species declined. These results are highly compa-

rable to our findings of habitat selection patterns by free-

rangingmoose at the within-winter home range-scale, despite

our very different methodological approach and scale of

observation. It seems that selection decisions at the land-

scape-scale for high abundance of lower quality species, as

observed in our study, allow herbivores to compensate for

unfavourable temporal variation in resource availability (e.g.

due to depletion of quality resources) at smaller spatial scales

(Fryxell et al. 2005).

Because forage is constantly renewed during summer we

expected that selection for higher quality habitat would

remain stable throughout the growing season. However, the

within-summer home range-scale RSF model that best fitted

the data included an interaction between month and avail-

able forage biomass indicating some monthly variation in

habitat selection patterns. This result is probably related to

temporal variation in forage quality as forage matures over

summer (Hjeljord, Hovik & Pedersen 1990; Hebblewhite,

Merrill &McDermid 2008; McArt et al. 2009). Nevertheless,

the monthly variation in habitat selection was minor

(Fig. 3a) and did not include qualitative changes (e.g. from

selection to avoidance) compared to during winter following

resource depletion (Fig. 3b). The absence of such a change in

selection suggests that the seasonal variation in the relative

quality of the target species was sufficiently low not to be of

major concern to the moose. Moreover, we observed large

overlap in bimonthly home ranges during summer (>50%

for both MCP and kernel UD techniques), suggesting that

the constant and high availability of high-quality browse

allowed moose to adopt a space use pattern with a high

degree of site fidelity. This result is to be expected as fidelity

to high-quality habitat can increase individual fitness

(Edwards, Nagy & Derocher 2009). During winter, when

high-quality browse was depleted, we observed low site fidel-

ity (< 50% for both MCP and kernel UD techniques) which

suggests that moose shifted their monthly winter ranges in

order to acquire high-quality browse or alternative forage

elsewhere. Similar changes in within seasonal space use pat-

terns have been observed in other ungulate species. For

example, Wittmer, McLellan & Hovey (2006) attributed the

low fidelity of woodland caribou (Rangifer tarandus caribou)

in winter to increased search effort for diminishing high-qual-

ity forage such as arboreal lichen.
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Conclusion

Large herbivores are typically confronted with spatial and

temporal variation in the quality and quantity of available

forage resources. These resource attributes are key to the

reproductive success and survival of moose (Moen, Pastor &

Cohen 1997) and other ungulates (White 1983; Pettorelli

et al. 2005; McLoughlin et al. 2006). Our approach, using

mixed-effect RSFs (Gillies et al. 2006) and spatially explicit

forage availability models incorporated both quality and

quantity of browse and yielded novel insight into moose hab-

itat selection strategies over multiple spatiotemporal scales.

The scale-dependent trade-off linked to habitat selection pre-

sented here, driven by landscape-level variation in forage

quantity, quality and depletion will enable more accurate

predictions of the spatial distribution of herbivores over time,

even at within-season scales.
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supporting information supplied by the authors. Such materials may

be re-organized for online delivery, but are not copy-edited or type-

set. Technical support issues arising from supporting information

(other thanmissing files) should be addressed to the authors.
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Table S2. Pearson correlation coefficient between available forage biomass of the target 

species (dry mass (g) per 50 m2) and field layer vegetation (% cover / 50 m2). 

 Billberry cover Grass cover Herb cover Other berry cover 

RAW species biomass 0.351 0.599 -0.485 0.066 

Silver birch biomass 0.168 0.525 -0.111 0.718 

Downy birch biomass 0.683 0.587 -0.178 0.648 

Scots pine biomass 0.179 -0.305 -0.663 0.763 

Table S3. 

Mean (SD) strip length (cm) and bite diameter (mm) by moose for 6 target species as 

observed in the study area. We sampled 100 trees per species per variable with a total of 

1100 trees sampled because Scots pine was never stripped.  

 

Species Strip length (cm) Bite diameter (mm) 

Rowan 19.6 (11.3) 4.7 (1.1) 

Aspen 23.7 (11.6) 4.5 (1.5) 

Willow species 26.5 (11.7) 3.7 (1.3) 

Silver birch 28.9 (9.7) 3.6 (1.3) 

Downy birch 28.4 (9.5) 3.5 (1.3) 

Scots pine -- 7.2 (1.9) 
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Figure S1. Activity estimates (probability of being active ± 95 % highest posterior 

density intervals) of moose as a function of  available browse biomass for each 

target species at the (a) summer and (b) winter home range-scale. Stars in the 

plots represent the raw data of active points (1) and inactive points (0) over the 

range of species-specific available forage biomass. 

 

 



 
 

 

Figure S1 (cont.) 
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Figure S2. Selection estimates (log odds ratio of use ± 95 % highest posterior density 

intervals) for available browse biomass for each target species at the (a) within-summer 

and (b) within-winter home range-scale where the log odds ratios are calculated relative 

to the average available browse biomass for a target species (reference circle). Selection 

estimates above 0 (reference level) indicate higher selection relative to the reference, 

whereas values below 0 indicate lower selection. Stars in the plots represent the raw data 

of used points (upper) and available points (lower) over the range of species-specific 

available forage biomass. Only locations where moose were active were included into the 

models.  

 



 



Figure S2 (cont.) . 
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What determines variation in home range size across spatiotemporal 

scales in a large browsing herbivore?
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1. Most studies on intraspecific home range size variation have investigated only a 

single or a few factors and often at one spatial or temporal scale. However, 

considering multiple spatial and temporal scales when defining a home range is of 

crucial importance as mechanisms that affect variation home range size may differ 

depending on the scale under investigation.  

2. We aim to quantify the relative effect of various individual-level, forage and 

climatic determinants on variation in home range size across multiple spatiotemporal 

scales of a large browsing herbivore, moose (Alces alces), living in southern Norway.  

3. Total home range size and core home range areas were estimated for daily to 

monthly scales within both summer and winter season (16 spatiotemporal scales), 

using the local convex-hull (LoCoH) home range method. Variation in home range 

size was analyzed using linear mixed effects models for repeated measurements. 

4. Reproductive status was the most influential individual-level factor explaining 

variation in moose home range size, with females accompanied by a calf having 

smaller ranges across all scales. Climate affected total home range size more than core 

areas but the overall effect was lower than expected. Temperature and snow depth 

affected home range size directly at short temporal scales while the effect of 

precipitation varied with temporal scale during summer and was absent in winter. 

Home range size decreased with increasing browse density at daily scales but 

increased over time within monthly scales during both summer and winter. In 

contrast, browse quality was consistently negatively correlated with home range size 

but explained only a minor part of the variation at short temporal scales. 

5. The relative effects of intrinsic and extrinsic determinants on variation in home 

range size differed with spatiotemporal scale, providing clear evidence that home 

2 



45 

46 

47 

48 

49 

50 

51 

52 

range size is scale dependent in this large browsing herbivore. As such, we 

recommend studying animal movement or activity across a range of spatiotemporal 

scales, especially when investigating the effect of only a few determinants.  

 

Key-words

Alces alces, climate, forage variability, linear mixed models, local convex hull home 

range estimator, scale-dependence 
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Movements of individual animals are often restricted to a specific area, defined as a 

home range, likely due to increased benefits of familiarity with that area (Stamps 

1995; van Moorter et al. 2009). Understanding why home range size varies between 

and within species remains a fundamental issue in ecological research (McLoughlin & 

Ferguson 2000; Börger, Dalziel & Fryxell 2008). Interspecific variation in home 

range size is largely driven by body-size-dependent metabolic requirements (McNab 

1963; Harestad & Bunnell 1979; Lindstedt, Miller & Buskirk 1986; Carbone et al. 

2005). Intraspecific variation in home range size may be caused by a range of intrinsic 

and extrinsic factors (Table 1). In most studies, only a single or a few factors have 

been used to describe intraspecific variation in home range size and often at one 

specific spatial or temporal scale (e.g. Table 1). 

Scale dependence forms an important part of ecological theory (Wiens 1989; 

Levin 1992). Clearly, the mechanisms underlying intraspecific variation in home 

range size also involve scale dependence (Kie et al. 2002; Rivrud, Loe & Mysterud in 

press). For example, Börger et al. (2006b) showed how the effects of local climate on 

home range size of roe deer (Capreolus capreolus) differed between total home range 

area and the core home range area. Similarly, the effect of home range determinants 

can change across temporal scales. Spencer, Cameron & Swihart (1990) found a 

significant relationship between weekly home range size and body mass of cotton rats 

(Sigmodon hispidus) but the effect was absent at shorter (daily) time scales. 

The overall objective of this study is to examine how individual-level, forage 

and climatic determinants influence variation in home range size of a large browser, 

the moose (Alces alces) in Southern Norway, across multiple spatial (core area to total 

home range area) and temporal (daily to monthly) scales. Moose are an appropriate 
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model species to investigate what determines intraspecific variation in home range 

size as home range size is highly variable between individuals and over time 

(Stenhouse et al. 1995; Dussault et al. 2005a). Based on previous findings in cervid 

home range size (Table 1), we will test the following predictions:  

Individual level determinants: We expect large individual variation in home 

range size across all scales (P. 1.1). Variation in body mass and age are typically poor 

predictors of within species home range size (especially for female moose, Table 1) 

and we therefore expect to find no effects of body weight or age on home range size 

over space and time (P. 1.2 and P. 1.3 respectively). In contrast, the effects of 

reproductive status on herbivore space use are typically larger (Table 1). We expect 

females that are accompanied by a calf to have larger summer ranges than females 

without offspring due to increased energetic requirements (P. 1.4).  

Forage characteristics: Forage variability is considered a primary factor in 

herbivore space use (Tufto, Andersen & Linnell 1996; McLoughlin & Ferguson 

2000). We therefore expect overall density of browse and the proportion of high 

quality browse to have a marked negative effect on moose home range size across all 

temporal scales (P. 2.1 and P. 2.2 respectively). The presence of supplementary 

feeding stations may also affect animal movement and habitat selection patterns 

within seasonal home ranges (Guillet, Bergstrom & Cederlund 1996; Sahlsten et al. 

2010; van Beest et al. 2010a). We expect winter home range size to decrease as the 

time spent at supplementary feeding stations increases (P. 2.3). 

Climatic determinants: Recently the effect of climatic determinants on home 

range size has received increased attention because of climate-change issues 

(McCarty 2001; Walther et al. 2002). Mechanisms might include both direct effects 

on short temporal scales, associated with thermoregulation or increased costs of 
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moving in deep snow, as well as indirect effects operating through plant growth, 

typically at longer temporal scales (Rivrud et al. in press). Moose are adapted to cold 

environments but may suffer from heat stress at warm ambient temperatures in all 

seasons (Dussault et al. 2004). We therefore expect moose home range size to be 

negatively correlated with temperature across all spatiotemporal scales, but most 

clearly at short temporal scales (P. 3.1). Similarly, we expect winter home range size 

to decrease with increasing snow depth across all scales (P. 3.2). Although contrasting 

results have been found for the effect of precipitation on home range size (Table 1), 

precipitation is known to increase heat loss in ungulates (Parker 1988). We therefore 

expect precipitation to negatively affect moose home range size with the effect to be 

most pronounced at short temporal scales (P. 3.3). Finally, the effect of day length is 

known to be a key determinant of activity and home range size of roe deer (Börger et 

al. 2006b). We expect the effect of hours of daylight on moose home range size to be 

more influential during winter (positive relationship) than summer (negative 

relationship) (P. 3.4).  
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STUDY AREA 

The study area (1 733 km2) is located in southern Norway within parts of Telemark, 

Buskerud and Vestfold counties (59° 21’ N, 9° 38’ E). The area is in the 

boreonemoral zone and is mostly covered by commercially managed coniferous forest 

(82%). Stands are dominated by Norway spruce (Picea abies) and Scots pine (Pinus 

sylvestris) but some mixed deciduous stands occur throughout the area. The mean 

monthly temperatures in June and September (i.e, summer period) are 15.4 and 

10.6°C, and in January and April (i.e., winter period) are - 5 and 4.3°C respectively. 

Average (± SE) snow-depths in the centre of the study area (430 m.a.s.l) during Jan.-

Apr. 2007 and 2008 were 49 ± 2.4 cm and 72 ± 1.5 cm respectively (The Norwegian 

Meteorological Institute http://eklima.met.no). Moose densities in the area are 

estimated at 1.5 individuals per km

130 

131 2 (Norwegian Institute for Nature Management; 

http://www.dirnat.no). Red deer (Cervus elaphus L.) and roe deer (Capreolus 

capreolus L.) densities are 0.5 and 0.2 individuals per km

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

2 respectively. Large 

predator species are absent and hunting is the single most important cause of moose 

mortality in this area. 

