
 

       Establishment and 
Characterization of Bovine 
Oviductal Epithelial Cells in 
Culture and Study of Sperm 
Binding Capacity 

 

        ‘’Feasibility studies towards the Development of a Semen 
Fertility Assessment Assay for Norwegian Red’’ 

  

                              Godlove Tengfeke Bai 

 

 

Master‟s degree in Applied Biotechnology 

HEDMARK UNIVERSITY COLLEGE 

2011 

 



 2 

Acknowledgement 

The work presented in this thesis was carried out at the Department of Education and Natural 

Science, Hedmark University College, in the period between January 2010 and July 2011. 

Supervision has been provided by Associate Professor Frøydis D. Myromslien. Assistance 

was also provided by Dr. Anne Hege Alm-Kristiansen (Research Scientist, Bokapital SA) 

and Fride Berg Standerholen (Ph.D student). 

First I would like to thank Associate Professor Frøydis D. Myromslien for excellent and 

enthusiastic supervision provided during this project, and for the assistance throughout the 

writing process. I have learned a lot from being your student and do not think I could have 

had better elsewhere. 

I am also deeply indebted to Dr. Anne Hege Alm-Kristiansen and Fride Berg Standerholen 

who were abundantly helpful and offered invaluable assistance, support and guidance 

throughout this project. I also thank Dr. Randi Therese Garmo (Research Scientist, 

Biokapital SA) for the countless trips to the slaughterhouse. 

Special thanks to Associate Professor Robert Charles Wilson for guidance and supervision 

with the molecular techniques used in this project. I would also extend special gratitude to 

Professor Odd-Arne Olsen and Dr. Muath Alsheikh (Graminor SA) for moral support and 

part time job during my stay as a student. I would also thank Dr. Ann Helen Gaustad 

(Norsvin SA) for critical reading of this thesis. I owe many thanks to my fellow classmates, 

Ph.D students and biotechnology staff of Hedmark University College for providing an 

enjoyable study environment that made my life in the Biohus a truly memorable experience. 

I want to thank Tumenta Emmanuel Mbanyui (Yara, Douala-Cameroon) and Chafeh 

Johnathan (Glotelho, Douala-Cameroon) for ceaseless assistance and support throughout my 

life. I wish to extend special gratitude to my lovely mother for always reminding me of my 

responsibilities as a man. Finally, my daughter Del Blaine deserves a huge hug for always 

reminding me that I am getting old.  

                                                     Hamar, July 31
st
 2011 

                                                      Godlove Tengfeke Bai 



 3 

Table of contents 

 

ACKNOWLEDGEMENT ................................................................................................................ 2 

TABLE OF CONTENTS .................................................................................................................. 3 

ABBREVIATIONS AND GLOSSARY ........................................................................................... 7 

ABBREVIATIONS: .......................................................................................................................... 7 

GLOSSARY: ................................................................................................................................... 8 

ABSTRACT .................................................................................................................................... 10 

1 BACKGROUND ................................................................................................................... 11 

1.1 ORIGINS OF THE PROJECT .................................................................................................... 11 

1.1.1 Geno and Biokapital ................................................................................................ 11 

1.1.2 Breeding of Norwegian Red ..................................................................................... 11 

2 INTRODUCTION ................................................................................................................ 13 

2.1 ORGANISATION AND FUNCTION OF THE FEMALE REPRODUCTIVE TRACT IN BOVINE .............. 13 

2.1.1 Female reproductive system ..................................................................................... 13 

2.1.2 Anatomy and histology of the oviduct ....................................................................... 14 

2.1.3 Epithelial cells ......................................................................................................... 16 

2.1.4 Reproductive physiology in dairy cows .................................................................... 18 

2.2 SPERMATOGENESIS AND SPERM PHYSIOLOGY IN BOVINE ..................................................... 21 

2.2.1 Spermatogenesis and sperm morphology ................................................................. 21 

2.2.2 Control of spermatozoa formation ........................................................................... 23 

2.3 FERTILIZATION IN BOVINE .................................................................................................. 25 

2.3.1 Sperm reservoir ....................................................................................................... 25 

2.3.2 Capacitation ............................................................................................................ 26 

2.3.3 Hyperactivation and acrosome reaction ................................................................... 28 



 4 

2.4 CRYOPRESERVATION OF SEMEN .......................................................................................... 30 

2.5 EVALUATION OF SPERM QUALITY ........................................................................................ 31 

2.5.1 Plasma membrane integrity ...................................................................................... 32 

2.5.2 Acrosome integrity ................................................................................................... 33 

2.5.3 Capacitation status .................................................................................................. 33 

2.5.4 Mitochodrial functionality ........................................................................................ 34 

2.5.5 DNA  integrity .......................................................................................................... 34 

2.5.6 Need for new methods for evaluation of sperm quality ............................................. 35 

2.6 CULTIVATION OF BOVINE OVIDUCT EPITHELIAL CELLS ........................................................ 36 

2.6.1 Isolation of BOECs and cell culture ......................................................................... 36 

2.6.2 Oviductal glycoprotein 1 .......................................................................................... 37 

2.7 REAL-TIME PCR (QPCR) FOR ANALYSIS OF GENE EXPRESSION ............................................ 38 

2.8 AIM OF THE STUDY ............................................................................................................. 40 

3 MATERIALS AND METHODS .......................................................................................... 41 

3.1 EXPERIMENTAL PLAN ......................................................................................................... 41 

3.2 ANIMAL MATERIAL ............................................................................................................. 42 

3.2.1 Norwegian Red cattle ............................................................................................... 42 

3.2.2 Oviducts from Norwegian Red cows ......................................................................... 43 

3.2.3 Sperm cells from Norwegian Red bulls ..................................................................... 43 

3.3 CELL CULTURE OF BOVINE OVIDUCT EPITHELIAL CELLS (BOECS) ........................................ 43 

3.3.1 Collection and isolation of cells ............................................................................... 43 

3.3.2 Cultivation and trypsination of cells ......................................................................... 44 

3.3.3 Cell count with Bürker haemocytometer ................................................................... 45 

3.3.4 Immunostaining  for characterization of BOECs ...................................................... 46 



 5 

3.3.5 Hormone stimulation of BOECs ............................................................................... 47 

3.3.6 Estimation of relative growth rate of BOECs ........................................................... 48 

3.3.7 Harvesting of BOECs for RNA analysis ................................................................... 48 

3.4 REAL-TIME PCR (QPCR) ANALYSIS ................................................................................... 48 

3.4.1 Total RNA isolation ................................................................................................. 48 

3.4.2 First strand cDNA synthesis ..................................................................................... 49 

3.4.3 Testing of primer specificity ..................................................................................... 49 

3.4.4 Sequencing .............................................................................................................. 51 

3.4.5 Real-Time  PCR analysis ......................................................................................... 51 

3.5 STANDARD DNA TECHNIQUES ............................................................................................ 53 

3.5.1 Agarose gel electrophoresis ..................................................................................... 53 

3.5.2 Quantification of RNA ............................................................................................. 53 

3.6 BINDING OF SPERMS TO BOECS .......................................................................................... 53 

3.6.1 Preparation of sperm cells ....................................................................................... 53 

3.6.2 Induction of capacitation ......................................................................................... 54 

3.6.3 CTC staining of sperm cells ..................................................................................... 54 

3.6.4 Assessment of sperm binding to BOECs ................................................................... 55 

3.7 BIOINFORMATICS ............................................................................................................... 55 

4 RESULTS.............................................................................................................................. 56 

4.1 ISOLATION AND CULTIVATION OF PRIMARY BOECS ............................................................ 56 

4.2 CHARACTERISATION OF BOECS ......................................................................................... 59 

4.3 STUDY OF OVGP1 EXPRESSION IN BOECS ......................................................................... 61 

4.3.1 Optimization of RNA extraction ............................................................................... 61 

4.3.2 Evaluation of primers specificity for qPCR .............................................................. 61 



 6 

4.3.3 Gene expression analysis of OVGP1 in BOECs using qPCR .................................... 64 

4.4 ANALYSIS OF SPERM CELL CAPACITATION STATUS BY CTC STAINING .................................. 67 

4.5 BINDING OF SPERM CELLS TO BOECS ................................................................................. 68 

5 DISCUSSION ........................................................................................................................ 72 

5.1 CELL CULTURING OF BOECS .............................................................................................. 72 

5.2 OVGP1 EXPRESSION IN BOECS .......................................................................................... 73 

5.2.1 Regulation of OVGP1 expression ............................................................................. 75 

5.3 BINDING OF SPERM CELLS TO BOECS ................................................................................. 76 

5.3.1 Evaluation of sperm capacitation by CTC staining assay ......................................... 76 

5.3.2 Sperm binding to BOECs monolayers ...................................................................... 77 

5.4 FURTHER STUDIES .............................................................................................................. 79 

6 CONCLUSION ..................................................................................................................... 81 

REFERENCES ............................................................................................................................... 82 

7 APPENDIX ........................................................................................................................... 92 

 

 



 7 

Abbreviations and Glossary 

Abbreviations: 

 AC: Adenyl cyclase 

 AI: Artificial insemination 

 AIJ: Ampullary-isthmus junction 

 ATP: Adenosine triphosphate 

 BOECs: Bovine oviduct epithelial cells 

 BSA: Bovine serum albumin 

 BSP: Bovine seminal plasma 

 cAMP: Cyclic adenosine triphosphate 

 CASA: Computer-assisted sperm analyser 

 CK: Cytokeratin 

 CTC: Chlortetracycline 

 dH2O: Distilled water 

 DMSO: Dimethyl sulfoxide 

 dUTP: Deoxyuridine triphosphate 

 Ects: European credit transfer system 

 EDTA- Ethylene diamine tetra acetate 

 FSH-Follicle stimulating hormone 

 GnRH- Gonadotrophin releasing hormone 

 IMM: Inner mitochondrial membrane 

 kDa: kiloDalton 

 LH: Luteinizing hormone 

 MAPK: Mitogen-activated protein kinase 

 NCBI: National centre for biotechnology information 

 NDHRS: Norwegian dairy herd recording system 

 NEB: New England Biolabs 

 NR: Non return  

 NRF: Norwegian red cattle 

 OVGP1: Oviductal glycoprotein 1 

 PBS: Phosphate buffered saline 

 PDC-190: Protein with N terminal aspartic acid and carboxyl terminus cysteine, 

having 109 amino acids 

 PFA: Paraformaldehyde 

 PGF2α: Prostagladins F-2 alpha 

 PKA: Protein kinase A 

 PNA: Peanut agglutinin 

 PSA: Pisum sativum agglutinin 

 PTK: Protein tyrosine kinase 

 qPCR: Real time polymerase chain reaction 

 ROS: Reactive oxygen species 

 SCSA: Sperm chromatin structure assay  

 SMEY: Skimmed milk egg york 
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 Sp TALP: Sperm tyrode albumin lactate phosphate 

 TdT: Terminal deoxynucleotidyl transferase 

 Tm: Melting temperature 

 TUNEL: Terminal deoxynucleotidyl tranferase (TdT) mediated deoxyuridine 

triphosphate (dUTP) nick labelling 

 UTJ: Utero-tubal junction 

 W-o-L: Window of linearity 

 ZP: Zona pellucida 

 

Glossary: 

 Acrosome: A saclike organelle containing hydrolytic enzymes at the anterior half of 

sperm head. 

 Amplicon: DNA resulting from amplification.  

 Baseline fluorescence: Fluorescence that is observed before amplicon specific 
fluorescence can be detected. 

 Bulbous protrusions: Bulges on cell surfaces characteristic of secretory activity. 

 Ciliogenesis: The process of cilia formation. 

 Crossing-over:  A process that occurs during meiosis during which genetic material 
is exchanged between chromatids. 

 Cryopreservation: A process by which cells and tissues are preserved at subzero 
temperatures. 

 Cryoprotectant: A substance that functions as an anti-freeze agent, lowering the 

freezing temperature, preventing damage to the preserved sample during freezing 

process. 

 Desmosomes: A type of cell to cell anchoring junction in epithelial cells that connects 

intermediate filaments in one cell to those of the next.  

 Diestrus: A stage in the estrous cycle dominated by high levels of progesterone from 
corpora lutea. 

 Diploid: A condition in which cells contains 2 sets of each type of chromosome e.g. 
somatic cells. 

 Embryotrophic: Indicative of involvement in the nourishment of the embryo. 

 Estrus: (Heat) period of sexual receptivity in the female. Characterised by peak in E2 

(estrogen) secretion. 

 Haploid: A term used to describe cells that contain one complete set of 
chromosomes e.g. sperm cell. They are produced by meiosis. 

 Hemidesmosomes: A type of junction in epithelial cells that anchors intermediate 

filaments in a cell to the extracellular matrix. 

 Implantation: Attachment of a developing embryo onto the uterine walls. 

 Leydig cells: Cells found adjacent to seminiferous tubules in the testicles that 

produce testosterone. 

 Lymphatics: Vessels through which lymph, a milky fluid flows within the lymphatic 
system. 

 Mastitis: Inflammation of mammary gland. 
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 Meiosis: A type of nuclear division that occurs in gamete producing cells during 

which the genetic material is halved in the daughter cells. 

 Mesenchymal cells: Cells that differentiate into a variety of cell types. 

 Metastasis: The spread of a disease from one organ or part to another non-adjacent 
organ or part. 

 Metestrus: A stage in the oestrous cycle characterised by formation of corpus luteum 

after ovulation. Corpus hemorrhagicum prominent, producing increasing amounts of 

progesterone. 

 Mitosis: A type of nuclear division during which cell nuclei divide into identical 
nuclei with the same number and sets of chromosomes.   

 Myometrium: Smooth muscles that are found in the uterine wall. 

 Parturition: Act of giving birth. 

 Peritoneum: A thin, semitransparent connective tissue that lines the abdominal 
cavity and surrounds most of the viscera. 

 Polyspermia: A condition in which more than one sperm cell penetrates the egg. 

 Proestrus:  A stage in the cycle during which progesterone level drops, and LH and 
FSH levels increase in response to GnRH. 

 Rectogenital pouch: Space between the rectum and the genital organs. 

 Spermacytogenesis: A process of generating new spermatocytes in the seminiferous 
tubules to ensure continuity of sperm cells production. 

 Spermatogenesis: The process whereby spermatozoa are formed. It consists of 
proliferation (mitosis), meiosis and differentiation (spermiogenesis). 

 Spermiation: The release of mature spermatozoa from the Sertoli cells into the 

lumen of the seminiferous tubules. 

 Spermiogenesis: A subcatergory of spermatogenesis during which spermatids 
undergo morphological transformations into highly specialised spermatozoa. 

 Total merit index: A set of criteria (traits) of different weights used to rank 
Norwegian Red bulls during the breeding program for possible selection as elite 

sires. 

 Trisaccharide: A carbohydrate that consists of 3 sugar moieties. 
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Abstract 

The mammalian oviduct is the physiological site for key events in reproduction, such as 

capacitation of spermatozoa, fertilization and early embryonic developments. During 

passage through the oviduct, a fertilizing spermatozoon has to bind to and interact with 

epithelial cells at the caudal isthmus during the formation of functional sperm reservoir. 

Binding to these cells is thought to increase the fertile life span of sperm cells. In this study, 

bovine oviduct epithelial cells (BOECs) from NRF at estrus were cultured in monolayers and 

used to study sperm cells oviduct binding in vitro. The cultured cells were characterized by 

immunostaining and Real Time PCR was used to study the expression pattern of OVGP1 in 

cultured cells in the presence and absence of human chorionic gonadotrophin. 

