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Abstract 

In this project, the effect of expressing p38, a viral suppressor of RNA silencing encoded by 

Turnip Crinckle Virus (TCV), in Arabidopsis and Chlamydomonas was investigated.   

Transgenic Arabidopsis At RCHSp38 plants, which co-express an IR-transgene designed to 

induce RNA silencing of the endogenous chalcone synthase (CHS) gene and the RNA 

silencing suppressor protein p38, are known to accumulate high levels of anthocyanins. Our 

hypothesis was that the increased levels of anthocyanin in At RCHSp38 plants was a 

consequence of p38 expression leading to increased levels of the transcription factor 

MYB75/PAP1, as a result of p38-induced impaired RNA silencing control of MYB75/PAP1. 

To investigate our hypothesis, transcript levels of the flavonoid biosynthesis genes 

phenylalanine ammonia lyase (PAL1), CHS, dihydroflavonolreductase (DFR), glutathione S-

transferase (GST), and MYB75/PAP1, were determined using quantitative real-time PCR in 

selected At RCHSp38 lines and compared to the same transcript levels in wild-type and At 

PAP1 plants, which over-expresses MYB75/PAP1. The effect of stress exposure with high 

sucrose concentration and high intensity light treatment on At RCHSp38 plants compared to 

wild-type and At PAP1 plants was also studied, to investigate if stress could elucidate 

differences in the transcript levels of the investigated genes among the different plant lines. 

Finally, phenotypic investigations of leaves and flowers in At RCHSp38 plants were 

undertaken. 

The results show that the transcript levels of MYB75/PAP1, PAL1, CHS, DFR, and GST are 

up-regulated both in transgenic At RCHSp38 seedlings and adult plants compared to wild-

type plants grown under the same experimental conditions, and in At RCHSp38 seedlings 

and plants exposed to stress. At RCHSp38 seedlings and adult plants also showed an altered 

phenotype with a more intense purple colouration compared to wild-type plants. The 

elevated level of MYB75/PAP1 in At RCHSp38 plants indicate that this transcription factor 

is under RNA silencing control, which becomes impaired under p38-expression. A tasiRNA 

targeting MYB75/PAP1 has been identified in previous studies and further analyses to 

confirm tasiRNA regulation of MYB75/PAP1 and whether p38-expression interferes with 

tasiRNA biogenesis should be performed.  

Low level of transgene expression is a problem in Chlamydomonas. If low transgene 

expression is the result of transgene silencing, a possible solution is to use suppressors of 
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RNA silencing in vector constructs to insulate your favourite transgene from silencing. We 

wanted to investigate if expression of the p38 protein in Chlamydomonas could suppress 

RNA silencing, more specifically if p38 could suppress RNA silencing of the endogenous 

phytoene synthase (PSY) gene induced by artificial microRNAs (amiRNAs). After successful 

induction of RNA silencing in transformed cells, we wanted to introduce p38 to investigate 

if the effect of RNA silencing of PSY was reduced or abolished. However, we were not able 

to successfully transform Chlamydomonas cells with the amiRNAs designed to silence PSY. 

Further studies to successfully transform Chlamydomonas cells, both with amiRNAs 

designed to silence PSY and with the p38-expression construct, are needed to answer the 

question whether p38 expression is able to reduce or abolish RNA silencing induced by 

amiRNAs.   
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Norwegian abstract 

I dette prosjektet har effekten av å uttrykke p38, et ‟RNA silencing‟ suppressor protein fra 

Turnip Crinckle Virus (TCV), i Arabidopsis og Chlamydomonas blitt undersøkt. 

Tidligere studier har vist at transgene Arabidopsis At RCHSp38 planter som uttrykker både 

et IR-transgen konstruert for å indusere „RNA silencing‟ av det endogene chalcone synthase 

(CHS) genet, og det virale suppressor proteinet p38, akkumulerer høye nivåer av 

antocyaniner. Vår hypotese var at det høye nivået av antocyaniner i At RCHSp38 planter 

skyltes uttrykk av p38 som igjen fører til induksjon av transkripsjonsfaktoren MYB75/PAP1, 

et resultat av at p38 reduserer „RNA silencing‟ kontroll av MYB75/PAP1. For å undersøke 

vår hypotese ble transkripsjonsnivå av følgende flavonoid biosyntese gener analysert ved 

bruk av kvantitativ real-time PCR i utvalgte At RCHSp38 plantelinjer, og sammenlignet med 

de samme transkripsjonsnivå i villtype og At PAP1 planter, som overuttrykker 

MYB75/PAP1: phenylalanine ammonia lyase (PAL1), CHS, dihydroflavonolreductase 

(DFR), glutathione S-transferase (GST) og MYB75/PAP1. Effekten av å utsette At 

RCHSp38 plantene for stress ved å dyrke plantene på agar medium med høy sukrose 

konsentrasjon og ved å inkubere plantene med høy lys intensitet, ble studert for å undersøke 

om stress kunne tydeliggjøre forskjeller i transkripsjonsnivå hos de undersøkte genene blant 

de forskjellige plantelinjene. Det ble også utført fenotypiske analyser av At RCHSp38 

plantenes blad og blomster. 

Resultatene viser at transkripsjonsnivå av MYB75/PAP1, PAL1, CHS, DFR, og GST er 

oppregulert i både transgene At RCHSp38 kimplanter og voksne planter sammenlignet med 

villtype planter dyrket under de samme forsøksbetingelsene og i At RCHSp38 planter utsatt 

for stress. At RCHSp38 kimplanter og voksne planter viser en forandret fenotype med en 

mer intens lilla farge i forhold til villtype planter. Det økte nivået av MYB75/PAP1 i At 

RCHSp38 planter er en indikasjon på at denne transkripsjonsfaktoren er under „RNA 

silencing‟ kontroll, hvorpå denne mekanismen forstyrres som følge av p38 uttrykk. I 

tidligere studier har et tasiRNA med MYB75/PAP1 som mål blitt identifisert, og videre 

undersøkelser for å bekrefte tasiRNA regulering av MYB75/PAP1 og hvorvidt p38 uttrykk 

forstyrrer tasiRNA biogenese bør utføres. 

Lavt nivå av transgent uttrykk er et problem i Chlamydomonas. Hvis det lave transgene 

uttrykket kommer av transgen inaktivering er en mulig løsning å bruke „RNA silencing‟ 
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suppressor proteiner i vektorkonstrukter for å isolere transgenet fra inaktivering. Vi ville 

undersøke om uttrykk av p38 proteinet i Chlamydomonas kunne undertrykke „RNA 

silencing‟, mer spesifikt om p38 kunne undertrykke „RNA silencing‟ av det endogene 

phytoene synthase (PSY) genet indusert ved bruk av kunstige microRNAer (amiRNAer). 

Etter å ha indusert „RNA silencing‟ i transformerte celler, ville vi introdusere p38 for å 

undersøke om effekten av „RNA silencing‟ av PSY ble redusert eller opphevet. Våre forsøk 

på å transformere Chlamydomonas celler med amiRNAer var ikke vellykkede. For å svare på 

spørsmålet om hvorvidt utrykk av p38 kan undertrykke eller oppheve ‟RNA silencing‟ 

indusert av amiRNAer, må videre studier utføres for å lykkes med å transformere 

Chlamydomonas celler, både med amiRNAer laget for å undertrykke PSY og med p38 

uttrykkskonstruktet.  
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1. Introduction 

1.1 Arabidopsis thaliana as a model organism 

Arabidopsis thaliana is a dicotyledonous plant belonging to the mustard family 

(Brassicaceae). This plant is one of the best studied model organisms in plant biology, and 

has been used extensively in developmental, genetic and physiological studies (Leonelli, 

2007). Arabidopsis has several advantages as a model organism; this includes a small and 

fully sequenced genome, short generation time, small plant size, and the plant produces a 

large number of offspring per generation. In addition, Arabidopsis is easy to transform and 

since the plant is self-pollinating, homozygous transgenic lines can be quickly generated. 

Because of its small size, large number of Arabidopsis plants can be grown in a greenhouse 

or indoor growth chamber in a relatively restricted place. The plant has a rapid life cycle; it 

takes only about 6-8 weeks from seed germination to the production of a new generation of 

seeds.  

The Arabidopsis genome is 125Mbp and is organized into five chromosomes. Sequencing of 

the Arabidopsis genome was completed in 2000 by the Arabidopsis Genome Initiative 

(Arabidopsis Genome, 2000). The last genome release by The Arabidopsis Information 

Resource (TAIR9; http://arabidopsis.org/doc/news/breaking_news/140) includes 27 379 

protein coding genes, 4827 pseudogenes or transposable elements and 1312 ncRNAs (33 518 

genes in all, 39 640 gene models). In TAIR9, a total of 282 new loci and 739 new gene 

models were added.   

1.2 Chlamydomonas reinhardtii  as a model organism 

Chlamydomonas reinhardtii is a unicellular chlorophyte algae (Harris, 2001). It is about 10 

µm in diameter, though this varies significantly through the life cycle. Normally, the cells 

have two anterior flagella. Chlamydomonas has a cell-wall that consists primarily of 

hydroxyproline-rich glycoproteins. They have two contractile vacuoles at the anterior end of 

the cell and mitochondria dispersed throughout the cytosol. The chloroplast is cup-shaped 

and covers the basal two thirds of the cell. The pyrenoid is a distinct body within the 

chloroplast and is the centre of carbon-dioxide fixation. 
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As a model organism, Chlamydomonas has been used to study different biological processes 

including eukaryotic photosynthesis, flagellar structure and motility, cell-to-cell recognition 

and cell cycle control. Several features make Chlamydomonas a popular research target. It 

can easily be grown in liquid or agar media containing inorganic salts, at neutral pH. Wild-

type Chlamydomonas carry out oxygenic photosynthesis to provide energy, but can also 

grow in the dark if acetate is added to the medium as an energy- and carbon source. This 

heterotrophic growth in the dark enables mutants blocked in photosynthesis to be viable as 

well. Under normal growth conditions Chlamydomonas is haploid, and effects of mutations 

can therefore be seen immediately without further crosses. Sexually competent gametes 

develop under nitrogen starvation, and the two mating types ((mt)+ and (mt)-) can fuse and 

form a diploid zygote. The diploid zygote can remain viable in soil for many years and under 

favourable conditions, four or as many as eight flagellated haploid cells can be released by 

meiosis.  

In 2007 the Chlamydomonas genome sequence was completed and this revealed many 

previously unknown genes (Merchant et al., 2007). Chlamydomonas nuclear genome is 

121Mbp and consists of 17 chromosomes (Merchant et al., 2007).  

1.3 RNA  silencing 

RNA silencing is a common term used to describe several cellular pathways where small 

RNA molecules (sRNAs) regulate the expression of genes (reviewed by Carthew and 

Sontheimer, 2009). Both chromosome structure, chromosome segregation, transcription, 

RNA processing, RNA stability and RNA translation can be regulated by RNA silencing. 

Initially, RNA silencing pathways were named RNA interference (RNAi) in animals (Fire et 

al., 1998), post-transcriptional gene silencing (PTGS) in plants (Waterhouse et al., 1999) and 

quelling in fungi (Cogoni et al., 1996). The biological functions of RNA silencing range 

from antiviral defence in plants, regulation of endogenous gene expression in a diverse range 

of eukaryotic organisms, transposon taming, heterochromatin formation and chromosome 

segregation in Saccharomyces cerevisiae, and other types of genome regulation (Bartel, 

2004; Lippman and Martienssen, 2004; Jones-Rhoades et al., 2006; Camblong et al., 2009; 

Dunoyer, 2009). In brief, as shown in Figure 1, RNA silencing is induced by double-

stranded (ds) RNA molecules of various origins that are hydrolyzed by Dicer enzymes into 

sRNAs approximately 20-30 nt in length. The sRNAs are incorporated into Argonaute (Ago) 
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containing multiprotein complexes known as RNA Induced Silencing Complex (RISC) 

(Hammond et al., 2000). The sRNAs serve as specificity factors within RISC, and function 

to direct RISC to target complementary nucleic acid molecules via base paring interactions 

(Hammond et al., 2000; Zamore et al., 2000). Depending on various factors (discussed later) 

this base paring interactions between target nucleic acid and sRNA result in sequence-

specific gene silencing at the DNA or mRNA level (Figure 1). Thus, although distinct, RNA 

silencing pathways share three common core features: 1) Dicer or Dicer-like enzymes, 2) 

regulatory sRNAs (20-30 nucleotides long) and 3) effector complexes (RISC) containing a 

protein from the Argonaute protein family. In the following, these three core components 

will be discussed in more detail. 

 

Figure 1: Core features of RNA silencing. dsRNA or ssRNA with a partial 
dsRNA structure, triggers the RNA silencing pathway. Dicer or dicer-like 
enzymes produce small RNAs (sRNAs) from the longer dsRNA precursors. 
The sRNAs serve as specificity factors within Argonaute protein containing 
effector complexes, called RNA inducing silencing complexes (RISC). The 
sRNA guides RISC to target nucleic acids and sequence-specific gene 
silencing occurs. The figure is from Carthew and Sontheimer, 2009. 
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1.3.1 Core components of RNA silencing pathways 

Dicer-enzymes 

The Dicer or Dicer-like enzymes are RNase III-type ribonucleases which produce sRNAs 

(Bernstein et al., 2001). The sRNAs are produced from longer perfect dsRNA (dsRNA with 

no mismatches and bulges), near perfect dsRNA precursors, or from single-stranded RNA 

(ssRNA) molecules adopting a partial dsRNA structure. These long dsRNA molecules 

originate from both endogenous and exogenous sources (see below for further description of 

sRNAs, siRNAs and miRNAs). The number of Dicers in different organisms varies, from 

one in mammals and nematodes, two in Drosophila melanogaster and four in Arabidopsis 

thaliana (reviewed by Carthew and Sontheimer, 2009). Chlamydomonas contains three 

Dicer-like enzymes (Casas-Mollano et al., 2008). Dicer-enzymes contain several functional 

domains in a specific order, from the amino- to carboxy terminus, including an ATPase 

domain, a DUF283 domain with unknown function, a PAZ domain, two tandem RNase III 

domains, and a dsRNA-binding domain (dsRBD) (reviewed by Carthew and Sontheimer, 

2009). Dicer cuts dsRNA preferentially from the ends of dsRNA molecules (Zhang et al., 

2004; MacRae et al., 2006). The dsRNA ends are bound by the PAZ domain, which 

especially binds duplex ends with short, ~2 nt, 3‟overhangs (MacRae et al., 2006). The 

dsRNA substrate coils around the Dicer enzyme in approximately two helical turns before it 

reaches a processing centre involving the RNase III domains. The substrate is then cleaved 

by the two RNaseIII active sites, creating sRNAs with 5‟-phosphate and 3‟-hydroxyl ends, 

and with 2 nt overhang at the 3‟ end. For some species, for example Drosophila, the ATPase 

domain promotes dsRNA processing (Tomari and Zamore, 2005). For others, for example in 

humans, ATP is dispensable (Tomari and Zamore, 2005).  