 

MOOSE AND GLOBAL POSITIONING SYSTEM (GPS) DATA 

A total of 34 adult female moose accompanied by a calf were tranquilized by dart gun 

from a helicopter, using established techniques (Arnemo, Kreeger & Soveri 2003), 

during January 2007 and January 2008. Body mass was recorded by weighing the 

restrained moose from the helicopter (body mass range: 235 – 430 kg). We then fitted 

the moose with GPS collars with a vhf radio transmitter (Tellus Remote GSM, 

Followit AB, Lindesberg, Sweden), programmed with a 1-h relocation schedule. GPS 
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156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

location data was collected each year from January-November (N = 16 in 2007 and N 

= 18 in 2008). All but 9 of the marked individuals were harvested during the regular 

hunting season as part of the annual quota set by the local wildlife board. Age of the 

marked individuals (range: 2 -14 yr) was determined by counting tooth annuli 

(Rolandsen et al. 2008). Missing data on age estimation reduced the total sample size 

to 24 individuals (N = 10 in 2007 and N = 14 in 2008). All marked adult females 

were located and approached carefully on foot in early June to determine the presence 

of a new-born calf. If no calf was observed, we relocated the female a few days later. 

The procedure was repeated until we were confident of calving status. Fourteen adult 

females were observed with a calf during summer (58%) and none of the females 

were accompanied by twins. 

All GPS locations collected within 24 h of initial marking were excluded. The 

GPS data were screened for positional outliers using an established technique based 

on moose movement characteristics (Bjørneraas et al. 2010). With this approach we 

removed 498 erroneous locations (< 0.5% of the full GPS dataset). During this study, 

the average GPS-collar fix rate was 93 % (range: 83 – 99 %) and the mean location 

error in the GPS collars was 29.9 m (range: 8 – 49 m). We judged the potential bias of 

these factors on home range size estimation to be low, so we did not correct for 

location error during the analyses as the error was smaller than the resolution of our 

forage availability maps (see section on forage variability in Materials and Methods). 

Long directional movements, such as during migration periods, can seriously affect 

home range size (Luccarini et al. 2006) and habitat use during the migration period 

may differ from that observed during more stationary periods of the year (Fryxell & 

Sinclair 1988). To avoid potential bias we removed all GPS locations during each 

individual’s migration period, as is typically done in home range size analyses 
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(Ramanzin, Sturaro & Zanon 2007; Rivrud et al. in press). In order to classify 

individuals as migratory or resident, we used the first GPS location of each individual 

(i.e. reference point) and calculated the net displacement distance (using Euclidean 

distances in meters) between each subsequent location and the reference point. For 

individuals displaying a distinct migratory pattern (N = 22 out of 24) we identified the 

start and end dates of migration using piecewise regression in the library “segmented” 

(Muggeo 2008) implemented in the statistical software R (R Development Core Team 

2008). With this approach we removed 10 029 locations (5.9% of the full GPS 

dataset). 
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FORAGE VARIABILITY AND LOCAL WEATHER DATA  

Large herbivores are often confronted with spatial and temporal variation in the 

quality and quantity of their food resources. For this study we used spatially explicit 

forage availability maps for both summer and winter seasons based on the 6 most 

common browse species available to moose in southern Norway; full details are given 

in van Beest et al. (2010b). Based on a review of available literature (see van Beest et 

al. 2010b), we considered silver birch (Betula pendula), downy birch (Betula 

pubescens) and Scots pine (Pinus sylvestris) as low quality browse species and rowan 

(Sorbus aucuparia), aspen (Populus tremula) and willow (Salix spp.) as high quality 

species. Species specific forage availability was measured during summer 2007. We 

used a random stratified sampling design (n = 945 plots over 189 forest stands) to 

estimate forage availability (dry mass g/50m2) across forest stand characteristics 

(cutting class, productivity, dominant tree species) and topography (slope, aspect, 

altitude, sky view). Summer forage was estimated from leaf biomass and winter 

forage from twig biomass. Seasonal forage biomass was spatially mapped at a 50m2 
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pixel resolution using ArcGIS (2006 ESRI, USA) following the best predictive 

generalized linear mixed models (GLMM) of spatial covariates as analysed in R (R 

Development Core Team 2008). We extracted the total amount of forage biomass in 

both summer and winter season for each moose home range (see below) from the 

forage availability maps, using SPATIAL ANALYST in ArcGIS (2006 ESRI, USA). 

We divided the total amount of forage biomass by home range size (ha) to obtain a 

measure of forage density (dry mass g/ha). The proportion of high quality browse 

within each home range was calculated by dividing the amount of quality browse 

biomass by the total amount of forage biomass. On some occasions the marked 

individuals ventured completely or partly outside the area for which we had forage 

availability data. We therefore excluded individuals with < 95% home range overlap 

with the forage availability maps at each spatiotemporal scale. To quantify feeding 

site use for each individual separately and at each spatiotemporal scale we determined 

the proportion of time spent within 100 m of feeding stations (sensu van Beest et al. 

2010a). We did so by calculating the number of GPS locations within a 100 m buffer 

around feeding stations and divided this by the total number of GPS locations 

obtained during winter for that individual at a specific spatiotemporal scale. Because 

feeding stations were small (< 20 m

194 

195 

196 
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199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

2) and because the location in between the hourly 

fixes is not known, we assumed that moose located within a 100 m buffer from 

feeding sites had indeed visited the station. 

To assess the effect of climate on moose home range size in our study area we 

obtained data on daily temperature, rainfall and snow depth from the nearest available 

meteorological weather station. Data on mean daily temperatures (°C) during 2007 

and 2008 were taken from a weather station located 18 km east of the centre of our 

study area (100 m above sea level). Data on daily rainfall (mm) and snow depth (cm) 
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were obtained from a different weather station located 15 km south of the centre of 

our study area (450 m above sea level; The Norwegian Meteorological Institute 

219 

220 

http://eklima.met.no). We regressed daily temperature, rainfall and snow depth 

against Julian day using generalized additive models (GAM) in the library “mgcv” 

(Wood 2006) implemented in R (R Development Core Team 2008) and used the 

residuals of each covariate as fixed effects to analyse variation in home range size. 

This approach removes the seasonal pattern from the weather data and retains the 

unpredictable climatic variability over time. Day length (hours of daylight) in the 

southern part of Norway during our study period were obtained from the U.S. Naval 

Observatory (

221 
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http://aa.usno.navy.mil). 228 
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SPATIOTEMPORAL SCALES AND HOME RANGE SIZE ESTIMATION 

We considered 4 temporal scales: daily, weekly, biweekly and monthly scales, which 

are known to be appropriate timeframes to assess variation in home range size as a 

function of food and climate (Rivrud et al. in press). We also considered 2 spatial 

scales, delimited by the core area (50% isopleths) and total home range area (90% 

isopleths). All scales were analysed separately for both summer and winter, giving a 

total of 16 spatiotemporal scales. We used 90% isopleths rather than the more 

commonly reported 95% isopleths as these produce total home range estimates that 

are less biased by sample size (Börger et al. 2006a). Annual snow conditions in the 

study area were used to define winter length (period with � 30 cm snow depth). As 

such, winter in 2007 stretched from Jan. 21st until Apr. 8th and in 2008 from Jan. 4th 

until Apr. 30th. Summer was defined as the period 1st of June till 15th of September for 

both years. Spring and autumn were not included in this study, partly to avoid the 

inclusion of long distance movements during migration and those associated with the 
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245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

autumn breeding season, but also because we do not have forage availability maps for 

these periods. 

Home range sizes (ha) of female moose were estimated using the non-

parametric Local Convex Hull (LoCoH) method (Getz & Wilmers 2004; Getz et al. 

2007) using the library “adehabitat” (Calenge 2006) implemented in R (R 

Development Core Team 2008). The main advantage of estimating animal home 

ranges with the LoCoH method is that it allows for holes and hard boundaries in the 

home range due to inaccessible terrain (e.g. lakes and rocky outcrops) and is therefore 

less likely to include areas that an individual cannot use compared to parametric 

kernels (Getz et al. 2007). For comparative purposes, home ranges were estimated 

using two LoCoH methods: a-LoCoH (or the adaptive sphere-of-influence method in 

which home ranges are constructed from all points a within a radius determined by 

the maximal distance between any two positions in the GPS dataset) and k-LoCoH (or 

fixed number of points method in which home ranges are constructed from nk �  

where n is the mean number of locations per marked individual in the GPS dataset). 

Because the number of individuals and the number of home range estimates per 

individual varied between spatiotemporal scales, due to insufficient overlap with the 

forage availability maps, we used scale- and individual-dependent values for a and k.  

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

 

MODEL DEVELOPMENT AND STATISTICAL ANALYSES 

To examine variation in moose home range size across spatiotemporal scales we used 

an established multi-scale approach (Börger et al. 2006b), which is based on linear 

mixed models in the “nlme” library (Pinheiro et al. 2005) implemented in R (R 

Development Core Team 2008). Log-transformed home range size (ha) was fitted as 

the response variable in all models. Depending on the season, we included the 
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287 

288 

289 
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293 

following fixed effects in the models; age, body mass, calf at heel (yes or no; summer 

models only), proportion of time spent at feeding stations (winter models only), 

browse density, proportion of high quality browse; the residuals of temperature, 

precipitation, and snow depth (winter models only) and hours of daylight (see Table 2 

for more details). To allow the effect of each home range size determinant to change 

over time (i.e. within seasons) we also fitted an interaction between each covariate 

and hours of daylight in all full models. Collinearity between covariates was checked 

using Pearson r (all values < 0.3) and in addition with the variance inflation factor 

(VIF). All VIF values were below 2 which is indicative that collinearity was not a 

concern (Zuur, Ieno & Elphick 2010). We fitted separate models for summer and 

winter (16 models in total; including 4 temporal scales and 2 spatial scales for each 

season) and all individuals had �2 repeated home range estimates at each temporal 

scale. 

Moose ID and year were fitted as random intercepts in the full models. 

Random effects model any remaining patterns in the residuals of the fixed effects that 

may occur when modelling, for example, repeated observations of the same individual 

(Pinheiro & Bates 2000; Börger et al. 2006b). We used the Akaike Information 

Criterion (AIC) to evaluate if the inclusion of random effects were necessary 

compared to more parsimonious models without random terms (Pinheiro & Bates 

2000). As year was never retained, the final models included moose ID as the only 

random intercept (Table S1 in Supporting Information). 

Any residual dependence among observations that was not accounted for by 

the fixed or random effects was modelled using correlation structures for the within 

group errors (Pinheiro & Bates 2000; Börger et al. 2006b; Rivrud et al. in press). We 

fitted either spatial or temporal correlation structures as it is (currently) not possible to 
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314 
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fit both in the same model. We evaluated which correlation structure best fitted the 

data using AIC (Börger et al. 2006b; Rivrud et al. in press). Spatial correlation 

between home ranges was modelled using the mean coordinates of the home ranges, 

and temporal correlation was modelled by numbering consecutive home range 

estimates for each individual separately starting from the first home range estimate. 

We always used the exponential correlation structure as this method provided the best 

fit based on AIC. Last, the models were checked for unequal variance structures 

(heteroscedasticity) of the within-group errors. We evaluated the fit of several 

available variance functions (Pinheiro et al. 2005). In all cases where a variance 

function improved the model the power function provided the best fit based on AIC. 

Once the distributional assumptions of the mixed model structure were 

fulfilled (Table S1; Supporting Information), model selection of the fixed effects was 

conducted by backwards selection from the full model with F tests using P = 0.05 as 

the threshold for inclusion or exclusion of predictor variables and interactions 

(Murtaugh 2009). During model selection, we used maximum likelihood estimation 

for parameter values while the final model was fitted using restricted maximum 

likelihood estimation (Pinheiro & Bates 2000). To assess the amount of variation in 

the data explained by the final models we used a generalized R2, which is calculated 

as the square of the correlation between the fitted values of the model and the 

observed values in the data(Zheng & Agresti 2000). We report the generalized R2  

values for the final models and for the random effects (Pinheiro & Bates 2000; Börger 

et al. 2006b). We also calculated the generalized R2 for each explanatory variable 

retained in the final models. We did this by manually excluding a covariate (and the 

interaction term if included) from the final model and calculating the difference in 

generalised R2 of the final model and the reduced model (Schradin et al. 2010).  
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We estimated a total of 6 161 home ranges (3 383 within summer and 2 778 within 

winter) using GPS relocation data of 24 adult female moose. We found no distinct 

differences in the final models between the two LoCoH home range estimation 

methods (i.e. similar home range sizes and slopes of explanatory variables retained in 

the models). We report results based on the k-LoCoH method as the final models were 

generally more parsimonious (data not shown). Home range size varied greatly across 

spatiotemporal scales and was consistently larger during summer than winter (Fig. 1; 

Table S2; Supporting Information). Summary statistics of the final mixed-effects 

models predicting monthly, biweekly, weekly and daily home range size of moose are 

given in the Supporting Information as tables S3, S4, S5 and S6 respectively. The 

proportion of variation explained by the final models (i.e. generalized R2) ranged 

between 0.41 and 0.79 across scales (Table 3).  