Chlortetracycline staining was employed to study the capacitation status of sperm cells 

bound to monolayers of epithelial cells and Ca
2+

 ionophore was used to induce sperm cell 

capacitation. Main findings demonstrate that (1) Primary BOECs cultures are a mixed 

population of cells; (2) Cultured BOECs loss the expression of OVGP1 over time during in 

vitro culture; (3) BOECs monolayers selectively bind uncapacitated sperm cells. These 

findings support the possible establishment of a sperm quality assessment assay through 

binding of sperm cells to BOECs monolayers. 
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1 Background 

1.1 Origins of the project 

This project is 60 credits (ects) constituting Master‟s Thesis of Hedmark University College 

Master‟s Degree program in Applied and Commercial Biotechnology, 2011. This thesis was 

carried out in collaboration with Geno and Biokapital SA, with the aim of using oviduct 

epithelial cells in coculture with sperm cells as a model system of the sperm oviductal 

reservoir. The results obtained can be used in other projects by Biokapital in the 

development of methods to assess bull fertility in vitro. 

1.1.1 Geno and Biokapital 

Geno SA is the breeding organization of the main dairy cattle in Norway, the Norwegian red 

(NRF). This company produces and sells cryopreserved bull semen for artificial 

insemination (AI) both in Norway and international. It is important for Geno that the product 

it sells to its customers (farmers) is of good quality. To the farmers, it is essential that the 

semen they use gives high fertility so as to avoid double insemination, reduce cost and 

increase profitability. The breeding program is based on continuous research and 

development in areas of dairy cattle breeding and genetics, fertility and artificial 

insemination. Biokapital SA, a daughter company of Geno, is founded to maximize the 

commercial values of selected biotech companies. This is to be achieved through active 

ownership, Research & Development expertise, commercialization experience and 

intellectual property (IP) management. Geno Global is owned by Geno SA and is in charge 

of all the export of Norwegian Red bull semen.  

1.1.2 Breeding of Norwegian Red 

There has been a long tradition of cooperation between Geno, the main Norwegian Red 

breeding company and the Norwegian dairy herd recording system (NDHRS), both owned 

by cooperatives. Fertility and health have been introduced in the net merit index since 1970s. 

Artificial insemination (AI) has been the principal reproductive strategy employed in the 

breeding program. Data from insemination are routinely reported to Geno by veterinarians 

and AI technicians and transferred to the NDHRS. Beside AI data, the recording system 

contains information from health cards, laboratory milk analyses and slaughterhouses 
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(Ranberg et al., 2003). Currently, mastitis and other diseases (in particular kitosis) are 

included in the breeding program. Diseases and other health data are recorded by 

veterinarians while other records such as milk analyses, calving information, milk yield 

records are recorded by farmers. 

Currently, 10 traits are included in the total merit index. The traits are indicated with their 

respective weights according to 2008 breeding program: milk yield (28%) mastitis resistance 

(21%), fertility (18%), udder formation (15%), leg conformation (6%), growth rate (6%), 

temperament (2%), other diseases (milk fever, ketosis, retained placenta) (2%), milkability 

(1%), calving difficulty  (0.5%) and still birth (0.5%) (Global, 2011).  

Approximately 330 bull calves are selected annually from ordinary herds on the basis of 

predicted breeding values, for testing at the Geno Performance Test Station (Geno). The 

bases for inclusion into the breeding program include; growth rate, confirmation parameters 

in addition to libido and sperm quality. About 130 of these test bulls are selected for semen 

production and progeny testing. These bulls are transferred to the AI station at 14-17 months 

of age and semen collection is started. The total merit index of the sires is calculated during 

the next years on the performance of about 250 to 300 daughters. The best 10 to 12 bulls are 

selected as elite bulls based on test results (Geno). Reproductive performance of AI bulls is 

commonly measured by the non return (NR) rate (Grossman et al., 1995). NR rate is defined 

as the percentage of serviced heifers and cows that did not return to oestrus within a 

specified number of days after AI. It is therefore a measure of bull fertility, providing a 

quantitative measure of fertilisation and embryo survival (Grossman et al., 1995). 

Progeny testing of young bulls routinely performed by breeding companies provides the only 

reliable measure of a bull‟s fertility. If a bull that has been used to breed hundreds of females 

turns out to have low fertility, it gives an economic loss to the farmer. There is therefore 

need for good sperm fertility evaluation methods in vitro to avoid that Geno keep bulls with 

low fertility in their breeding program. 
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2 Introduction 

2.1 Organisation and function of the female reproductive tract in 

bovine 

2.1.1 Female reproductive system 

In all domestic species, the female reproductive tract lies beneath the rectum and is separated 

from it by the recto-genital pouch (Figure 1A). In cows, this anatomical relationship allows 

for manual palpation (manipulation per rectum) and/or ultrasonic examination of the female 

reproductive tract e.g. to diagnose the ovarian status of the female (Senger, 2003). 

 

Figure 1. Female reproductive system. (A) Illustration of the female reproductive 

tract of the cow (lateral view) showing its position inside the pelvic and abdominal 

cavities and associated parts of the urinary system as it appears in the natural state. 

(B) Illustration of excised female reproductive system. Figure taken from (GSNU). 

The major structures that make up the reproductive system include the ovaries (female 

gonads), the external genitalia and the female tract (Figure 1B). This female tract can be 
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regarded as a series of interconnected tubes, each tube having distinct anatomical features. 

From the exterior, the tubular components are the vagina, cervix, uterus and oviducts 

(Senger, 2003). They consist of four distinct concentric layers being an outermost serosa, 

muscularis, submucosa and innermost mucosa. The serosal layer is an outer coating 

consisting of squamous (flattened) cells that cover the surface of the tract and is continuous 

with the peritoneum. The muscularis is a double layer of outer longitudinal and inner circular 

smooth muscles (myometrium) that provide the tubular components with the ability to 

contract. Such contractions are very necessary during transport of gametes, secretory 

products and during parturition. Beneath the muscularis lies the submucosa, a layer of 

varying thickness which houses blood vessels, nerves and lymphatics. The submucosa also 

serves as a support for the mucosa. The mucosa lines the lumen of the reproductive tract. 

The composition of the mucosa epithelium varies depending on the region of the tract, the 

hormonal status and the stage of the reproductive cycle. For example, the posterior vagina 

consist of stratified squamous epithelium to offer protection against abrasion during 

copulation while in the oviduct, it is lined with a mixture of ciliated and non ciliated 

columnar epithelium for the secretion of fluid and ciliary transportation along the oviduct 

(Senger, 2003).  

The ovaries are ovoid relatively dense structures with the principal functions of producing 

female gametes and the hormones estrogen and progesterone (Senger, 2003). They undergo 

dramatic series of changes during the cow‟s oestrous cycle. The oviducts provide optimal 

environment for fertilisation while the uterus provides the environment for sperm transport, 

early embryogenesis and sites for implantation (Figure 1B). The cervix is a muscular ring 

that forms a barrier, producing cervical seal during pregnancy and also secrets mucus during 

estrus of the oestrous cycle. The vagina is the copulatory organ and also produces lubricating 

mucus during estrus.  

2.1.2 Anatomy and histology of the oviduct 

Macroscopically, the oviduct in cow is a fairly simple organ approximately 21-28 cm long 

and is grossly divided into 3 areas: the infundibulum, the ampulla and the isthmus (Figure 

2A) (Ellington, 1991). The junction between the isthmus and the ampulla is barely 

distinguished and is named the ampullary-isthmic junction (AIJ). The infundibulum opens 

by an ostium covered by highly vascularised fimbriae into the abdominal cavity and forms 

the oviductory funnel that almost completely covers the ovary (Figure 2A). The ampulla 
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makes up about two-thirds of the tube with many visible extensible mucosal folds (Crisman 

et al., 1980). The isthmus is thick walled with a well defined narrow lumen which ends at the 

utero-tubal junction (UTJ) (Figure 2A). It makes up the remaining third of the oviduct 

(Crisman et al., 1980).  

 

Figure 2 (A) Illustration of the macroscopic features of the oviduct. The figure 

shows an isthmus section with a smaller lumen that leads to the ampulla with a 

wider lumen. The ampulla opens up at the infundibulum which is at close proximity 

to the ovary. Cross sections of both isthmus and ampulla is also shown. The 

musculature is greater at the isthmus region. Increased complexity of mucosal folds 

is visible in the ampulla compared to the isthmus. Figure taken from (GSNU). (B) 

Diagrammatic representation of the female genital tract of a cow showing the 

steeply diminishing gradient of sperm number after semen deposition (at natural 

mating) in the female vagina and the site of fertilization in the oviduct (Hunter, 

2003). At the time of activation of the newly ovulated oocyte, the sperm: oocyte 

ratio at the AIJ may be close to unity. Figure taken from (Hunter, 2003). 

Histological, like all other reproductive tract ducts, the oviduct consists of an external serosa, 

muscularis, submucosa and innermost mucosa (Senger, 2003). The mucosa consists of a 

single layer of columnar epithelium consisting of ciliated and secretory cells. These 

secretory cells release their secretory products by exocytosis. Estrus induces specific 

histological changes in the secretory cells. At estrus, most endoplasmic reticula are dilated 
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with highest number of visible polyribosomes (Nayak and Ellington, 1977). This suggests 

maximum secretory activity with enhanced protein synthesis and packaging near the time of 

ovulation. Cilia are present throughout the bovine oviduct but the number of ciliated cells 

increases dramatically towards the fimbriae (Stalheim et al., 1975). At the same time, the 

inner circular smooth muscles of the muscularis become thinner to almost disappear by the 

infundibular ostium. These oviductal segments seem to form functional compartments in 

relation to sperm transport, oocyte pick up post ovulation, transport, fertilisation and early 

embryo transfer to the uterus (Rodriguez-Martinez, 2007). 

2.1.3 Epithelial cells 

The epithelium of the oviduct is of the simple columnar type and consists of two kinds of 

cells, namely ciliated and non-ciliated (secretory) cells (Abe, 1996; Senger, 2003). Like all 

animal cells, these cells are delimited from the exterior by the plasma membrane. The cells 

are closely bound together into sheets called epithelia. 

Epithelial cells are polarised cells because their plasma membranes are organised into two 

distinct domains, namely the apical and basolateral domains (Alberts, 2008) (Figure 3A). 

The apical domain faces the interior of the lumen and have specialised features such as cilia 

as with ciliated cells while the basolateral domain covers the rest of the cell. These domains 

are separated by a ring of tight junctions. These domains have different protein compositions 

and are targets of different types of golgi vesicles.  The epithelium rest on an extracellular 

matrix called the basal lamina (basement membrane). Adjacent cells are interconnected with 

each other and anchored on the basal lamina by several types of cell junctions.  

Tight junctions, also known as occluding junctions, are one of the four major types of 

junctions present in epithelial cells (Lodish, 2008), (Figure 3B). This type of junction is 

closest to the apical domain and helps to prevent molecules from leaking across the 

epithelium via pores between cells. It also functions as a molecular “fence”, so as to help 

prevent the diffusion of proteins between the apical and basolateral domains of the epithelial 

cell, so as to maintain a difference in protein population between these domains. This type of 

junction is formed by claudin proteins. There exist three types of cell-cell anchorage 

junctions (Figure 3B). The first type known as adhesion junctions, connect actin filament 

bundles in one cell to the next. Desmosome junctions which are anchorage sites for 

intermediate filaments in one cell to the next are found below the tight junction. The third 
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type, known as cell-matrix adhesion junctions (hemidesmosome), anchors the cells to the 

underlying matrix. They play the principal role of holding cells together and transmitting 

shear pressure across the entire epithelium (Lodish, 2008). Cadhesins are the major 

transmembrane proteins in adheren and desmosome junctions, while integrin plays a similar 

role in hemidesmosomes. Channel forming junctions, also known as gap junctions, permit 

the diffusion of small water soluble molecules between adjacent cells.  

 

Figure 3. (A) Illustration of the principal domains (apical and basolateral domains) 

of a polarised animal cell. In this case the modification at the brush border is villi, 

typical of epithelial cells in digestive tract. These 2 domains are separated by a 

molecular fence (tight junction). (B) Illustration of an animal cell with tight junction 

(occluding junction) and three types of cell-cell adhesion junctions (adhesen, 

desmosome and cell matrix anchorage junctions). Channel forming junctions that 

allow for exchange of water soluble materials between adjacent cells are also 

indicated. Figure taken from (Alberts, 2008).   

The cytoskeleton of animal cells consists of three types of cytoskeletal filaments, namely; 

intermediate filaments, microtubules and actin filaments (Alberts, 2008). The intermediate 

filaments are mainly cytoplasmic, but one type, the lamins, line the inner face of the nuclear 

envelope, providing anchorage sites for chromosomes and nuclear pores. Intermediate 

filaments impart mechanical stability to animal cells. Microtubules determine the position of 

membrane bound organelles and direct intracellular transport. They are also implicated in the 

formation of cilia (ciliogenesis). Actin filaments underlie the plasma membrane, providing 
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strength and shape to its thin lipid bilayer. These cytoskeletal filaments are assisted by 

accessory proteins and are dynamic, undergoing rapid reorganisation during life processes 

e.g. during cell division. Intermediate filaments contain cytokeratins (CK). There are two 

types of cytokeratins: the acidic type I cytokeratins and the basic or neutral type II 

cytokeratins (Alberts, 2008). Basic or neutral cytokeratins include; CK1, CK2, CK3, CK4, 

CK5, CK6, CK7, CK8 and CK9. The acidic cytokeratins are; CK10, CK11, CK12, CK13, 

CK14, CK15, CK16, CK17, CK18, CK19 and CK20. Cytokeratins are usually found in pairs 

comprising a type I and a type II, and the expression of cytokeratin is organ or tissue 

specific. The subsets of cytokeratins expressed by an epithelium depend mainly on the type 

of epithelium, the moment in the course of terminal differentiation and the stage of  

development. For example, CK7 and CK20 are expressed by the ductal epithelium of the 

genitourinary tract and the gastrointestinal tract respectively. This allows for the 

classification of all epithelia based on their cytokeratin expression profile. For example 

CK13 immunolabelling in bovine female reproductive organs will distinguish normal tissues 

(negative) from epithelial tumours (positive) (Perez-Martinez et al., 2001). CK7 and CK20 

staining is helpful in the diagnostic differentiation of metastatic lesions from the lungs and 

colon, and assist in determining the site of origin of the metastatic lesion (Kummar et al., 

2002). 

Vimentin is a type III intermediate filament protein expressed in cells of mesenchymal origin 

(Alberts, 2008). It is the major type of intermediate filament polypeptide on vertebrate cells 

of this cell type. For this reason, it is commonly used as a marker of mesenchyma derived 

cells. Vimentin plays an important role in supporting and anchoring the position of 

organelles in the cytosol. 

2.1.4  Reproductive physiology in dairy cows 

The normal length of the oestrous cycle in cows is 21 days with a range of 17 to 24 days. 

Estrus has a mean duration of 15 hours with a range of 6 to 24 hours (Senger, 2003). 

Fonseca et al.  measured consecutive cycles and realised that the duration of the first post 

partum estrous cycle was 4 days less than for the second post partum cycle (Fonseca et al., 

1983). 

The estrous cycle can be broadly divided into two main endocrine phases i.e. the follicular 

and luteal phases (Figure 4). These phases are regulated by hormonal secretions from the 
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endocrine system. In cows, the follicular phase lasts for about 4 days and consist of proestrus 

and estrus, whereas the length of the luteal phase is about 17 days (Senger, 2003). The 

follicular phase is dominated by estrogen produced by the ovarian follicles, whereas the 

luteal phase which commences after ovulation is characterised by high levels of progesterone 

produced by the corpus luteum (Figure 4). Commencement of luteal activity occurs 

approximately 4 to 5 days after first ovulation post partum, though luteinisation of non 

ovulating follicles can also lead to progesterone production. The luteal phase lasts from the 

time of ovulation until regression of the corpus luteum (luteolysis). Luteal phase includes 

metestrus and diestrus. Metestrus last for about 5 days and is characterised by corpus luteum 

formation (luteinisation), during which the corpus hemorrhagicum is prominent. Diestrus 

corresponds to the mid luteal phase, with fully functional corpus luteum producing high 

concentrations of progesterone. During the last 2-3 days of the luteal phase, luteolysis 

occurs, resulting in decreasing amounts of progesterone, giving way to proestrus. This 

witnesses the removal of the negative feedback of progesterone on the hypothalamus, so 

gonadotrophin releasing hormone (GnRH) is released which then stimulates the anterior 

pituitary gland to secret increasing amounts of follicle stimulating hormone (FSH) and 

luteinising hormone (LH) (Stalheim et al., 1975). These hormone levels are characteristic of 

proestrus and promote both follicular development and the production and secretion of 

oestrogen. There are two or three major phases of growth of large follicles during the estrous 

cycle and the ovulatory follicle is selected about 3 days before ovulation (Webb et al., 1999). 