Argonaute proteins 

Proteins of the Argonaute super family are the core component of the effector complex 

RISC. After dsRNA substrates have been cleaved into 20-30 nt sRNAs by Dicer, they enter 

into a RISC assembly pathway where the duplex sRNA unwind and one of the two strands, 

the guide strand, associates with the Argonaute protein resulting in stabilization of the guide 

strand (Tomari and Zamore, 2005). The other strand, the passenger strand is discharged and 

degraded. Which strand becomes incorporated into RISC is determined by the relative 

thermodynamic stability of the 5‟ ends of sRNAs. The strand with its 5‟ terminus at the less 

stably base-paired end will be the guide strand. The function of the guide strand is to direct 

RISC to target complementary nucleic acids. Argonaute proteins have four domains: the 
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PAZ domain, the PIWI domain and the N and Mid domains (reviewed by Carthew and 

Sontheimer, 2009). The PAZ domain has RNA 3‟ terminus binding activity which is used in 

guide strand binding (Yan et al., 2003). The PIWI domain can make a guide-strand-

dependent endonucleotic cut in a base-paired target by adopting an RNase H-like fold 

catalyzing the cleavage (Parker et al., 2004; Song et al., 2004). The Argonaute protein super 

family can be divided into three sub-families: the Piwi clade binds piRNAs, the Ago clade 

associates with miRNAs and siRNAs, and a third clade only described in nematodes (Yigit 

et al., 2006). Most species contain several Ago proteins, for example Arabidopsis contains 

10 (Voinnet, 2009) and Chlamydomonas 3 Argonaute-like proteins (Casas-Mollano et al., 

2008).  

sRNAs 

Small RNAs can be subdivided into different classes based on their origin, the proteins 

required for their biogenesis, the Argonaute containing complex executing their regulatory 

function, and their biological function (reviewed by Ghildiyal and Zamore, 2009). The 

different sRNA classes from plants and metazoan animals are shown in Table 1. New classes 

and new sRNAs within existing classes are constantly discovered. As more knowledge is 

gathered, the distinctions between the classes become more blurred, but there are still some 

main differences. There are three main classes of small RNAs: short interfering RNAs 

(siRNAs), microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs). siRNA and miRNA 

are the most abundant both phylogenetic and physiological, and their precursors are perfect 

dsRNAs or RNAs adopting partial double stranded structure. Historically, the view of 

miRNA and siRNA has been that miRNA are of endogenous origin and siRNA are derived 

primarily from exogenous sources, typically from viruses, transposable elements or 

transgenes (reviewed by Carthew and Sontheimer, 2009). piRNA was formerly named 

repeat-associated siRNA (rasiRNA) (Aravin et al., 2001; Vagin et al., 2006). piRNA 

precursors appear to be single stranded, but they are not well understood. piRNA are 

primarily found in animals and exert their functions most clearly in the germline. 
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Table 1: Overview of different types of small silencing RNAs. From Ghildiyal and 
Zamore, 2009. 

 

 

1.3.2 siRNAs 

siRNAs are produced by Dicer from dsRNA or dsRNA-like precursors, typically derived 

from exogenous sources such as viruses, transposable elements, nucleic acids taken up from 

the environment, or introduced experimentally or clinically (reviewed by Carthew and 

Sontheimer, 2009). Biological functions of exogenous derived siRNA are protecting genome 

integrity and in antiviral defence. siRNA duplexes consist of two 21 nt or 24 nt strands, with 

5‟ phosphate and 3‟ hydroxyl group, and a 2 nt overhang at the 3‟ ends. The guide strand 

from the siRNA duplex is incorporated into RISC by association with the Argonaute protein. 

The guide strand directs RISC to complementary RNA targets. If the siRNA guide strand is 

perfectly complementary to the RNA targets, degradation of the targets can occur as a result 

of the „slicer‟ activity of the PIWI domain of the Argonaute protein (Liu et al., 2004; Song et 

al., 2004). The PIWI domain cleaves the phosphodiester linkage between target nucleotides 

base paired to the siRNA residue 10 and 11 (Tomari and Zamore, 2005). Once the cut is 

performed, cellular exonucleases complete the degradation process (Orban and Izaurralde, 
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2005). If the complementarity between the guide strand and the target RNA is not 100 %, or 

if the target RNA is recognized by an endonuclease-inactive siRISC, the target RNA can be 

silenced at a post-transcriptional level (Chiu and Rana, 2003). This can involve translational 

repression or exonucleolytic degradation. Heterochromatin formation can also be directed by 

siRISC. siRNA from genomic sources, so called endo-siRNA are derived from structured 

loci, convergent and bidirectional transcription or mRNAs paired to antisense pseudogene 

transcripts. As shown in Table 1, there are several different endo-siRNAs in plants; cis-

acting siRNA (casiRNA) which are derived from transposons, repetitive elements and 

tandem repeats (Xie et al., 2004). CasiRNAs directs DNA methylation and histone 

modification at the loci from which they originate, hence promoting heterochromatin 

formation. Trans-acting siRNA (tasiRNA) includes elements from both the miRNA and 

siRNA pathway and functions in developmental timing and leaf polarity (Peragine et al., 

2004; Vazquez et al., 2004; Allen et al., 2005; Ghildiyal and Zamore, 2009). TasiRNAs are 

derived from non-coding single stranded transcripts, called pri-tasiRNAs, which are 

transcribed from tasiRNA generating loci, that are converted into dsRNA by RNA directed 

RNA Polymerase 6 (RdRP6) (Peragine et al., 2004; Vazquez et al., 2004). Pri-tasiRNAs 

contain a binding site for a miRNA that guides cleavage at a defined point. This cleavage 

point triggers RdRP6-directed complementary strand synthesis, followed by a DCL4-

dependent processing reaction which produces mature tasiRNAs (Allen et al., 2005). Natural 

antisense transcript-derived siRNA (natsiRNA) originates from a pair of convergent 

transcribed RNAs, in response to stress in plants (Borsani et al., 2005). 

1.3.3 miRNAs  

miRNA are excised from endogenous non-coding transcripts which fold into a stem-loop 

structure (reviewed by Brodersen and Voinnet, 2006). miRNAs are encoded in the genome, 

by the so called MIR genes. Animal MIR genes are found mostly within introns or exons, and 

are often genomically clustered and co transcribed as polycistronic RNAs (Kim, 2005). Plant 

MIR genes are mostly not clustered and are often found between protein-coding genes 

(Voinnet, 2009). miRNA repress gene expression post-transcriptionally by translation 

inhibition and/or mRNA cleavage. The biological functions of miRNA are thought to be in 

regulating gene expression in diverse developmental and physiological processes (Bartel and 

Chen, 2004; Stefani and Slack, 2008). The biogenesis of both plant and animal miRNA starts 

with the transcription of precursor transcripts called primary-miRNAs (pri-miRNAs) from 
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MIR genes by RNA Polymerase II (Lee et al., 2004). In animals the pri-miRNA is first 

processed by Drosha, an RNase III endonuclease (Lee et al., 2003), and its dsRNA-binding 

domain (dsRBD) partner, called DGCR8 in mammals and Pasha in flies. Pri-miRNAs are cut 

at the base of the stem-loop releasing a hair-pined structure called pre-miRNA, which 

contain a 2 nt 3‟ overhang and a 5‟ phosphate (Basyuk et al., 2003; Lee et al., 2003). The 

pre-miRNA is then transported to the cytoplasm by the nuclear export protein Exportin 5 and 

Ran, a GTPase that moves RNA and protein through the nuclear pore (Yi et al., 2003). 

Dicer, with help from its dsRBD partner protein (TRBP in mammals, LOQS in flies), cut the 

pre-miRNA in the cytoplasm (Kim, 2005). The resulting duplex consists of a miRNA and a 

miRNA* strand, corresponding to guide and passenger strand, respectively. In plants, DCL1 

and its dsRBD partner HYL1, process the pri-miRNA to miRNA-miRNA* duplex in the 

nucleus. Some miRNAs are shown to be dependent on DCL4 rather than DCL1 in 

Arabidopsis (Rajagopalan et al., 2006). HASTY, an Exportin-5 homolog, exports the 

miRNA-miRNA* duplex to the cytoplasm (Park et al., 2005). The S-adenosyl methionine-

dependent methyltransferase Hua Enhancer 1 (HEN1) methylates plant miRNAs at their 3‟ 

ends in order to protect miRNAs from degradation, and this occur probably before miRNAs 

are loaded into AGO1 (Yu et al., 2005). When the miRNA duplex associates with the Ago-

protein in RISC, it unwinds. The retained strand is usually the miRNA strand with the 5‟ 

terminus at the less stably base-paired end of the duplex (Kim, 2005). The miRNA strand 

then guides miRISC to recognize complementary mRNAs. The miRNA target sites are 

usually in the 3‟UTR region of animal mRNAs, and the miRNA binds with several 

mismatches and bulges. This in contrast to plant mRNAs where the miRNA target sites 

usually are found in the coding region of the mRNA and the miRNA binds with almost 

perfect complementarity. It seems that both animals and plants have translational repression 

as the default mechanism by which miRNAs repress gene expression (Brodersen et al., 

2008). In plants, perfect complementarity also allows Ago-catalyzed cleavage of the mRNA 

strand followed by degradation (Baumberger and Baulcombe, 2005). 

1.3.4 Example of a RNA silencing mechanism 

In the following, the miRNA pathway in plants is described in more detail, as shown in 

Figure 2. In plants, RNA polymerase II transcribes most pri-miRNA from MIR genes located 

between protein-coding genes (Voinnet, 2009). The pri-miRNA is both capped and 

polyadenylated and presumably stabilized by the RNA-binding protein DAWDLE (DDL) 
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(Yu et al., 2008). To convert pri-miRNA to pre-miRNA, DCL1, the double stranded RNA-

binding protein HYPONASTIC LEAVES1 (HYL1), and the C2H2-zinc finger protein 

SERRATE (SE) are needed. SE and HYL1 interact with DCL1 in nuclear processing centers 

called D-bodies (Fang and Spector, 2007). The pre-miRNA has a stem-loop structure. Pre-

miRNAs, or mature miRNAs produced by DCL1, are transported to the cytoplasm. HASTY, 

the plant Exportin-5 homolog, exports some of the miRNAs from the nucleus to the 

cytoplasm, but hasty mutants show only decreased accumulation in some miRNAs in the 

cytoplasm, indicating the existence of a HASTY-independent miRNA export system (Park et 

al., 2005). HEN1 stabilizes mature miRNA duplexes by methylating the 3‟ terminal 

nucleotides of each strand to prevent uridylation and hence degradation (Li et al., 2005). The 

methylation by HEN1 protects miRNAs from SMALL RNA DEGRADING NUCLEASE 

(SDN). The guide miRNA strand is loaded into Ago-proteins to guide the RISC effector 

complex to target complementary mRNAs.  
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Figure 2: miRNA biogenesis in plants. MIR-genes are transcribed by RNA 
polymerase II into pri-miRNAs which are capped and polyadenylated, and 
presumably stabilized by the RNA-binding protein DAWDLE (DDL). DCL1, HYL1 
and SE participate in the conversion of pri-miRNA to pre-miRNA in processing 
centers called D-bodies. HEN1 methylates miRNAs, methylated miRNAs are 
protected from SDN, an exonuclease that degrade miRNA single strands. HASTY is 
an Exportin 5 homolog that transports miRNAs from the nucleus to the cytoplasm. 
The figure is from Voinnet, 2009. 

miRISC effector complexes can repress gene silencing by translation inhibition, slicing or 

both. But the exact mechanisms remain unclear. Most plant miRNA involves a combination 

of translation inhibition and slicing (Brodersen et al., 2008) 

1.3.5 RNA silencing as a tool 

RNA silencing is an important tool in basic research, biotechnology and medicine. RNA 

silencing can be exploited to specifically down-regulate the expression of any gene of 

interest. Experimentally, RNA silencing is induced by a silencing trigger delivered into the 

cell or organism. This trigger can either be synthetic siRNA, dsDNA, a transgene DNA 

construct designed to transcribe either long dsRNA molecules or stem loop precursors, or 

alternatively, viral vectors can be used to deliver the silencing trigger. In Caenorhabditis 
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elegans, RNA silencing, or more specifically RNA interference (RNAi), has been used to 

down-regulate the expression of about 86 % of its genes to facilitate analysis of the 

connection between gene sequence, chromosomal location and gene function (Kamath et al., 

2003). In Drosophila melanogaster, the functions of 91 % of the genes predicted to 

participate in growth and viability were identified in a genome-wide RNAi analysis (Boutros 

et al., 2004). After several successful pre-clinical trials in small animals, RNAi is already 

being used therapeutically in human clinical trials (Castanotto and Rossi, 2009). Some of the 

diseases that hopefully can be treated with RNAi-based tools are HIV and other virus 

infections, different types of cancer and age-related macular degeneration (reviewed by 

Grimm, 2009). 

Inverted repeat (IR) transgene constructs have been the method of choice to silence genes in 

plants, and this method has formed the basis of the RNA silencing experimental approach in 

plants (reviewed by Brodersen and Voinnet, 2006). Upon transcription of the IR-transgene, a 

perfect dsRNA molecule is produced that is hydrolyzed by Dicer resulting in a pool of 

siRNA. The siRNA then guide RISC to target mRNA molecules complementary to the 

siRNAs resulting in mRNA degradation. Even though this method has proven as an efficient 

way to down-regulate endogenous plant gene expression (Waterhouse and Helliwell, 2003), 

several studies have reported variable levels of target transcript reduction among 

independent RNA silencing lines transformed with the same IR-transgene construct 

(Kerschen et al., 2004; Johansen et al., manuscript in preparation). The effectiveness has 

been shown to be strictly and positively correlated to the accumulation level of siRNA 

(Johansen et al., manuscript in preparation). This is probably the result of variable levels of 

transgene dsRNA production, and as a consequence, variable levels of siRNA production, in 

different independent transgenic lines (Johansen et al., manuscript in preparation). A more 

recent developed method for RNA silencing in plants, more specifically in Arabidopsis, is 

the use of artificial microRNAs, amiRNAs (Schwab et al., 2006). A DNA construct designed 

to produce an artificial miRNA precursor is transformed into the plant. Upon transcription, 

the artificial miRNA precursor is recognized by the organisms miRNA pathway, resulting in 

the release of a 21-nt fully functionally ssRNA molecule that mimic miRNA molecules. This 

miRNA, known as amiRNA, then guide RISC to target complementary mRNA molecules, 

resulting in a sequence specific down-regulation of the target gene. The construction of the 

amiRNA sequence is critical and needs to be designed carefully in order to specifically 

silence the gene of interest. A web based tool (Web MicroRNA Designer, WMD3, 
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http://wmd3.weigelworld.org/cgi-bin/webapp.cgi) has been developed to enable this design. 

The amiRNA approach offers several advantages over the IR method. Expression of long 

dsRNA, produced by the IR-transgenes, can be problematic because of self silencing of the 

IR-transgenes through the transcriptional silencing mechanism (Rohr et al., 2004). Off-target 

effects are also possible because of the generation of different siRNA molecules from the 

long dsRNA precursors, where some siRNAs may be able to target mRNAs unrelated to the 

target gene (Xu et al., 2006). By using amiRNAs, both the self-silencing problems and off-

target effects of siRNAs can be overcome, since an amiRNA precursor gives rise to only a 

single small RNA species that can be optimized to avoid off-target effects (Molnar et al., 

2009). Recently, the amiRNA approach has also been used in Chlamydomonas reinhardtii as 

a highly specific, high-througput silencing system (Molnar et al., 2009). The use of 

amiRNAs provides a relatively easy method for specific gene silencing and has been used in 

this project to silence the phytoene synthase (PSY) gene in Chlamydomonas reinhardtii. 