 

INDIVIDUAL-LEVEL DETERMINANTS  

As expected (P 1.1), we observed large individual variation in home range size (an 

order of magnitude or more) across all spatiotemporal scales (Fig. 2). The proportion 

of variation explained by moose ID (i.e. generalized R2 of random effect) ranged 

between 0.10 and 0.35 across scales (Table 3), explaining more variation during 

summer than during winter and more variation in total home range area (90% 

isopleth) than in core area (50% isopleth).  

 Body mass (log transformed) was of relatively minor importance to home 

range size across spatiotemporal scales (as expected by P. 1.2) (Fig. 2) with two 

exceptions: core home range size during winter at biweekly and weekly scales (Table 

4B; Fig. S1 in Supporting Information). Core home range size increased significantly 
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with body mass at the weekly scale throughout winter (� = 1.209, SE = 0.63, F1,21 = 

7.70; R

344 
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2 = 0.03) but, at the biweekly scale, the effect changed over time (interaction 

between body mass and daylight during winter: � = 0.877, SE = 0.54, F1,21 = 4.8; R2 = 

0.11) with heavier females increasing their core area towards the end of winter (i.e. 

April; Fig. S1 in Supporting Information). 

As expected (P. 1.3), age did not appear to be an important variable affecting 

home range size. It was retained at only one spatiotemporal scale (i.e. 90% isopleth at 

biweekly scale model during summer; Table 4A) where home range size decreased 

with increasing age but only at the end of summer (i.e. September; Fig. S2 in 

Supporting Information). The effect accounted for the least amount of variation in 

home range size at this scale (R2 = 0.03; Table 3; Fig. 2A). 

 Reproductive status (P. 1.4) appeared to be one of the most influential 

variables determining home range size during summer. It was retained in all final 

models (Table 4A) and explained a substantial amount of the variation in the data (R2 

range: 0.04 – 0.49 across all scales; Table 3A; Fig. 2A). However, in contrast to our 

expectation, females with a calf at heel had smaller summer ranges than females 

without, a pattern that was consistent across scales. Differences in home range size 

between females with and without a calf decreased over the course of summer (i.e. 

interaction between calf at heel and daylight) with similar range sizes between groups 

in September (Fig. 3).  

 

FORAGE CHARACTERISTICS 

Overall browse density (P. 2.1) explained a substantial amount of variation in total 

home range size (90% isopleth) during summer (R2 � 0.10 across scales; Fig. 2A). 

However, the expected decrease in home range size with increasing browse density 
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(P. 2.1) was only observed at the daily scale (Table 4A; Fig. S3 in Supporting 

Information). At longer temporal scales the effect changed over time. For example, in 

the beginning of summer (i.e. June) browse density did not affect total home range 

size. In contrast, home range size increased with browse density towards the end of 

summer (i.e. September). During winter, overall browse density affected home range 

size at both daily and monthly scales but browse density was not included in the best 

models at intermediate temporal scales (Table 4B). As expected, home ranges 

generally decreased with increasing browse density (both total home range and core 

area) except at the end of winter at the monthly scale where home ranges increased 

with browse density (Fig. S4 in Supporting Information).  

 The proportion of high quality browse (P. 2.2) was negatively correlated with 

home range size as expected (Table 4; Figs. S5 & S6 in Supporting Information) and 

affected home range size mainly at intermediate to short temporal scales (Fig 2). 

However, browse quality explained a relatively minor part of the total observed 

variation in home range size (range of R2: 0.02 – 0.10; Table 3; Fig. 2) but appeared 

to be more important during winter (range of R2: 0.05 – 0.10) than summer (R2 = 

0.02).  

 Contrary to expectation (P. 2.3), the proportion of time spent at feeding 

stations during winter did not influence winter home range size at any spatiotemporal 

scale.  

 

CLIMATIC DETERMINANTS  

The effect of temperature (P. 3.1) on moose home range size varied across scales and 

within seasons (Table 4) and appeared to be slightly more important during winter 

than summer (R2summer < R2winter; Fig. 2) and more important for total home range 
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size than core area size (R2 90% isopleth < R2 50% isopleth; Table 3). Daily home 

range size during summer (both 90% and 50% isopleths) did not decrease with 

temperature as expected, but instead remained unaffected in the beginning of summer 

and increased with temperature in September (Fig. S7 in Supporting Information). 

During winter, daily core areas decreased with temperature as expected, but only in 

January. In contrast, at the end of winter (April) daily ranges increased with 

temperature (Fig. S8 in Supporting Information). The opposite pattern was found for 

biweekly winter ranges, which increased with temperature at the beginning of winter 

and decreased in April.  
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 Snow depth (P.3.2) negatively affected home range size as expected (Table 

4B; Fig. S9 in Supporting Information), although this relationship was only 

significant in the daily and weekly models. Snow depth explained more variation in 

total home range size (i.e. 90% isopleth; range of R2 = 0.08 – 0.19) than in core area 

size (i.e. 50% isopleth; R2 = 0.09; Fig. 2).  

 Precipitation (P. 3.3) affected home range size during summer at the daily and 

monthly scales (Table 4A) but explained only a minor part of the total variation (R2 = 

0.01 – 0.05; Fig. 2A). During summer the effect changed over time (interaction with 

hours of daylight) and varied between temporal scales (Fig. S10 in Supporting 

Information). In the beginning of summer, daily ranges (both total and core area) 

increased with precipitation while at the end of summer daily ranges decreased. At the 

monthly scale the inverse pattern was observed with total home range size (i.e. 90% 

isopleth) decreasing in early summer and increasing in late summer. Precipitation 

during winter (i.e. snow fall) was not retained in any of the final models. 

 Hours of daylight (P. 3.4) was a consistently important variable across scales 

and explained more variation in home range size than any of the climate variables 
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(Fig. 2). Home range size increased with hours of daylight during winter (smallest and 

largest home ranges in January and April respectively) and decreased with decreasing 

daylight during summer (smallest and largest home ranges during September and June 

respectively).  

 

19 



Discussion424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

Most temperate ungulates are frequently confronted with climatic stochasticity 

(Saether 1997; Mysterud et al. 2001) as well as spatiotemporal fluctuations in the 

availability and quality of food (Tufto et al. 1996; Anderson et al. 2005; McArt et al. 

2009). However, concurrent analyses of the scale-dependent effect of both bottom up 

processes and variability in local weather patterns on animal space use are rare 

(Börger et al. 2006b). Bottom up processes affect herbivores directly (Vucetich & 

Peterson 2004; Winnie, Cross & Getz 2008) and the way they exploit the variability 

of forage resources over time and space can have important effects on their Darwinian 

fitness (McLoughlin et al. 2007). Simultaneously, variability in local weather patterns 

may affect species either directly (Coulson et al. 2001; Hallett et al. 2004), indirectly 

through trophic interactions among species (Krebs & Berteaux 2006; Mysterud et al. 

2008) or both (Rivrud et al. in press). In addition, the behavioural response to climate 

and forage variability may vary considerably among individuals of the same species 

(Nicholson, Bowyer & Kie 1997; Dussault et al. 2005a; Börger et al. 2006b).  

This study is one of the first to assess the relative effects of multiple 

individual-level, forage and climatic determinants on spatial and temporal variation in 

home range size for a large browsing herbivore. Our results indicate that the amount 

of variation in home range size explained by these determinants varies depending on 

the scale under investigation (i.e. home range size of moose is scale dependent). This 

makes it difficult to conclude whether intrinsic or extrinsic variables are the most 

important drivers in scaling of home range size. Instead, this study supports the notion 

that there is no single or most appropriate scale at which to study animal movement or 

activity (Börger et al. 2006b; Rivrud et al. in press). Nevertheless, several important 

consistencies were evident across all spatiotemporal scales. For example, we observed 
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great individual variation in home range size of moose irrespective of scale which is 

in agreement with previous findings (Stenhouse et al. 1995; Dussault et al. 2005a). In 

addition, the presence of a calf and hours of daylight appeared major determinants of 

home range size. In contrast, the effect of browse variability and climate on home 

range size appeared to be most pronounced at intermediate to short spatiotemporal 

scales which partly contrasts with findings for mixed feeders such as red deer (Rivrud 

et al. in press).  

 

INDIVIDUAL LEVEL DETERMINANTS 

Differences between individuals (modelled by the random term moose ID; P. 1.1) 

explained more of the variation in home range size than individual-level attributes 

such as age and body mass (as expected from P. 1.2 and P. 1.3). This is in agreement 

with results found for roe deer (Tufto et al. 1996; Saïd et al. 2005; Börger et al. 

2006b) and highlights the fact that individual variation in home range size is not fully 

captured by the factors age, body mass and reproductive status at the intra-specific 

level (but see Saïd et al. 2009 for an effect of age). This contrasts with findings from 

inter-specific studies, typically spanning a wider range of body mass, in which body 

size is a major factor determining home range size (e.g. Lindstedt et al. 1986; 

Carbone et al. 2005). Reproductive status (summer models; P. 1.4) nonetheless 

appeared to be a key individual- level factor explaining home range size in moose. 

Based on energetic requirements, we would expect lactating females to have larger 

home ranges than barren females, while predation arguments would suggest reduced 

movements due to vulnerable offspring. Contrasting empirical evidence of the effect 

of reproductive status on female space use has indeed been found. Females 

accompanied by offspring either enlarged their summer home range during weaning 
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(e.g. roe deer: Tufto et al. 1996; Saïd et al. 2005), reduced it (e.g. white-tailed deer 

(Odocoileus virginianus): Schwede, Hendrichs & McShea 1993; Alpine ibex (Capra 

ibex ibex); Grignolio et al. 2007) or showed no change (e.g. moose; Cederlund & 

Sand 1994). In this study, female moose without a calf had larger home ranges than 

females with a calf at heel, a result that was evident across all spatiotemporal scales 

(in contrast to P. 1.4). However the observed differences declined as summer 

progressed with similar range sizes at the end of summer for both groups (Fig. 3). 

This suggests that the mobility of female moose in the period shortly after parturition 

is limited by the presence of a calf, but this constraint gradually decreases over time 

as offspring becomes more mobile and independent (Grignolio et al. 2007).. 
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FORAGE CHARACTERISTICS  

Given the importance of forage variability in the distribution and dynamics of 

herbivore populations (Tufto et al. 1996; McLoughlin & Ferguson 2000; Relyea, 

Lawrence & Demarais 2000; Anderson et al. 2005), it is not surprising that variation 

in quality and quantity of browse determines the location and size of moose home 

ranges within a forested landscape (Dussault et al. 2005a; Månsson et al. 2007; 

Herfindal et al. 2009; van Beest et al. 2010b). 

In agreement, overall browse density explained a large part of the observed 

variation in home range size, being most pronounced at relatively short temporal 

scales (i.e. weekly and biweekly scales; Fig. 2). However, during summer the 

expected decrease in home range size with increasing browse density (P. 2.1) was 

only observed at the daily scale (Fig S3 in Supporting Information). At longer 

temporal scales the effect gradually became positive towards the end of summer (i.e. 

September). Dussault et al. (2005a) found identical results for moose living in Quebec 
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and argued that forage density may not be the most critical factor influencing home 

range size during summer when forage is abundant and instead is more related to the 

distribution of protective cover and human presence. Another explanation may be the 

temporal variation in nutritional quality of available forage as it matures over 

summer, as proposed by the forage maturation hypothesis (Hebblewhite, Merrill & 

McDermid 2008). As forage abundance and density increases over summer, the 

nutritional quality decreases as fibres and tannins accumulate (Demment & van Soest 

1985). Much of the evidence supporting the forage maturation hypothesis comes from 

studies on grass quality and the movement of grazing herbivores (Fryxell & Sinclair 

1988; Wilmshurst et al. 1999; Hebblewhite et al. 2008), but there is some indication 

that similar processes affect the quality of browse available to moose over summer 

(Hjeljord, Hovik & Pedersen 1990; Bo & Hjeljord 1991). In fact, summer dietary 

nitrogen availability has been proposed to act as a nutritional constraint on moose in 

Alaska (McArt et al. 2009). Although we have no data to test this hypothesis, changes 

in the nutritional value of the available browse may have caused the moose in our 

study area to periodically (i.e. over longer time scales than one day) change feeding 

sites in search of new patches with browse of sufficient high quality in much the same 

way as is typically observed during periods of forage scarcity (e.g. during winter: 

Edenius 1991; van Beest et al. 2010b). Indeed, we found a positive effect of browse 

density on monthly home range size towards the end of winter (April; Fig S4 

Supporting Information). Depletion of high quality browse during winter may cause 

moose to increase their movement in order to select for more abundant but lower 

quality browse species (Edenius 1991) which results in reduced overlap between 

monthly home ranges (van Beest et al. 2010b). The proportion of high quality browse 

species within home ranges appeared to be negatively correlated with home range size 
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across all scales as expected (P. 2.2) and appeared most important during winter at 

short to intermediate temporal scales when browse density did not affect home range 

size (Fig. 2).  