When the estrogen level in the dominant follicle peaks, it causes the preovulatory LH-surge 

responsible for ovulation, which later occurs 24 to 30 hours after the surge. 
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Figure 4. The two phases that constitute the oestrous cycle (follicular and luteal 

phases). Luteolysis followed by LH surge which is responsible for ovulation, marks 

the principal events at estrus. A longer luteal phase is marked by high levels of 

progesterone (P4) and ends with degeneration of the corpus luteum, giving way to 

the next follicular phase. High levels of estrogen (E2) produced by developing 

follicles is predominant in the follicular phase with low profiles in the luteal phase. 

(Figure taken from Senger, 2003). 

After successful fertilisation, maintenance of pregnancy relies on endocrine communication 

between the embryo and the mother. The blastocyst produces bovine interferon τ, a protein 

that inhibits the production of oxytocin receptors on the endometrium, such that oxytocin 

cannot stimulate luteolysis  and prostaglandin F-2 alpha (PGF2α) synthesis (Wathes and 

Lamming, 1995). Sufficient progesterone production in the corpus luteum is essential for 

embryonic development (Mann and Lamming, 1999). The gestation period of a cow is 

approximately 281 days and the maintenance of pregnancy is dependent upon progesterone 

produced by the corpus luteum and later on by the placenta during the whole length of the 

gestation period.  
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2.2 Spermatogenesis and sperm physiology in bovine 

2.2.1 Spermatogenesis and sperm morphology 

Spermatogenesis is the process of producing spermatozoa and takes place in the 

seminiferous tubules of the testes (Figure 5). This process is controlled by endocrine 

secretions from the hypothalamus, pituitary gland and the Leydig and Sertoli cells of the 

testes. The goals of spermatogenesis are to provide a male with a continual supply of sperm 

cells through stem cells renewal, provide genetic diversity, provide billions of sperms each 

day and also to offer an immunologically safe site where germ cells are not destroyed by the 

male‟s immune system (Senger, 2003). 

 

Figure 5. Illustration of spermatogenesis. (A) The figure is a simplified cross section 

of the seminiferous tubules of a mammalian testis. All the stages of spermatogenesis 

are shown with developing gametes in close association with Sertoli cells. The 

Leydig cells located between the seminiferous tubules secret testosterone that 

regulates spermatogenesis. This process takes place from the basal lamina towards 

the lumen. (B) The figure represents the stages of spermatogenesis. Spermatogonia 

proliferate several times and finally, primary spermatocytes enter the first meiotic 

division to produce haploid secondary spermatocytes. After completing meiosis II, 

they form spermatids that finally differentiate into mature spermatozoa. (Figure 

modified from Alberts, 2008). 
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Spermatogenesis can be divided into three phases. The first phase termed proliferation 

consists of all mitotic divisions of diploid spermatogonia (germ cells) to generate new 

spermatogonia (spermacytogenesis) and primary spermatocytes (Figure 5A). This occurs at 

the basal compartment of the seminiferous epithelium. The primary spermatocytes then enter 

the second phase, the meiotic phase. During the first meiotic division in primary 

spermatocytes, crossing-over and exchange of genetic material takes place generating 

genetically heterogeneous haploid secondary spermatocytes (Figure 5B). The secondary 

spermatocytes rapidly undergo the second meiotic division, resulting in the production of 

haploid spherical spermatids. Meiosis ensures reduction in chromosome number from 

diploid to haploid and also generates genetic diversity. Spermatogenesis terminates in a third 

phase termed spermiogenesis (differentiation) characterised by morphological and functional 

differentiation of spermatids into spermatozoa (Senger, 2003). During spermiogenesis, the 

acrosome develops, the sperm cell elongates, flagellum forms, the nucleus condenses and 

residual cytoplasm is removed. This differentiation process ends with the release of fully 

differentiated spermatozoa from the Sertoli cells into the lumen of the seminiferous tubules, 

a process termed spermiation (Figure 5A). Following spermiation, sperm cells are 

transported to the epididymis, where sperm maturation is continued and fertilisation 

competence is developed. The complete process of spermatogenesis from spermatogonia to 

the formation of fully differentiated spermatozoa takes 61 days in the bull and 39 days in the 

boar (Senger, 2003). Mature spermatozoa are stored in the cauda epididymis until they are 

released from the male reproductive tract. 

Morphologically, mammalian spermatozoa have a stream lined body shape, composed of a 

head and a tail (Senger, 2003). Both the sperm head and tail are covered by the sperm 

plasma membrane, or plasmalemma (Figure 6A). The sperm head contains an oval flattened 

nucleus, surrounded by a nuclear membrane. The chromatin is highly compact and inert 

because it is keratinised. An acrosome covers the anterior two-thirds of the nucleus. This 

modified lysosome contains hydrolytic enzymes (acrosin, hyaluronidase, zona lysin, esterase 

and acid hydrolases) (Senger, 2003), required for penetration of the zona pellucida of the 

oocyte to effect fertilisation. The process during which these enzymes are released is known 

as the acrosome reaction. The post-nuclear cap is the membrane component posterior to the 

acrosome. The sperm tail is composed of the capitulum, the middle piece, the principal piece 

and the terminal piece. The capitulum fits into the implantation socket in the posterior 

nucleus. The entire tail consists of a central axoneme formed from a distal centriole and is 
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composed of 9 pairs of microtubules arranged radially around 2 filaments (9+9+2), unique to 

flagella of spermatozoa (Figure 6B). The middle piece is characterised by several 

mitochondria. The principal piece makes up the majority of the tail and continues as 

microtubules that end in the terminal piece.  

 

Figure 5. Illustration of a mammalian spermatozoon. (A) Longitudinal section of a 

mature human spermatozoon. The sperm head contains a highly condensed 

nucleus and a posterior acrosome. The sperm tail consists of a middle piece rich in 

mitochondria for energy production. The rest of the tail is a flagellum involved in 

lashing action during swimming. The entire cell is surrounded by a plasma 

membrane. (B) Cross section of middle piece of mammalian spermatozoon. Core 

of flagellum composed of an axoneme surrounded by 9 dense fibres. Axoneme 

consists of 2 singlet microtubules surrounded by 9 microtubule doublets. 

Mitochondria provide ATP required for flagella movement. (Figure taken from 

Alberts, 2008). 

 

2.2.2 Control of spermatozoa formation 

Spermatogenesis is a highly synchronised process that is under endocrine regulation by the 

hypothalamus-pituitary-testis axis and is a tight interaction between Leydig cells, Sertoli 

cells and sperm primordial germ cells. At the paracrine level, this process is controlled by 

the secretion of hypothalamic gonadotrophin releasing hormone (GnRH) that stimulates the 

secretion of LH and FSH from the anterior pituitary gland (McLachlan, 2000). GnRH is 

secreted in frequent and intermittent burst which last for a few minutes and causes the 

discharge of LH and FSH from the anterior pituitary which occurs almost immediately. The 
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episodes of LH last from 10 to 20 minutes and occur between 4 to more than 8 times every 

24 hours (Senger, 2003). LH acts on the Leydig cells, (Figure 6A), stimulating them to 

synthesize and secret testosterone which is transported to the adjacent vasculature and the 

Sertoli cells. In the Sertoli cells, testosterone is converted to dihydroxytestosterone which 

promotes spermatogenesis. Testosterone secretion by Leydig cells in response to LH is short 

and pursatile. The Sertoli cells also produce estradiols.  FSH binds to Sertoli cells and 

spermatogonial membranes in the testes and stimulates spermatogenesis (Amory and 

Bremner, 2001).  Under the stimulating influence of FSH, Sertoli cells produce a hormone, 

Inhibin, which in turn inhibits the release of FSH from the anterior pituitary (Anawalt et al., 

1996; McLachlan et al., 1988). 

 

Figure 6. Relationship between GnRH, LH and FSH in the male in the control of 

spermatogenesis. Episodes of all three hormones occur between 4 and 8 times in 

every 24 hours. Lower FSH profile compared to LH is due to inhibin secretion by 

the Sertoli cells. (Figure taken from Senger, 2003). 

Figure 6 illustrates the relative profiles of these hormones in the control of sperm production. 

Testosterone and estradiol in the blood act on the hypothalamus and exert a negative 

feedback on the production of GnRH and, in turn, LH and FSH release is reduced (Senger, 

2003). 
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2.3 Fertilization in bovine 

2.3.1 Sperm reservoir  

At mating, the bull deposits his semen in the anterior part of the vagina. The numbers of 

spermatozoa deposited are usually in the order of > 5 billion, but about 70-75% of this 

ejaculate is discharged post mating via vagina or eliminated in the uterus. A certain 

population is rapidly transported by contractions of the myometrium towards the oviduct 

(Figure 2B). These ascending spermatozoa rapidly colonise the utero-tubal junction (UTJ) 

and the isthmus part of the oviduct in very reduced number (thousands to 1-2 x 10
5
 

spermatozoa) as compared to the original sperm population. The sperm cells bind to the 

epithelial cells in this region of the oviduct to form an oviductal sperm reservoir (Suarez et 

al., 1997). After ovulation, the sperm cells are gradually released from this region and they 

move to meet the female gamete at the ampullary isthmic junction (AIJ). Hunter (Hunter et 

al., 1980), was the first to propose the term „functional sperm reservoir‟ for the caudal 

isthmus. Sperm reservoirs have been found in the oviducts of humans (Baillie et al., 1997), 

pigs (Hunter, 1981), cattle (Hunter et al., 1991), hamster (Smith and Yanagimachi, 1991), 

mice (Suarez, 1987) and sheep (Hunter and Nichol, 1983). The formation of these reservoirs 

ensures that a suitable number of viable, potentially fertile spermatozoa are available for 

fertilization. It has also been described that a controlled release of sperms from the reservoir 

in a limited number diminishes the risk of polyspermy, a condition that leads to 

developmental failure of the zygote (Hunter, 1995). 

Several molecules are thought to be implicated in the interaction between spermatozoa and 

epithelial cells in the formation of this reservoir in cattle. This binding appears to be quite 

strong since repeated flushing is required to release bound sperms (Smith and Yanagimachi, 

1990). Enzymatic treatment of explants also proved unsuccessful for releasing bound sperms 

(Raychoudhury and Suarez, 1991). Specific carbohydrates e.g. fucose, particularly the 

trisaccharide Lewis-a, have been recognised to be involved as a component of the oviduct 

receptor for bull sperm (Lefebvre et al., 1997; Suarez et al., 1998). PDC-109 (BSP-A1/-A2), 

a product of seminal vesicles and a member of a family of major heparin binding proteins 

which is bound to the sperm plasma membrane via their phospholipid binding domain at 

ejaculation (Desnoyers and Manjunath, 1992), has been identified as a fucose binding 

protein that mediated binding to the oviduct (Gwathmey et al., 2003; Ignotz et al., 2001). 

Annexins (ANXA1, ANXA2, ANXA4 and ANXA5) were identified as candidates for the 
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epithelium sperm receptors (Ignotz et al., 2007). These annexins contain fucose and bind 

with high affinity to heparin and related glycosaminoglycans. 

Sulfated conjugates (Talevi and Gualtieri, 2001) and disulfide reductants (Gualtieri et al., 

2009; Talevi et al., 2007) have been shown to be powerful inducers of release of 

spermatozoa adhering to in vitro-cultured oviductal epithelium. These classes of molecules 

are similar to heparin-like glycosaminoglycans and reduced glutathione (GSH) respectively, 

which are present at physiologically high levels in bovine oviductal fluid at estrus (Lapointe 

and Bilodeau, 2003; Parrish et al., 1989). Both inducers have been shown to act on sperms 

and sperm release accompanied by the reduction of surface protein disulfides to sulfhydryls 

(Gualtieri et al., 2009; Talevi et al., 2007). The mechanism may directly or indirectly affect 

the sperm adhesion molecule, causing loss of affinity for the receptor on oviductal 

epithelium. As each BSP has a heparin binding site and four disulfide bonds (Gwathmey et 

al., 2006), it has been speculated that the above inducers may directly modulate the affinity 

of BSP proteins on sperm surfaces for oviductal epithelium. 

2.3.2  Capacitation 

As mentioned earlier (2.2.1), produced sperm cells remain within the epididymis during 

which they acquire fertilisation competence. At ejaculation, they become motile and are 

conditioned by seminal fluid constituents although they are not yet able to fertilize the 

oocyte. During their migration within the female genital tract, they undergo a series of 

controlled biochemical and membranous changes termed capacitation. Capacitation is 

defined as the series of transformations that spermatozoa normally undergo during their 

migration through the female genital tract, in order to reach and bind to the zona pellucida, 

undergo the acrosome reaction, and fertilise the egg (deLamirande et al., 1997). This process 

was first described by Chang, (Chang, 1951) and Austin, (Austin, 1951) when they realised 

that spermatozoa were not able to fertilise eggs unless they reside in the female genital tract 

for a specific period of time. 

Well recognised events accompanying capacitation of mammalian sperm are; an increase in 

sperm intracellular Ca
2+

 concentration, increased membrane fluidity and phosphorylation of 

protein tyrosine residues (Visconti et al., 2002). Efflux of cholesterol from sperm plasma 

membrane decreases cholesterol/phospholipids ratio. This could account for membrane 

fluidity changes and redistribution of membrane proteins observed during capacitation. 
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Serum albumin, which is an essential ingredient of in vitro capacitation media is believed to 

be an extracellular acceptor of cholesterol, facilitating its removal from the membrane 

(Davis et al., 1979). An increase in the concentration of Ca
2+

 is the most fully characterised 

biochemical event and has been demonstrated in several species (Yanagimachi, 1994) 

including humans (Baldi et al., 1991; Garcia and Meizel, 1999). Studies have also indicated 

the dependency of capacitation on HCO3
-
 level (Lee and Storey, 1986; Visconti et al., 1995). 

This increase in influx of HCO3
-
 may be responsible for the increase in pH observed during 

capacitation. Increased levels of these ions are suggested to be responsible for the 

physiological activation of adenyl cyclase and the cAMP signalling pathway (Figure 7). It 

has been shown that Ca
2+

/ Calmodulin can activate synthesis of cAMP by adenyl cyclase 

(Gross et al., 1987). In contrast, Ca
2+ 

has also been demonstrated to inhibit protein tyrosine 

phosphorylation in human sperms the first 2 hours of in vitro capacitation  (Luconi et al., 

1996), suggesting that Ca
2+

 has both positive and negative effects on sperm capacitation and 

related signalling  events. 

 

Figure 7. Schematic representation of the major events that occur under conditions 

that lead to capacitation and development of hyperactivation states. Changes in 

plasma membrane fluidity due to loss of cholesterol, influx of Ca
2+

 and HCO3
- 
have 

been reported to play a primary role in the capacitation process.  Remodelling of the 

sperm membrane phospholipids and activation of phospholipases also affect the 

architecture of the membrane. Activation of adenyl cyclase activity which increases 

the generation of cAMP and subsequent activation of PKA is proposed to be a 

consequence of influx of Ca
2+

 and HCO3
- 
. PKA activation leads to the activation of 

PTK  which then phosphorylates various proteins leading to capacitation. The 

involvement of ROS, NO, MAPK have also been reported. (MAPK; mitogen-

activated protein kinase, ROS; Reactive oxygen species, NO; Nitrogen oxide). 