1.4 Viral suppressors of RNA silencing 

RNA silencing functions as an antiviral defence mechanism in plants and possibly also other 

organisms (Obbard et al., 2009). To protect themselves from the antiviral RNA silencing 

mechanism, many viruses have evolved suppressors of RNA silencing (VSRs) (Li and Ding, 

2006; Wu et al., 2009). In addition to their function in the normal lifecycle of the virus, 

VSRs have evolved the ability to suppress RNA silencing. By 2006 more than 50 VSRs 

from over 30 viral genomes have been identified (Li and Ding, 2006). VSRs are encoded by 

both plant and animal-infecting RNA viruses and some DNA viruses as well. Most of the 

VSRs are proteins with dsRNA-binding activity. It is also suspected that some of the VSRs 

are RNAs that function by binding RNA silencing components (Li and Ding, 2006). 

Different VSRs target different components of the RNA silencing machinery (Ding and 

Voinnet, 2007). VSRs show no amino acid sequence similarity, indicating no structural 

similarity. In addition to functioning as a counter defensive strategy to the RNA silencing 

response, VSRs have been shown to interfere with transgene-induced and virus-induced 

PTGS of transgenes or endogenous genes in plants (Voinnet et al., 1999) as well as 

endogenous RNA silencing pathways such as the miRNA (Chapman et al., 2004) and tasi-

RNA pathways (Moissiard et al., 2007). In general, VSRs may interfere with different steps 

in the RNA silencing pathway (Burgyan, 2006): 
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 Preventing the generation of siRNAs  

 Inhibiting the incorporation of siRNAs into the effector complex  

 Interfering with the antiviral effector complex  

 Interfere with transitivity silencing leading to signal amplification and systemic 

spread  

P19, encoded by Tomato bushy stunt virus (TBSV), is one of the best mechanistically 

studied VSRs. In the normal life cycles of the virus, this protein is required for short and 

long distance virus movement, in addition to symptom production (Canto et al., 2006). As a 

suppressor of RNA silencing, p19 functions to bind siRNA thus preventing the incorporation 

of siRNA into RISC (Silhavy et al., 2002). Another VSR is the p38 capsid protein encoded 

by Turnip Crinkle Virus (TCV). TCV infects many plant species, including Arabidopsis 

thaliana. P38 is a strong suppressor of RNA silencing that blocks PTGS induced by sense, 

antisense and dsRNA (Qu et al., 2003). It does not interfere with miRNA function (Dunoyer 

et al., 2004) but it does interfere with tasiRNA accumulation (Moissiard et al., 2007), 

transitivity and  systemic silencing (Qu et al., 2003). The exact mechanism by which p38 

exerts its effect on RNA silencing is unknown, but the protein is known to suppress DCL4 

activity (Deleris et al., 2006). 

1.5 The flavonoid biosynthetic pathway in Arabidopsis 
thaliana 

Flavonoids consist of a diverse family of aromatic molecules derived from phenylalanine 

and malonyl-coenzyme A (Winkel-Shirley, 2001b). In most of higher plants, six major 

subgroups of flavonoids are found; the chalcones, flavones, flavonols, flavandiols, 

condensed tannins and anthocyanins. The aurones comprise a seventh group which is found 

in many higher plants, but it is not ubiquitous. In addition to these subgroups, some plant 

species synthesize isoflavonoids, phlobaphenes and stilbenes. Flavonoids are responsible for 

the red, blue and purple pigments in plants. Flavonoids serve many biological functions in 

plants, including protecting them from environmental stress, signalling between plants and 

microbes, male fertility of some species, defence against antimicrobial agents, feeding 

deterrents, UV protection, recruitment of pollinators and seed dispersers (Winkel-Shirley, 

2001b). 
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1.5.1 Flavonoid biosynthesis 

Flavonoids are synthesized via the phenylpropanoid biosynthetic pathway (Winkel-Shirley, 

2001b). The first enzyme in the general phenylpropanoid pathway is phenylalanine ammonia 

lyase (PAL), as shown in Figure 3 (from Winkel-Shirley, 2001a). The first committed step in 

the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS), which uses malonyl 

CoA and 4-coumaroyl CoA from the general phenylpropanoid pathway as substrates. The 

resulting chalcones can be further modified into for example aurones, flavones, 

isoflavonoids and flavonols. From dihydroflavonols, dihydroflavonol reductase (DFR) 

produces leucoanthocyanidin that can be further modified into condensed tannins, also called 

proanthocyanidins, or become anthocyanins. DFR is specific for the anthocyanins branch of 

the pathway in Arabidopsis (Borevitz et al., 2000). Anthocyanins are the subgroup of the 

flavonoids which is responsible for red, purple and blue pigmentation. They are water 

soluble vacuolar pigments that appear in all tissues of higher plants. In the central flavonoid 

pathway in Arabidopsis all of the enzymes, except one, are encoded by single genes 

(Winkel-Shirley, 2001a). The exception is flavonol synthase (FLS), which may be encoded 

by six genes (Winkel-Shirley, 2001b). Mutations in genes in this pathway thus affect 

expression in all tissues and under all environmental conditions in Arabidopsis. Because of 

this, Arabidopsis is useful to reveal the effect of the flavonoid enzymes. 
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Figure 3: Schematic drawing of the major branch pathways of the flavonoid 
biosynthesis, starting with general phenylpropanoid metabolism and 
leading to the major subgroups. Only a few examples of the enormous 
variety of end products are shown. The colourless subgroups are shown in 
grey boxes; the chalcones, aurones, isoflavonoids, flavones, flavonols and 
flavandiols. Coloured boxes show the subgroups responsible for 
pigmentation; the anthocyanins, proanthocyanins and phlobaphenes. 
Enzyme names are abbreviated as follows: cinnamate-4-hydroxylase 
(C4H), chalcone isomerase (CHI), chalcone reductase (CHR), chalcone 
synthase (CHS), 4-coumaroyl:CoA-ligase (4CL), dihydroflavonol 4-
reductase (DFR), 7,2’-dihydroxy, 4’-methoxyisoflavanol dehydratase 
(DMID), flavanone 3-hydroxylase (F3H), flavones synthase (FSI and FSII), 
flavonoid 3’hydroxylase (F3’H) or flavonoid 3’5’ hydroxylase (F3’5’H), 
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isoflavone O-methyltransferase (IOMT), isoflavone reductase (IFR), 
isoflavone 2’-hydroxylase (I2’H), isoflavone synthase (IFS), 
leucoanthocyanidin dioxygenase (LDOX), leucoanthocyanidin reductase 
(LCR), O-methyltransferase (OMT), Phe ammonia-lyase (PAL1), rhamnosyl 
transferase (RT), stilbene synthase (STS), UDPG-flavonoid glucosyl 
transferase (UFGT), and vestitone reductase (VR). From Winkel-Shirley, 
2001a. 

1.5.2 Regulation of the flavonoid biosynthetic pathway 

Both biotic and abiotic stress influences the flavonoid biosynthetic pathway. Many 

transcription factors are involved in the regulation of the flavonoid biosynthetic pathway, 

including members of Myb, bHLH and WD-repeat families (Gonzalez et al., 2008). 

Members of these families can form complexes, called MBW complexes, involved in 

regulating the transcription of genes involved in anthocyanin and proanthocyanin 

biosynthesis (Baudry et al., 2004; Gonzalez et al., 2008). Different combinations of 

transcription factors can specify which flavonoid pigment class is produced, where it will be 

produced, what stimulus will turn on the production, and whether transcriptional regulation 

of structural genes is positive or negative (Aharoni et al., 2001; Winkel-Shirley, 2001b; 

Baudry et al., 2004; Solfanelli et al., 2006). The flavonoid biosynthetic pathway in 

Arabidopsis can be subdivided into early and late steps where the early steps are not 

dependent of the MBW complexes, but the late steps are (Gonzalez et al., 2008). CHS are 

among the early genes, while DFR are among the late genes. PAL is in the general 

phenylpropanoid pathway, preceding the flavonoid pathway. Examples of members from the 

Myb-family that regulates flavonoid biosynthesis in Arabidopsis are the MYB genes 

MYB75/PAP1 and PAP2 (Borevitz et al., 2000). The analysis of loss-of-function mutants 

suggested that MBW-complexes involving MYB75/PAP1 mainly targets late anthocyanin 

biosynthetic genes (Cominelli et al., 2008; Gonzalez et al., 2008). Examples of abiotic stress 

treatment to induce anthocyanin production in Arabidopsis are sucrose and excess light. 

Sucrose induces anthocyanin production in Arabidopsis in a concentration dependent manner 

(Tsukaya et al., 1991; Ohto et al., 2001; Teng et al., 2005; Solfanelli et al., 2006), and the 

MYB75/PAP1 gene is required for sucrose to induce anthocyanin production (Teng et al., 

2005). Light is also a strong inducer of anthocyanin regulatory genes in Arabidopsis, and 

high intensity light treatment induces accumulation of anthocyanin pigments (Feinbaum and 

Ausubel, 1988; Jenkins, 1997; Cominelli et al., 2008). Exposure to fungi is an example of 

biotic stress influencing anthocyanin biosynthesis (Lo and Nicholson, 1998). 
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2. Aims of study 

The aims of the present study were to investigate the effect of expressing p38, a viral 

suppressor protein of RNA silencing encoded by Turnip Crinckle Virus, on the anthocyanin 

synthesis in Arabidopsis, and to investigate if p38 is able to suppress RNA silencing in 

Chlamydomonas. 

Previously studies have shown that transgenic Arabidopsis plants (At RCHSp38) co-

expressing an IR-transgene designed to induce RNA silencing of the endogenous chalcone 

synthase (CHS) gene and the viral suppressor protein p38 encoded by Turnip Crinckle Virus, 

accumulate high levels of anthocyanins (a flavonoid subgroup) in leaves and stems at late 

developmental stages (Johansen and Wilson, 2008). Other studies has shown that p38 

suppresses DCL4 activity (Deleris et al., 2006) and that DCL4 mutants  (dcl4-2) shows 

increased levels of anthocyanins (Nakazawa et al., 2007). Taken together, these observations 

indicate that loss of DCL4 activity leads to over-accumulation of anthocyanins. 

MYB75/PAP1 is a key regulator of anthocyanin synthesis in Arabidopsis (Borevitz et al., 

2000; Teng et al., 2005; Gonzalez et al., 2008). Accordingly, in transgenic plants (At PAP1) 

over-expressing the transcription factor MYB75/PAP1, the transcription of the flavonoid 

biosynthetic genes PAL1, CHS, DFR and GST are induced (Borevitz et al., 2000). A 

tasiRNA targeting MYB75/PAP1 has been identified (Rajagopalan et al., 2006; Hsieh et al., 

2009), indicating that MYB75/PAP1 is under RNA silencing control via the tasiRNA 

pathway. We speculate that this control keeps the level of MYB75/PAP1 low, and thus the 

anthocyanin level normal in wild-type plants. Our hypothesis is that the increased levels of 

anthocyanin in At RCHSp38 plants is a consequence of p38 expression that leads to 

increased levels of MYB75/PAP1 as a result of p38-induced impaired RNA silencing control 

of the MYB75/PAP1 transcription factor. In order to test this hypothesis, transcript levels of 

selected genes coding for enzymes involved in the flavonoid biosynthetic pathway and 

regulation were analysed. Thus, the transcript levels of phenylalanine ammonia lyase 

(PAL1), chalcone synthase (CHS), dihydroflavonolreductase (DFR), glutathione S-

transferase (GST), and the transcription factor MYB75/PAP1 were determined by 

quantitative real-time PCR in selected At RCHSp38 lines and compared to the same 

transcript levels in wild-type. For comparison, the same transcript levels were investigated in 

At PAP1 plants. We also wanted to investigate the effect of stress exposure on At RCHSp38 
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plants compared to wild-type and At PAP1 plants, to see if stress could elucidate differences 

in flavonoid biosynthetic gene expression among the different plant lines.  

The p38 protein is a well-known suppressor of RNA silencing in plants. We wanted to 

investigate if this protein is also able to suppress RNA silencing in the model organism 

Chlamydomonas. The rationality for this investigation is two-folded. First, studies using 

suppressors of RNA silencing can result in important knowledge regarding basic aspects of 

RNA silencing in Chlamydomonas. Secondly, in Chlamydomonas, the exploitation of 

transgene technology (specifically, nuclear transformation) are often found to be hampered 

by low level of transgene expression, in some cases a result of transgene silencing 

(Fuhrmann et al., 1999; Neupert et al., 2008; Eichler-Stahlberg et al., 2009). Therefore, 

strategies to overcome the silencing mechanisms are attractive. One possible solution would 

be to use suppressors of RNA silencing in vector constructs to insulate your favourite 

transgene from silencing. In order to investigate if expression of the p38 protein in 

Chlamydomonas could suppress RNA silencing, we wanted to induce RNA silencing of the 

endogenous phytoene synthase (PSY) gene by using artificial microRNAs. Then, after 

successful induction of RNA silencing in transformed cells, we wanted to introduce p38 to 

investigate if the effect of RNA silencing of PSY was reduced or abolished. 
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3. Materials and Methods 

3.1 Plant methods 

3.1.1 Plant lines 

In this project wild-type Arabidopsis thaliana (At) ecotype Columbia-0 plants were used in 

addition to the transgenic lines At RCHSp38 and At PAP1. The At RCHSp38 lines were 

obtained from Wenche Johansen, HUC. At RCHSp38 lines, which are transformed with the 

pRCHSp38 DNA vector, co-express an IR-transgene, designed to induce RNA silencing of 

the endogenous chalcone synthase (CHS) gene, and the viral suppressor protein p38 encoded 

by Turnip Crinckle Virus (Johansen and Wilson, 2008). In these lines, the IR-transgene is 

controlled by the 35S promoter, while the p38 viral suppressor gene is controlled by the 

promoter CmpC from Cestrum yellow Curling Virus (CmYLCV) (Stavolone et al., 2003). 

Four different At RCHSp38 lines (lines 1, 4, 27 and 37) were selected for this study because 

these lines express p38 transcripts at high levels (Johansen and Wilson, 2008). At PAP1 

seeds were obtained from the European Arabidopsis Stock Centre (NASC, Code N3884). At 

PAP1 has a bright-purple phenotype caused by over expression of the MYB transcription 

factor MYB75/PAP1 resulting from the activation tagging by Agrobacterium-mediated 

transformation with a T-DNA that carries the 35S enhancer (35Se) sequence at the right 

border (Borevitz et al., 2000).  