We have previously shown that the use of supplementary feeding stations by 

moose can change foraging behaviour during winter (van Beest et al. 2010a). 

However, the proportion of time spent in the vicinity of feeding stations was not 

retained in any of the final models, suggesting that the moose did not use 

supplementary feeding stations to a sufficient extent to affect home range size. The 

absence of such an effect may be related to the short (~ 6 yr) feeding history in our 

study area (Sahlsten et al. 2010; van Beest et al. 2010a). 

 

CLIMATIC DETERMINANTS 

The focus on climatic effects on demography and population dynamics has 

augmented dramatically over recent years (Stenseth et al. 2002; Parmesan 2006; 

Grotan et al. 2009). Vucetich & Peterson (2004) showed that the moose population of 

Isle Royale is not only regulated by bottom up processes but also, to a large extent, by 

abiotic factors such as winter precipitation (the North Atlantic Oscillation (NAO) 

index) and summer temperature. Recruitment rates of moose populations across 

Norway have also been linked to different climate variables although opposite effects 

may occur between geographical areas (Grotan et al. 2009). By comparison, studies 

of behavioural responses to climate in herbivores have lagged behind, and the few 

existing studies are focussed on intermediate feeders and grazers, such as red deer 

(Rivrud et al. in press) and reindeer (Rangifer tarandus plathyrynchus: Stien et al. 

2010).  
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In this first study of climate effects on home range size of a large browsing 

herbivore, the effects of temperature and precipitation on variation in home range size 

were not as notable as initially expected (P. 3.1 and P. 3.2. respectively). Local 

climate affected moose home range size mainly at intermediate to short temporal 

scales (i.e. biweekly to daily scales; Fig. 2) suggesting that direct effects were more 

important than indirect effects. This contrasts with findings for red deer (Rivrud et al. 

in press). Indirect effects of climate on herbivore space use operate largely through 

plant growth and quality (Rivrud et al. in press). Grass species are likely to respond to 

climatic fluctuations faster and more strongly than browse species (as discussed 

above) which may explain why indirect effects of climate on space use of 

intermediate feeders and grazers are more evident than for browsing herbivores. 

Temperature, snow depth and precipitation affected the total home range size more, 

although only slightly, than core home range size which agrees with the concept that 

peripheral home range areas are influenced more by climatic variability than the 

heavily used core areas (Börger et al. 2006b). 

We expected moose home range size to be negatively correlated with 

temperature across all scales (P. 3.1) but this was clearly not the case (Figs S7 & S8 in 

Supporting Information). Daily ranges decreased in January but increased with 

temperature in April while at the monthly scale the opposite pattern was observed. 

Indeed, the interpretation of direct effects of temperature on animal space use during a 

season is complicated by changes in pelage insulation and snow depth (Rivrud et al. 

in press). The fact that moose did not reduce their home range as temperature 

increased may indicate that the current range of temperatures experienced by the 

moose in our study area fall largely below their upper critical threshold (Dussault et 

al. 2004). Alternatively, sufficient habitat with good thermal shelter may be available 

25 



573 

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

584 

585 

586 

587 

588 

589 

590 

591 

592 

593 

for temperature and the potential risk of heat stress to not be a major concern to the 

moose during our study period.  

Movement in deep snow is known to increase energy expenditure (Parker, 

Robbins & Hanley 1984) and reduced activity when snow depth exceeds acceptable 

levels is commonly reported for a range of species (Schmidt 1993; Grignolio et al. 

2004; Dussault et al. 2005b; Luccarini et al. 2006; Rivrud et al. in press). Indeed, 

snow depth was negatively correlated with moose home range size as expected (P. 

3.3) but only at short temporal scales (weekly and daily; Fig. S9, Supporting 

Information). In contrast, Rivrud et al. (in press) reported that home range size of red 

deer was strongly affected by snow depth across all spatial temporal scales (from 

monthly to daily scales). Differences in body size between moose and red deer and 

the fact that moose are better adapted to walking in deep snow may explain why 

moose respond less strongly to snow depth over longer spatial scales. Furthermore, 

intermediate feeders and grazers may be more heavily affected by snow than browsers 

as a significant part of their available forage is covered by snow.  

Hours of daylight appeared an important factor across all spatiotemporal 

scales as it explained the most variation in home range size of any variable considered 

(Fig. 2). However this is likely an overestimation as daylight was included in all 

interactions, so increasing its R2. Nevertheless, we demonstrate that by including 

hours of daylight as an interaction in the models we can reveal how behavioural 

responses to local climate and forage variability may change within seasons.  
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CONCLUSION 

Using an established statistical approach (Börger et al. 2006b; Rivrud et al. in press), 

we provide clear evidence that variation in home range size of a large browsing 

herbivore is scale dependent and results from the effect of several intrinsic and 

extrinsic determinants. Home range size varied most in response to changes in 

daylight within seasons, reproductive status and individual differences other than age 

and body mass. Forage variability (density and quality of browse) and climate 

(temperature, precipitation and snow depth) influenced moose range size especially at 

short temporal scales. Such insight into the behavioural responses to climatic 

stochasticity and forage variability may facilitate conservation and management of 

populations which is especially important for large herbivores due to their significant 

impact on forestry, agriculture and natural ecosystems (Côte et al. 2004). 
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Table 3: Generalized R2 values at the population level (i.e. for the final models including all 

fixed effects), the random effects and for each fixed effect separately retained in the final 

model across spatiotemporal scales during summer (A) and winter (B).  

A Summer
Timescale & fixed effects 90% 50%

Month   
Browse density 0.19 NR 
Precipitation 0.05 NR 
Calf at heel 0.17 0.49 
Daylight 0.21 NR 
R2 moose ID (random term) 0.35 0.32 
R2 final model (all fixed 

effects) 0.75 0.53 
Biweek   

Browse density 0.10 NR 
Temperature 0.08 NR 
Calf at heel  0.22 0.19 
Daylight 0.15 0.25 
R2 moose ID (random term) 0.26 0.24 
R2 final model (all fixed 

effects) 0.63 0.49 
Week   

Browse density 0.24 0.11 
Browse quality NR 0.02 
Calf at heel  0.18 0.13 
Daylight 0.08 0.20 
Age 0.03 NR 
R2 moose ID (random term) 0.22 0.19 
R2 final model (all fixed 

effects) 0.58 0.51 
Day   

Browse density 0.25 0.23 
Browse quality 0.02 0.02 
Temperature 0.03 0.02 
Precipitation 0.01 0.01 
Calf at heel 0.04 0.04 
Daylight 0.12 0.11 
R2 moose ID (random term) 0.17 0.15 
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R2 final model (all fixed 
effects) 0.51 0.46 

 

B Winter
Timescale & fixed effects 90% 50%

Month   
Browse density 0.37 0.36 
Daylight 0.33 0.34 
R2 moose ID (random term) 0.19 0.14 
R2 final model (all fixed effects) 0.79 0.73 

Biweek   
Browse quality 0.10 0.05 
Temperature 0.06 0.03 
Daylight 0.23 0.27 
Body mass NR 0.11 
R2 moose ID (random term) 0.29 0.12 
R2 final model (all fixed effects) 0.44 0.41 

Week   
Browse quality 0.09 0.07 
Temperature NR 0.02 
Snow depth 0.19 0.09 
Daylight 0.20 0.21 
Body mass NR 0.03 
R2 moose ID (random term) 0.25 0.18 
R2 final model (all fixed effects) 0.52 0.41 

Day  
Browse density 0.23 0.21 
Browse quality 0.05 0.07 
Temperature 0.02 0.02 
Snow depth 0.08 0.09 
Daylight 0.13 0.11 
R2 moose ID (random term) 0.15 0.10 
R2 final model (all fixed effects) 0.53 0.51 
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Table 4: Overview of the F values, and the direction of the relation (+ for positive relations 

and – for negative relations) with home range size, of the fixed effects in the most 

parsimonious models determining moose home range size (ha) across spatiotemporal scales 

during summer (A) and winter (B) seasons. F values in bold indicate p < 0.05. NR = Not 

retained in final model.  

 A Summer

Timescale & fixed effects 90% 50%

Monthly scale    

Browse density 0.37 + NR 

Precipitation 2.28 + NR 

Calf at heel (yes)a 8.39  - 18.61  - 

Daylight 0.69  - NR 

Browse density * Daylight 10.23 - NR 

Precipitation * Daylight 7.18 - NR 

Calf at heel * Daylight 9.91 - NR 

Biweekly scale    

Browse density 7.76 + NR 

Calf at heel (yes)a 6.97  - 12.68  - 

Daylight 3.20 + 3.06 +

Calf at heel * Daylight 5.83  - 5.70  - 

Weekly scale    

Browse density 5.48 + 10.52 +

Browse quality NR 6.89 -

Calf at heel (yes)a 6.62  - 9.46  - 

Daylight 1.45 + 1.33 +

Age 0.66  - NR 

Browse density * Daylight 6.09  - 5.86  - 

Calf at heel * Daylight NR 6.68 -

Age * Daylight 6.41 + NR 

Daily scale 

Browse density 70.43  - 683.40  - 

Browse quality 7.53  - 65.81  - 

Temperature 4.55 + 2.06 -
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Precipitation 1.40 + 3.55 +

Calf at heel (yes)a 3.89  - 5.19  - 

Daylight 17.65 + 13.23 +

Temperature * Daylight 4.19  - 6.57  - 

Precipitation * Daylight 4.76 + 8.32 +

Calf at heel * Daylight 8.33  - 6.94  - 
a = in reference to no calf at heel 

B Winter

Timescale & fixed effects 90% 50%

Monthly scale   

Browse density 1.29  - 0.81 +

Daylight 1.84 + 0.75 +

Browse density * Daylight 8.05 + 5.05 +

Biweekly scale   

Browse quality 20.87  - 17.27  - 

Temperature 10.28  - 21.55  - 

Daylight 2.86 + 0.01  - 

Body mass NR 4.80 +

Temperature * Daylight 4.64  - 5.06  - 

Body mass * Daylight NR 8.00 +

Weekly scale   

Browse quality 5.84  - 8.52  - 

Temperature NR 7.40 +

Snow depth 11.35  - 5.71  - 

Daylight 23.93 + 14.61 +

Body mass NR 7.70 +

Daily scale  

Browse density 115.91  - 423.89  - 

Browse quality 36.34  - 44.39  - 

Temperature NR + 4.68 +

Snow depth 5.72  - 7.91  - 

Daylight 38.97 + 7.46 +
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Browse quality * Daylight 7.48  - 4.68  - 

Temperature * Daylight NR  11.41 +
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Supporting Information – Paper III

Table S1: Overview of the mixed-model structure for each spatiotemporal scale. 

Moose ID and Year show the standard deviation (SD) of the random intercept in the 

most parsimonious mixed-effects model. Spatial correlation indicates the range of the 

spatial autocorrelation in the models (by using the harmonic mean center of the home 

ranges in meters). Temporal correlation shows the range of the temporal 

autocorrelation in the models (integer valued continuous-time measures starting from 

the first home range estimates taken). Variance function used was always the power 

of covariate variance structure with the fitted values of the model as variance 

covariate. NR = not retained in final model. 