(Figure taken from (Baldi et al., 2000)). 
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Protein tyrosine phosphorylation changes associated with capacitation in sperm cells have 

been demonstrated in several species, including the mouse (Visconti et al., 1995), bull 

(GalantinoHomer et al., 1997), humans (Leclerc et al., 1996) and boar (Kalab et al., 1998). It 

has also been reported that in sperm cells of these species, the increase in protein tyrosine 

phosphorylation is regulated by a cAMP dependent pathway that involves protein kinase A 

(PKA), (GalantinoHomer et al., 1997; Kalab et al., 1998; Leclerc et al., 1996; Visconti et al., 

1995). Since PKA cannot directly phosphorylate proteins on tyrosine residues, other 

mechanisms such as activation of protein tyrosine kinase (PTK), or inhibition of 

phosphotyrosine phosphatase are probably involved. PKA could also directly or indirectly 

phosphorylate proteins on serine or threonine residues, priming them for subsequent 

phosphorylation of tyrosine residues. Increase in activity of PTK will lead to 

phosphorylation of various proteins, in the sperm cell, the location (fibrous sheath, 

membrane; flagellum, head) of which will vary with the degree of capacitation achieved.   

Reactive oxygen species (ROS) such as superoxide anion generated when spermatozoa are 

incubated under aerobic conditions have been implicated in cAMP dependent events of 

capacitation and hyperactivation (Delamirande and Gagnon, 1995) (Figure 7). Ca
2+

 influx 

and generation of ROS appear as the earliest events of capacitation since they are initiated 

immediately following incubation under capacitation conditions (Baldi et al., 1991; 

Delamirande and Gagnon, 1995). The involvment of protein kinase C (PKC) and ras-MEK-

MAPK (mitogen-activated protein kinase) pathways in the capacitation of sperm cells have 

also been reported (Baldi et al., 2000 ). 

Capacitation is a fundamental process that has been reported to occur as a consequence of 

interaction between spermatozoa and epithelial cells (Yanagimachi, 1994). However, this 

process can be triggered in vitro using known capacitating agents e.g. heparin and fucoidan. 

Sperm binding to oviductal epithelial cells has been shown to be dependent on the 

capacitation status of spermatozoa, and only non capacitated sperms exhibit binding 

(Lefebvre et al., 1997; Smith and Yanagimachi, 1991). In addition, it has been reported that 

released sperm cells exhibit characteristics of capacitation, including raised intracellular Ca
2+

 

and protein tyrosine phosphorylation (Gualtieri et al., 2005). 

2.3.3 Hyperactivation and acrosome reaction 

Sperm capacitation is correlated with changes in sperm motility pattern termed 

hyperactivation. Hyperactivation is a type of vigorous, progressive, whiplash, high amplitude 
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sperm motility display that has been observed in several species including hamster 

(Yanagimachi, 1994), pigs (Suarez et al., 1992) and human (Robertson et al., 1988; 

Sukcharoen et al., 1995). This process develops within the female genital tract and is 

suggested to allow spermatozoa to detach from the epithelium of the oviduct and swim 

towards the oocyte (Delamirande and Gagnon, 1995). 

As hyperactivated spermatozoa swim up the oviduct, they make contact with the granulosa 

cells surrounding the oocyte. Hyaluronidase enzymes on the surface of sperm head help pave 

a way through the granulosa cell layer to the zona pellucida (ZP). Binding of sperm head to 

zona pellucida glycoprotein (ZP3) induces exocytotic release of acrosomal enzymes (Baldi 

et al., 2000). This is termed the acrosome reaction. The acrosomal enzymes help the sperm 

head to tunnel through the zona pellucida and also alter the sperm head so that it can bind to, 

and fuse with, the plasma membrane of the egg (Alberts, 2008). Hyperactivated motility of 

the spermatozoa facilitates penetration of the zona pellucida (Figure 9). 

 

Figure 9. The sequences of events that occur as spermatozoa approach a 

mammalian oocyte. 1) Penetration of granulosa cell layer by sperm head and 

subsequent binding to zona pellucida glycoprotein. 2) Release of acrosomal 

enzymes that digest a path through the zona pellucida. 3) Hyperactivated motility 

propel sperm cell toward oocyte plasma membrane. 4) Fusion of egg cell 

membrane with sperm cell membrane, followed by release of content into egg 

cytoplasm. Cortical reactions thicken egg plasma membrane to prevent 

polyspermia. Fusion of sperm pronucleus and egg pronucleus markes the 

fertilization process. (Figure taken from Alberts, 2008). 
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Only capacitated sperms are able to undergo the acrosome reaction in response to 

physiological stimuli. As soon as the sperm cell binds to and fuses with the oocyte plasma 

membrane, cortical reactions are induced with the subsequent modification of ZP, to avoid 

polyspermy (Alberts, 2008).  

2.4 Cryopreservation of semen 

Artificial insemination (AI) is the most important reproductive biotechnological technique 

that has been applied in domestic animal breeding (Waterhouse, 2007). This technique 

provides a cost effective way of disseminating male genes irrespective of geographical 

borders, and allow females to be inseminated with semen from sires with desirable traits, 

thus increasing the progeny of those sires. It also reduces the risk of transmission of 

infectious diseases since no animal contact is involved, and a strict heath management and 

control of sires and semen is carried out. 

In order that semen is transported to different parts of the country and internationally, there 

is need for preservation. The primary intention of semen preservation is to extend the life 

span and biological functionality of spermatozoa (Waterhouse, 2007). Spermatozoa are not 

adapted to prolonged in vitro storage, but have evolved to thrive at a relatively constant 

physiological temperature and environment provided by the reproductive tract. The plasma 

membrane serves as the main physiological barrier to the external environment. Its structural 

and functional integrity is necessary for sperm survival and fertilisation. The plasma 

membrane is the primary site for functional damage experienced during semen preservation 

though the nucleus and the flagellum are also altered. Semen extenders used during 

preservation should provide a stable environment that prevent bacterial growth, fluctuations 

in pH and osmotic pressure, and ensure sustained nutritional availability (Johnson et al., 

2000; Vishwanath and Shannon, 2000). Both egg yolk (EY) and milk are useful as thermal 

membrane protectors during cooling from physiological temperature (Johnson et al., 2000; 

Vishwanath and Shannon, 2000). 

The discovery of the cryoprotective properties of glycerol led to the development of semen 

preservation at subzero temperatures. Cryopreservation of semen entails the storage of 

semen in liquid nitrogen (-196
о
C). This is thought to maintain sperm fertilizing capacity 

indefinitely (Vishwanath and Shannon, 2000). In Norway, all AIs in bovine have been 

performed with frozen-thawed semen diluted and cryopreserved in skimmed milk egg york 
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extender (SMEY) (Curtis, 1961) since the 1960s and until 2005. Despite the cryoprotective 

effect of glycerol, a substantial population of spermatozoa die due to the physical and 

chemical stress exerted upon them during the cooling, freezing and thawing processes 

(Hammerstedt et al., 1990). Cells experience membrane damage characterised by an 

irreversible loss of permeability, ultrastructure and integrity. Cryopreservation and in vitro 

incubation of frozen thawed bull semen has been found to affect DNA chromatin packaging. 

Sperm cells with loose chromatin packaging are more susceptible to DNA denaturation 

(Waterhouse et al., 2010). Sperm cells with damaged chromatin are able to fertilise the egg, 

but the zygote fails to develop. 

2.5 Evaluation of sperm quality 

The ultimate mission of each sperm cell is to successfully penetrate and fertilise the oocyte, 

followed by normal and sustained development of the embryo. In order to accomplish this 

mission, spermatozoa need to be fully competent. The membranes, organelles and genomes 

must be fully functional to enable the sperm cell overcome the biochemical and molecular 

challenges associated with fertilisation. Several sperm attributes are associated with different 

steps of the fertilisation process. This has resulted in the development of a range of assays to 

evaluate sperm competence in relation to fertilisation process (Rijsselaere et al., 2005). The 

complexity of sperm fertilisation ability reduces the likelihood of a single assay being able to 

predict the fertility potential of semen samples. However, combining a set of assays could 

increase the chances of predicting differences in fertility potential between samples. 

Conventional semen evaluation such as volume, sperm concentration, gross morphology and 

percentage motile spermatozoa is likely essential at AI stations in eliminating samples with 

obviously poor qualities. Light microscopy is routinely being used to assess motility and 

sperm morphology. The principal limitations of microscopic assessment are; subjectivity, 

variability and low sperm numbers assessed (Rijsselaere et al., 2005). The development of 

computer-assisted sperm analyser (CASA) systems has demonstrated improved objectivity 

of motility assessments as well as simultaneous assessment of motility patterns for 

individual and large number of spermatozoa (Rijsselaere et al., 2005). However, the 

relationship between overall motility of semen sample and fertility has not been consistent 

(Gadea, 2005), probably because motility is only one of the several parameters that influence 

sperm quality. 
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In vitro fertilization (IVF) tests are the most suitable to assess sperm functionality in vitro 

since they cover several aspects of sperm quality simultaneously (Gadea, 2005). However, 

they are time-consuming and expensive to perform. Flow cytometry has also been employed 

in the assessment of sperm attributes (Graham, 2001). This technique employs a sheath fluid 

that forces cells in a single stream through a flow cell with an analysis point where cells are 

intercepted by a beam of laser radiation. The power of this technology is that several sperm 

attributes can be assessed simultaneously and thousands of cells are handled in less than a 

minute. This technique is also highly objective with a high degree of experimental 

reproducibility. Flow cytometry is readily used to predict sperm parameters such as plasma 

membrane integrity, acrosome integrity, capacitation status, DNA integrity and 

mitochondrial functionality. 

2.5.1 Plasma membrane integrity 

Like all animal cells, spermatozoa are surrounded and physically defined by a plasma 

membrane. Only membrane-intact spermatozoa have the potential to fertilise an oocyte 

(Waterhouse, 2007). Several membrane-impermeable dyes have been used to assess the 

integrity of spermatozoa plasma membrane. These include DNA binding propidium iodide 

(PI), Hoechst 33258, Yo-Pro-1 and ethidium homodimer-1, which only binds DNA of non-

membrane-intact spermatozoa (Althouse and Hopkins, 1995; Kavak et al., 2003; Matyus et 

al., 1984; Waterhouse et al., 2004). Cell-permeable fluoregenic substances like 

carboxyfluorescein diacetate (Garner et al., 1986) or calcein acetomethyl ester (Donoghue et 

al., 1995) are also used. These compounds enter sperm cells and are converted by esterases 

in viable cells to non-permeant fluorescent compounds that are retained in the cytoplasm 

(Gillan et al., 2005). Recently, membrane permeant DNA fluorochromes, such as SYBR-14, 

which label viable cells with functional ion pumps have become more popular.  A 

combination of SYRB-14 and PI stain is readily used to assess the proportion of viable 

spermatozoa in semen samples (Garner et al., 1994). Anzar et al (Anzar et al., 2002) has 

reported a significant correlation between fertility (56 days NR rate) and the percentage of 

plasma membrane intact spermatozoa for fresh bull semen, but not for frozen thawed semen. 

However, (Waterhouse et al., 2006) found no such correlation using the same technique 

(flow cytometry). 
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2.5.2 Acrosome integrity 

Prematurely acrosome-reacted spermatozoa lose their ability to recognise, bind and penetrate 

the zona pellucida (ZP) to effect fertilisation (Yanagimachi, 1994). Acrosomal integrity is 

commonly measured by flow cytometry using a plant lectin conjugated with a fluorescent 

probe, such as Fluorescein isothiocyanate (FITC), that binds specifically to carbohydrate 

moieties on acrosomal lipoproteins. Pisum sativum agglutinin (PSA) is a lectin from the pea 

plant that binds to α-galactose and α-mannose moieties of acrosomal matrix. Since PSA 

cannot penetrate an intact acrosomal membrane, only acrosome reacted spermatozoa are 

labelled (Flesch et al., 1998). The most commonly used lectin is Arachis hypogea (peanut) 

agglutinin (PNA) which binds to β-galactose moieties associated with the outer acrosomal 

membrane in acrosome reacted live sperm cells (Flesch et al., 1998). PNA is preferred 

because it is believed to display less non specific binding (Graham, 2001). According to 

Waterhouse (Waterhouse et al., 2006) the percentage of live acrosome intact spermatozoa 

showed no relation with field fertility.  

2.5.3 Capacitation status 

Prematurely capacitated spermatozoa loss their fertility potential on reaching the oocyte. 

Capacitation status is assessed microscopically using the fluorescent antibiotic 

chlortetracycline (CTC) (Fazeli et al., 1999). CTC binds to the spermatozoa membrane in a 

Ca
2+

/Mg
2+

-dependent manner resulting in 3 staining patterns. These patterns are 

characteristic of non-capacitated, capacitated acrosome-intact and capacitated acrosome-

reacted spermatozoa (Dasgupta et al., 1993; Ward and Storey, 1984). This staining technique 

has been adopted for flow cytometry, but with unsatisfactory results. There is an overlap of 

fluorescence intensities of non-capacitated and capacitated spermatozoa, making it not 

possible to distinguish the sperm populations with specific staining patterns (Maxwell and 

Johnson, 1997). Merocyanine (MC) 540 is used as an alternative during flow cytometric 

assessment. It detects changes in the order of phospholipid bilayer packaging in the outer 

leaflet of the plasma membrane (Williamson et al., 1983). An increase in packaging disorder 

which occurs during capacitation allows MC 540 to intercalate within the hydrophobic core 

of the membrane. The consequence of this is an increase in fluorescence intensity during 

capacitating conditions (Harrison et al., 1996). 
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2.5.4 Mitochodrial functionality 

Several mitochondria at the middle piece of spermatozoa are involved in energy production. 

Tricarboxylic acid cycle in the matrix of mitochondria, followed by oxidative 

phosphorylation in cristae of inner mitochondrial membrane (IMM) produces enormous 

amounts of energy in the form of Adenosine triphosphate (ATP). This energy plays an 

important role in sperm motility needed to traverse the female tract and subsequently bind to 

and penetrate the ZP to effect fertilisation (Yanagimachi, 1994). Rhodamine 123 was 

amongst the first dyes used to selectively stain functional mitochondria of spermatozoa 

(Garner et al., 1997). This cationic dye fluoresces only in mitochondria that possess a 

functional proton gradient over the IMM, emitting green fluorescence. Another 

mitochondrial probe 5,5,6,6 tetra chloro 1,1,3,3 tetraethylbenzimidazyolyl carbocyanine 

iodide (JC-1) produces two fluorescence patterns i,e. green and red-orange depending on the 

strength of the potential across the IMM. Using flow cytometry, this allows for the 

discrimination of mitochondria with high potential (red-orange fluorescence) from those 

having low to medium membrane potential (green fluorescence). The phenomenon of 

producing red-orange fluorescence is known as J-aggregate formation (Garner and Thomas, 

1999). The more recent Mito Tracker
®
 (MT) dyes accumulate selectively in mitochondria 

with functional potential over the IMM. Several forms are available with different absorption 

and emission spectra, making it suitable for multi-parameter assays. Independent studies 

using Rhodamine 123 (Ericsson et al., 1993) and Mito Tracker Red CMXRos (Waterhouse 

et al., 2006) revealed the lack of significant correlation between fertility and mitochondrial 

functionality.  

2.5.5 DNA  integrity 

The compact and inert nature of sperm chromatin is very essential for protection of the 

paternal genome during transport after release in the female genital tract. The first bull 

spermatozoa attribute assessed by flow cytometry was chromatin structure (Evenson et al., 

1980). Assessment of DNA integrity is mostly done either using the Sperm Chromatin 

Structure Assay (SCSA) or the Terminal deoxynucleotidyl transferase (TdT)-mediated 

deoxyuridine triphosphate (dUTP) nick labelling (TUNEL) assay. SCSA utilises the 

metachromatic properties of acridine orange (AO), which fluoresces green when bound to 

double DNA and  red when bound to denatured single stranded DNA. DNA denaturation and 

possible damage is reported by DNA fragmentation index (DFI), which is the ratio of red/ 



 35 

red + green fluorescence as detected using a flow cytometer (Evenson et al., 2002; Evenson 

and Wixon, 2006). TUNEL assay detects DNA fragmentation by exploiting the fact that a 

broken arm of DNA exposes several 3‟ hydroxyl (3‟OH) groups on the last deoxyribose 

sugar moieties (Gavrieli et al., 1992). TdT enzymes then catalyse the incorporation of dUTPs 

at this broken end. The dUTPs are either directly labelled with fluorescent dyes or indirectly 

conjugated with biotin followed by subsequent detections with streptavidin conjugated to 

fluorochrome by flow cytometry. Waterhouse et al. (Waterhouse et al., 2006) using flow 

cytometry realised a strong correlation between sperm DNA damage of Norwegian Red bull 

and field fertility. 