3.1.2 Surface sterilization of seeds and growth conditions 

Arabidopsis thaliana seeds were surface-sterilized in 75 % EtOH for 5 min at room 

temperature and with careful stirring. EtOH was removed and 10 % chlorine was added and 

the seeds were further incubated for 20 min at room temperature and careful stirring. The 

seeds were then washed 4 times with sterile water and finally kept in 250 µl sterile water 

before plated on 0.5 x Murashige & Skoog medium (MS) (Murashige and Skoog, 1962) 

supplemented with 1.5 % agar and 1 % (w/v) sucrose and added 0.75 % H2O-agar. For some 

experiments 3 % (w/v) sucrose was added to the MS-medium. 10 mg/l glufosinate 

ammonium (trade name BASTA, Riedel-de Haën) were added to the medium as a selective 

marker and used to plate out transgenic seeds. Approximately 100 seeds were plated for each 

line. The plates were sealed with surgical tape and placed at 4 ˚C for about 48 hours, and 
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then incubated at 23 ˚C in continuous white light (100 µE/m
2
s) and 60-65 % relative 

humidity. After approximately two weeks the seedlings were transferred to autoclaved 

compost soil (Herbia, Nordic Garden AS) and further cultivated at 23 ˚C in continuous white 

light (100 µE/m
2
s) and 60-65 % relative humidity. High intensity light treatment was 

performed on 3.5 week old plants illuminated by a sodium lamp (1000 µE/m
2
s) for 48 hours 

and with adequate watering. 

3.2 Quantitative real-time PCR analysis 

3.2.1 Total RNA isolation 

RNeasy Plant Mini Kit 

Total RNA was isolated from approximately 100 mg leaf tissue using RNeasy Plant Mini Kit 

(QIAGEN). The procedure was performed according to the manufacturer‟s instructions. 

Tissue was collected and disrupted with the MiniBeadbeater (Biospec Products Inc.) for 1.5 

min using 3 mm stainless steel beads, and then lysed under denaturing conditions. The plant 

lysate was centrifuged through a QIAshredder Mini Spin Column (QIAGEN) to remove 

insoluble material. Ethanol was added to provide selective binding of RNA to the silica-gel 

membrane. The sample was applied to an RNeasy Mini Spin Column (QIAGEN) where total 

RNA bound to the membrane. Finally, RNA was eluted in 50 µl RNase free water. After 

isolation, RNA was treated with DNase I (DNase I Amplification Grade; AMPD1, Sigma) or 

Deoxyribonuclease I, Amplification Grade (Invitrogen) according to the manufacturer‟s 

instructions to remove contaminating DNA.  

Trizol reagent 

Total RNA was isolated with TRIZOL®Reagent (Invitrogen) from approximately 100 mg 

plant tissue, according to the manufacturer‟s instructions. Tissue was collected and 

homogenized with 1 ml Trizol reagent and 3 mm stainless steel beads using the 

MiniBeadbeater (Biospec Products Inc.) for 1.5 min, followed by 5 min incubation at room 

temperature. 200 µl chloroform was added, the tube was shaken vigorously by hand for 15 

sec, then left for 3 min incubation in room temperature, followed by 15 min centrifugation at 

12 000 x g, 4 ˚C (Sigma 112, B. Braun Biotech International). The aqueous phase was 

transferred to a fresh tube, 500 µl isopropyl alcohol was added, followed by 30 min 

incubation in room temperature and 10 min centrifugation at 12 000 x g, 4 ˚C (Sigma 112, B. 

Braun Biotech International), to precipitate the RNA. The supernatant was removed and the 
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pellet was washed with 1 ml 75 % ethanol by vortexing followed by 5 min centrifugation at 

7500 x g at 4 ˚C. The RNA pellet was dried and resuspended in RNase-free water. After 

isolation, RNA was treated with DNase I (DNase I Amplification Grade; AMPD1, Sigma) or 

Deoxyribonuclease I, Amplification Grade (Invitrogen) according to the manufacturer‟s 

instructions to remove contaminating DNA.   

3.2.2 cDNA synthesis optimalization 

First strand cDNA was synthesized from total RNA using SuperScript™ III RNase H
- 

reverse transcriptase (RT-enzyme) (Invitrogen). In order to optimize the cDNA synthesis 

reaction for down-stream applications (i.e. q-PCR), four different test reactions were carried 

out using 260 ng total RNA in each reaction. The parameters varied were the use of either 

200 U or 400 U of RT-enzyme, in combination with either 0.5 µg/µl oligo(dT) primers or 

0.5 µg/µl oligo(dT) and 0.275 µg/µl random hexamer primers. The finale (optimal) cDNA 

synthesis reaction conditions selected was the following: 1 µg total RNA was reverse 

transcribed using  200 U of SuperScript™ III RNase H
- 

reverse transcriptase (Invitrogen), 

0.5 µg/µl oligo(dT) primers, 10 mM dNTP Mix, 5 x First Strand Buffer, 0.1 M DTT and 40 

U RNaseOUT (Invitrogen) in a total reaction volume of 20 µl. The RT-reaction was 

incubated for 60 min at 50 ˚C, and for 15 min at 70 ˚C to inactivate the enzyme. 

3.2.3 Primer verification 

To verify that the primers designed for the amplification of the different flavonoid 

biosynthesis genes (Table 1, Appendix) resulted in the expected amplification product, and 

to determine the optimal annealing temperature for the q-PCR reaction, a thermal gradient 

PCR reaction followed by sequencing of the amplification products were conducted. The 

PCR reaction contained 1x PCR buffer (150 mM Tris-HCl, 500 mM KCl pH 8.0), 1.5 mM 

MgCl2, 0.2 mM dNTPs, 1 µM forward and reverse primers (Table 1, Appendix) and 0.5 U 

AmpliTaq Gold DNA polymerase (Applied Biosystems) using genomic DNA from 

Arabidopsis as template. The amplification conditions were: 95 ˚C for 10 min, then 30 

cycles with 95 ˚C for 30 sec, 54-60 ˚C for 30 sec and 72 ˚C for 30 sec, then 72 ˚C for 5 min. 

A negative control, omitting template DNA from the PCR reaction was included. The 

samples were analysed on 1.5 % agarose gel. 
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3.2.4 Sequencing 

The PCR amplification product was verified by sequencing using BigDye®Terminator v3.1 

Sequencing Kit (Applied Biosystems). 2 µl of the PCR reaction was treated with 4 U ExoI 

(NEB) in 1 x BigDye Sequencing buffer in a 10 µl reaction volume in order to digest excess, 

unincorporated PCR primers. The samples were incubated for 1 hour at 37 ˚C, followed by 

incubation at 85 ˚C at 15 min to inactivate the enzyme. 5 µl of the sample reaction was then 

added 0.5 µl BigDye Terminator mix v3.1, 2 µl 5 x BigDye Sequencing buffer, 3.2 pmol 

gene specific primers forward and reverse (Table 1, Appendix) in a 10 µl reaction volume. 

Cycling conditions used were 96 ˚C for 1 min, then 15 cycles with 96 ˚C for 10 sec, 50 ˚C 

for 5 sec, 60 ˚C for 1.15 min, followed by 5 cycles with 96 ˚C for 10 sec, 50 ˚C for 5 sec, 60 

˚C for 1.30 min and finally 5 cycles with 96 ˚C for 10 sec, 50 ˚C for 5 sec, 60 ˚C for 2 min. 

The cycling conditions are described in “Improved DNA sequencing quality and efficiency 

using an optimized fast cycle sequencing protocol” (Platt et al., 2007). DNA was precipitated 

with 3 M sodium acetate, 125 mM EDTA and 96 % EtOH in a total volume of 28 µl. DNA 

was pelleted with centrifugation at 3000 x g, 4 ˚C,  for 30 min (Allegra™25R Centrifuge, 

BeckmanCoulter™), and washed with 35 µl 70 % EtOH. After centrifugation at 1650 x g for 

15 min, invert centrifugation at 150 x g for 1 min (Centra CL3, International Equipment 

Company) was performed to remove the supernatant. The samples were air dried for 15 min 

and then finally dissolved in 10 µl Hi-Di™Formamide (Applied Biosystems). DNA 

sequencing was performed in the 3130xl Genetic Analyzer (Applied Biosystems) with 

Sequencing analysis 5.3.1 software. The sequences were analysed in CLC main workbench.  

3.2.5 Quantitative real-time PCR analyses 

The endogenous transcript levels of the following genes were determined using quantitative 

real-time PCR (q-PCR) (7500 RealTime PCR System, Applied Biosystems):  chalcone 

synthase (CHS, At5g13930), phenylalanine ammonia lyase 1 (PAL1, At2g37040), 

dihydroflavonolreductase (DFR, At5g42800), glutathione S-transferase (GST, At5g17220), 

and MYB75/PAP1 (At1g56650). Actin (ACT, At3g18780) was used as a reference gene. 

Reverse transcribed cDNA samples were used as template in the q-PCR reactions and SYBR 

green was used to monitor dsDNA synthesis. The q-PCR reaction contained 1 x Power 

SYBR®Green PCR Master Mix (Applied Biosystems), 0.8 µM each of sense and antisense 

gene-specific primers (Table 1, Appendix) and 1 µl 10-fold diluted cDNA in a total reaction 

volume of 25 µl. The reactions were performed in optical 96-well plates. Cycling conditions 
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used for the amplifications were 40 cycles consisting of 95 ˚C for 30 sec, 60 ˚C for 45 sec 

and 72 ˚C for 34 sec. Prior to the amplification step, an initial denaturing and activation step 

at 50 ˚C for 2 min and 95 ˚C for 10 min, respectively, was included. Dissociation curve 

analysis was always included after the final amplification step. Data was analysed and 

evaluated by the SDS 1.3.1 software (Applied Biosystems). Relative mRNA levels were 

determined using the Pfaffl method (Pfaffl, 2001). The following equation was used to 

calculate the effect of different growth conditions (3 % sucrose compared to 1 % sucrose, 

and high intensity light treatment compared to normal light intensity treatment) on transcript 

level of flavonoid biosynthetic genes in At RCHSp38, wild-type and At PAP1 lines: fold 

change = (Etarget)
∆Ct (control-treated)

/(Eref)
∆Ct (control-treated)

. ∆Ct was the change in Ct values in 

control versus treated. Control samples were cDNAs from either seedlings grown on 1 % 

sucrose or plants not exposed to high intensity light, and treated samples were cDNAs from 

either seedlings grown on 3 % sucrose or plants exposed to high intensity light. Etarget and 

Eref was the PCR efficiency to the target gene (CHS, PAL1, DFR, GST or MYB75/PAP1) and 

the reference gene (ACT) respectively. The PCR efficiencies (E) were determined using 

dilution curves and the equation E = 10
[-1/slope] 

(Pfaffl, 2001). To calculate what effect the 

transgene constructs in At RCHSp38 and At PAP1 lines had on the transcript level of the 

different flavonoid biosynthetic genes, the following equation was used: fold change = 

(Etarget)
∆Ct (wild-type-transgenic)

/(Eref)
∆Ct (wild-type-transgenic)

, with all calculations performed within the 

same treatment (seedlings grown on 1 % sucrose or plants not exposed to high intensity 

light). ∆Ct was the change in Ct values in wild-type versus transgenic plants (At RCHSp38 

or At PAP1), grown under the same conditions. Etarget and Eref was the PCR efficiency to the 

target gene (CHS, PAL1, DFR, GST, or MYB75/PAP1) and the reference gene (ACT) 

respectively. Control samples containing no template cDNA, and samples prepared without 

the RT enzyme were always included in the q-PCR assay. 

3.3 Algal methods 

3.3.1 Strains and culture conditions 

The Chlamydomonas strain CC-1618, which carries a mutation in the arginine biosynthesis 

arg7 gene and the cell wall component cw-15 gene, and the plasmid pChlamiRNA2 (Molnar 

et al., 2009) were obtained from the Chlamydomonas center (Chlamy center; 

http://www.chlamy.org/index.html). CC-1618 cells were plated on High Salt medium (HS) 
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(Sueoka, 1960) containing 1.5 % agar, supplemented with 50 mg/l L-arginine and grown 

under continuous illumination at 22 ˚C. 

3.3.2 Artificial miRNA design 

Artificial miRNAs (amiRNAs) were designed by using the Web MicroRNA Designer 

platform (Web MicroRNA Designer, WMD 3, http://wmd3.weigelworld.org/cgi-

bin/webapp.cgi) as described in Protocol S1 by Molnar et al, 2009. In brief, a BLAST search 

was performed with the mRNA sequence of phytoene synthase (PSY, XM_001701140) to 

obtain the accompanying FASTA format definition line. Database chosen was 

Chlamydomonas reinhardtii JGI transcript release Chlre3.1. Then the PSY-gene sequence 

was pasted together with the resulting FASTA format definition line into the DESIGNER. 

The output amiRNA sequences from the DESIGNER were ranked by efficiency and 

specificity using empirical data. The following criteria were used to select two different 

amiRNA sequences (Table 2, Appendix), one targeting the coding region (nt 819-839 of 

target gene 5‟-3‟) and one targeting the 3‟ untranslated region (nt 1437-1457 of target gene 

5‟-3‟) of PSY: absolute hybridization energy between -35 and -38 kcal/mole, no mismatch 

between positions 2 and 12, and one or two mismatches at the amiRNA 3‟ end. Two 90 

nucleotide long DNA oligonucleotides, based on the selected amiRNAs, were designed 

using the Oligo Design tool and ordered from Invitrogen (Table 2, Appendix). The oligos 

were designed to contain SpeI compatible ends both 5‟ and 3‟end to the molecule. 

3.3.3 Artificial miRNA dsDNA oligonucleotide cloning 

The DNA oligos from the Oligo Design tool step (see section 3.3.2) were processed 

according to the description in Molnar et al., 2009, Protocol S2: “Detailed protocol of 

double-stranded DNA oligo-nucleotide cloning”, with minor modifications. 1 nmol forward 

and reverse ssDNA oligo were mixed with 20 µl of annealing buffer (20 mM Tris-HCl, 2 

mM EDTA, 100 mM NaCl; pH 8.0) and boiled in hot water bath for 5 min and left to cool 

gradually overnight at room temperature. QIAquick PCR clean up kit (QIAGEN) was used 

to purify the resulting dsDNA oligo according to the manufacturer‟s instructions. 

Approximately 0.8 µg dsDNA oligo was phosphorylated in a 10 µl reaction volume using 1 

µl 10 x T4 DNA ligase buffer (New England Biolabs) and 10 U T4 polynucleotide kinase 

(Invitrogen). The reaction was incubated at 37 ˚C for 30 min and then for 20 min at 65 ˚C to 

inactivate the kinase enzyme. The phosphorylated dsDNA oligo was then cloned into 
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pChlamRNA2 in the following manner. First, approximately 2 µg pChlamRNA2 was 

digested with 5 U SpeI (New England Biolabs), and then dephosphorylated using 20 U CIP 

(New England Biolabs). Then 70 ng phosphorylated dsDNA oligo was ligated to 30 ng SpeI 

linearized and dephosphorylated pChlamRNA2 vector using 40 U T4 DNA ligase in 1 x 

ligation buffer and in a total volume of 10 µl. One Shot TOP10 F‟ Chemically Competent 

Cells (Invitrogen) were transformed using 2.5 µl ligation mixture according to the 

manufacturer‟s instruction. Transformed TOP10 cells were selected on Luria Bertani (LB) 

plates (1 % tryptone, 0.5 % yeast extract, 0.17 M NaCl and 1.5 % agar) supplemented with 

50 µg/ml ampicillin. In order to select for clones harbouring the dsDNA insert in the right 

orientation, colony PCR was performed. The 10 µl colony PCR reaction contained 1 x PCR 

buffer (150 mM Tris-HCl, 500 mM KCl pH 8.0), 1.5 mM MgCl2, 0.2 mM dNTPs, 1 µM 

each of primers AmiRNAprecfor and Spacerrev (Table 3, Appendix), 0.5 U Amplitaq Gold 

DNA Polymerase (Applied Biosystems). Cycling conditions used were 95 ˚C for 2 min, and 

35 cycles with 95 ˚C for 30 sec, 65 ˚C for 30 sec and 72 ˚C for 30 sec, then 72 ˚C for 7 min. 