Summer Winter

Timescale and model structure 90% 50% 90% 50%

Month     

Moose ID  0.33 0.28 0.41 0.37 

Year NR NR NR NR 

Temporal correlation NR NR NR NR 

Spatial correlation 322 m NR NR NR 

Variance NR NR NR NR 

Biweek 

Moose ID  0.46 0.34 0.28 0.17 

Year NR NR NR NR 

Temporal correlation NR NR NR NR 

Spatial correlation NR NR 167 m 130 m 

Variance NR -0.58 NR NR 

Week 

Moose ID  0.48 0.42 0.45 0.30 

Year NR NR NR NR 

Temporal correlation � = 0.40 � = 0.29 NR � = 0.35 

Spatial correlation NR NR 39 m NR 

Variance -0.22 -0.30 NR NR 

Day 
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Moose ID  0.38 0.17 0.25 0.16 

Year NR NR NR NR 

Temporal correlation � = 0.11 � = 0.11 � = 0.34 NR 

Spatial correlation NR NR NR NR 

Variance function NR -0.18 NR NR 
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Table S2: Summary statistics of adult female moose home range size (ha) across 

spatiotemporal scales. N = number of moose included in home range calculation, n = 

mean number of home range estimates per moose ID. k= the mean number of nearest 

neighbor points from which home ranges were constructed (k-local hull convex 

method). 

Summer Winter

Timescale 90% 50% 90% 50%

Month      

Mean 126.8 25.4 51.3 8.4 

Min - Max 22.69 - 351.6 6.1 - 73.9 10.9 - 156.1 1.5 - 19.8 

N 22 22 20 20 

n 3.7 3.6 2.1 2.3 

k 26 26 22 22 

Biweek     

Mean 69.27 13.38 22.38 3.92 

Min - Max 9.89 - 192.13 1.59 - 44.14 1.76 - 80.66 0.49 - 12.51 

N 22 22 21 21 

n 6.0 6.4 4.5 4.6 

k 17 17 13 13 

Week      

Mean 31.8 6.1 10.9 1.9 

Min - Max 2.78 - 105.3 0.6 - 26.7 0.6 - 57.9 0.2 - 6.6 

N 22 24 23 23 

n 13.4 12.9 10.0 9.9 

k 8 8 6 6 

Day      

Mean 2.40 0.42 0.88 0.18 

Min - Max 0.1 -27.9 0.01 - 3.74 0.05 - 27.4 0.006 - 1.53 

N 24 24 24 24 

n 57.4 58.2 41.2 43.4 

k 4 4 3 3 
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Table S3: Summary of the mixed-effects models predicting monthly home range size 

(log(ha)) in both summer (A) and winter (B) of female moose in Telemark County, 

southern Norway. The models include a random intercept for individual moose (see 

Table S1) and the number of moose included in the models varied across scales (see 

Table S2). 

 

A Summer

Home range isopleth and model 

parameters Estimate SE df F-value

90%    

(Intercept) 4.997 0.132 1, 52 283.52

Browse density 0.068 0.043 1, 52 0.37 

Precipitation 0.046 0.027 1, 52 2.28 

Calf at heel (yes)a -0.471 0.178 1, 20 8.39

Daylight -0.009 0.024 1, 52 0.69 

Browse density * Daylight -0.046 0.010 1, 52 10.23

Precipitation * Daylight -0.054 0.024 1, 52 7.18

Calf at heel * Daylight -0.110 0.035 1, 52 9.91

50%    

(Intercept) 3.399 0.108 1, 59 178.85

Calf at heel (yes)a -0.633 0.147 1, 21 18.61
a = in reference to no calf at heel     

B Winter

Home range isopleth and model 

parameters Estimate SE df F-value

90%    

(Intercept) 3.844 0.117 1, 19 107.30

Browse density -0.207 0.174 1, 13 1.29 

Daylight 0.078 0.039 1, 13 1.84 

Browse density * Daylight 0.196 0.069 1, 13 8.05
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50%     

(Intercept) 2.042 0.112 1, 19 32.33

Browse density 0.054 0.146 1, 13 0.81 

Daylight 0.057 0.039 1, 13 0.75 

Browse density * Daylight 0.138 0.062 1, 13 5.05

 

Table S4: Summary of the mixed-effects models predicting biweekly home range 

size (log(ha)) in both summer (A) and winter (B) of female moose in Telemark 

County, southern Norway. The models include a random intercept for individual 

moose (see Table S1) and the number of moose included in the models varied across 

scales (see Table S2). 

 

A Summer

Home range isopleth and model 

parameters Estimate SE df F-value

90%    

(Intercept) 4.331 0.153 1, 109 143.37

Browse density 0.095 0.047 1, 109 7.76

Calf at heel (yes)a -0.553 0.214 1, 20 6.97

Daylight 0.071 0.027 1, 109 3.20 

Calf at heel * Daylight -0.088 0.045 1, 109 5.83

50%    

(Intercept) 2.710 0.121 1, 117 188.99

Calf at heel (yes)a -0.600 0.173 1, 20 12.68

Daylight 0.082 0.029 1, 117 3.06 

Calf at heel * Daylight -0.119 0.050 1, 117 5.70
a = in reference to no calf at heel 

B Winter

Home range isopleth and model 

parameters Estimate SE df F-value
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90%    

(Intercept) 2.856 0.098 1, 68 110.05

Browse quality -2.315 0.542 1, 68 20.87

Temperature -0.042 0.025 1, 68 10.28

Daylight 0.016 0.031 1, 68 2.86 

Temperature * Daylight -0.031 0.013 1, 68 4.64

50%    

(Intercept) 1.104 0.082 1, 70 294.68

Browse quality -1.536 0.413 1, 70 17.27

Temperature -0.097 0.027 1, 70 21.55

Daylight -0.029 0.031 1, 70 0.01 

Body mass 0.877 0.535 1, 19 4.80

Temperature * Daylight -0.030 0.013 1, 70 5.06

Body mass * Daylight 0.562 0.199 1, 70 8.00

Table S5: Summary of the mixed-effects models predicting weekly home range size 

(log(ha)) in both summer (A) and winter (B) of female moose in Telemark County, 

southern Norway. The models include a random intercept for individual moose (see 

Table S1) and the number of moose included in the models varied across scales (see 

Table S2). 

A Summer

Home range isopleth and model 

parameters Estimate SE df F-value

90%    

(Intercept) 3.556 0.165 1, 268 840.90

Browse density 0.046 0.031 1, 268 5.48

Calf at heel (yes)a -0.625 0.231 1, 19 6.62

Daylight 0.023 0.020 1, 268 1.45 

Age -0.024 0.031 1, 19 0.66 

Browse density * Daylight -0.029 0.014 1, 268 6.09
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Age * Daylight 0.013 0.005 1, 268 6.41

50%    

(Intercept) 1.852 0.145 1, 281 249.61

Browse density 0.106 0.051 1, 281 10.52

Browse quality -0.617 0.299 1, 281 6.89

Calf at heel (yes)a -0.604 0.196 1, 22 9.46

Daylight 0.069 0.027 1, 281 1.33 

Browse density * Daylight -0.047 0.025 1, 281 5.86

Calf at heel * Daylight -0.106 0.041 1, 281 6.68
a = in reference to no calf at heel 

B Winter

Home range isopleth and model 

parameters Estimate SE df F-value

90%    

(Intercept) 2.164 0.104 1, 203 444.37

Browse quality -0.562 0.333 1, 203 5.84

Snow depth -0.008 0.002 1, 203 11.35

Daylight 0.075 0.015 1, 203 23.93

50%    

(Intercept) 0.420 0.084 1, 200 27.29

Browse quality -0.814 0.283 1, 200 8.52

Temperature 0.039 0.013 1, 200 7.40

Snow depth -0.004 0.002 1, 200 5.71

Daylight 0.073 0.020 1, 200 14.61

Body mass 1.209 0.629 1, 21 7.70
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Table S6: Summary of the mixed-effects models predicting daily home range size 

(log(ha)) in both summer (A) and winter (B) of female moose in Telemark County, 

southern Norway. The models include a random intercept for individual moose (see 

Table S1) and the number of moose included in the models varied across scales (see 

Table S2). 

 

A Summer

Home range isopleth and model 

parameters Estimate SE df F-value

90%    

(Intercept) 0.614 0.126 1, 1394 24.44

Browse density -0.234 0.026 1, 1394 70.43

Browse quality -0.412 0.150 1, 1394 7.53

Temperature 0.021 0.008 1, 1394 4.55

Precipitation 0.002 0.003 1, 1394 1.40 

Calf at heel (yes)a -0.321 0.167 1, 22 3.89 

Daylight 0.078 0.020 1, 1394 17.65

Temperature * Daylight -0.012 0.005 1, 1394 4.19

Precipitation * Daylight 0.004 0.002 1, 1394 4.76

Calf at heel * Daylight -0.078 0.027 1, 1394 8.33

50%     

(Intercept) -1.153 0.064 1, 883 1142.18

Browse density -0.632 0.023 1, 883 683.40

Browse quality -0.951 0.129 1, 883 65.81

Temperature -0.001 0.008 1, 883 2.06

Precipitation 0.004 0.003 1, 883 3.55 

Calf at heel (yes)a -0.196 0.087 1, 22 5.19

Daylight 0.061 0.019 1, 883 13.23

Temperature * Daylight -0.013 0.005 1, 883 6.57

Precipitation * Daylight 0.004 0.001 1, 883 8.32

Calf at heel * Daylight -0.065 0.025 1, 883 6.94
a = in reference to no calf at heel 
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B Winter 

Home range isopleth and model 

parameters Estimate SE df F-value

90%    

(Intercept) -0.553 0.060 1, 960 72.25

Browse density -0.336 0.028 1, 960 115.91

Browse quality -1.165 0.185 1, 960 36.34

Snow depth -0.003 0.001 1, 960 5.72

Daylight 0.072 0.011 1, 960 38.97

Browse quality * Daylight -0.172 0.063 1, 960 7.48

50% 

(Intercept) -2.099 0.046 1, 412 337.33

Browse density -0.588 0.028 1, 412 423.89

Browse quality -1.515 0.212 1, 412 44.39

Temperature 0.024 0.009 1, 412 4.68

Snow depth -0.003 0.001 1, 412 7.91

Daylight 0.029 0.012 1, 412 7.46

Browse quality * Daylight -0.169 0.070 1, 412 4.68

Temperature * Daylight 0.011 0.003 1, 412 11.41
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Figure S3: Plot of predicted log-transformed home range sizes (ha) in relation to log-

transformed browse density of moose in southern Norway. Estimates are given for all 

temporal scales during summer, and for the minimum, mean and maximum value of 

daylight, corresponding to September, July/August and June respectively. Predictions 

for overall browse density were made while keeping other variables retained in the 

model constant at their mean value. Lines show predicted values for 90% and 50% 

isopleths and points in corresponding colours are raw residuals. NR = not retained in 

final models. 
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Figure S8: Plot of predicted log-transformed home range sizes (ha) in relation to 

temperature (residuals of a regression against Julian day) of moose in southern 

Norway. Estimates are given for biweekly, weekly and daily scales during winter, and 

for the minimum, mean and maximum value of daylight, corresponding to January, 

February/March and April respectively. Predictions for temperature were made while 

keeping other variables retained in the model constant at their mean value. Lines show 

predicted values for 90% and 50% isopleths and points in corresponding colours are 

raw residuals. NR = not retained in final models. 
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Figure S9: Plot of predicted log-transformed home range sizes (ha) in relation to 

snow depth (residuals of a regression against Julian day) of moose in southern 

Norway. Estimates (mean values) are given for all temporal scales during winter. 

Lines show predicted values for 90% and 50% isopleths and points in corresponding 

colours are raw residuals. Predictions for snow depth were made while keeping other 

variables retained in the model constant at their mean value. NR = not retained in final 

models. 
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Figure S10: Plot of predicted log-transformed home range sizes (ha) in relation to 

precipitation (residuals of a regression against Julian day) of moose in southern 

Norway. Estimates are given for monthly and daily scales during summer, and for the 

minimum, mean and maximum value of daylight, corresponding to September, 

July/August and June respectively. Predictions for precipitation were made while 

keeping other variables retained in the model constant at their mean value. Lines show 

predicted values for 90% and 50% isopleths and points in corresponding colours are 

raw residuals. NR = not retained in final models. 
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Long-term browsing impact around diversionary feeding stations for moose in
Southern Norway
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1. Introduction

Populations of browsing herbivores, including moose (Alces
alces), have been expanding and increasing in density across
Europe and North America in recent decades (Solberg et al., 1999;
Côte et al., 2004; Milner et al., 2006), with consequences for forest
ecosystems (Motta, 1996; Hornberg, 2001; Rooney, 2001). Intense
browsing by deer is widely regarded as a problem in forest
regeneration (Reimoser and Gossow, 1996; Bergqvist et al., 2003)

as it impedes tree growth and survival (Welch et al., 1992; Vila
et al., 2003; Persson et al., 2005) and lowers timber quality (e.g.
leader stem browsing; Gill, 1992; Bergqvist et al., 2001).
Throughout Scandinavia, the main conflict between forestry
interests andmoose concerns recurrent browsing on commercially
valuable young Scots pine (Pinus sylvestris) stands during winter
(Danell et al., 1991b; Edenius, 1993; Ball and Dahlgren, 2002;
Bergqvist et al., 2003; Kalen and Bergquist, 2004). The impact on
young trees can be severe where local moose densities are high
(Lavsund, 1987; Andren and Angelstam, 1993). Attempts have
beenmade to control excessive forest browsing by reducingmoose
densities locally (Lavsund et al., 2003) but the effects of culling
have been controversial (Côte et al., 2004).