2.5.6 Need for new methods for evaluation of sperm quality 

Although several techniques and parameters exist for studying sperm quality, there is still a 

need for improved assays to predict fertilization ability. In order to design an assay for 

accurate prediction of fertility, a thorough evaluation of the steps necessary for fertilization 

should be performed (Braundmeier et al., 2002). These steps commence with the passage of 

sperm cells through the female reproductive tract to the site of fertilization and end with the 

successful first cell division of the diploid zygote. At the moment, the only bull sperm 

quality parameter that has been confirmed to relate to field fertility is chromatin integrity 

assessed by SCSA and TUNEL assays (Waterhouse et al., 2006). Techniques such as flow 

cytometry test sperm parameters on sperm cells themselves. But events that occur in vivo 

such as sperm binding to oviductal epithelial cells are needed to increase the prediction of 

semen fertility capacity. There is therefore a need for more good sperm quality assessment 

methods in vitro to avoid Geno from keeping bulls with low fertility in their breeding 

program. This will go a long way to reduce the cost and time invested in the breeding 

program. Geno can then be more confident of the quality of semen it supplies to its 

customers (farmers). Good quality semen shall enable the farmers to benefit from increased 

fertility and thus profitability. 
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2.6 Cultivation of Bovine Oviduct epithelial cells 

2.6.1 Isolation of BOECs and cell culture 

Several methods have been employed in the isolation of viable bovine oviductal epithelial 

cells from the oviduct. Mechanical techniques include; rinsing, squeezing and scraping after 

longitudinal dissection of the oviduct. Enzymatic techniques involve the use of collegenase 

and trypsin (Reischl et al., 1999; Walter, 1995). Mechanical methods require less time and 

materials, are easy to perform and minimise cell damage (Reischl et al., 1999). The rinsing 

technique represents a relatively harmless procedure, but the amount of cells harvested is not 

sufficient for cell culture experiments. Scraping and squeezing produce high yields of viable 

cells that can be used in experiments. Enzymatic digestion produce high yields of single 

BOECs, but it is time consuming and more expensive. However, cell viability tends to be 

reduced probably due to harsher treatments of the cells. 

Oviduct cell culture systems have been produced on several cell support materials, 

including; thermanox, cellulose nitrate, glass, gauze, nylon, polycarbonate and nucleopore. 

Thermanox, followed by glass and cellulose nitrate proved to support epithelial cell growth 

(Reischl et al., 1999). However, these cell support systems have a great effect on the 

differentiation status of cultured epithelial cells. Permeable support materials have also been 

shown to maintain cells more differentiated than non permeable materials (Reischl et al., 

1997). Different culture systems; static and perfusion systems have also been used in cell 

culture. Standard static culture systems hold culture media which is changed after a 

particular period of time. Perfusion culture systems maintain a constant flow of culture 

media over growing cells. Perfusion cultures tend to maintain morphological and 

physiological aspects of cultured cells for a prolonged period as compared to static system 

(Reischl et al., 1999). Oviduct specific features such as cell height, cilia, bulbous 

protrusions, secretory granules and physiological events such as gene expression patterns are 

maintained for a significantly longer period in perfusion system. In a direct comparison 

between BOECs grown in monolayer or in suspension culture, only suspended cells 

maintained cilia and secretory activity (Walter, 1995).  
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2.6.2 Oviductal glycoprotein 1 

Oviductal glycoproteins have been identified in mammalian species such as mouse (Kapur 

and Johnson, 1985), hamster (Leveille et al., 1987; Oikawa et al., 1988), rabbit (Oliphant and 

Ross, 1982), pig (Hedrick et al., 1987), sheep (Gandolfi et al., 1989; Sutton et al., 1984), 

cow (Boice et al., 1990; Malayer et al., 1988; Sendai et al., 1994), baboon (Fazleabas and 

Verhage, 1986; Verhage et al., 1989; Verhage and Fazleabas, 1988), and human (Verhage et 

al., 1988). Following studies with baboon (Verhage et al., 1989; Verhage and Fazleabas, 

1988), has shown that the secretion of oviduct specific glycoproteins is controlled by ovarian 

steroids. It has been suggested that these glycoproteins may significantly affect the 

fertilisation process and/or subsequent embryonic development (Boice et al., 1990). It has 

also been shown that these estrous dependent glycoproteins bind to embryos and aid 

development (Nancarrow and Hill., 1994). 

Bovine oviductal glycoprotein 1 (OVGP1), 120 kDa protein is expressed by OVGP1 gene 

(Gene ID: 281962). This gene is located on chromosome 3 of Bos taurus (NCBI). OVGP1 is 

known to be produced by non ciliated cells of the bovine oviductal epithelium (Boice et al., 

1990), and has been reported to be a marker for the embryotrophic ability of an oviduct cell 

culture system (Schoen et al., 2008). Cyclic and regional changes in the secretion of these 

glycoproteins in the oviduct of cows suggest that it is secreted in an oestrous dependent 

manner (Abe et al., 1993). A number of studies have suggested that the synthesis and 

secretion of OVGP1 by bovine oviduct can be modulated by ovarian steroids as previously 

shown in the synthesis of baboon specific oviduct glycoprotein (Boice et al., 1990; Malayer 

et al., 1988; Sendai et al., 1994; Verhage and Fazleabas, 1988). However, these suggestions 

have not been supported by direct studies demonstrating that ovarian steroids can increase 

the synthesis of OVGP1. Instead in a study by Sun et al. (1997), it has been shown that HCG 

as a surrogate for LH, can increase the synthesis of OVGP1 by decreasing the degradation of 

its transcript in BOECs. In that same study, estradiol had no effect on both OVGP1 protein 

level and gene expression level. In addition, estradiol showed no modifying effect on the 

stimulating action of HCG on OVGP1 gene expression (Sun et al., 1997). 
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2.7 Real-time PCR (qPCR) for analysis of gene expression 

Polymerase chain reaction (PCR) is a method for the amplification of short DNA sequences. 

This technique uses primers (short single stranded DNA sequences ca 20 nucleotides) 

designed to be complementary to specific regions of each of the two strands in the target 

DNA molecule. During the process, primers anneal and are extended by the help of different 

types of DNA polymerase enzymes so that a copy is made of the designated sequence. In 

order to separate the synthesised doubled stranded DNA, temperature is raised so as to break 

hydrogen bonds between complementary strands. This step necessitates the use of heat stable 

DNA polymerase enzymes in PCR (McPherson and Møller, 2006). In order to measure 

mRNA levels, reverse transcriptase PCR (RT-PCR) is used. In a first stage, mRNA is 

reverse transcribed into cDNA using either random hexa primers, gene specific primers or 

polydT primers. Reverse transcription is assisted by reverse transcriptase enzymes. This is 

followed by a denaturation phase during which the 2 strands separate. Primers that are 

complementary to specific strands are then allowed to anneal at the suitable temperature. The 

temperature is raised that allows the heat stable DNA polymerase enzyme to extend the 

DNA from the 3‟ end of the primers. The end of this extension phase marks the completion 

of one cycle of amplification. To start up the next cycle, temperature is first increased in a 

denaturation step (3.4.5). Before hybridization of the primers, temperature is adjusted to the 

primers used and extension by the DNA polymerase. These processes are repeated a selected 

number of cycles. The number of target DNA copies double after each cycle and the DNA 

copy number increases exponentially in the course of the process. The PCR products are 

usually analysed by agarose gel electrophoresis stained with ethidium bromide (3.5.1). This 

method does not allow for precise quantification of the target DNA. 

Real time PCR, also called quantitative PCR (qPCR) can provide a simple and elegant 

method of determining the amount of a target sequence or gene that is present in a sample. It 

is a form of PCR that allows for the simultaneous amplification and quantification of target 

DNA as data is collected throughout the PCR process rather than at the end. The general 

principle of this technique is similar to that of PCR, just for the fact that the amplified DNA 

is detected as the reactions proceed in real time.  As indicated above, it can be used to 

quantify the relative levels of mRNA by first reverse transcribing to cDNA. qPCR reactions 

can be monitored using SYBR Green 1 dye chemistry or TaqMan chemistry. SYBR Green is 

a fluorescent dye that binds only to double stranded DNA (dsDNA). It emits fluorescence 
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only when bound to dsDNA. An increase in DNA product during the reaction is 

accompanied by a corresponding increase in fluorescence intensity, which is then measured 

at each cycle (Dorak, 2006). However, SYBR Green binds to non specific PCR products 

such as primer dimers, thereby interfering with analysis.. This is normally checked by 

performing a melting curve analysis followed by a 2% agarose gel electrophoresis of qPCR 

product. This heat dissociation (PCR product melting curve) analysis begins with heating the 

PCR product at the end of PCR reaction. As the product melts, and the SYBR Green is 

released into the solution, its fluorescence intensity decreases. The instrument software then 

produces a negative first derivation curve of the fluorescence intensity curve over 

temperature, indicating the melting temperature (Tm) of the PCR product, which should be 

quite close to the predicted Tm of the PCR product. Use of SYBR Green 1 chemistry does 

not require any probe, thereby reducing assay setup and running cost. TaqMan chemistry 

uses fluorogenic probes to enable the detection of a specific PCR product as it accumulates 

during PCR cycles. Taqman probes are designed against specific sequences on target DNA 

and contain a reporter fluorochrome at the 5‟ end and a quencher at the 3‟ end (McPherson 

and Møller, 2006). The close proximity between reporter and quencher prevents 

fluorescence signals when the probe is bound to target sequence. During extension of the 

primer, the 5‟-3‟ exonuclease activity of the Taq DNA polymerase enzyme hydrolyses the 

probe into nucleotides, breaking the reporter-quencher proximity, allowing for reporter 

fluorescence signals to be detected after excitation.  An increase in the product targeted at 

each cycle by the probe results to a proportionate increase in reporter fluorescence signal. 

Taqman PCR have greater sensitivity than conventional PCR (Cao et al., 2007). Probes can 

also be labelled with different distinguishable reporter dyes, which allows amplification of 

two distinct sequences in one reaction tube (Applied Biosystems). 

The two commonly used methods to analyse data from real time PCR experiments are 

absolute quantification and relative quantification. Absolute quantification determines the 

input copy number of the transcript of interest, usually by relating the PCR signal to a 

standard curve. This is done in situations when it is necessary to determine the absolute 

transcript copy number (Schmittgen, 2001).  Relative quantification relates the PCR signal of 

the target transcript in a treatment group to that of another sample such as untreated control 

or a house keeping gene.  A standard curve can be produced from qPCR of serial dilutions of 

known concentration. The concentration of unknown samples can then be obtained from the 
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standard curve. The PCR efficiency can also be obtained from this dilution curves using the 

equation, E = 10
[-1/slope] 

(Dorak, 2006). 

 

2.8 Aim of the study 

The main aim of this study is to pave a way towards the development of sperm binding assay 

through the assessment of the binding potential of bull spermatozoa to in vitro cultured 

bovine oviduct epithelial cells (BOECs) obtained from NRF cows at estrus. In order to 

achieve this, the following tasks are intended to be performed: 

1) Establish primary cell cultures of BOECs and study growth rate. 

2) Characterize the BOECs cultures by immunostaining.  

3) Study the expression pattern of OVGP1 in BOECs with and without hormone (human 

chorionic gonadotrophin) stimulation. 

4) Induce capacitation on sperm cells and to establish chlortetracycline (CTC) staining assay 

for analysis of capacitation status. 

5) Study the binding of capacitated and non capacitated sperm cells to BOECs. 
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3 Materials and Methods 

3.1 Experimental plan 

Oviducts from NRF cows were dissected of surrounding connective tissues and BOECs 

mechanically squeezed out from the isthmus region. The epithelial nature of these cells in 

culture was established using antibodies against cytokeratin. Antibodies against vimentin 

were used to characterise cells of mesenchymal origin such as fibroblast and endothelial 

cells. Primary cells were cultivated and once they were 80-100 % confluent, they were 

trypsinated, counted and seeded out for further growth with the aim of estimating the relative 

growth rate of different passage cells. The expression pattern of OVGP1 with time in culture 

was studied using qPCR. BOECs from oviducts of cows at estrus were cultivated and time 

point samples isolated for RNA extraction. Subsequent reverse transcription of RNA to 

cDNA was performed and the cDNA used as template during qPCR analysis for these 

experiments. To investigate the effect of hormone stimulation on the expression pattern of 

OVGP1 in BOECs obtained from cows at estrus with time during cultivation, Human 

Chorionic Gonadotrophin (HCG) was used as a surrogate for LH. Capacitation was induced 

in sperm cells from NRF bulls using Ca
2+

 ionophore and assessed by CTC staining. Once 

BOECs cultures from oviducts of cows at estrus were 100% confluent, they were 

coincubated with capacitated and non capacitated sperm cells. The binding capacity of the 

sperm cell samples was studied using microscopy. The capacitation status of sperm cells 

bound to BOECs was determined by CTC staining (Figure 10).   
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Figure 10. Flow diagram showing the sequence of methods used in this project. 

Each bubble represents an experimental procedure used to achieve defined goals. 

3.2 Animal material 

Bovine oviduct epithelial cells (BOECs) and sperm cells used in the project were from the 

Norwegian Red cattle Norsk rødt fe (NRF). 

3.2.1 Norwegian Red cattle 

NRF is a high producing dairy breed of cattle developed in Norway which has been 

developed through crosses of dairy breeds with Scandinavian breeds including Red 

Trondheim, Red Polled Østland, Norwegian Red and White, Swedish Red and White. It has 

been selected for broad breeding objectives with emphasis on traits like fertility, milking 
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potential, milk flow and health. NRF has a relatively high reproductive performance. 

Average 60 days non return rate is approximately 73.4 %. Breeding for fertility traits over 

the last 35 years is likely an important factor contributing to such high fertility (Garmo et al., 

2008). Currently, 95% of 265,000 dairy cows in Norway are Norwegian Reds or Red 

crossbreds. Morphologically, it lacks the external uniformity expressed by most breeds but 

characterized by red or red pied for most parts. Fully grown cows have a live weight of 500-

600 kg. Production in the best herds exceeds 10.000 kg with top cows milking more than 

16.000 kg (Geno Global, 2010).  

3.2.2 Oviducts from Norwegian Red cows 

BOECs were harvested from NRF oviducts, collected from healthy cattle in a local 

slaughterhouse (Nortura, Ringsaker, Norway). The stage of the oestrous cycle of each animal 

was determined from the appearance of the corpus luteum according to Ireland et al. (Ireland 

et al., 1980) by the help of Biokapital SA veterinarian: stage I, days 1-4; stage  II days 5-10; 

stage III, days 11-17; stage IV, days 18-20. These correspond to early metestrus, late 

metestrus, diestrus and proestrus respectively (Senger, 2003). 

3.2.3 Sperm cells from Norwegian Red bulls 

Sperm cells used in this project were cryopreserved bull semen kindly donated by Geno SA. 

Semen straws were stored in liquid nitrogen and each straw contained 12 x 10
6
 sperm cells in 

250 µl cryopreservation extender. Fresh semen was also used. 