The PCR reactions were analysed on a 2 % agarose gel. The expected PCR product from 

colonies with the insert in the right orientation was 182 bp. Plasmid DNAs from positive 

colonies were extracted from 10 ml  LBamp50 overnight culture using E.Z.N.A. Plasmid Mini 

Kit I (Omega Bio-tek) according to the manufacturer‟s instructions. To verify a single copy 

insertion of the dsDNA oligonucleotide, restriction enzyme analyses were performed using 

SpeI and EcoRI. The resulting enzyme digests were analysed on a 2 % agarose/0.5 x TBE 

gels. Final verification of the putative clones was performed by sequencing. The sequencing 

reaction contained about 0.1-0.2 µg DNA, 3.2 pmol AmiRNAprecfor primer (Table 3, 

Appendix), 2 µl 5 x BigDye Sequencing buffer (BigDye®Terminator v3.1 Sequencing Kit, 

Applied Biosystems), 1 µl BigDye Terminator mix v3.1 and 0.5 µl DMSO in a 10 µl 

reaction volume. Cycling conditions used were 96 ˚C for 45 sec, then 25 cycles with 96 ˚C 

for 10 sec and 60 ˚C for 4 min. DNA was precipitated with BigDye®XTerminator
TM

 

Purification Kit (Applied Biosystems) according to the manufacturer‟s instructions. DNA 

sequencing was performed in the 3130xl Genetic Analyzer (Applied Biosystems) with 

Sequencing analysis 5.3.1 software. The sequences were analysed in CLC main workbench 5 

(CLC bio). 
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3.3.4 Transformation of Chlamydomonas 

Transformation of Chlamydomonas reinhardtii strain CC-1618 was performed with the glass 

beads method (Kindle, 1990). Prior to transformation, the pChlamRNA2 empty vector, 

pChlamRNA2 with the amiRNA insert targeting the coding region (CDS) of PSY, and 

pChlamRNA2 with the amiRNA insert targeting the 3‟ untranslated region (3‟UTR) of PSY 

were linearized with HindIII, and the restriction enzyme inactivated according to the 

manufacturer‟s instructions. To confirm complete digestion by HindIII, an aliquot of the 

restriction digests in addition to undigested empty vector were analysed on a 0.7 % agarose 

gel. CC-1618 cells were grown in High salt (HS) medium (Sueoka, 1960), supplemented 

with 50 mg/l arginine, under continuous illumination at 22 ˚C. The cells were grown until 

the culture reached a density of about 1.8 x 10
6
 cells/ml, measured by cell counting using a 

Bürkerchamber. The cells were harvested at 5000 rpm for 5 min (Allegra™25R Centrifuge, 

BeckmanCoulter™), then washed twice in HS medium to remove residual arginine, and 

finally resuspended in 1/100 volume the original cell culture in HS medium containing 2.5 

g/l Ka-acetate. DNA used for transformation was precipitated in the following way: 1 

volume DNA was added 0.1 volume 3M sodium acetate pH 5.5 and 2 volumes absolute 

ethanol. After 30 min incubation on ice, the samples were centrifuged at 12 000 x g, 4 ˚C 

(Sigma 112, B. Braun Biotech International) washed with 70 % ethanol, and finally 

resuspended in 10 µl sterile H2O. Chlamydomonas was transformed by mixing 300 µl cells, 

100 µl 20 % polyethylene glycol (m.w. 8000, USB
TM

), 1-2 µg linearized precipitated DNA, 

and 300 mg autoclaved acid-washed glass beads (425-600 µM, Sigma), and vortexed for 30 

sec. The cells were plated on HS medium containing 2.5 g/l Ka-acetate and 1.5 % agar. 

Plates were placed at 22 ˚C under dim light for 24 hours before they were sealed with 

parafilm and incubated in dark at 22 ˚C and inspected weekly for colonies with pale green 

phenotype over a period of several weeks. The Chlamydomonas PSY mutant is grown in 

dark because of absence of protective carotenoids (McCarthy et al., 2004). PSY catalyses the 

first step in the carotenoid biosynthesis pathway and mutants in PSY have an altered 

pigmentation including lack of coloured carotenoids and reduced levels of chlorophylls. An 

experiment with liquid growth of transformation product was also performed. After 

transformation, the transformed cells were transferred to 100 ml liquid HS medium 

containing 2.5 g/l Ka-acetate and grown at 22 ˚C under dim light for 24 hours, then grown in 

dark. 100 µl cell cultures were plated out after 8 and 13 days on HS medium containing 2.5 

g/l Ka-acetate and 1.5 % agar. After 14 days, dilution series with 100 µl undiluted – 10
4
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diluted cell cultures were plated out on HS medium containing 2.5 g/l Ka-acetate, 50 µg/ml 

ampicillin, and 1.5 % agar, and incubated in dark at 22 ˚C and inspected weekly for colonies 

with pale green phenotype over a period of several weeks. 

3.3.5 Algal colony PCR of putative transformed cells 

To confirm successful transformation of Chlamydomonas cells, putative transformed 

colonies were analysed with colony PCR. Individual putative transformed colonies were 

treated with 50 µl 10 mM EDTA, according to Chlamydomonas colony PCR procedure (Cao 

et al., 2009). The solution was vortexed for 10 sec, incubated for 10 min at 100 ˚C, then put 

on ice for 1 min before being vortexed at 10 sec and centrifuged at 13000 rpm for 1 min 

(Sigma 112, B. Braun Biotech International). 1 µl of the supernatant was applied to the PCR 

reaction. The PCR reaction contained 1 x PCR buffer (150 mM Tris-HCl, 500 mM KCl pH 

8.0), 1.5 mM MgCl2, 0.2 mM dNTPs, 1 µM forward and reverse primers (Table 4, 

Appendix) and 0.5 U AmpliTaq Gold DNA polymerase (Applied biosystems). The 

amplification conditions were: 95 ˚C for 10 min, then 30 cycles with 95 ˚C for 30 sec, 55 ˚C 

for 30 sec and 72 ˚C for 30 sec, then 72 ˚C for 4 min. Positive controls with plasmid DNA 

templates pChlamRNA2, and pChlamRNA2 with inserted amiRNA oligo targeting 3‟UTR 

were included, as well as a negative control omitting DNA from the reaction. The PCR 

reactions were analysed on a 1 % agarose gel.  

3.4 Standard DNA techniques 

3.4.1 Agarose gel electrophoresis 

Separation and identification of DNA fragments according to size was performed by agarose 

gel electrophoresis (Sambrook and Russel, 2001). 1-2 % agarose gels in 1 x TAE buffer (40 

mM Tris-acetate, 1 mM EDTA) stained with ethidium bromide (EtBr) (final concentration 

0.1 µg/ml) were used for analysing the DNA fragments. Samples were loaded with loading 

buffer (0.25 % Brom Phenol Blue, 0.25 % Xylene cyanol FF, 30 % Glycerol) in the 

appropriate volume and run at 80-100 V for 40-60 min. 1 kb DNA ladder (Thermo 

Scientific) or 100 bp ladder (Superladder mid 100 bp ladder, Thermo Scientific) were used 

for size determination of the DNA fragments. 
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3.4.2 Quantification of RNA 

RNA was quantified using a NanoDrop® ND-1000 Spectrophotometer (Saveen Werner). 

3.5 Bioinformatics 

Throughout the project, bioinformatics tools have been used for primer designs, sequence 

alignments and to search for gene sequences. To search for gene sequences, the universal 

Basic Local Alignment Search Tool (BLAST) engine at the National Centre for 

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/) was used. To design 

primers, primer-BLAST (NCBI, primer-BLAST, http://www.ncbi.nlm.nih.gov/tools/primer-

blast/index.cgi?LINK_LOC=BlastHome) was used. CLC Main Workbench 5 (CLC bio) was 

used to analyse sequencing results and to align sequences. 
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4. Results 

In this project, the effect of expressing p38, a viral suppressor of RNA silencing encoded by 

TCV, in Arabidopsis and Chlamydomonas was investigated.  

Specifically, in Arabidopsis, the effect of p38 expression on the transcript levels of different 

flavonoid biosynthetic pathway genes was investigated by analysing transgenic At 

RCHSp38 plants. These transcript levels were then compared to the expression level of the 

same genes in wild type plants and in the transgenic At PAP1 plants, which, as a 

consequence of activation tagging, over-express the transcription factor MYB75/PAP1 again 

leading to the induction of several flavonoid biosynthetic genes (Borevitz et al., 2000). The 

Arabidopsis plants, both wild-type and transgenic lines, were also exposed to different 

treatments known to induce flavonoid biosynthetic pathway genes, in order to investigate the 

effect of these treatments on plants expressing p38. In order to perform this investigation, 

different RNA isolation methods and cDNA synthesis reaction conditions were tested to 

optimize the analysis. Finally, phenotypic investigations of leaves and flowers in plants 

expressing p38 were undertaken. 

With respect to Chlamydomonas, artificial microRNAs (amiRNAs) constructs were 

produced and attempted transformed into Chlamydomonas cells in order to induce RNA 

silencing of the phytoene synthase (PSY) gene. A construct harbouring the p38 gene were 

intended transformed into transformed Chlamydomonas cells with down-regulated PSY 

expression, to investigate if p38 expression could suppress RNA silencing of PSY in this 

pathway. Establishing Chlamydomonas as a model organism in our lab has also been a part 

of the project.  

4.1 RNA isolation 

Different methods for total RNA isolation from Arabidopsis plant material were tested in 

order to find the method giving the best yield and being the best suited for this project. RNA 

was isolated in two parallels from equal amounts of Arabidopsis rosette leaves with RNeasy 

Plant Mini Kit (QIAGEN) and TRIZOL®Reagent (Invitrogen), as described in Materials and 

Methods. RNA was quantified using a NanoDrop® ND-1000 Spectrophotometer, and RNA 

isolation with RNeasy Plant Mini Kit showed the best yield per mg tissue and the highest 
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purity (assessed by Abs260/280 and Abs260/230) of the two methods employed (data not shown). In 

addition, quantitative real-time PCR (q-PCR) was performed on the same RNA samples to 

further investigate which RNA isolation method were the best. Equal total RNA amounts of 

each sample (1 µg) were taken into cDNA synthesis, and cDNA was synthesized as 

described in Materials and Methods. Q-PCR was then performed with Actin primers as 

described in Materials and Methods. Results from q-PCR show that RNA isolated with 

TRIZOL®Reagent yielded the lowest Ct values compared to RNA isolated with RNeasy 

Plant Mini Kit (data not shown). Since the differences in yield and purity between the two 

RNA isolation methods assayed evidently did not influence down stream applications, 

TRIZOL®Reagent was used to isolate RNA in this project. 

4.2 cDNA synthesis 

For optimalization of cDNA synthesis reaction conditions, two different parallels with total 

RNA from Arabidopsis plant material were investigated, one using oligo(dT) primers alone 

and one using oligo(dT) primers together with random hexamer primers. In the two parallels, 

test of whether 200 U or 400 U of SuperScript™ III RNase H
- 

reverse transcriptase 

(Invitrogen) gave the best cDNA yield was also included. The different conditions were 

evaluated by q-PCR using Actin primers, as described in Materials and Methods. There were 

very little difference in q-PCR values from the samples prepared with different reaction 

conditions (results not shown), but a slight increase in relative cDNA yield was obtained 

using both oligo(dT) and random hexamer primers together with 400 U of SuperScript RT. 

Since the difference were so small it was decided to use oligo(dT) alone and 200 U of 

SuperScript RT in the following cDNA synthesis in this project. 

4.3 Primer verification and Sequencing results 

The PCR reactions with primers designed to target flavonoid biosynthetic genes (Materials 

and Methods, 3.2.3, Table 1, Appendix) yielded the expected size products, and the results 

from sequencing (Materials and Methods, 3.2.4) revealed the expected sequences (data not 

shown).   
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4.4 The effect of p38 expression on the transcript levels of 
flavonoid biosynthesis genes in transgenic At 
RCHSp38 plants 

4.4.1 Effect of transgenic constructs on the transcript levels of 
flavonoid biosynthesis genes 

Wild-type plants and transgenic At RCHSp38 and At PAP1 lines were grown as described in 

Materials and Methods. After 14 days of growth on MS-plates (containing 1 % sucrose) 10 

random seedlings were selected from each plant line, the seedlings from each individual line 

pooled and RNA isolated. Seedlings were also transferred to soil and after 3.5 week of 

growth, 3 individual leaves were selected from each of 3 plants from each plant line, the 

leaves from each individual plant pooled and RNA isolated. The steady-state level of mRNA 

corresponding to PAL1, CHS, DFR, GST and MYB75/PAP1 transcripts in transgenic lines 

were then compared to the same transcript levels in wild-type plants grown under the same 

experimental conditions, and the fold change in each comparison was calculated as described 

in Materials and Methods. The results of these experiments are shown in Figure 4 and Figure 

5 for seedlings and adult plants, respectively.  

In seedlings grown on 1 % sucrose (Figure 4), all of the genes analysed in the At RCHSp38 

lines were up-regulated compared to wild-type seedlings grown under the same experimental 

conditions. GST was the most up-regulated gene, with a fold change increase between 6.0-

43.6 times in individual lines compared to wild-type seedlings. DFR showed a fold change 

increase between 1.7-20.1 times the wild-type level. CHS had a more modest increase in fold 

change (0.5-0.8 times the wild-type level), and MYB75/PAP1 followed by PAL1 showed the 

smallest increase with a fold change between 0.2-0.7 and 0.05-0.2 times wild-type levels, 

respectively. The At PAP1 line had the largest increase of all the genes analysed in seedlings 

grown on 1 % sucrose. DFR was most up-regulated with fold change 642.8 times the wild-

type level, followed by GST and MYB75/PAP1 with fold change 556.1 and 345.3 times wild-

type levels, respectively. PAL1 and CHS showed the least increase in fold change, 1.4 and 

2.7 times wild-type levels, respectively. 
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Figure 4: Quantitative PCR analysis in A) transgenic At RCHSp38 and 
B) transgenic At PAP1 seedlings showing the effect of their respective 
genetic modifications on flavonoid biosynthesis genes in Arabidopsis 
seedlings. Seedlings were grown for 14 days on MS-medium containing 1 
% sucrose before 10 random seedlings were selected from each plant line 
(wild-type, At PAP1 and At RCHSp38), the seedlings from each individual 
line pooled and RNA isolated. cDNA was synthesized and q-PCR using 
primers specific for the different target genes (Table 1, Appendix) was 
performed. Fold change in the transgenic plants were calculated compared 
to wild-type as described in Materials and Methods. The arrows shows fold 
change values beyond the y-axis scale, and these values are written above 
each arrow.  
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In adult plants, At RCHSp38 also showed an increase in all the genes analysed compared to 

wild-type plants grown under the same experimental conditions (Figure 5). DFR was most 

up-regulated with a fold change increase between 1.6-34.1 times in individual lines 

compared to wild-type plants, followed by GST with fold change increase between 0.3-3.3 

times the wild-type level. MYB75/PAP1 showed a fold change between 0.05-1.5 times the 

wild-type level, PAL1 and CHS 0.4-1.1 and 0.007-0.7 times wild-type levels, respectively. In 

At PAP1 lines, DFR was also most up-regulated with fold change between 890.8-2604.2 

times the wild-type level, followed by GST (191.7-245.7) and MYB75/PAP1 (69.5-185.2). 