An alternative and increasingly common wildlife management
practice is to provide supplementary food for game animals (Smith,
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although evidence for its efficacy to reduce excessive browsing remains ambiguous. Moreover,
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following long-term winter feeding are currently lacking. We quantified spatiotemporal changes in
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2001; Peek et al., 2002; Putman and Staines, 2004). The main goals
of supplementary feeding are to increase body weight, survival
rate, and reproductive performance in order to maintain high
population densities (see Putman and Staines, 2004 for a detailed
review). However, feeding may also be carried out to control or
reduce environmental damage, particularly to agriculture, forestry
and habitats of high conservation value, or to reduce animal–
vehicle collisions. The rationale behind such feeding (diversionary
feeding), is to divert animals away from, e.g. major traffic arteries,
young forest stands or other valuable habitats via the provision of
an alternative strategically placed food source (Putman and
Staines, 2004; van Beest et al., 2010). Various studies have shown
that feeding stations can serve as attraction points and that regular
feeding of cervids may restrict space use to the vicinity of feeding
stations (e.g. roe deer (Capreolus capreolus): Guillet et al., 1996;
white-tailed deer (Odocoileus virginianus): Doenier et al., 1997;
Kilpatrick and Stober, 2002). van Beest et al. (2010) showed how
moose that used diversionary forage in a commercial forest in
southern Norway concentrated their movements within 1 km of
feeding stations, with a decreasing probability of using habitat
further away, as expected from central-place foraging theory
(Orians and Pearson, 1979). In contrast, moose that did not use
feeding stations were most likely to select areas at distances
>1500 m from feeding stations.

Diversionary feeding has the potential to reduce cervid–vehicle
collisions (Wood and Wolfe, 1988; Gundersen et al., 1998;
Andreassen et al., 2005), however, its efficacy in decreasing forest
damage remains equivocal and appears to depend, among other
things, on the animal species and the spatial and temporal scales
under investigation (Sullivan and Klenner, 1993; Gundersen et al.,
2004; Ziegltrum, 2004; van Beest et al., 2010). Browsing ungulates
that receive supplementary forage frequently continue to forage
on natural vegetation, which can cause excessive browsing,
especially in the vicinity of feeding stations (Schmitz, 1990;
Doenier et al., 1997; Gundersen et al., 2004; Putman and Staines,
2004; Cooper et al., 2006). Although the extent of such heavily
utilized browsing zones (i.e. sacrifice areas that are of reduced
economical value to commercial timber production) has been
documented in the past (Doenier et al., 1997; Gundersen et al.,
2004), their dynamics over time as diversionary feeding continues
is not known.

The aim of this study is to assess moose browsing pressure,
quantified by the proportion of available leader stems and lateral
twigs browsed aroundwinter feeding stations, after 15–20 years of
use and to compare the intensity and scale of browsing with that
observed 10 years earlier (Gundersen et al., 2004). If long-term
diversionary feeding has no effect on fine-scale movement and
foraging behavior ofmoose then browsing pressure around feeding

Fig. 1.Map of the study area in southeast Norway with x- and y-coordinates given every 5 km using the Universal Transverse Mercator (UTM) coordinate system (UTM zone

32N). The map shows the spatial distribution of feeding stations (n = 30), lakes, rivers and major roads. Circles indicate feeding stations that were active (n = 18, black) or

inactive (n = 12, grey) during winter 2007–2008.
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stations should remain constant across spatiotemporal scales (H0).
Alternatively, if feeding stations act as focal attraction points (van
Beest et al., 2010) which may intensify the use of habitat close to
feeding stations (Peek et al., 2002; Cooper et al., 2006; Luccarini
et al., 2006) then fine-scale browsing pressure should increase
across spatial and temporal scales (HA1). Moreover, browsing
patterns should conform to central-place foraging theory, with a
declining probability of use of locations with increasing distance
from the focal point (Schoener, 1979; Rosenberg and McKelvey,
1999), in this case a feeding station (HA2). To test hypothesis HA1

we predict (P1): the intensity of moose browsing around feeding
stations to have increased over time (higher proportion of browsed
leader stems and lateral twigs �200 m from feeding stations than
10 years earlier) and (P2): a high occurrence of intense moose
browsing beyond 200 m from the feeding stations. To test
hypothesis HA2 we predict (P3): browsing pressure to decline
with distance from feeding station (decreasing proportion of
lateral twigs and leader stems browsed with increasing distance
from feeding stations).

2. Methods

2.1. Study area and diversionary feeding

The study area is located in Stor-Elvdal municipality, Hedmark
County, southeast Norway (Fig. 1) and ranges in elevation from250
to 1100 m with the forest line at approximately 800–900 m. The
area is dominated by a low-productive, commercially managed,
boreal forest with pure or mixed stands of Scots pine and Norway
spruce (Picea abies). In addition, deciduous species such as birch
(Betula pubescens Ehrh. and B. pendula Roth.), rowan (Sorbus
aucuparia L.), willow (Salix spp.) and aspen (Populus tremula L.)
occur at low densities throughout the area. Mean temperature and
snow-depth at 240 m during November–April 1997–1998 were
�3.2 8C and 30.2 cm, respectively, and �2.5 8C and 52.7 cm during
November–April 2007–2008 (Haugedalen weather station in the
same coniferous forest approximately 35 km south of the study
area; Norwegian Meteorological Institute; http://www.eklima.-
met.no). The cervid community in the municipality is dominated
bymoose (>1.1 moose/km2 during winter; Gundersen et al., 2008)
with very low densities of roe deer (Capreolus capreolus L.) and red
deer (Cervus elaphus L.).

Diversionary feeding ofmoosewas initiated in the late 1980s by
local landowners with the aim of reducing moose-vehicle
collisions (Andreassen et al., 2005). The supplemental food consists
of baled roughage, predominantly mixed graminoids, and one bale

of silage weighs �600 kg. Feeding stations are located at fixed
(permanent) sites along forest roads with low human activity. The
supplemental food is provided ad libitum for up to 6 months of the
year (i.e. November through April, with starting and ending time
depending on annual snow conditions). The total amount of
supplemental food provided at feeding stations increased greatly
over the last decade with �150 ton (across 44 feeding stations)
during winter 1997–1998 and �1700 ton (across 157 feeding
stations) during winter 2007–2008.

2.2. Quantifying browsing pressure

In Scandinavia, the winter diet of moose is typically composed
of twigs of Scots pine and various deciduous tree species
(Hornberg, 2001; Månsson et al., 2007). The tree species
considered in this study (i.e. target species) were: rowan, aspen,
several willow species, silver birch, downy birch and the

Table 1
Species-specific overview of (A) the mean number of all trees above 0.5m present within sampling plots (50m2), and (B) the mean height of all trees sampled (within the

height range 0.5–3m) per distance from feeding station in 1998 and 2008 in Stor-Elvdal, Norway.

Variable Distance from feeding station (m) RAW species

group

Birch species Scots pine Norway

spruce

1998 2008 1998 2008 1998 2008 1998 2008

(A) Number of trees present 12.5 6.3 6.7 11.0 10.2 2.4 4.7 5.8 6.1

25 6.9 5.5 14.5 7.1 3.1 5.3 4.8 6.6

50 8.9 9.3 10.5 8.4 1.3 9.2 4.2 5.6

100 12.3 5.0 6.1 6.7 1.8 4.8 3.7 8.4

200 7.0 5.1 8.9 10.6 2.3 3.4 3.8 5.9

500 – 1.5 – 6.5 – 4.5 – 7.2

1000 – 2.7 – 5.9 – 5.0 – 7.6

(B) Height (m) of sampled trees 12.5 1.20 0.86 1.36 1.19 1.27 0.74 1.23 1.20

25 1.35 0.83 1.53 1.73 0.97 0.83 1.74 1.34

50 1.12 1.17 1.76 1.22 1.34 0.94 1.79 1.53

100 1.12 0.93 1.55 1.58 1.33 0.85 1.94 1.81

200 1.01 1.23 1.41 1.34 1.37 1.09 1.91 1.65

500 – 1.05 – 1.59 – 1.22 – 2.06

1000 – 0.79 – 1.60 – 1.32 – 2.07

Fig. 2. Mean (and 95% CI) number of moose pellet groups per plot (50 m2) at

increasing distance from feeding stations after winter 1997–1998 (open grey

circles) and 2007–2008 (black circles). In 1998 pellet groups were only counted up

to 200 m.
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commercially harvested species Scots pine and Norway spruce.
Although Norway spruce is not a preferred forage species of moose
(Cederlund et al., 1980; Hornberg, 2001; Kalen and Bergquist,
2004) it was included because of previously observed leader stem
browsing in the vicinity of feeding stations (Gundersen et al.,
2004).

Gundersen et al. (2004) quantifiedmoose browsing pressure on
Scots pine and Norway spruce around 30 feeding stations during
spring 1998 using circular sampling plots of 50 m2 located at 12.5,
25, 50, 100, 200 m from feeding stations (for methodological
details see Gundersen et al., 2004). To evaluate temporal changes
in browsing pressure (P1), we recorded browsing pressure around
the same feeding stations at the same distances during spring
2008. Furthermore, as browsing is expected to have expanded
spatially over time (P2), additional browse surveys were carried
out at 500 and 1000 m from feeding stations. Sampling plots were
established along 2 transects radiating out from the center of each
feeding station in a random direction at a minimum of 258 from
each other.With this design 14 plots were established around each
station with a total of 420 plots sampled across the study area. Use
of habitat bymoosewas estimated by counting faecal pellet groups
(Ball and Dahlgren, 2002; Palmer and Truscott, 2003). Pellet groups
from the previous winter were distinguished from older pellets by
color, texture and position relative to litter and old vegetation
(Neff, 1968). Furthermore, we recorded the total number of alive
trees of all species present (�0.5 m high) within each plot. Trees
<0.5 m high were assumed to be unavailable to moose during

winter due to snow cover. An overview of tree numbers and
average height of target species per sampling plot and distance are
given in Table 1. For each target species present in a plot, one tree
was selected, based on the average height of that particular species
within a plot, andwe recorded: (i) presence/absence of leader stem
browsing during previous winter, (ii) the number of lateral twigs
available within moose browse height (0.5–3 m: Danell et al.,
1985), and (iii) the number of lateral twigs browsed during the
previous winter. The same measurements were taken in 1998,
except that presence/absence of leader stem browsing was only
recorded for Scots pine and Norway spruce (Gundersen et al.,
2004). Last winter’s browsing was separated from earlier browsing
by color and moisture on the bitten edge of the twigs.

2.3. Statistical analysis

Species-specific browsing pressure around feeding stations was
modeled with generalized additive mixed models (GAMMs) using
the library mgcv (Wood, 2006) implemented in R (R Development
Core Team, 2008). GAMMs provide a flexible framework to model
species-habitat relationships (Aarts et al., 2008). Explanatory
variables, with expected non-linear effects, can be fitted as
parametric or non-parametric smoothing terms and moreover,
variables can be modeled as random effects (see Augustin et al.,
2007; Musio et al., 2007 for applications in forestry).

Leader stem and lateral twig browsing around feeding stations
were modeled separately for each target species using a logistic

Table 2
Parameter estimates of species-specific GAMMmodels predicting leader stem browsing bymoose up to 200m from feeding stations in 1998 and 2008 in Stor-Elvdal, Norway.

The models include a random intercept for transect ID within feeding station ID. The models form the analytical basis for Fig. 3. Sample size (no. of trees) for Scots pine =167,

Norway spruce=331; RAW species group=53; and Birch species =158.