3.3 Cell culture of bovine oviduct epithelial cells (BOECs) 

3.3.1 Collection and isolation of cells 

At the slaughterhouse, uteri of dominant ovaries were dissected from the vagina, leaving the 

ovaries, uterine horn and oviduct in a single piece. The oviduct and ovary was separated 

from the uterus by cutting at the uterine horn and immediately sealing this end with a plastic 

clip cleaned in 95 % ethanol. The separated oviducts together with the ovaries were dipped 

into ice cold PBS (137 mM NaCl, 2.7 mM KCl, 1.76 mM KH2PO4, 8.1 mM Na2HPO4*2H2O 

at  pH 7.4, sterilized and stored at 4
o
C) supplemented with 50 µg/ml gentamycin antibiotic 

(Gibco, 15710) and transported on ice to the laboratory within one hour. Once in the 

laboratory, clips were taken off and oviducts pinned at the uterine junction for further 
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dissection of connective tissues and lymphatic vessels off the oviducts to avoid unnecessary 

debris. Approximately 2 inches of oviduct from the isthmus region was dissected and 

washed briefly in PBS supplemented with 50 µg/ml gentamycin. Using a microscope slide 

(cleaned in 95% ethanol), cells were mechanically extruded out of the lumen of the oviduct 

towards the uterine end into a Petri disc by gently pressing and pushing the slide over the 

exterior surface of the oviduct, while holding the other end in position with tweezers (Way, 

2006). To the cell clusters, 8 ml PBS with 50 µg/ml gentamycin was added and gently 

pipetted to assist in breaking up the cells. The cell suspension was then transferred to 15 ml 

falcon tube and centrifuged at 300 x g for 10 min at room temperature. More aseptic 

measures were then implemented to avoid contamination of cells by carrying out wash steps 

in a sterile workbench (Nuaire™). Once the first centrifugation was done, the supernatant 

was taken off and cell pellet resuspended in warm 37
o
C sterile PBS with 50 µg/ml 

gentamycin and centrifuged at 300 x g for another 10 min. After this, another centrifugation 

was carried out under same conditions and the cell pellet resuspended in 10 ml warm culture 

media, Delbecco‟s modified eagles media (DMEM)  (Sigma D5671) with 4500 mg 

glucose/L, supplemented with additives (2 mM  L-glutamine solution (Gibco 25030), 50 

µg/ml gentamycin and 10 % fetal bovine serum (Gibco 26140) ) at pH 7.4. The cell 

suspensions with primary BOECs were then further cultivated as described below. 

3.3.2 Cultivation and trypsination of cells 

BOECs were seeded out, 1 ml per well into 24 well plate cell culture plates (Falcon
® 

353847) with or without 12 mm round glass coverslips (Thermo Scientific, Menzel 

004710481) depending on the purpose and grown in an incubator (Nuaire™ ) at 39
о
C, 95% 

humidity and 5 % CO2. Media changes were carried out every 2-3 days until cells became 

confluent (Walter, 1995). At seeding, a cell count was performed using Bürker 

haemocytometer to evaluate the cell concentration. Cell viability was assessed using sterile 

filtered 0.4 % Tryphan blue dye (Sigma T8154). Cell suspension and Tryphan blue dye were 

mixed in a 1:1 volume ratio and dead Tryphan blue stained cells were counted using Bürker 

haemocytometer (Figure 11). Cells grown on cover slips were used for immunostaining and 

for sperm binding assay. 

Once cells were 80% confluent, culture media was removed and cells washed once in 500 µl 

sterile PBS. Then 200 µl 0.25% trypsin EDTA (Gibco code 25200-056) was added and 

immediately replaced with fresh 200 µl 0.25% trypsin EDTA warmed to 37
о
C in another 
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wash step. Cells were then incubated for 15 min at 39 
о
C. Cells were observed under a light 

microscope (Nikon Corporation, Japan) to confirm that they were dislodged from the plastic 

bottom of the culture plates. If not successful, non dislodged cells were further resuspended 

in fresh 200 µl solution for yet another 20 min. Cells were washed once in 500 µl PBS 

warmed to 37
o
C to dilute the trypsin and centrifuged at 300 x g for 20 min (Beckman 

Coulter).  The supernatant was removed and pellet resuspended in warm 39
o
C culture media 

with additives. Cell count was performed using Bürker haemocytometer. 

3.3.3 Cell count with Bürker haemocytometer  

A haemocytometer is a microscope slide which is used to determine the concentration of 

cells in a liquid sample.  

 

Figure 11. Burker haemocytometer counting chamber. It consist of 1 square 

containing 9 small squares, each of dimension 1 mm x 1 mm (e.g. A on the 

Figure) Each of these 9 small squares contain 16 smaller squares, each of 

dimension 0.25 mm  x 0.25 mm. Cells are counted in each of the next smallest 

square, diagonally as illustrated from A, B to C. The mean of the counted 

number x 10
4
 gives the number of cells per ml in the cell suspension. 

Bürker haemocytometer counting chamber consists of a big square, containing 9 small 

squares, each of dimensions 1 mm x 1 mm (Figure 11). Within each small square, there are 4 
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x 4 small squares again. Cells were counted on three of the next smallest squares (containing 

16 of the smallest squares) diagonally using a microscope (Leica microsystems, Germany). 

Cells were counted on the outside lines and only cells on two sides were considered. The 

mean of the counted number x 10
4 
gives the number of cells per ml in the cell suspension. 

3.3.4 Immunostaining  for characterization of BOECs 

Immunostaining was performed for examination of cytokeratin and vimentin expression in 

BOECs. BOECs were grown on coverslips in a 24 well plate until 80% confluence. Culture 

media in each well was replaced with 500 µl PBS in a first wash step. Cells in each well 

were then fixed in 300 µl 4% PFA for 10 min at room temperature. Following fixation, cells 

were washed 3 times with PBS for 5 minutes. In order to permeabilise the cells, each 

coverslip with cells was incubated in 300 µl 0.5 % Triton x-100 (Sigma 23,472-9) for 15 

min. This was followed by 3 times wash for 3 min each in wash solution (PBS with 0.1% 

Tween 20 (Sigma
® 

P5927)). Prior to antibody treatment, unspecific binding was avoided by 

incubating the cells in 500 µl of blocking solution (PBS with 2% BSA in 0.1% Tween 20) 

for 30 min.  Primary antibodies were diluted in blocking solution (1:100) and each coverslip 

with cells was incubated with 30 µl antibody solution for 45 min. This primary antibody was 

mouse anti human cytokeratin (clone AE1/AE3) (Dako, M3515). The antibody recognizes 

subtypes of the acidic and basic cytokeratin family that are identical to epithelial 

cytokeratins found on bovine oviduct (Reischl et al., 1999). Following incubation, unbound 

antibodies were washed off 3 times for 3 min each with 500 µl wash solution. Secondary 

antibody, Alexa Flour 555 goat anti mouse antibody (Invitrogen A21422) and nucleus stain 

Hoechst 33258 (Sigma, 14530) were diluted 1:100 and 1:80 respectively in wash solution 

(0.1% Tween 20 in PBS) in the dark. Each sample was incubated in 30 µl of secondary 

antibody solution for 30 min at room temperature in the dark. This was later accompanied by 

3 times wash for 3 min each using the wash solution. Coverslips for vimentin staining were 

washed for 10 min with 400 µl blocking solution. Direct staining for vimentin was carried 

out using mouse anti-vimentin (Sigma, V6630), conjugated with Alexa Fluor 488 

(conjugation performed with monoclonal antibody labeling kit, Invitrogen, A20181). 30 µl 

of Alexa Fluor 488 conjugated mouse anti-vimentin IgG diluted 1:100 in blocking solution 

was added to each coverslip and incubated for 40 min at room temperature in the dark. After 

incubation, coverslips were washed 2 times for 5 min each with 400 µl wash solution. This 

was followed by a single wash in 500 µl PBS. Microscope slides (631-1550, VWR) were 
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then prepared for mounting of coverslips. During this, 5 µl Dako fluorescent mounting 

media (Dako, S3023) was applied on specific positions on the slides. Using needle and 

forceps, coverslips were detached from the bottom of each well, immersed in dH2O and 

excess water allowed to drain off each coverslip on a filter paper. Each coverslip was then 

inverted on mounting media and little pressure exerted to ensure it is stuck on the media. 

Microscope slides housing coverslips were then protected from light in aluminum foil and 

allowed to dry and kept at 20
о
C until microscopic examination.  

Slides were analyzed using Nikon ECLIPSE Ti-U fluorescent microscope (Nikon 

Corporation, Japan) with the program Nikon NIS-Element Basic Research (B.R) version 

3.00. Alexa Fluor 488, Alexa Fluor 555 and Hoechst fluorescence was detected by using 

filter blocks shown in (Table 1). 

 

 

Table 1. Overview of fluorochromes used in the immunostaining procedure and 

corresponding filter blocks in the Nikon ECLIPSE Ti-U microscope 

Fluorochrome 

name 

Fluorochrome 

excitation/emission 

maxima (nm) 

Filter name on 

Nikon 

microscope 

Excitation 

wavelength area 

of filter 

Emission 

wavelength area 

of filter (nm) 

Alexa Fluor 488 495/519 FITC 465-495 515-555 (green) 

Alexa Fluor 555 555/565 TRITC 540/25 605/55  (red) 

Hoechst (33258) 345/460 DAPI 340-380 435-485 (blue) 

 

 

3.3.5 Hormone stimulation of BOECs 

Human chorionic gonadotrophin (HCG) (Sigma C0434) was used for stimulation of BOECs. 

A stock solution of 0.1 mg/ml HCG was prepared in sterile dH2O containing 0.1 % BSA, 

aliquoted and stored at -20 
о
C.  Before use, each aliquot was diluted 1:10 in sterile dH2O and 

used at a final concentration of 10 ng/ml in cell culture media (Sun et al., 1997). BOECs 
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isolated from oviducts at estrus were cultured in parallels in the presence or absence of 

hormone throughout the cultivation period. Time point cell samples were isolated for RNA 

extraction and OVGP1 expression analysis.  

3.3.6 Estimation of relative growth rate of BOECs 

After becoming confluent, primary BOECs were trypsinated (3.3.2) and seeded out to form 

first passage cells. In order to estimate the relative growth rate of first passage cells, 3 

different cell concentrations were seeded out during this first passage culture. These were; 2 

x 10
4
 cells/ml, 4 x 10

4
 cells/ml and 8 x 10

4
 cells/ml in 4 parallels. Cells proliferation was 

monitored every 24 hr using microscopy. In a similar exercise, first and third passage cells 

were seeded out at similar cell counts and relative growth rate monitored. 

3.3.7 Harvesting of BOECs for RNA analysis 

Time point cell samples of both unstimulated and hormone stimulation BOECs were 

harvested during cell cultivation for RNA extraction. Immediate cells were collected during 

isolation of cells from the oviduct by picking up cell clusters using tooth pick. These cells 

were resuspended in 500 µl PBS. Subsequent samples were obtained after trypsination of 

cells cultures as described earlier (3.3.2). Cell suspensions were centrifuged at 1300 x g for 3 

min and the supernatant was removed completely before proceeding to lysis of cells for 

RNA extraction. RNA was extracted immediately from each time point sample.  

 

3.4  Real-Time PCR (qPCR) analysis 

3.4.1 Total RNA isolation 

Total RNA was extracted from BOECs using RNeasy Mini Kit (Qiagen, 74104) according to 

the manufacturer‟s instructions, with an additional optimization step. Cells were lysed in 500 

µl Buffer RLT containing 10 µl β-Mercaptoethanol (Sigma M-3148) per ml. During this 

process, the tubes were vortexed to assist in loosening the cells. To homogenize the cells, the 

lysate was pipetted directly into a QIAshredder spin column (QIAshredder™ 796-54) placed 

in a 2 ml collection tube and centrifuged for 2 min at 10000 x g. 1 volume of 70% ethanol 

was then added to the homogenized lysate and well mixed without centrifugation. The lysate 
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(maximum 700 µl at once), including all precipitates that might have formed was transferred 

to a RNeasy spin column placed in a 2 ml collection tube. The column was then centrifuged 

for 15 sec at 8000 x g. In order to wash the spin column membrane, 700 µl Buffer RW1 was 

added and the spin column centrifuged for 15 sec at 8000 x g. Post centrifugation, the 

RNeasy spin columns was carefully removed from the collection tube and the tubes were 

completely emptied for reuse. In the next wash step, 500 µl Buffer RPE (containing 4 

volumes of 96% ethanol) was added to the spin column followed by centrifugation for 15 sec 

at 8000 x g. This wash step was repeated for 2 min so as to dry the spin column membrane to 

ensure ethanol free RNA elution. In an additional step, 500 µl of 95% ethanol was added to 

each column and centrifuged at 10000 x g for 2 mins. After this, the RNeasy spin column 

was placed in a new 2 ml collection tube and centrifuged at 9000 x g for 2 min to dry the 

column, so as to ensure an ethanol free elution. RNA elution was carried out in 1.5 ml 

collection tubes using 30-50 µl RNase free sterile water (warmed to 65
о
C). The water was 

added directly to the spin membrane before incubation for 4 min and centrifugation for 1 

min at 9000 x g. Eluted RNA samples were immediately placed on ice for quantification and 

quality assessments. 

3.4.2 First strand cDNA synthesis 

First strand cDNA was synthesized from total RNA using SuperScript®III Reverse 

Transcriptase  (Invitrogen, 18080-044) and random primer hexadeoxyribonucleotide mixture 

pd(N)6 (Amersham Pharmacia Biotech Inc). 1 µg total RNA was mixed with 1 µl 250ng/µl 

of pd(N)6 random primers  and 1 µl 10 mM dNTPs in a reaction volume of 13 µl. The RNA 

solution was heated to 65
о
C for 5 min and then immediately placed on ice (for at least 1 

min). Then 7 µl of reverse transcription mixture containing 4 µl 5 X First Strand Buffer, I µl 

0.1M DTT, 100 U SuperScript®III Reverse Transcriptase (Invitrogen,18080-044) and 20 U 

RNase OUT™ Recombinant Ribonuclease Inhibitor (Invitrogen, 696039) was added. The 

reverse transcription conditions were as follows: 25
о
C for 5 min, 50

о
C for 50 min and then 

inactivation of the enzyme at 70
о
C for 15 min. cDNA was stored at -20

о
C for later use. 

3.4.3 Testing of primer specificity 

Primers were designed to amplify Bos taurus  Oviductal glycoprotein 1 (OVGP 1) and 18S 

ribosomal RNA genes. Primers for Bos taurus OVGP 1 were designed using the Reference 

sequence in the GenBank with accession number NM 001080216.1 XM-611787. This 
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sequence was used to design primers using two programs, namely; Primer Express software 

from Applied Biosystem 3.0 and Primer BLAST at NCBI with the help of my supervisors. 

Primer pair against 18S ribosomal RNA gene was as used by Schoen et al (2008). To verify 

that the use of these primers (Table 2) resulted in the expected amplification products, qPCR 

was conducted and each product was analyzed by 2 % agarose gel electrophoresis and DNA 

sequencing. The PCR reaction mix consisted of 9.6 µl cDNA diluted 100 folds in 0.1 x TE 

buffer (1mM Tris pH 8.0, 0.1mM EDTA pH 8.0), 10 µl 2 x SYBR Green Power Master Mix 

(Applied Biosystem), 0.1 µM forward primer and reverse primers (Table 2) in a 20 µl 

reaction volume. The amplification conditions were 50
o
C for 2 min, 95

o
C for 10 min, 40 

cycles with 95
o
C for 15 sec, 60

o
C for 1 min, followed by a dissociation stage at 95

o
C for 15 

sec 60
o
C for 1 min, 95

o
C for 15 sec, 60

o
C for 15 sec. A negative control omitting cDNA was 

included. The samples were analyzed by electrophoresis on 2 % agarose gel.  

 

Table 2: List of oligonucleotide primers employed for study of bovine OVGP1 and 

18S ribosomal RNA gene by qPCR. Primer pair against 18S ribosomal RNA gene as 

used by Schoen et al. (Schoen et al., 2008). 