CHS and PAL1 were up-regulated with a fold change between 9.8-11.8 and 6.2-13.1 times 

wild-type levels, respectively.  

In summary, both in seedlings and in adult plants, all the flavonoid biosynthesis genes 

transcript levels analysed were up-regulated both in the At RCHSp38 lines, and to a larger 

extent in the At PAP1 lines compared to wild-type plants. In the At RCHSp38 lines, GST, 

followed by DFR, was most up-regulated in seedlings compared to adult plants where DFR, 

followed by GST was most up-regulated. In At PAP1, DFR was the most up-regulated gene 

followed by GST both in seedlings and plants.  
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Figure 5: Quantitative PCR analysis in A) transgenic At RCHSp38 and 
B) transgenic At PAP1 plants showing the effect of their respective 
genetic modifications on flavonoid biosynthesis genes in adult 
Arabidopsis plants. RNA was isolated from 3.5 week old wild-type, At 
PAP1 and At RCHSp38 plants. cDNA was synthesized and q-PCR using 
primers specific for the different target genes (Table 1, Appendix) was 
performed. Fold change of transcript levels in the transgenic plants were 
calculated compared to wild-type as described in Materials and Methods. 
The numbers 1-3 in the figure is the result from three individual plants from 
the same plant line. The arrow shows a fold change value beyond the y-
axis scale, and this value is written above the arrow. 
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4.4.2 Effect of stress exposure with high sucrose treatment and 
high intensity light treatment on the transcript levels of 
flavonoid biosynthesis genes 

High concentrations of sucrose in the growth medium of Arabidopsis and illumination of 

plants with high intensity light are known to induce anthocyanin biosynthesis in this 

organism (Ohto et al., 2001; Solfanelli et al, 2006; Teng et al, 2005; Tsukaya et al, 1991; 

Cominelli et al., 2008; Feinbaum & Ausubel, 1988; Jenkins, 1997). To investigate the effect 

of these two growth conditions on the transcript levels of PAL1, CHS, DFR, GST and 

MYB75/PAP1, and thereby indirectly the effect on anthocyanin biosynthesis in At RCHSp38 

lines, RNA was isolated from seedlings grown on 3 % sucrose and from 3.5 week old plants 

exposed to high intensity light. Wild-type plants and transgenic At RCHSp38 and At PAP1 

lines were grown as described in Materials and Methods. After 14 days of growth on MS-

plates (containing 3 % sucrose) 10 random seedlings were selected from each plant line, the 

seedlings from each individual line pooled and RNA isolated. Seedlings (grown on MS-

plates containing 1 % sucrose) were also transferred to soil and 3.5 week old plants were 

exposed to high intensity light for 48 hours prior to RNA isolation. 3 individual leaves were 

selected from each of 3 plants from each plant line, the leaves from each individual plant 

pooled and RNA isolated. The steady-state level of mRNA corresponding to PAL1, CHS, 

DFR, GST and MYB75/PAP1 transcripts in stress exposed transgenic and wild-type lines 

were analysed by q-PCR, and fold change were calculated as described in Materials and 

Methods.  

In order to visualize the direct effect of high sucrose treatment or illumination with high 

intensity light, the transcript levels of the different genes can be compared in the same type 

of plants (e.g. wild-type, At RCHSp38 or At PAP1 plants) exposed to stress treatment and 

not exposed to stress treatment. In this way, the effect of these treatments on the expression 

levels of the selected flavonoid biosynthesis genes in wild-type, At RCHSp38 and At PAP1 

can be compared. The results are presented in Figure 6 and Figure 7, for sucrose treatment 

and high intensity light treatment, respectively.  
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Figure 6: Quantitative PCR analysis in wild-type seedlings and 
transgenic At PAP1 and At RCHSp38 seedlings showing the effect of 
stress exposure with high sucrose concentration on flavonoid 
biosynthesis genes in Arabidopsis plant seedlings. Seedlings were 
grown for 14 days on MS-medium containing 3 % sucrose before 10 
random seedlings were selected from each plant line, the seedlings from 
each individual line pooled and RNA isolated. cDNA was synthesized and 
q-PCR using primers specific for the different target genes (Table 1, 
Appendix) was performed. The transcript levels were compared to the 
same transcript levels in wild-type and transgenic seedlings grown under 
the same experimental conditions, but not exposed to high sucrose 
concentrations, and fold change were calculated as described in Materials 
and Methods. The arrow shows a fold change value beyond the y-axis 
scale, and this value is written above the arrow.  

In At RCHSp38 lines seedlings grown on 3 % sucrose showed an increase in the transcript 

levels of all genes analysed compared to seedlings grown on 1 % sucrose (Figure 6). DFR 

showed a fold change increase between 10.2-189.1 times in the individual lines compared to 

At RCHSp38 seedlings grown in 1 % sucrose, MYB75/PAP1 1.0-124.0, GST 8.4-53.5, PAL1 

0.6-12.5 and CHS 1.4-4.2. At PAP1 also showed an increase in the transcript levels of all the 

genes analysed, but to a lesser extent than At RCHSp38 lines. In At PAP1, GST was most 

up-regulated with a fold change of 2.8 times compared to 1 % sucrose-grown seedlings, 

followed by CHS (1.6), DFR (0.7), PAL1 (0.08) and MYB75/PAP1 (0.03), all values 

representing the fold change in 3 % sucrose-grown seedlings compared to 1 % sucrose-

grown seedlings. Wild-type plants showed a large increase in GST expression (96.2 times) 

compared to 1 % sucrose-grown seedlings, followed by DFR (67.4), MYB75/PAP1 (2.9), 
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CHS (1.7), and PAL1 (0.3), all values representing the fold change in 3 % sucrose-grown 

seedlings compared to 1 % sucrose-grown seedlings. 

In summary, seedlings grown on 3 % sucrose had an increase in the transcript levels of all 

genes analysed compared to the 1 % sucrose grown seedlings (Figure 6). The increase was 

largest in DFR and GST in all lines, in addition to MYB75/PAP1 in some of the At RCHSp38 

lines. CHS and PAL1 showed the least increase in gene expression in all lines. At PAP1 had 

the lowest overall increase in the genes analysed. 

In Figure 7, data from the different plant lines exposed to high intensity light are compared 

to data from the same plants not exposed to high intensity light. Thus, the resulting figure 

describes the effect of high intensity light treatment on gene expression of the selected 

flavonoid biosynthesis genes in wild-type, At RCHSp38 and At PAP1.  
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Figure 7: Quantitative PCR analysis in wild-type plants and transgenic 
At PAP1 and At RCHSp38 plants showing the effect of stress 
exposure with high intensity light treatment on flavonoid biosynthesis 
genes in adult Arabidopsis plants. 3.5 week old plants were exposed to 
high intensity light treatment for 48 hours prior to RNA isolation. cDNA was 
synthesized and q-PCR using primers specific for the different target genes 
(Table 1, Appendix) was performed. The transcript levels were compared to 
the same transcript levels in wild-type and transgenic plants grown under 
the same experimental conditions, but not exposed to high intensity light, 
and fold change was calculated as described in Materials and Methods. 
The numbers 1-3 in the figure is the result from three individual plants from 
the same plant line. The arrow shows a fold change value beyond the y-
axis scale, and this value is written above the arrow. 

In the high intensity light treated plants, At RCHSp38 lines showed an increase in the 

transcript levels of all genes analysed compared to the plants not treated with high intensity 

light (Figure 7). DFR showed a fold change increase between 7.0-266.8 times in the 

individual lines compared to At RCHSp38 plants not exposed to high intensity light 

treatment, GST 12.0-133.0, MYB75/PAP1 5.6-255.6, CHS 2.2-121.1, and PAL1 1.3-14.6. 

Wild-type also showed an increase in the transcript levels of all the genes analysed, DFR had 

a fold change increase between 24.0-1005.7 times compared to wild-type plants not exposed 
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to high intensity light treatment, GST 16.2-92.2, MYB75/PAP1 5.2-9.5, CHS 0.8-13.7, and 

PAL1 0.6-11.8. At PAP1 was the plant line with least increase in the transcript level in all 

the genes analysed for plants exposed to high intensity light compared to plants not exposed 

to high intensity light. DFR showed a fold change increases between 0.2-1.2 compared to At 

PAP1 plants not exposed to high intensity light treatment, GST 0.8-1.4, MYB75/PAP1 0.3-

0.8, CHS 0.7-0.9, and PAL1 0.3-0.5. 

When investigating the effect of high intensity light treatment in the different plant lines, At 

RCHSp38 lines showed a large increase in DFR and GST expression, but not as large as in 

wild-type plants (Figure 7). On the other hand, MYB75/PAP1 in the At RCHSp38 lines were 

overall more up-regulated than MYB75/PAP1 in wild-type plants. The At PAP1 plants 

showed a very limited increase in all genes analysed. 

4.5 The effect of p38 expression on Arabidopsis phenotype 

Whether p38 expression also affects seedling and plant phenotypes was examined. In Figure 

8, representative seedling phenotypes of wild-type At RCHSp38 and At PAP1 lines grown 

on MS agar containing 3 % sucrose are shown. The At PAP1 seedling is clearly purple 

compared to wild-type plants, probably due to an increased level of anthocyanin pigments in 

the plants. At RCHSp38 seedlings also showed a more intense purple leaf colouration than 

wild-type, though not as intense as the At PAP1 seedling. The At RCHSp38 seedlings 

showed an accumulation of purple colour in their leaf veins, while the leaves from the At 

PAP1 seedling had an overall purple colouration.  

 

Figure 8: Arabidopsis leaf phenotype of seedlings grown on 3 % sucrose containing 
MS agar. A) Wild-type line B) At PAP1 line C) and D) At RCHSp38 line 

Plants grown under normal growth conditions were also examined for pigment 

accumulation, as shown in Figure 9. At PAP1 plants clearly showed a more intense purple 

colouration than wild-type plants, both in stem and leaves. The At RCHSp38 plants also 

A B C D 



 48 

showed an increase in purple colouration, but to a much lesser extent than the At PAP1 

plants. 

 

Figure 9: Phenotype of 4.5 week old Arabidopsis plants. A) Wild-type line B) At 
PAP1 line C) and D) At RCHSp38 line. The arrow points to a purple region of the 
stem. 

The phenotypes of leaves harvested from wild-type, At PAP1 and At RCHSp38 plants were 

examined, as shown in Figure 10. At RCHSp38 leaves showed a more jagged morphology 

than wild-type and At PAP1 leaves. At RCHSp38 plants were generally more slender than 

wild-type and At PAP1 plants, and they produced much fewer seeds. Therefore, the flowers 

of At RCHSp38 plants were investigated and compared to the flower phenotype of wild-type 

and At PAP1 plants, as shown in Figure 11. 

 

Figure 10: Leaf phenotype of 4.5 week old Arabidopsis plants. A) Wild-type line B) 
At PAP1 line C) At RCHSp38 line 
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While wild-type and At PAP1 flowers had normal length of stamens, the At RCHSp38 

flowers showed considerably shorter stamens not reaching up to the carpel. 

 

Figure 11: Flower phenotype of 4.5 week old Arabidopsis plants. A) Wild-type line 
B) At PAP1 line C) At RCHSp38 line 

4.6 Chlamydomonas transformation and growth 

In this study, the ability of p38 to suppress RNA silencing in Chlamydomonas was 

investigated, more specificially, p38‟s ability to suppress RNA silencing induced by an 

artificial miRNA designed to target an endogenous gene in Chlamydomonas. Recent 

experiments have shown that artificial miRNAs can be used to achieve highly specific gene 

silencing in Chlamydomonas (Molnar et al., 2009). Our experimental approach was to 

transform Chlamydomonas with an amiRNA construct designed to target the expression of 

phytoene synthase (PSY). A null mutation in this gene has previously been shown to result in 

an albino or pale green algal phenotype (McCarthy et al., 2004). Chlamydomonas 

transformants which showed down regulated PSY expression was intended transformed with 

a DNA construct harbouring a p38 expression cassette. If p38 expression in Chlamydomonas 

could interfere with RNA silencing of PSY, then the original dark green algal phenotype 

would be expected to be restored. 

Several repeated transformation attempts were performed, but were not successful. Putative 

transformed Chlamydomonas cells were analysed with colony PCR (Materials and Methods, 

3.3.5). Positive controls revealed the expected PCR product, but none of the putative 

transformed cells gave the expected product (results not shown).  

A B C 



 50 

When the transformed cells were plated on selective medium (without arginine) and allowed 

to grow for up to 10 weeks, it was difficult to see growth of individual arginine-independent 

colonies. Therefore an experiment with liquid growth culture, to enrich for transformed cells, 

was performed. Cells were taken from the “transformed” culture 8, 13 and 14 days after 

transformation and plated as before. However, this approach was not successful either. A 

further discussion of the problems with Chlamydomonas can be found in section 5.2.  
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5. Discussion 

5.1 The effect of p38 expression on the transcript levels of 
flavonoid biosynthesis genes in transgenic At 
RCHSp38 plants 

5.1.1 Effect of transgenic constructs on the transcript levels of 
flavonoid biosynthesis genes 

The results presented in this study show that the transcript levels of PAL1, CHS, DFR, GST 

and MYB75/PAP1 are up-regulated in transgenic At RCHSp38 seedlings and adult plants 

compared to wild-type plants grown under the same experimental conditions. The result of 

the present study also clearly verify previous findings by Johansen and Wilson (2008), that 

At RCHSp38 plants accumulate higher than wild-type levels of anthocyanins in stems and 

leaves at late developmental stages. Thus, properties of the inserted gene construct 

pRCHSp38 in At RCHSp38 plants is likely the cause of the elevated levels of PAL1, CHS, 

DFR, GST and MYB75/PAP1 and thus, as a consequence, higher levels of anthocyanins in At 

RCHSp38 plants compared to wild-type plants. 

In At PAP1 plants, MYB75/PAP1 is over-expressed due to activation tagging, causing 

massively enhanced expression of the flavonoid biosynthetic genes PAL1, CHS, and in 

particular DFR and GST (Borevitz et al., 2000), as verified in this study. The Myb 

transcription factor MYB75/PAP1 interacts with bHLH proteins and WD-repeats to form 

MBW complexes involved in controlling mainly late flavonoid biosynthetic genes 

(Cominelli et al., 2008; Gonzalez et al., 2008). In this study we show that MYB75/PAP1 is 

slightly over-expressed in At RCHSp38 seedlings and plants (Figure 4 and Figure 5) when 

compared to wild-type plants. The late flavonoid biosynthesis genes specific for the 

anthocyanin branch, DFR and GST, are most up regulated, compared to the early flavonoid 

biosynthesis gene CHS, and the general phenylpropanpoid biosynthetic pathway gene PAL1. 