Model species Parametric coefficients Estimate S.E. t-value p-value

Scots pine Intercept 0.269 0.431 0.625 0.533

Year (2008) �0.379 0.362 �1.049 0.296

Active (Yes) 0.651 0.541 1.204 0.231

Smooth terms edf Est. rank F-value p-value

s(Distance=1998) 1 1 8.49 0.004

s(Distance=2008) 1 1 0.56 0.461

N Std. Dev. Residual

Random intercept 83 <0.001 0.931

Norway spruce Intercept �4.584 0.669 �6.852 <0.001

Year (2008) 2.832 0.58 4.879 <0.001

Active (Yes) 1.292 0.439 2.941 0.003

Smooth terms edf Est. rank F-value p-value

s(Distance=1998) 1 1 9.61 0.002

s(Distance=2008) 1 1 3.44 0.064

N Std. Dev. Residual

Random intercept 150 0.214 0.881

RAW species Intercept 1.542 0.680 2.27 0.027

Year (2008) – – – –

Active (Yes) 0.392 0.859 0.46 0.650

Smooth terms edf Est. rank F-value p-value

s(Distance=1998) – – – –

s(Distance=2008) 1 1 1.53 0.221

N Std. Dev. Residual

Random intercept 26 <0.001 1.009

Birch species Intercept 0.426 0.433 0.99 0.326

Year (2008) – – – –

Active (Yes) 0.752 0.530 1.42 0.158

Smooth terms edf Est. rank F-value p-value

s(Distance=1998) – – – –

s(Distance=2008) 1 1 0.03 0.855

N Std. Dev. Residual

Random intercept 79 0.859 0.920
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link function and binomial error distribution. Due to low sample
size for rowan, aspen and willow species we pooled these and
created one model (RAW species group), as is typical in
Scandinavian moose browse surveys (Solbraa, 2003). For the same
reason, silver birch was grouped together with downy birch (Birch
species). The response variable in all models was ‘browsed’
(1 = yes, 0 = no) and the following predictor variables were fitted:
‘year’ (2 class factor; 1998–2008) and ‘active’ (2 class factor;
feeding station (FS) used in winter 2007–2008 (active; n = 18) – FS
not used in winter 2007–2008 (inactive; n = 12)) which incorpo-
rates potential differences in browsing pressure between feeding
stations that were used by moose during winter 1997–1998 but
were not operational during winter 2007–2008 and those that
were operational throughout the period. ‘Distance from feeding
station’ was included as a smoothing function with the optimal
smooth curve estimated by the generalized cross-validation
procedure (Wood, 2006) with an upper bound set at 4 knots
(3 df). The smoothing function was included for each year
separately to allow browsing estimates to vary non-linearly over
time and space. To test P1, all sampling plots from 1998 and those
up to 200 m from feeding stations in 2008 were included in the
analyses, so quantifying temporal differences in browsing pressure
explicitly. To test P2, all sampling plots (up to 1000 m from feeding
stations) from 2008 only were analyzed. We used a = 0.05 to
evaluate significant relations between the dependent and inde-
pendent variables throughout. To control for potential dependen-
cies at higher levels than the plot level and to account for
unbalanced sampling design within transects across feeding
stations (Gillies et al., 2006; Aarts et al., 2008) we included

transect ID nested within feeding station ID as a random intercept
for the leader stem browsing analyses. Lateral twig browsing was
analyzed with plot ID nested within transect ID within feeding
station ID. Models that did not converge using a random intercept
were analyzed using GAM (i.e. lateral twig browsing Norway
spruce).

3. Results

3.1. Moose utilization of sites around feeding stations

The mean number of moose pellet groups per sampling plot
(50 m2) in the vicinity of feeding stations (�50 m distance) was
considerably higher in 2008 compared to 1998 (Fig. 2), with a 3-
fold increase at 12.5 and 25 m from feeding stations and a 2-fold
increase at 50 m from feeding stations. At distances more than
50 m from feeding stations the mean number of pellet groups per
plot remained similar between years (overlap between 95%
confidence intervals) with few pellet groups observed at 500 m
and 1000 m distances in 2008.

3.2. Temporal changes in browsing pressure

The proportion of Scots pine leader stems browsed up to 200 m
from feeding stations did not differ between years (p = 0.296) but
decreased with increasing distance from feeding stations only in
1998 (p = 0.004: Table 2; Fig. 3). Norway spruce leader stem
browsing decreasedwith increasing distance from feeding stations
in both years (non-significant trend in 2008: p = 0.064) but

Fig. 3. Proportion of leader stems browsed for each target species up to 200 m from active feeding stations in 1998 (grey lines and circles) and 2008 (black lines and circles).

The plotted rawdata points are themean proportion of leader stems browsed in five distance classes (12.5, 25, 50, 100, and 200 m). The area of the circles is proportional to the

amount of data in each distance class. Solid lines represent themean predicted values and dashed lines the 95% confidence limits (seemodel estimates in Table 2). Leader stem

browsing on RAW species and birch species was not recorded in 1998.
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browsing pressure was significantly higher in 2008 compared to
1998 (p < 0.001). Leader stem browsing on RAW species and birch
species was not recorded in 1998, while in 2008 the proportion of
leader stems browsed on both deciduous species groups was
consistently high (>60%) regardless of distance from feeding
station (Table 2; Fig. 3).

The proportion of lateral twigs browsed up to 200 m from
feeding stations was significantly lower in 2008 than in 1998,
across all species except Norway spruce (Table 3; Fig. 4). Lateral
twig browsing on Norway spruce was absent in 1998, while
approximately 10% of the available twigs were browsed at 50 m
from feeding stations in 2008 (Fig. 4). Lateral twig browsing was
significantly higher at active than inactive feeding stations on
Norway spruce and birch species (p < 0.001) but not on Scots pine
(p = 0.089) or RAW species (p = 0.685: Table 3). The proportion of
Scots pine lateral twigs browsed within 200 m of feeding stations
decreased with distance from feeding station in 1998 (p < 0.001)
and varied non-linearly in 2008 (p = 0.035). Lateral twig browsing
on the RAW species group decreasedwith increasing distance from
feeding station in 1998 (p = 0.011) but not in 2008 (p = 0.312). The
proportion of birch species lateral twigs browsed decreased with
distance from feeding station in both years (Table 3; Fig. 4).

3.3. Spatial development of browsing pressure

The proportion of Scots pine leader stems browsed during
winter 2007–2008 did not decrease significantly as distance from
feeding stations increased (p = 0.571; Table 4), and remained at
�60% up to 1000 m from feeding stations. However, there was

considerable between-station variation within 200 m of feeding
stations (Fig. 5). Furthermore, Scots pine leader stem browsing did
not differ between active and inactive feeding stations (p = 0.176;
Table 4). A similar pattern of leader stem browsing as a function of
distance from feeding station was observed for the RAW species
group (p = 0.422; �90% browsed up to 1000 m) and birch species
(p = 0.225:�70% browsed up to 1000 m). Leader stem browsing on
the deciduous species did not differ significantly between active
and inactive feeding stations (p = 0.778 and p = 0.139 for RAW
species group and birch, respectively; Table 4). Contrastingly,
leader stem browsing on Norway spruce trees decreased with
distance from feeding stations (p = 0.001: �50% browsed at 50 m
and 0% browsed at 1000 m) and was significantly higher at active
feeding stations compared to inactive stations (p = 0.023: Table 4;
Fig. 5).

Browsing pressure on lateral Scots pine twigs during winter
2007–2008varied non-linearlywithdistance from feeding station
(p < 0.001: Table 5) with peak browsing pressure at 600 m from
feeding stations (Fig. 6). Lateral twig browsing on Norway spruce
trees decreasedwith increasingdistance from feeding stations but
remained below 10% throughout. Browsing on RAW species
lateral twigs did not decrease with distance from feeding stations
(p = 0.122) in contrast to birch species twigs (p < 0.001). Browsing
pressure on lateral twigs of Norway spruce and birch trees was
higher around feeding stations that were actively used during
winter 2007–2008 compared to inactive feeding station
(p < 0.001 and p = 0.002, respectively), but this was not the case
for browsing on Scots pine twigs and the RAW species group
(Table 5; Fig. 6).

Table 3
Parameter estimates of species-specific GAMMmodels predicting lateral twig browsing bymoose up to 200m from feeding stations in 1998 and 2008 in Stor-Elvdal, Norway.

The models include a random intercept for plot ID within transect ID within feeding station ID. The models form the analytical basis for Fig. 4. Sample size (no. of twigs) for

Scots pine=4419, Norway spruce=64793; RAW species group=1602; and Birch species =17793.

Model species Parametric coefficients Estimate S.E. t-Value p-Value

Scots pine Intercept �1.654 0.316 �5.231 <0.001

Year (2008) �1.675 0.403 �4.149 <0.001

Active (yes) 0.669 0.394 1.701 0.089

Smooth terms edf Est. rank F-value p-Value

s(Distance =1998) 1 1 14.88 <0.001

s(Distance =2008) 1.614 3 2.854 0.035

N Std. dev. Residual

Random intercept 151 0.724 0.899

Norway spruce Intercept �9.057 0.323 �28.08 <0.001

Year (2008) – – – –

Active (yes) 4.974 0.3196 15.56 <0.001

Smooth terms edf Est. rank x2 p-Value

s(Distance =1998) – – – –

s(Distance =2008) 2.994 3 565.3 <0.001

RAW species Intercept �0.956 0.386 �2.48 0.013

Year (2008) �0.794 0.228 �3.48 <0.001

Active (yes) �0.179 0.443 0.405 0.685

Smooth terms edf Est. rank F-value p-Value

s(Distance =1998) 1 1 6.43 0.011

s(Distance =2008) 1.34 3 1.19 0.312

N Std. dev. Residual

Random intercept 131 0.559 0.907

Birch species Intercept �2.595 0.251 �10.353 <0.001

Year (2008) �0.462 0.171 �2.712 0.006

Active (yes) 1.165 0.293 3.971 <0.001

Smooth terms edf Est. rank F-value p-Value

s(Distance =1998) 1 1 45.37 <0.001

s(Distance =2008) 1.9 3 6.72 <0.001

N Std. dev. Residual

Random intercept 453 1.022 0.901
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4. Discussion

The results presented here indicate that providing large
herbivores with additional winter food on a long-term basis
may have serious implications for the intensity of fine-scale
browsing pressure and the spatial extent of forest damage. We
found browsing pressure around diversionary feeding stations to
increase across spatiotemporal scales (rejecting H0). Moose used
sites around feeding stations more heavily after 15–20 years of
feeding than after 5–10 years, fulfilling our key assumption, yet the
expected increase in browsing pressure in the vicinity (�200 m) of
feeding stations (P1), was only observed in Norway spruce, a
species generally not eaten by moose (Bergstrom and Hjeljord,
1987; Hornberg, 2001; Kalen and Bergquist, 2004). At a broader
spatial scale, we found high browsing pressure on both leader
stems and lateral twigs for most target species, as expected (P2).
Browsing pressure on all target species decreased with increasing
distance from feeding stations in 1998 as expected from central-
place foraging theory. However, after 10 years of additional winter
feeding (2008) the relationship between browsing pressure and
distance from feeding stations wasmore complex (non-linear) and
the expected decrease in browsing pressure was absent for
palatable species (P3).

4.1. Temporal changes in browsing pressure

Contrary to our expectation (P1) we found no difference in
leader stem browsing for Scots pine at distances �200 m from

feeding stations when the time frame of diversionary feeding
increased from 5–10 years to 15–20 years. This result may be
influenced by the already high browsing incidence, ca. 70%, at 5–
10 years after feeding stations were established, perhaps
approaching the proportion of leader stems that are easily
available and attractive to the moose. By contrast, and in
accordance with P1, leader stem browsing of Norway spruce
did increase over time. Previous reports of moose browsing on
Norway spruce in northern Europe are fewand generally illustrate
a sudden increase in localized bark stripping and browsing of
lateral twigs (Randveer and Heikkila, 1996; Faber and Pehrson,
2000). These studies proposed that high moose densities
coinciding with a reduced availability of more preferred browse
species are important causes for moose to include the least
preferred but abundant Norway spruce into their diet. The
temporal increase in Norway spruce browsing in the vicinity of
feeding stations might also be attributed to a high demand for
natural browse or roughage to balance the intake of the artificially
supplied forage (Doenier et al., 1997).

Browsing pressure on lateral twigs decreased rather than
increased close to the feeding stations, particularly on Scots pine,
in contrast to P1. Browsing pressurewas defined and calculated as
the proportion of the available twigs bitten during the last winter,
but we did not record the size of the available twigs. We suggest
that intense browsing over a long time period (15–20 years) has
caused a decrease in size and/or nutritious quality of shoots,
leading to a reduced acceptability to moose (Price, 1991).
Repeated browsing is known to negatively affect tree productivity

Fig. 4. Proportion of lateral twigs browsed for each target species up to 200 m from active feeding stations in 1998 (grey lines and circles) and 2008 (black lines and circles).