           

Forward(5‟→ 3‟)                                                       Reverse(5 ‟→ 3‟)                                     Product length         Tm (OC) 

   OVGP1  

 1)  TTGGCACCGTGAGGTTCAC                                 CCAGACCATCAAAGCCATGTG                   105bp                  54    

 2)  CAGTGTCTTGTCTTATGACTTACATGGA           CCAAGCTGTCGCCAGTAATTC                    126bp                  54 

 3)  CCTGCTGTCCCCTGCCAGGT                                GCCCTCTGTTCCTCTCCTTGAGCT              234bp                  60 

18S      

 1)  GAGAAACGGCTACCACATCCAA                         GACACTCAGCTAAGAGCATCGA                337bp                   60 
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3.4.4 Sequencing 

PCR amplification products were verified by DNA sequencing using BigDye Terminator 

v3.1 sequencing Kit (Applied Biosystem). First, 1 µl of the PCR product was treated with 

0.4 U Exo 1 (New England Biolabs) in a 5 x sequencing Buffer in a 5 µl reaction volume in 

order to digest unincorporated PCR primers. The samples were incubated at 37
o
C for 60 min 

followed by incubation at 85
o
C for 15 min, to inactivate the enzyme. This Exo 1 treated 

product was then added to 2 µl 5 X sequencing Buffer, 0.5 µl Big Dye Terminator v3.1, 0.32 

µM gene specific primers (forward and reverse in separate reaction tubes) in a total reaction 

volume of 10 µl. Sequencing reactions were set up according to Platt et al. (Platt et al., 

2007). First, an initial denaturation step at 96
o
C for 1 min, then 15 cycles with 96

o
C for 10 

sec, 50
 o

C for 5 sec, 60
 o

C for 1 min 15 sec was performed. This stage was followed by 5 

cycles with 96
o
C for 10 sec, 50

 o
C for 5 sec, 60

o
C for 1 min 30 sec and finally 5 cycles with 

96
 o
C for 10 sec, 50

 o
C for 5 sec and 60

o
C for 2 min. DNA was purified by precipitation in 3 

M Sodium acetate, 125 mM EDTA and 96 % alcohol in a total volume of 28 µl. DNA was 

pelleted by centrifugation at 3000 x g for 30 min at 4
o
C and washed with 35 µl 70 % ethanol. 

After centrifugation at 1650 x g for 10 min at room temperature, tubes with DNA were 

inverted to remove the supernatant. Another centrifugation at same speed was performed for 

1 min, the supernatant aspirated and samples air dried for 10 min. The nearly invisible pellet 

was finally dissolved in 10 µl deionized formamide (Applied Biosystem, L/N 1010002). 

DNA sequencing was performed in the 3130 x 1 Genetic Analyzer (Applied Biosystems) 

with sequencing analysis 5.3.1 software. The sequences were analyzed using NCBI Blast. 

3.4.5 Real-Time  PCR analysis 

The endogenous expression of OVGP1 was analysed using real-time PCR (q-PCR) (7500 

RealTime System, Applied Biosystems). 18S ribosomal RNA gene was used as reference 

gene. Reverse transcribed cDNA stored at -20
о
C (3.4.2) were used as template in the qPCR 

reactions and EvaGreen was used to monitor dsDNA synthesis. The qPCR reaction 

contained 5 x Hot FirePol
® 

EvaGreen
® 

qPCR Mix Plus (ROX) (Solis BioDyne), 0.1 µM each 

of gene specific sense and antisense primers and 15.6 µl 10-fold diluted cDNA (in 0.1 x TE 

buffer) in a 20 µl total reaction volume. Negative controls omitting cDNA were included in 

each run. The reaction was performed in 0.1 ml optical 96-well plates. Cycling conditions 

applied were 50
 о

C for 2 min, initial denaturation at 95
 о

C for 15 min, 40 cycles with 95
о
C 

for 15 sec (denaturation), 60
о
C for 15 sec (annealing) and 72

о
C for 40 sec (elongation). 
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Dissociation stage post amplification was included as follows: 95
 о

C for 15 sec, 60
 о

C for 1 

min, 95 
о
C for 15 sec and 60 

о
C for 15 sec.  

Data generated from qPCR were analysed using LinRegPCR program. This is a computer 

program developed by Ramakers et al. (Ramakers et al., 2003) that utilises linear regression 

analysis of fluorescence data from the exponential phase of PCR amplification to determine 

both the target mRNA quantity and the PCR efficiency. This program determines baseline 

fluorescence and does a baseline subtraction. It also sets a Window of Linearity (W-o-L) 

used to calculate the PCR efficiency of each sample and the mean PCR efficiency per 

amplicon. LinRegPCR then uses the mean PCR efficiency (Emean) of each amplicon in the 

sample, Nq, the fluorescence threshold set to determine Cq, (where Cq is the number of 

cycles needed to reach Nq) to calculate the starting concentration per sample (No). 

No = Nq/(Emean
Cq

)                                                                                               [1] 

The mean PCR efficiency is used because individual PCR efficiencies are too variable to 

give reliable results (Cikos et al., 2007; Karlen et al., 2007). The relative expression of the 

target gene is obtained from the ratio of No of target gene to that of the reference. i.e  

NO(target gene)/NO(reference)                                                                                          [2] 

Alternatively, the following equation from Pfaffl, (Pfaffl, 2001) was also used to calculate 

the fold change in expression.  

 Fold change = E
∆Ct(target)

/ E
∆Ct(reference)

  =       E1
∆Ct(to-tn)ovgp1

/ E2
∆Ct(to-tn)18S

           [3] 

E1 and E2 are the mean PCR efficiencies of target and reference genes respectively. ∆Ct 

represents change in Ct values. (Ct = Cq) and is given as part of the data in LinRegPCR 

results. 

Both methods give the same results and the later provides a means of verifying the results 

generated using the LinRegPCR method. 
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3.5 Standard DNA techniques 

3.5.1 Agarose gel electrophoresis 

Separation and identification of DNA fragments and RNA according to size was performed 

by agarose gel electrophoresis (Sambrook and Russel, 2001). 1 and 2 % gels in 1 x TAE 

buffer (40 mM Tris-acetate, 1 mM EDTA), stained with ethidium bromide at a final 

concentration of 0.1 µg/ml were used for analysis of the nucleic acid fragments. Samples 

were loaded with 6 x loading buffer (0.25 %  brom phenol blue, 0.25 %  xylene cyanol FF, 

30 % glycerol) in appropriate volume and run at 100 Volts for 30 min. 1 kb ladder (NEB, 

N3232L) or 100 bp ladder (NEB, N3231L) were used for size determination of DNA  

fragments RNA. Gel pictures were captured using KODAK program (Kodak Image station 

4000MM) with UV illumination. 

3.5.2 Quantification of RNA 

RNA was quantified using a NanoDrop ND-1000 Spectrophotometer (Saveen Werner). The 

purity of RNA was assessed from Abs 260/280 for DNA contamination and Abs 260/230 for 

ethanol and/or salt contaminants.  

3.6 Binding of sperms to BOECs 

3.6.1 Preparation of sperm cells 

Cryopreserved bull sperm cells in straws were thawed by incubating at 37
о
C for 1 min. Each 

straw was then emptied in an eppendorf tube and centrifuged at 900 x g for 10 min to allow 

removal of cryopreservation media (Rahul et al, 2001). After removal of the supernatant, the 

cell pellet was resuspended in 500 µl sperm tyrode albumin lactate phosphate (sp-TALP) and 

centrifuged for another 10 min at 900 x g. Following centrifugation, the supernatant was 

removed and pellet resuspended in 500 µl sp TALP. The sp TALP was prepared according 

to Parrish et al. (Parrish et al., 1988) without BSA (100 mM NaCl, 3.1 mM KCl, 25 mM 

NaHCO3,  0.3 mM NaH2PO4, 21.6 mM sodium lactate, 2.0 mM CaCl2, 0.4 mM MgCl2, 10 

mM pyruvate). After preparation, the sp TALP was prepared and sterile filtered through 0.22 

µm filter (Gelman Sciences, 4454), pH adjusted to 7.4 and stored at 4
о
C. (Gualtieri and 

Talevi, 2003).  Fresh sperm cells were diluted in 5 ml sp TALP and centrifuged at 800 x g 
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for 5 min. The supernatant was aspirated and cell pellet resuspended in 5 ml sp TALP for a 

second centrifugation at same conditions. The cell pellet was resuspended in 1 ml sp TALP 

and a sperm cell count performed using Bürker haemocytometer as mentioned in section 

3.3.3.  

3.6.2 Induction of capacitation 

A stock solution of Ca
2+

 ionophore (Sigma, A23187) was prepared at 2 mM in 

dimethylsulfoxide (DMSO) (Chemika, 41640), aliquoted in 25 µl volume and stored at -

20
о
C. For use, an aliquot was thawed at room temperature and used in a volume to give a 

final concentration of 10 µM in the sperm suspension. Following the preparation of sperm 

samples as described above (3.6.1), a sperm cell count was performed and sperm cell 

concentration adjusted to 2 x 10
6 

sperm cells/ml using a haemocytometer (3.3.3). The 

samples were divided into two portions, one of which was supplemented with Ca
2+

 

ionophore to a final concentration of 10 µM for the induction of capacitation. The samples 

were incubated at 39 
о 
C, 5% CO2 and 95% humidity for 2 hours (Fraser et al., 1995). 

3.6.3 CTC staining of sperm cells 

The methods used for CTC staining were essentially the same as those described for boar 

spermatozoa by Wang et al.(Wang et al., 1995). CTC was prepared daily before use by 

adding 750 mM CTC (Sigma C4881) and 5 mM D,L-cysteine (Calbiochem, cat 2430) to a 

buffer containing 130 mM NaCl and 20 mM Tris (Merck, 8382C019 950) and the pH was 

adjusted to 7.8 before the solution was filtered once through 0.22 µm filter and kept 

protected from light in aluminium foil at 6
о
C. For the staining, 100 µl of sperm suspension 

(~ 2 x 10
5 

sperm cells) was mixed with 100 µl of CTC and thereafter, 200 µl of 2 % PFA in 

PBS was added as fixative (Fazeli et al., 1999). Slides were prepared by placing 10 µl of the 

fixed suspension on a clean slide. One drop of 0.22 M 1, 4-diazabicyclo (2, 2, 2) octane 

(Sigma) dissolved in glycerol:PBS (9:1) was mixed carefully with the cell suspension to 

retard fading fluorescence (Fraser et al., 1995).  The droplet was covered with a coverslip 

and the slide was gently but firmly pressed under two folds of a tissue paper to absorb any 

excess fluid. The prepared slide was stored in the dark at 4
о
C and analysed on the same day 

of preparation. For analysis, a fluorescent microscope (Nikon Eclipse Ti) equipped with 

phase contrast and DAPI filter was used (Table 1). Images were captured using NIS Element 

BR 3.0 software. 
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CTC staining of spermatozoa bound to BOECs on coverslips was performed by adding 200 

µl of CTC staining solution to each well with cells and 30 sec later adding 200 µl of 2 % 

PFA in PBS as fixative. The CTC solution and fixative was replaced by 200 µl fixative 2 

min later to avoid uptake of CTC by BOECs (Fazeli et al., 1999). Slides were mounted using 

0.22 M 1, 4-diazabicyclo (2,2,2) octane (Sigma) dissolved in glycerol:PBS (9:1) and 

analysed as described above. 

3.6.4 Assessment of sperm binding to BOECs 

Once BOEC cultures were 100 % confluent, culture media was removed and the cells 

washed three times with 500 µl sp TALP. Cells were left in the last wash and incubated 

between 1-3 hours before the addition of sperm cells (Gualtieri and Talevi, 2003). Following 

induction of capacitation, BOEC monolayers were incubated with 500 µl sperm cell 

suspension (each suspension containing about 1 x 10
6 

sperm cells) and incubated for 1 hour 

at 39
o
C, 5 % CO2 in 95 % humidified chamber. At the end of the coculture, 500 µl culture 

supernatant was aspirated and each sample well washed 5 times with 800 µl PBS (Gualtieri 

and Talevi, 2003).  CTC staining of sperm cells bound to BOECs was carried out as 

described in section 3.6.3. Sperm binding and CTC staining patterns were analysed using 

fluorescent microscope (Nikon Eclipse Ti) equipped with phase contrast and DAPI filter 

(Table 1). 

3.7 Bioinformatics 

In this project, bioinformatics tools have been used for primer design, sequence alignment 

and to search for gene sequences. The universal Basic Local Alignment Search Tool 

(BLAST) at the National Centre for Biotechnology Information (NCBI), (www. 

ncbi.nlm.nih.gov/) was used to search sequences. Primer–BAST was also used to design 

primers. Some primers were also designed using Primer Express at Applied Biosystem 3.0. 

Sequencing outputs were analysed on NCBI using nBLAST (BLAST
®
).  
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4 Results 

4.1 Isolation and cultivation of primary BOECs 

Oviducts were isolated from the female reproductive organ of NRF cows. The morphology 

of this reproductive organ is as shown in figure 12A. Ovaries were found to contain several 

developing follicles and in some, active corpura lutea or corpus hemorrhagicum.  

 

Figure 12.A) Morphological appearance of freshly isolated female reproductive 

organ of a cow. Muscular uterine horns that curl away in opposite directions lead to 

the oviducts. Two ovaries on either side of the organ contain developing follicles 

that eventually release oocyte during ovulation.  Corpus hemorrhagicum formed 

from a freshly ovulated follicle which begins the synthesis and secretion of 

progesterone is visible on the right ovary. (B) Oviduct isolated from the female 

reproductive organ of a cow. The utero-tubal junction (UTJ) leads to a thin lumen, 

muscular walled isthmus with a narrow diameter, which makes up about one third of 

the entire oviduct. The ampulla constitutes the remaining two thirds and has a wider 

lumen and ends in an infundibulum containing numerous fimbriae at close 

proximity to the ovary. The isthmus is separated from thr ampulla by the ampullary-

isthmic junction (AIJ). This is the site where fertilisation takes place in the oviduct.  
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After dissections of surrounding connective and lymphatic tissues, the oviduct was 

successfully isolated from the rest of the system. Isolated oviducts showed a gradual increase 

in diameter from the isthmus region to the ampullary section (Figure 12B). The 

infundibulum, arising from the distal ampullary was at close proximity to the ovary.   

BOECs were successfully isolated mechanically by squeezing, from the isthmus of the 

oviduct. The cells responded positively to DMEM growth media with additives.  After 

seeding out the cell suspension in culture wells, cells appeared oval in shape. Phase contrast 

microscopy readily revealed ciliary activity in freshly obtained suspensions of BOECs. Cells 

were also found to form aggregates, some with actively beating cilia as illustrated in figure 

13A. Single cells with actively beating cilia were also found swimming within the cell 

suspension. These mobile cell aggregates were however detrimental to the culture as they 

displaced cells from their positions preventing them from adhering to the culture plate. 

Adhesion to the bottom of the cell culture well was noticed after 72 hours of culture. Non 

attached cells were washed away during culture media changes. Attached cells formed dome 

like structures and exhibited the tendency to form islands (Figure 13C,D). Ciliary activity 

was lost from the cultures after cells have adhered to the culture plate. Cell islands 

eventually merged after 7-10 days of culture to form confluent epithelial cell cultures (Figure 

13E,F). Viability of cells isolated by squeezing of the oviduct was also assessed using 0.4 % 

Tryphan blue dye. This evaluation was performed before cells were seeded in the culture 

well plate. Estimated cell viability was about 95 %. Counting of primary cells in suspension, 

prior to cultivation, using Bürker haemocytometer was difficult due to the presence of cell 

aggregates. From experience, cells from one oviduct were seeded in 80-10 wells of a 24 well 

culture plate, giving confluence cells after 7-9 days.  Once cells were confluent, they were 

trypsinated as described in section 3.3.2. Trypsination caused perfect dissociation of 

epithelial cells, producing single BOECs.  
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Figure 13. Phase contrast images of BOECs cultured in wells in 24 well plastic 

culture plate (Falcon) at 20 x magnification. (A) BOECs isolated mechanically from 

the isthmus of the oviduct. Cells appear as spherical bodies not attached to the bottom 

of the glass plate 24 hours after seeding. Cells form aggregates that float about in the 

culture media with actively beating cilia. The red arrow points at a typical mobile cell 

aggregate. (B) BOECs after 72 hours of culture. Some cells attached to the plastic 

plate well, forming dome shaped islands and begin to divide. (C and D) Appearance 

of cells after 4 days of culture. Cell islands broaden and get closer to each other as 

cells continue to grow and divide. E and F represent cells after 6 and 7 days of culture 

respectively. Cells have divided during the cultivation period and islands merge to 

give the appearance of 100 % confluence. White bars represent 50 µm. 