Thus our results are in correspondence with the Cominelli et al. (2008), and the Gonzalez et 

al. (2008) studies showing that elevated MYB75/PAP1 transcript levels result in stronger up 

regulation of late flavonoid biosynthetic genes than the early flavonoid biosynthesis genes. 

However, the overall transcript levels of the investigated flavonoid biosynthesis genes in At 

PAP1 plants are much higher than in At RCHSp38 plants, probably a result of the massively 

enhanced over-expression of MYB75/PAP1 in At PAP1 plants. 
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Theoretically, the increased levels of anthocyanins in At RCHSp38 plants could be the 

consequence of four different properties of the inserted pRCHSp38 gene construct: 1) stress 

reaction from inserting a gene construct, 2) the IR-transgene designed to target CHS, 3) the 

kanamycin resistance gene used for selection, or 4) p38 expression or stress caused by the 

integration of this gene into the plant genome. Of these four possibilities, p38 expression is 

the most likely explanation for the increased anthocyanin levels in At RCHSp38 plants. 

Plants transformed with the same IR-transgene targeting CHS, including the kanamycin 

resistance gene (At RCHS plants), resulted in transgenic plants with highly reduced levels of 

anthocyanin (Johansen et al., manuscript in preparation). Plants transformed with the same 

IR-transgene construct targeting CHS, including the kanamycin resistance gene, but 

harbouring other viral suppressors of RNA silencing (p25, T2b or C2b) instead of p38 gave 

plants with normal levels of anthocyanin (Johansen and Wilson, 2008). This leaves 

transcription of p38 as the most likely cause of the increased levels of anthocyanin in At 

RCHSp38 plants. From this we can hypothesize that p38 expression in Arabidopsis leads to 

elevated levels of MYB75/PAP1 which again induce the flavonoid biosynthesis genes 

resulting in anthocyanin biosynthesis and accumulation. The question then to be asked is 

how p38 expression can lead to higher levels of MYB75/PAP1 transcripts in At RCHSp38 

plants? This can be explained if MYB75/PAP1 expression is under RNA silencing control. 

The p38 protein suppresses DCL4 activity by an unknown mechanism, resulting in the loss 

of 21 nt siRNA species (Deleris et al., 2006). In addition to its enrolment as an essential 

antiviral component, DCL4 is also involved in the tasiRNA pathway (Yoshikawa et al., 

2005), and it has been shown that p38 interferes with tasiRNA biogenesis resulting in 

decreased levels of specific tasiRNAs (Moissiard et al., 2007). A tasiRNA targeting 

MYB75/PAP1 has been identified (Rajagopalan et al., 2006; Hsieh et al., 2009). This might 

indicate that MYB75/PAP1 is under RNA silencing control via the tasiRNA pathway. 

TasiRNA precursors can be processed by DCL2 and DCL3 in the absence of DCL4 

(Gasciolli et al., 2005). DCL2 is also an alternative to process hpRNA and replicating viral 

RNA when DCL4 activity is lost (Fusaro et al., 2006). However, it has been suggested that 

p38 functions in a concentration-dependent manner, and that a high enough concentration of 

p38 can completely block RNA silencing (Deleris et al., 2006; Johansen and Wilson, 2008). 

Also, plants carrying a null-mutation in DCL4 (dcl4-2) over-accumulate anthocyanins at late 

development stages (Nakazawa et al., 2007). Thus, it is indicated that loss of DCL4 activity, 
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either as a result of viral protein suppression or as a consequence of an inactive protein, leads 

to over-accumulation of anthocyanins.  

A tasiRNA targeting MYB75/PAP1 has been identified, called TAS4-siR81(-).  TAS4-siR81(-

) is cleaved from pri-TAS4-siR81(-) transcripts, originating from the TAS4 loci, by the 

microRNA miR828 (Rajagopalan et al., 2006; Hsieh et al., 2009). Since we know that p38 

suppresses DCL4 activity and that DCL4 is involved in the tasiRNA pathway, we can 

speculate that p38 expression leads to reduced levels of TAS4-siR81(-), resulting in the loss 

or reduced silencing control of MYB75/PAP1. Hsieh et al., (2009) has shown that in tas4 and 

in mir828 mutants, the level of MYB75/PAP1 is elevated compared to the wild-type levels, 

and that anthocyanin accumulation in these mutants are also increased compared to wild-

type levels. The accumulation level of anthocyanins in the tas4 and mir828 mutants has been 

shown to be intermediate of those found in wild-type and At PAP1 plants (Hsieh et al., 

2009). At PAP1 plants showed a higher accumulation level of both miR828 and TAS4-

siR81(-) compared to wild-type plants (Hsieh et al., 2009). Presuming that p38 expression 

leads to lower level of TAS4-siR81(-), it might be possible to draw a comparison between the 

tas4 and mir828 mutants and that of the At RCHSp38 lines; the phenotypic observation in 

this study reveal that the anthocyanin levels in At RCHSp38 plants were in between 

anthocyanin levels in wild-type and At PAP1 plants.  

Hsieh et al., (2009) suggests an autoregulation of MYB75/PAP1 in which MYB75/PAP1 can 

positively regulate MIR828 and/or TAS4 genes by activating their expression directly or 

indirectly or by suppressing a negative regulator of MIR828 and/or TAS4 via a different 

feedback loop. Their research is concentrated on the stress response given by phosphate 

deficiency in Arabidopsis, but they suggest that the autoregulation of MYB75/PAP1 also 

could apply to other stress conditions in which anthocyanins are accumulated. Thus, 

according to our hypothesis, At RCHSp38 plants could have an impaired or nonexistent 

autoregulative MYB75/PAP1 mechanism, because p38 suppressed DCL4-activity renders the 

plants incapable of restoring normal levels of MYB75/PAP1 through up-regulation of TAS4-

siR81(-).   

In summary, given the result presented in this study that the steady-state level of 

MYB75/PAP1 transcripts in transgenic At RCHSp38 plants is higher than in wild-type plants 

combined with the following knowledge: 1) the key regulator of flavonoid genes specific for 

the anthocyanin branch is the transcription factor MYB75/PAP1, 2) a tasiRNA targeting 
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MYB75/PAP1 is known, 3) DCL4 is involved in the tasiRNA pathway, 4) loss of DCL4 

leads to over-accumulation of anthocyanins, and 5) p38 suppresses DCL4 activity, we 

hypothesize that the increased levels of anthocyanin in At RCHSp38 plants is a consequence 

of p38 expression that leads to increased levels of MYB75/PAP1 as a result of p38-induced 

impaired RNA silencing control of the MYB75/PAP1 transcription factor. 

5.1.2 Effect of stress exposure with high sucrose concentration 
treatment and high intensity light treatment on the transcript 
levels of flavonoid biosynthesis genes 

Different stress treatments are known to induce anthocyanin production in Arabidopsis. 

Sucrose is known to induce anthocyanin production in a concentration-dependent manner 

(Tsukaya et al., 1991; Ohto et al., 2001; Teng et al., 2005; Solfanelli et al., 2006) and sucrose 

induction of the anthocyanin biosynthesis requires MYB75/PAP1. High intensity light 

treatment is also known to induce anthocyanin production (Feinbaum and Ausubel, 1988; 

Jenkins, 1997; Cominelli et al., 2008), and earlier studies have shown that the MYB75/PAP1 

gene is strongly induced by light and may have a key role in the light induction of 

anthocyanin biosynthesis (Cominelli et al., 2008).  

When studying the data from the stress-exposed plants and comparing these to the data from 

the same plant lines not exposed to stress (Figure 6; comparing 3 % sucrose grown seedlings 

with 1 % sucrose grown seedlings, and Figure 7; comparing light exposed plants with not 

light exposed plants), we can investigate the effect of stress treatments on the transcript 

levels of flavonoid biosynthesis genes in the different plant lines, including wild-type. At 

RCHSp38 seedlings and plants exposed to stress show a large increase in the transcript 

levels of both MYB75/PAP1 and the other flavonoid biosynthesis genes, especially DFR and 

GST, compared to seedlings and plants not exposed to stress (Figure 6 and Figure 7). The 

transcript level of MYB75/PAP1 in wild-type seedlings and adult plants was also found to be 

up-regulated, however to a slighter extent than in At RCHSp38 plants. The At PAP1 plants 

showed very low increase in the transcript levels of all the genes analysed. The reason for 

the low increase in target gene transcript levels in the stress-treated At PAP1 seedlings and 

plants compared to At PAP1 seedlings and plants not exposed to stress might be that the 

over-expression of MYB75/PAP1 is already so extensive that stress treatment does not 

increase the expression much further. 
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However, the results from the stress-induced plants are generally difficult to interpret 

because the calculated fold change values for the specific transcripts among the individual 

plant lines show a large spread. The variable transcript level of the flavonoid biosynthesis 

genes measured in the same plant line is most likely due to the fact that the different leaves 

used for RNA extraction were exposed differently to light. It is difficult to get the exact same 

amount of light to every individual leaf, given the plant morphology. Another important 

factor influencing the anthocyanin levels in leaves is their age and developmental stage. 

Although leaves were harvested from plants grown for the same amount of time, and that the 

same type of leaves (rosette) were used, this, together with different light exposure to each 

leaf, may be an explanation for the inconsistencies in calculated fold change values for the 

specific transcripts among the same plant lines observed in this study. In addition, the levels 

of CHS transcripts in the At RCHSp38 lines are difficult to interpret because they are also 

influenced by the effect of the IR-transgene designed to silence CHS expression. 

Given our assumption that autoregulation of MYB75/PAP1 in At RCHSp38 plants are 

impaired or lost due to p38 expression, we could expect higher MYB75/PAP1 levels in stress 

induced At RCHSp38 plants then in stress induced wild-type plants. This is actually what we 

observe.  

Cominelli et al (2008) shows that in wild-type plants, MYB75/PAP1 transcripts accumulate 

before CHS and DFR transcripts in response to light treatment. They also show that DFR 

transcripts accumulate to higher levels than CHS transcripts in response to light treatment. 

Sucrose has been shown to induce late flavonoid biosynthesis genes (from DFR and down-

stream) and MYB75/PAP1 to a larger extent than the genes up-stream from DFR, namely 

PAL1 and CHS (Solfanelli et al., 2006). These findings are in accordance with our results 

which show that in At RCHSp38 and wild-type plants, both sucrose-treated seedlings and 

adult plants exposed for high intensity light illumination were found to have higher steady-

state levels of DFR, MYB75/PAP1 and GST than the steady-state levels of PAL1 and CHS 

transcript (Figure 6 and Figure 7). In this respect, it should be noted that the steady-state 

level of CHS transcripts in At RCHSp38 plants are also influenced by the IR-transgene 

designed to target CHS transcripts.  

A conspicuous result from the stress treatment experiments is that even though 

MYB75/PAP1 in wild-type seedlings and adult plants is less up-regulated than in At 

RCHSp38 lines, the results show that the transcript levels of GST and DFR in wild-type 
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seedlings and plants, respectively, are more up-regulated than in the At RCHSp38 lines. 

According to our hypothesis we expected that in plants where the steady-state level of 

MYB75/PAP1 was highest, the transcript levels of the other flavonoid biosynthesis genes, 

especially the late ones such as DFR and GST, would also be highest. This is not, however, 

always the case as can be seen in the At RCHSp38 seedlings and plants. It may be possible 

that p38 expression also interferes with other components controlling the expression of the 

flavonoid biosynthesis genes, either directly or indirectly. Another explanation is that the IR-

transgene targeting CHS in At RCHSp38 may influence the results. However, to our 

knowledge it is not known whether CHS levels can influence gene expression in the 

remaining flavonoid pathway by feedback regulation. Yet another explanation can be that 

when MYB75/PAP1 is up-regulated so are the flavonoid biosynthesis genes especially the 

late ones DFR and GST, but how much MYB75/PAP1 is required to achieve this up-

regulation is unknown. It is difficult to rationally explain these results and a rational 

explanation must await further studies. 

When comparing the effect of high sucrose concentration (Figure 6) and high intensity light 

exposure (Figure 7) with regard to the increase in transcript levels of the selected flavonoid 

biosynthesis genes, the effect of high intensity light exposure is overall larger than the effect 

of high sucrose concentration. Light is a very important environmental stimulus regulating 

expression of the flavonoid structural genes (Cominelli et al., 2008). It is not un-expected 

that plants react stronger to light than to sucrose when taking into account which of these 

two factors one would expect to be most important in the plants natural habitat. We would 

presume this to be light, since sucrose concentrations in the soil normally do not vary to the 

same degree as light conditions.   

Another question is whether stress or gene modification has the greatest stimulatory effect 

on anthocyanin biosynthesis. In an attempt to answer this question, data in Figure 4 and 

Figure 5 (effect of transgenic constructs) can be compared to data in Figure 6 and Figure 7 

(effect of stress treatment). This will not give a totally clear answer since the data in Figure 4 

and Figure 5 results from comparing transgenic lines with a wild-type line exposed to the 

same growth conditions, and data in Figure 6 and Figure 7 results from comparing the same 

plant line exposed to different growth conditions. However, when comparing these results, 

the fold change values in the investigated transcripts in At RCHSp38 lines are higher for the 

effect of stress treatment, compared to the effect of transgene constructs. This indicates that 

in At RCHSp38 plants, the effect of stress treatment has more stimulatory effect on 
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anthocyanin synthesis than p38 expression. In At PAP1 plants, the effect of over-expressing 

MYB75/PAP1 clearly exceeds the effect of stress treatment.   

5.1.3 The phenotypic effects of p38 expression in Arabidopsis  

The phenotypic effects of p38 expression in Arabidopsis were also examined. At RCHSp38 

seedlings and adult plants showed an altered phenotype compared to wild-type plants, with a 

more intense purple colouration, in accordance with earlier results (Johansen and Wilson, 

2008). However, the At RCHSp38 plants were not as purple as the At PAP1 seedlings and 

plants (Figure 8 and Figure 9). In fact, the purple colouration of the At RCHSp38 plants was 

found to be intermediate to that in wild-type and At PAP1 plants. Given the fact that the 

purple colouration is the result of increased anthocyanin accumulation in Arabidopsis, we 

would anticipate that the steady-state levels of the flavonoid transcripts PAL1, CHS, DFR 

and GST in At RCHSp38 to be intermediate to those in wild-type and At PAP1 plants. This 

is shown to be correct (Figure 4 and Figure 5).  

The At RCHSp38 leaves and flowers also showed morphological defects (Figure 8 and 

Figure 9), the leaves having a jagged morphology and the flowers having shorter stamens 

compared to wild-type and At PAP1 plant lines. The morphological defects detected in 

transgenic At RCHSp38 plants are similar to defects typically associated with the expression 

of viral proteins were miRNA function is compromised (Chapman et al., 2004; Dunoyer et 

al., 2004). Previously studies have shown that p38 expression in Arabidopsis is not 

correlated with developmental defects or altered miRNA function (Dunoyer et al., 2004). 