The plotted rawdata points are themean proportion of lateral twigs browsed in five distance classes (12.5, 25, 50, 100, and 200 m). The area of the circles is proportional to the

amount of data in each distance class. Solid lines represent themean predicted values and dotted lines the 95% confidence limits (seemodel estimates in Table 3). Lateral twig

browsing on Norway spruce trees was absent in 1998.
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(Stroh et al., 2008) and browse availability for herbivores
(Edenius, 1993) which can, eventually, lead to forage depletion
(Andrew, 1988; Edenius, 1991; Persson et al., 2005; Cooper et al.,
2006). In a long-term moose browsing simulation experiment in
Sweden, Persson et al. (2005, 2007) showed that production of
browse biomass in birch species often increasedwithmoderate to
heavymoose browsing, particularly in highly productive habitats,
but decreased with the heaviest browsing intensity (5 moose per
km2). Such decrease in browse production due to excessive
browsing on birch is associated with reduced size and nutritive
quality of shoots (Danell et al., 1985). This findingmay correspond
with the pattern found for birch around the feeding stations, with
decreased browsing pressure over time closest to the stations, due
to reduced forage acceptability, and little change further away.
Scots pine showed the strongest decrease in browsing pressure in
our study. Similarly, Persson et al. (2005, 2007) showed that
simulated moose browsing had a consistent negative effect on
Scots pine browse production independent of habitat productivi-
ty. Scots pine has a fixed growth pattern with little flexibility in
shoot production for compensatory growth. Moreover, as an
evergreen, Scots pine does not store nutrients in roots or stems as
most deciduous species do, but nutrients remain in the needles
where they are vulnerable to browsing (Millard et al., 2001).
Although, we did not quantify compensatory tree growth in
response to moose browsing in our study, it seems probable
that the decrease in lateral twig browsing over time observed at
distances �200 m from feeding stations is associated with
an overall decrease in shoot size and available twig biomass
(i.e. resource depletion) due to intensive browsing over an
extended time period (15–20 years). Evidence of induced
chemical defense in Scots pine twigs by moose browsing is scarce
but the initial differences in acid concentrations between trees
may explain why some trees are browsed more than others
(Danell et al., 1990).

4.2. Spatial development of browsing pressure

As expected (P2), browsing pressure on leader stems was high
even at 1000 m from feeding station for all species except Norway
spruce, suggesting that increasing numbers ofmoose at the feeding
stations leads to an increased radius of the zone with heavy
browsing. Furthermore, we found no differences in leader stem
browsing between active and inactive feeding stations, except for
Norway spruce, which might indicate the occurrence of rebrows-
ing (Bergqvist et al., 2003; Danell et al., 2003). Correspondingly, we
observed high browsing pressure on lateral twigs of the preferred
RAW species group at inactive feeding stations, although browsing
pressure on birch species and Norway spruce was considerably
lower on inactive compared to active feeding stations. Scots pine
lateral twig browsing peaked at ca. 600 m from feeding stations,
suggesting that this distance provided the closest available
Scots pine forage. That lateral twig browsing of Scots pine peaked
at the same distance at inactive feeding stations also suggests
rebrowsing.

Assessments of spatial changes in browsing impact around
animal attractants such as diversionary feeding stations or near
physical barriers such as fences may, from a forest-management
standpoint, be important for predicting which forest stands are at
risk of being severely browsed in the future. Conifer leader stem
browsing by deer is considered an important problem to
commercial forest management (Bergquist et al., 2009) as it
may lead to loss in revenue and profitability due to lower yield, and
lower timber quality (Welch et al., 1992). Timber production has
long been the main source of revenue from Norwegian forest and
remains so even when browsing damage by moose is taken into
consideration (Wam et al., 2005; Wam and Hofstad, 2007). Ward
et al. (2004) showed that economic losses become evident at leader
stem browsing levels of �55%. In our study, browsing levels on
leader stems around active feeding stations were above this

Table 4
Parameter estimates of species-specific GAMM models predicting leader stem browsing by moose up to 1000m from feeding stations in 2008 in Stor-Elvdal, Norway. The

models include a random intercept for transect ID within feeding station ID. The models form the analytical basis for Fig. 5. Sample size (no. of trees) for Scots pine =86,

Norway spruce=136; RAW species group=62; and Birch species =192.

Model species Parametric coefficients Estimate S.E. t-Value p-Value

Scots pine Intercept �0.293 0.543 �0.54 0.590

Active (yes) 1.005 0.737 1.364 0.176

Smooth terms edf Est. rank F-value p-Value

s(Distance=2008) 1 1 0.323 0.571

N Std. dev. Residual

Random intercept 43 1.485 0.793

Norway spruce Intercept �2.546 0.602 �4.227 <0.001

Active (yes) 1.417 0.616 2.300 0.023

Smooth terms edf Est. rank F-value p-Value

s(Distance=2008) 1 1 10.65 0.001

N Std. dev. Residual

Random intercept 78 0.922 0.847

RAW species Intercept 1.836 0.647 2.84 0.006

Active (yes) 0.228 0.803 0.28 0.778

Smooth terms edf Est. rank F-value p-Value

s(Distance=2008) 1 1 0.65 0.422

N Std. dev. Residual

Random intercept 31 <0.001 0.980

Birch species Intercept 0.422 0.365 1.158 0.248

Active (yes) 0.666 0.449 1.483 0.139

Smooth terms edf Est. rank F-value p-Value

s(Distance=2008) 1 1 1.48 0.225

N Std. dev. Residual

Random intercept 81 0.139 0.945
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proposed threshold even at 1000 m from feeding stations except
for Norway spruce. This implies that in forested areas where
diversionary feeding of browsing herbivores is practiced for
extended periods (i.e. decades), leader stem browsing will increase
spatially and may, eventually, impact the profitability of timber in
forest stands far from feeding stations.

4.3. Implications of long-term diversionary feeding

The presence of permanent feeding stations is known to restrict
seasonal space use patterns of herbivores to the vicinity of feeding
stations and may even change the foraging behavior of moose to
that of central-place foragers in less than 10 years of diversionary
feeding (van Beest et al., 2010). In agreement and as expected by P3,
we observed a negative relationship between browsing pressure
and distance from feeding station in 1998 (after 5–10 years of
feeding) for all species and for both leader stem and lateral twig
browsing (Figs. 3 and 4). However, after 10 years of additional
winter feeding (in 2008), browsing pressure at the same spatial
scale (�200 m from feeding stations) was no longer negatively
correlated with distance from feeding station for most target
species in contrast to expectations from central-place foraging
theory. Moreover, when assessing browsing pressure at a slightly
larger scale (�1 km from feeding stations in 2008), browsing
pressure decreased only onNorway spruce leader stems (Fig. 5) and
on the lateral twigs of deciduous species (Fig. 6). This apparent
inconsistency between leader stem browsing patterns in 2008 and
our expectation based on central-place foraging theory (P3) could
be an artifact of our sampling design (i.e. the absence of sampling

plots at distances >1 km from feeding stations) or a general
increase in landscape-level browsing pressure. There is some
evidence, from a different area in southern Norway, that browsing
pressure on Scots pine leader stems can remain constant up to 4 km
from feeding stations (80% of available leader stem browsed) before
decreasing to 20% at 6 km from feeding stations (Tange, 2007).
More evidence is needed to evaluate the effect of long-term
diversionary feeding on changes in browsing pressure at the
landscape-scale. Furthermore, the discrepancy between central-
place foraging theory and lateral twig browsing might be
confounded by the depletion of lateral twig biomass following
long-term browsing pressure as discussed above. This suggests that
the potential of central-place foraging theory to successfully predict
foraging behavior of browsing herbivores and concomitant forest
damage around feeding stations declines as winter feeding
continuous over time. Nevertheless, the observed browsing
patterns in 2008 do, to some extent, support central-place foraging
theory in terms of variation in species-specific browsing pressure as
a function of distance from feeding stations. For example, central-
place foragers are expected to increase selection of preferred forage
resources at greater distances from the focal point compared to
lower ranked species (Schoener, 1979; Rosenberg and McKelvey,
1999). Indeed, browsing pressure on leader stems of the preferred
RAW species was high at 1 km from feeding stations (100% of
available stems browsed), lower for medium preference species
(60% of Scots pine and birch species) and completely absent for the
least preferred Norway spruce (Fig. 5).

During this studywe had no control over the spatial positioning
of the feeding stations which makes it difficult to assess potential

Fig. 5. Proportion of leader stems browsed for each target species up to 1000 m from feeding stations after winter 2008 (black lines and circles = active feeding stations, grey

lines and circles = inactive feeding stations). The plotted raw data points are the mean proportion of leader stems browsed in seven distance classes (12.5, 25, 50, 100, 200,

500, and 1000 m). The area of the circles is proportional to the amount of data in each category. Solid lines represent the mean predicted values and dashed lines the 95%

confidence limits (see model estimates in Table 4).
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Table 5
Parameter estimates of species-specific GAMM models predicting lateral twig browsing by moose up to 1000m from feeding stations in 2008 in Stor-Elvdal, Norway. The

models include a random intercept for plot ID within transect ID within feeding station ID. The models form the analytical basis for Fig. 6. Sample size (no. of twigs) for Scots

pine =1391, Norway spruce=88867; RAW species group=845; and Birch species =9319.

Model species Parametric coefficients Estimate S.E. t-Value p-Value

Scots pine Intercept �3.814 0.673 �5.669 <0.001

Active (yes) 0.459 0.826 0.556 0.578

Smooth terms edf Est. rank F-value p-Value

s(Distance=2008) 2.802 3 9.55 <0.001

N Std. dev. Residual

Random intercept 80 2.569 0.496

Norway spruce Intercept �14.207 0.584 �24.32 <0.001

Active (yes) 3.127 0.152 20.61 <0.001

Smooth terms edf Est. rank x2 p-Value

s(Distance=2008) 2.995 3 431.5 <0.001

RAW species Intercept �1.577 0.521 �3.030 0.002

Active (yes) �1.042 0.737 �1.414 0.158

Smooth terms edf Est. rank F-value p-Value

s(Distance=2008) 1 1 2.399 0.122

N Std. dev. Residual

Random intercept 54 1.258 0.633

Birch species Intercept �3.244 0.357 �7.865 <0.001

Active (yes) 1.253 0.409 3.063 0.002

Smooth terms edf Est. rank F-value p-Value

s(Distance=2008) 2.947 3 23.91 <0.001

N Std. dev. Residual

Random intercept 162 1.279 0.906

Fig. 6. Proportion of lateral twigs browsed for each target species up to 1000 m from feeding stations after winter 2008 (black lines and circles = active feeding stations, grey

lines and circles = inactive feeding stations). The plotted rawdata points are themean proportion of lateral twigs browsed in seven distance classes (12.5, 25, 50, 100, 200, 500,

and 1000 m). The area of the circles is proportional to the amount of data in each distance class. Solid lines represent the mean predicted values and dashed lines the 95%

confidence limits (see model estimates in Table 5).
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confounding effects. For example, site properties are known to
affect foraging decisions of moose (Danell et al., 1991a) and
browsing pressure on food items may differ between sites within
the same region (Suominen et al., 2008). Indeed, the slight misfit
between real data points and model predictions for some target
species could be due to small scale differences in site properties
among feeding stations. Nevertheless, because feeding stations are
typically placed in areas where animals are likely to occur (Putman
and Staines, 2004), and not at random, our results are useful for
applied forest and wildlife management.

5. Conclusion

Browsing ungulates provided with supplemental feed continue
to forage on the natural vegetation, creating a gradient in browsing
pressure which is typically greatest near the feeding station and
decreases as a function of distance from it (Schmitz, 1990; Doenier
et al., 1997; Gundersen et al., 2004). Here we have presented clear
evidence that as winter feeding continues over time, there is an
increased riskof excessivebrowsing close to feeding stations. Leader
stem browsing in particular remained high up to 1 km from feeding
stations which can have important economic implications (Ward
et al., 2004). Browsing on commercially valuable Norway spruce (a
species normally avoided by moose) increased after 15–20 years of
diversionary feeding. Central-place foraging theory successfully
predicted browsing patterns around feeding stations after 5–10
years of feeding. Long-term winter feeding shifted peak browsing
pressure on important winter forage further away from feeding
stations due to fine-scale resource limitation, which caused
browsing patterns to deviate from central-place foraging theory
after 15–20 years of feeding. As such, sacrifice areas around feeding
stations will continue to expand over time, which warrants caution
against long-term diversionary feeding in fixed locations. Our study
emphasizes the importance of considering the appropriate time
frame when deciding to initiate winter feeding and can assist in
developing more effective feeding programs in areas where both
wildlife management and commercial timber production need to
produce benefits at the same spatial scale (Wam et al., 2005; Wam
and Hofstad, 2007; Visscher and Merrill, 2009).
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