However, as discussed previously, p38 interferes with DCL4-dependent tasiRNA biogenesis, 

resulting in decreased levels of tasiRNA and increased level of target mRNA (Moissiard et 

al., 2007). Accordingly, Arabidopsis dcl4 mutants show altered tasiRNA levels and function, 

and phenotypic defects (Gasciolli et al., 2005). Thus the morphological defects observed in 

At RCHSp38 plants could be attributed to a disturbance in the general tasiRNA function as a 

result of suppression, by p38, of DCL4 activity. The constitutive promoter used to drive 

expression of p38 in At RCHSp38 plants, the CmpC promoter, is even stronger than the 35S 

promoter previously used to drive expression of p38 in Arabidopsis (Dunoyer et al., 2004). 

Thus, it is possible that p38 is transcribed in At RCHSp38 plants at levels high enough to 

completely suppress DCL4 activity, resulting in a phenotype comparable to the null dcl4 

mutant. 



 58 

5.1.4 Further studies 

Further studies to investigate if MYB75/PAP1 is under RNA silencing control and that 

expression of p38 in Arabidopsis disrupts the regulation of MYB75/PAP1 as a consequence 

of suppressed DCL4 activity should be undertaken. The most ideal plant line to investigate 

such an effect would be transgenic Arabidopsis plants expressing p38 alone, without the 

CHS IR-construct. However, generation of such transgenic lines has proven difficult, both in 

our lab and in the Voinnet group (personal communication with Dr. Angélique Déléris). It 

might be that such a plant line is not viable, especially when plants are made homozygous 

for p38. However, in the present study we have shown that MYB75/PAP1 is up-regulated in 

At RCHSp38 plant lines and these plants should then be suited to further study the effect of 

p38 expression on the transcript levels of MYB75/PAP1. One obvious analysis would be to 

determine the accumulation levels of the small RNA species TAS4-siR81(-) and miR828 in 

transgenic p38-expressing plants, and compare these levels to the same accumulation level in 

wild-type plants. The accumulations level of small RNA molecules can be examined by 

isolating small RNA molecules and then perform Northern hybridization to detect specific 

RNA molecules. If p38 indeed interferes with the regulation of MYB75/PAP1, one might 

expect that the accumulation level of TAS4-siR81(-) in p38-expressing plants would be lower 

than in wild-type plants since these small RNA molecules are the product of DCL4 activity 

which, as a consequence of suppression of p38, has lowered activity. Such an analysis is best 

performed in plants in which transcription of MYB75/PAP1 is induced, such as in light-

stressed plants. Otherwise, the accumulation level of TAS4-siR81(-) might be too low to be 

detected by conventional Northern hybridization experiments. It could also be interesting to 

see if there is a correlation between the level of p38 expression and the transcript level of 

MYB75/PAP1. If our hypothesis about MYB75/PAP1 being under RNA silencing control is 

correct, we would expect a correlation between high p38 expression and high transcript 

levels of MYB75/PAP1.  

As previously noted, loss of DCL4 activity, either as a consequence of suppression by viral 

proteins or in mutants defective in DCL4 (dcl4-2), is correlated with high anthocyanin 

accumulation in Arabidopsis (Nakazawa et al., 2007; Johansen and Wilson, 2008). It should 

therefore also be interesting to measure the transcript levels of MYB75/PAP1 and the 

accumulation level of TAS4-siR81(-) and miR828 in dcl4 mutants. The dcl4 mutant line was 
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planned to be included in the present study, but this mutant line was not available from the 

stock centre when the study was initiated. 

5.2 The effect of p38 expression in Chlamydomonas 

Poor level of transgene expression from the Chlamydomonas nuclear genome is a problem in 

this model organism (Fuhrmann et al., 1999; Schroda et al., 2000; Neupert et al., 2008). Why 

this is a problem is not well-understood, but a possible explanation is silencing of the 

transgene after integration into the nuclear genome. Different methods have been applied to 

overcome transgene silencing in this organism. In one study, mutant strains of 

Chlamydomonas were generated that efficiently express nuclear transgenes (Neupert et al., 

2008). They developed a genetic screen that search for mutants where the transgene 

suppression mechanism was defective. Another possible strategy is to incorporate genes in 

vector constructs that upon transcription in transformed cells produce proteins known to 

suppress transgene silencing, specifically RNA silencing. Given that RNA silencing can 

account for some of the transgene silencing phenomenon observed in Chlamydomonas, viral 

suppressors of RNA silencing, such as p38, could be used to protect the transgene from 

silencing by inhibiting the silencing pathway.  

We wanted to explore the second strategy, more specifically to investigate if p38 is able to 

suppress RNA silencing in Chlamydomonas. Using the amiRNA approach we intended to 

induce RNA silencing of the endogenous phytoene synthase (PSY) gene in Chlamydomonas. 

Down-regulation of PSY leads to transformed cells with a pale green algal phenotype, as 

shown by Molnar et al., (2009). Using cells with RNA-induced down-regulated PSY 

expression, we intended to study the effect of expressing the viral suppressor protein p38 in 

order to investigate if p38 was able to suppress RNA silencing in Chlamydomonas. 

Successful suppression by p38 in these transformed cells would then restore the normal dark 

green algal phenotype. However, we were not able to successfully detect transformed 

Chlamydomonas cells even after several transformation attempts. Therefore we did not 

attempt to transform cells further with the p38-expression gene construct.  

We cannot rationally explain why we were not able to successfully transform 

Chlamydomonas cells in our lab. However, we did run into several problems that can help to 

explain why we were not successful: 1) Microbial contamination on the selective plates used 

to select for transformants. After transformation acetate had to be added to the medium in 
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order to ensure growth of transformants deficient in photosynthesis. Supplementation of the 

growth medium of Chlamydomonas with acetate is known to be problematic because of the 

risk of contaminating micro organisms. Strict aseptic procedures are therefore very important 

when handling Chlamydomonas cultures grown in acetate-containing medium. 2) It was 

difficult to detect pale green colonies on the agar plates used to select for transformed cells 

because the cell density after transformation was very high. 3) To identify “the best” suited 

medium to ensure optimal growth and satisfied cells was challenging. Successful 

transformation of Chlamydomonas is highly dependent on “happy” cells. 

To solve these problems we tried different approaches. To avoid contamination during the 

transformation procedure, sterile technique was used at all stages, and DNA was precipitated 

with 3M sodium acetate and absolute ethanol and then dissolved in sterile buffer, before 

transformation into Chlamydomonas cells. To insure cells were given enough time to 

integrate DNA into the genome, and at the same time to insure optimal growth conditions for 

of the cells, transformed cells were incubated under dim light for 24 hours before they were 

transferred to growth in dark. Since Chlamydomonas was a new model organism in our lab, 

knowledge about growth conditions and mediums, and transformation procedures etc. had to 

be gathered. We used different growth mediums, including 2-amino-2-(hydroxymethyl)-1,3-

propanediol (TRIS)-acetate-phosphate (TAP), Sagar and Granick II medium, and High salt 

(HS) medium, all found at the Chlamydomonas center web page (Chlamy center, 

http://www.chlamy.org/media.html). After personal communication with Associate 

Professor Uwe Klein, Department of Molecular Biosciences, University of Oslo, we decided 

to use High salt medium for growth, as described in Materials and Methods, section 3.3.1.  

5.2.1 Other methods that could have been tried to ensure 
transformation of Chlamydomonas 

Transformation with the glass bead method can yield up to 1 x 10
3
 transformants per µg 

DNA (Kindle, 1990). With the use of electroporation as a transformation method, a much 

higher transformation rate has been reported, up to 1.9 x 10
5
 transformants per µg DNA 

(Shimogawara et al., 1998). To improve plating efficiency of cell wall deficient 

Chlamydomonas strains, a starch embedding method has been developed and used after 

transformation with electroporation (Shimogawara et al., 1998). We used the glass bead 

method for transformation, because we believed the transformation rate was high enough. 
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Since several attempts with the glass bead method were unsuccessful, the electroporation 

method in combination with starch embedding should be the next method of choice. 

Chlamydomonas cells could also have been treated with autolysin prior to transformation. 

Autolysin is composed of proteolytic enzymes synthesized at characteristic points during the 

developmental cycles of the alga, with strong specificity towards the cell wall structure 

(Jaenicke et al., 1987). The Chlamydomonas strain we used (CC-1618) carries a cell wall 

mutation, cw-15, leading to absent or greatly reduced cell wall quantity compared to the 

wild-type cells. Therefore we did not treat the cells with autolysin. However, it has been 

reported improved transformation rate of cw-15 mutants when treating them with autolysin 

prior to transformation (Kindle, Chlamydomonas center web page, 

http://www.chlamy.org/methods/beads.html). Another approach could also be to use another 

Chlamydomonas strain for transformation, for example the CC-325 strain which was used by 

Molnar et al. (2009). The CC-325 strain, like the CC-1618 strain, carries a mutation in the 

argininosuccinate lyase (ASL) gene and also the cell wall component cw-15, and should 

therefore be well suited for the experimental set-up used in this study.   

5.2.2 Further studies 

Further studies to investigate the effect of p38 expression in Chlamydomonas should be 

focused on successfully completing the transformation and obtaining Chlamydomonas cells 

with down-regulated PSY expression, and then to transform these cells with the p38 

expressing construct. To verify that transformed cells show down-regulated PSY expression, 

total RNA should be isolated and then determining the levels of PSY transcript, using q-

PCR, in cells transformed with the amiRNA containing construct and that of the empty 

vector. The expression level of PSY in cells harbouring the amiRNA construct is anticipated 

to be much lower than in cells harbouring the empty vector. In addition, an RNA blot to 

verify the presence of expressed amiRNAs should be conducted. Then, after transforming 

the PSY down-regulated Chlamydomonas transformants with an expression cassette for p38, 

total RNA should be isolated and the transcript level of PSY re-analysed. If p38 is able to 

suppress amiRNA-based RNA silencing of the endogenous PSY gene in Chlamydomonas, 

we would then expect higher transcript levels of PSY since the p38 expression would reduce 

or abolish the effect of RNA silencing. It should also be verified that p38 is efficiently 

expressed at the protein level, e.g. with western blot and anti-p38-antibody-based immune-
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detection. This is especially important given the fact that codon usage in Chlamydomonas is 

atypical.  
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Abbrevations 

35S Cauliflower mosaic virus 35S promoter 

Abs absorbance 

Agrobacterium Agrobacterium tumefaciens 

amiRNA  artificial microRNA 

Arabidopsis Arabidopsis thaliana 

At Arabidopsis thaliana 

ATP adenosine triphosphate 

bp base pair 

CC Chlamydomonas genetics center strain 

cDNA complementary DNA 

CDS coding region 

Chlamydomonas  Chlamydomonas reinhardtii 

Ct cycle threshold 

cw cell-wall 

D-bodies dicing bodies 

DCL Dicer like 

DNA deoxyriboducleic acid 

DTT dithiothreitol 

Endo-siRNA endogenous small interfering RNA 

EtOH ethanol 

HUC Hedmark University College 

hpRNA hairpin RNA 

HYL1 Hyponastic leaves 1 

LBamp50 Luria Bertani medium supplemented with 50 mg/mL ampicillin 

Mbp   Mega base pair 
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min   minute 

mRNA   messenger RNA 

MIR genes  microRNA genes 

miRNA  micro RNA 

mt   mating type 

ncRNAs  non-coding RNA 

nt   nucleotide 

PAZ   Piwi Argonaute Zwille 

PCR   polymerase chain reaction 

piRNA   piwi-interacting RNA 

PIWI   P-element induced wimpy testis 

pri-miRNA  primary miRNA 

pri-tasiRNA  primary tasiRNA 

q-PCR   quantitative real time PCR 

RNA   ribonucleic acid 

RNase   ribonuclease 

ss   single stranded  

sec   second 

sRNA   small RNA 

siRNA   small interfering RNA 

TAE   Tris base, acetic acid and EDTA 

TBE   Tris/Borate/EDTA 

T-DNA  transfer DNA 

U   Units 

UTR   un-translated region 

VSR   viral suppressor of RNA silencing 

w/v   weight/volume  
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Appendix 

Table 1: Primer sequences for analysis of Arabidopsis thaliana flavonoid 
biosynthesis genes. 

Used for Primer Sequence 

P
ri

m
er

 v
er

if
ic

at
io

n
 a

n
d
 s

eq
u
en

ci
n
g
 t

o
 c

o
n
fi

rm
 c

o
rr

ec
t 

am
p
li

fi
ca

ti
o
n
 p

ro
d
u
ct

, 
an

d
 r

ea
l 

ti
m

e 
q
u
an

ti
ta

ti
v
e 

P
C

R
. 

Actin2-F  5‟- GCTGGTTTTGCTGGTGATGATG -3‟ 

Actin2-R 5‟- TAGAACTGGGTGCTCCTCAGGG -3‟ 

MYB75-F 5‟- CAATGCCCCACCAAAAGTTGACG -3‟ 

MYB75-R  

PAL1-F 

PAL1-R 

DFR-F 

DFR-R 

GST-F 

GST-R 

5‟- GTTGTCGTCGCTTCAGGAACCAAAAT -3‟ 

5‟- TTGTAGCGCAACGTACCCGT -3‟ 

5‟- TCCTGTTCGGGATAGCCGAT -3‟ 

5‟- AGCTGACGGACATGGGGTTT -3‟ 

5‟- TCGGTTCTCTCGCCGGTTAT -3‟ 

5‟- CTACCAAGTTCGCGGACCAA -3‟ 

5‟- GCCAAAAACCGGTTCGAAGA -3‟ 
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Table 2: Artificial microRNA oligonucleotide sequences. 

 3‟ UTR Coding sequence 

Artificial 

microRNA 

5‟-TATCTCTTTAAGTACAAGCGC-3‟ 

 

5‟-TTTTCCGAAATGCCGTACTCG-3‟ 

 

Forward oligo 

5‟-

CTAGTGCGCTTGTACTTAAAGTGAT

ATCTCGCTGATCGGCACCATGGGG

GTGGTGGTGATCAGCGCTATATCTC

TTTAAGTACAAGCGCG-3‟ 

5‟-

CTAGTCGAGTACGGCATTTCGCAAAATCTCGC

TGATCGGCACCATGGGGGTGGTGGTGATCAGC

GCTATTTTCCGAAATGCCGTACTCGG-3‟ 

Reverse oligo 

5‟-

CTAGCGCGCTTGTACTTAAAGAGAT

ATAGCGCTGATCACCACCACCCCCA

TGGTGCCGATCAGCGAGATATCACT

TTAAGTACAAGCGCA-3‟ 

 

5‟-

CTAGCCGAGTACGGCATTTCGGAAAATAGCGC

TGATCACCACCACCCCCATGGTGCCGATCAGC

GAGATTTTGCGAAATGCCGTACTCGA-3‟ 

 

 

 

 

Table 3: Primer sequences for Chlamydomonas amiRNA preparation. 

Used for Primer Sequence 

Colony PCR to search for 

clones with insert in right 

orientation, and sequencing 

to verify correct cloning 

AmiRNAprecfor  5‟-GGTGTTGGGTCGGTGTTTTTG-3‟ 

Colony PCR to search for 

clones with insert in right 

orientation 

Spacerrev  5‟-TAGCGCTGATCACCACCACCC-3‟ 
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Table 4: Primer sequences for Chlamydomonas colony PCR screen for 
amiRNA transformants. 

Primer Sequence 

Chlamy-F 

 

5‟-TTGCTCACCCAGAAACGCTG-3‟ 

 

Chlamy-R 5‟-GCCATCCGTAAGATGCTTTTCTGT-3‟ 

 

 