Study of growth rate of in vitro cultured BOECs was included in this study because the 

purpose was to have more cells of the same line as possible. Using cells of the same line is 

important in binding studies. In order to estimate the growth pattern of BOECs in culture, 

first passage and third passage cells were seeded out at varied cell concentration (2 x 10
4
 

cells/ml, 4 x 10
4
 cells/ml and 8 x 10

4
 cells/ml) in 4 parallels followed by cultivation, three 

times. Passage cells adhered to the culture plate within 24 hours after seeding. Third passage 

cells seeded out at 8 x 10
4
 cells/ml became 100 % confluent after 72 hours of culture while a 

similar cell concentration of first passage cells became 100 % confluent after 96 hours of 



 59 

culture. Third passage and first passage cells of 4 x 10
4
 cells/ml concentration were about 80 

% and 50 % confluent respectively after 72 hours of culture (Table 3). The primary intention 

was to include primary cells in this growth rate studies. This was however not possible 

because BOECs isolated using the method described in section 3.3.1 formed aggregates, 

making counting of cells impossible.  

Table 3. Representative growth rates of different concentrations of cell suspensions 

of first and third passage BOECs with time of in vitro culture. Third passage cells 

tend to grow faster than first passage cells under the same growth conditions. 

Cell 

passage 

Seeded cell   

concentration     

(cells/ml) 

Estimated cell confluence during culturing (%) 

48 hrs in culture 72 hrs in culture 96 hrs in culture 

1
st
 

passage 

cells 

2 x 10
4
 30% 40% 50% 

4 x 10
4
 40% 50% 65% 

8 x 10
4
 65% 85% 100% 

3
rd

 

passage 

cells 

2 x 10
4
 40% 75% 95% 

4 x 10
4
 60% 80% 100% 

8 x 10
4
 80% 100% 100% 

 

4.2 Characterisation of BOECs 

BOECs isolated and cultured were characterised using specific antibodies against the 

intermediate filament proteins, cytokeratin in epithelial cells and vimentin in cells of 

mesenchymal origin such as endothelial cells and fibroblast. Indirect immunostaining for 

cytokeratin, followed by direct immunostaining for vimentin including nucleus stain Hoechst 

was performed as described in section 3.3.4. Stained cells were identified using Nikon 

fluorescent microscope armed with phase contrast. Cell in culture stained positive for both 

cytokeratin and vimentin. A mixed cell population was noticed expressing cytokeratin and 

vimentin in a ratio of 60/40 (Figure 14). 
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Figure 14. Phase contrast and fluorescence images of bovine oviduct epithelial cells 

(BOECs) cultured on coverslips. (A) Illustration of cytokeratin positive cells in 

culture detected by indirect immunostaining. (B) Illustration of vimentin positive 

cells in BOEC culture detected by direct immunostaining. (C) Merged images of 

cytokeratin stained (red) and vimentin stained cells (green) in culture. Nucleus stain 

Hoechst was also used to stain the nuclei of all cell types in culture (blue). (D) 

Phase contrast view of a section of the BOEC monolayer. Images were captured at a 

magnification of x 20 and the white bars represent 50 µm.   

Some cells however did stain positive for both cytokeratin and vimentin. This in indicated by 

the presence of both red and green fluorescence in such cells (Figure 14C).  
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4.3 Study of OVGP1 expression in BOECs 

OVGP1 is a marker for the embryotrophic ability of an oviduct cell culture system. It is 

important to assess the ability of a BOECs culture in maintaining the expression of this 

marker gene. 

4.3.1 Optimization of RNA extraction 

Time point cell samples were isolated during cell culture for RNA extraction. The RNA was 

reverse transcribed to cDNA and used as template during qPCR to study the expression 

pattern of OVGP1 in BOECs cultured in vitro. At the start of this project, isolated cells were 

suspended in RNA stabilisation solution, RNAlater (Ambion, AM7021) and stored at 4
o
C 

for less than one month prior to RNA extraction. Prior to the start of the extraction 

procedure, recovery of cells from RNAlater after dilution in 50 % ice cold PBS proved very 

difficult even with centrifugation at 5000 x g for 5 min. This procedure resulted in both low 

RNA yields and low quality as assessed by Nanodrop spectrophotometry (3.5.2) and 1% 

agarose gel electrophoresis (3.5.1). The RNA extraction procedure from the manufacturer 

also resulted in RNA samples with impurities such as ethanol and salts as was indicated by 

low 260/230 ratio from Nanodrop data. All these greatly influenced downstream reactions 

such as cDNA synthesis and subsequent qPCR. In order to avoid RNA degradation and loss 

of cell samples that was noticed during RNAlater storage prior to extraction, RNA extraction 

was carried out immediately after isolation of cells at each time point. Introducing an 

additional wash step using 95 % ethanol as indicated in 3.4.1 greatly improved the quality of 

eluted RNA. A second elution step using eluted RNA solution also increased the RNA yield 

during the process.  

4.3.2 Evaluation of primers specificity for qPCR 

In order to study gene expression pattern of OVGP1 in BOECs cultured in vitro, primers 

were designed against OVGP1 gene as indicated on Table 2. In addition, primer set against 

18S ribosomal RNA was used as published by Schoen et al. (Schoen et al., 2008). The 

specificity of all primers was tested by analysing PCR products from qPCR on cDNA 

reverse transcribed from RNA (3.4.3). The qPCR products were first analysed by 2% 

agarose gel electrophoresis (3.5.1). The results from the gel electrophoreses (Figure 15) 

showed that the primers designed against both OVGP1 and 18S gave PCR products of about 
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the expected sizes. However, a higher molecular weight DNA band was visible as another 

18S primer product. This band was not noticed during subsequent qPCR products using 18S 

primer. It was thought to arise from an artefact during this particular experiment. 

 

Figure 15. Results from 2% gel electrophoresis of qPCR using different 

primer sets designed against OVGP1and 18S ribosomal RNA genes. qPCR 

was performed using cDNA reverse transcribed from RNA extracted from 

BOECs cutured in vitro. 1kb ladders are shown on outer lanes. All primer 

sets synthesized products of about the expected sizes (indicated by arrows) 

as shown in Table 2. 

Dissociation curve analysis of the qPCR reactions for OVGP1 primer set 1 and 18S primer 

set was also carried out to monitor for possible non specific PCR products such as primer 

dimmers. The analysis shows dissociation curves with single peaks for each reaction profile 

(Figure 16). These results reveal that each primer set produced unique PCR products and 

indicate that the primers are gene specific. The possibility of formation of primer dimmers is 

also eliminated.  
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Figure 16. Dissociation profiles of qPCR products using OVGP1 and 18S specific 

primers. qPCR performed on cDNA reversed transcribed from RNA isolated from 

time point samples of BOECs cultured in vitro. PCR reaction monitored using 

SYBR Green. Specific primer products have similar Tm. Single peaks for each 

reaction profile also reveal unique products and the absence of unprecedented PCR 

products. OVGP1 primer set products have a melting temperature (Tm) of about 

84.7
o
C while 18S primer products have a Tm of 87.5

o
C. 

  

DNA sequencing of qPCR products was performed as described in section 3.4.4. The 

purpose of DNA sequencing was to check the specificity of primers used during qPCR. The 

results from sequencing revealed mixed products with both primer sets 2 and primer set 3. 

Sequencing output of Primer set 1 qPCR products gave a nucleotide sequence which upon 

nBLAST revealed high match with OVGP1 (Supplementary figure 4). Sequencing output of 

qPCR products of 18S primer also gave a product matching 18S following sequence 

alignment (Supplementary figure 2). OVGP1 primer set 1 and 18S primer set were then 

chosen for use in the study of the expression of these genes respectively. 
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4.3.3 Gene expression analysis of OVGP1 in BOECs using qPCR 

After that the optimal primer pairs had been found, the expression pattern of OVGP1 in 

BOECs over time was to be studied using qPCR. cDNA synthesised was performed on RNA 

iolated from BOECs as described in section 3.4.2. The cDNA was further used as template 

for the analysis of OVGP1 gene expression over time by qPCR. The PCR mix and cycling 

conditions were as described in section 3.4.5. qPCR products were first analysed by 2 % gel 

electrophoresis in the presence of ethidium bromide and monitored by UV illumination.  

 

Figure 17. Gene expression of OVGP1 and 18S over time analyzed by 2% agarose 

gel electrophoresis of qPCR products using specific primer sets for OVGP1 (primer 

set 1) and 18S (Table 2). 100 bp ladders are indicated on the first lanes. 18S 

(R:reference) and OVGP1 qPCR products of each time point (D1R  refers to 18S 

expression of day of cell harvest, D2R for 24 hours of culture, D3R; 48 hours of 

culture, etc.) indicated adjacent to each other. OVGP1 expression is indicated next 

to the reference lane for each time point. A drop in the expression pattern of OVGP1 

is noticeable as the number of days of BOEC culture in vitro increases. Consistent 

expression of the 18S reference gene is visible from the permanent bands with time 

points. Unite bands in each lane is also indicative of the specificity of each primer 

pair. Negative controls without DNA bands are indicated on the outer lanes. 
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Gel image (Figure 17) revealed unique bands using gene specific primers against OVGP1 

(OVGP1 primer set 1) and the 18S reference gene. The products were also within the 

expected sizes (Table 2). The bands specific to OVGP1 seem to fade out as the number of 

days in in vitro culture increase. This indicates a drop in gene expression over time. 

Data generated from the qPCR reaction was further analysed using LinRegPCR (3.4.5) The 

relative gene expression profile of OVGP1 indicated a sharp drop in expression pattern 

during the first day of culture (Figure 18). There was a general drop in OVGP1 expression in 

BOECs with time of in vitro cultivation. This figure is representative from one of such 

experiments with two parallels for each time point. 

 

Figure 18. Relative gene expression of OVGP1 in BOECs cultured over time 

measured by qPCR analysis. RNA was extracted from time point samples as 

indicated, followed by cDNA synthesis and qPCR using primers specific to OVGP1 

(primer set 1) and 18S genes (Table 2). D1 represents day of cell harvest, D2; 24 

hours of culture, D3; 48 hours of culture, etc.  Relative expression was calculated 

with reference to 18S gene, based on the method described in section 3.4.5. The 

histogram shows a decline in the relative expression of OVGP1 with time in culture. 

A sharp drop within first day of culture is conspicuous. Error bars indicate the 

standard deviation between parallels at each time point. 
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BOECs were also cultured with 10 ng/ml HCG (Sun et al., 1997) in order to investigate the 

effect of this hormone as a surrogate to LH in influencing the expression of OVGP1 (this 

effect is described in 2.6.2. 10 ng/ml HCG was added to the cell culture after 24 hours of 

cultivation (represented by D2 on the histogram figure 19). RNA extracted from time point 

samples was reverse transcribed to cDNA as described in section 3.4.2  and used as template 

for qPCR. qPCR analysis was performed as described in section 3.4.5.  HCG did not show 

clear effect on OVGP1 expression as illustrated in figure 19. 

 

 

Figure 19. Relative gene expression of OVGP1 in cultured BOECs stimulated with 

HCG over time.The cells were cultured with 10 ng/ml HCG from day 2 and the 

gene expression was measured by qPCR analysis. RNA was extracted from both 

hormone stimulated and  unstimulated BOECs time points (D1 represents day of 

cell harvest, D2; 24 hours of culture, D3; 48 hours of culture), reverse transcribed to 

cDNA and used as template in qPCR using primers specific to OVGP1(primer set 1) 

and 18S (Table 2). Relative expression was calculated with reference to 18S gene, 

based on the method described in section 3.4.5. The histogram shows a decline in 

the relative expression of OVGP1 with time in culture as in figure 18. Lack of HCG 

effect on OVGP1 expression was also noticed.  
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4.4 Analysis of sperm cell capacitation status by CTC staining  

The capacitation status of sperm cells was studied using chlortetracycline (CTC) staining. A 

final concentration of 10 µM Ca
2+ 

ionophore was used for the induction of capacitation in 

sperm cells (3.5.2). The purpose of this exercise was to have a control over the quality of 

sperm cells during binding of sperm cells to BOECs. CTC staining was performed as 

described in section 3.6.3. For optimisation of this method, several experiments were carried 

out in an attempt to be able to distinguish between sperm cell populations on the basis of 

their capacitation status. Different sperm concentrations were used at the start to be able to 

obtain several sperm cells for analysis after the CTC staining procedure. Different 

centrifugation speeds were also used in order to obtain sperm cells free of extender particles, 

as this greatly affected microscopic examination after staining. Methanol and 

paraformaldehyde were also tested as fixatives during CTC staining procedures. Dako anti 

fade media also proved to be ineffective for use in this experiment.   

 

Figure 20. Three patterns of chlortetracycline (CTC) fluorescence staining observed 

on bull spermatozoa: (A) F pattern, with fluorescence over the whole head, depicted 

an uncapacitated sperm cell. (B) B pattern, with fluorescence free band in the post 

acrosomal region, typical of capacitated acrosome intact sperm cells. (C) AR 

pattern, with dull fluorescence over the whole head except for a thin band of bright 

fluorescence in the equatorial segment. (D) Illustration of CTC staining pattern of 

Cryopreserved semen without any induction of capacitation. It is characterized by 

predominance of F pattern. (E) Capacitated spermatozoa population after Ca
2+

 

ionophore treatment. Mixture of B and AR patterns are predominant in this sperm 

cell population. White bars represent 50 µm. 

AR 

B 
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The CTC patterns observed for uncapacitated, capacitated and capacitated acrosome reacted 

sperm cells were identical as those reported for mouse and human sperm cells (Dasgupta et 

al., 1993; Ward and Storey, 1984). For this reason, the same nomenclature was used. The 

three patterns are: „‟F,‟‟ uniform fluorescence on the head (uncapacitated sperm cell), „‟B,‟‟ 

with a fluorescence free band in the post acrosomal region (capacitated sperm cell); and 

„‟AR,‟‟ with fairly dull head fluorescence and often with a thin band of fluorescence in the 

equatorial segment (capacitated acrosome reacted sperm cell) (Figure 20A,B,C).  

CTC staining of sperm cells that were subjected to Ca
2+

 ionophore treatment revealed the 

predominance of B and AR patterns (Figure 20E). Cryopreserved semen samples were also 

dominated by F pattern after CTC staining of sperm cells (Figure 20D). 

4.5 Binding of sperm cells to BOECs 

Epithelial cells from the isthmus oviduct of NRF cows at estrus were cultured until 100 % 

confluence within 7-9 days and used for binding experiments with capacitated and non 

capacitated sperm cells. Fresh sperm cell suspensions containing about 1 x 10
6
 sperm cells 

were incubated with confluent BOECs monolayer and incubated at 39
o
C, 5% CO2 and 95% 

humidity for one hour as described in section 3.6.4. After incubation, BOEC monolayers 

were washed 5 times with PBS. Microscopic examination was performed to examine for 

possible sperm binding to monolayers. The capacitation status of spermatozoa bound to 

BOEC monolayers was analysed by CTC staining as described in section 3.6.3 and 4.4. 

Capacitated sperm cells showed less motility during incubation with BOECs monolayer. 

Most sperm cells appeared floating in the suspension, with little or no motility (Figure 21B). 

They appeared as if they were dead cells. After washing off unbound sperm cells, 

microscopy revealed very few sperm cells bound to the BOECs monolayer (Figure 21D). 

The few sperm cells that were bound to cultured BOECs monolayer did so with their heads, 

with the tails lashing.  Non capacitated sperm cells exhibited vigorous lashing of their tails 

after incubation with BOECs monolayer. This vigorous tail movement from many sperm 

cells created a current in the incubation media that made image capture difficult (Figure 

21A). Many sperm cells remain bound to epithelial cells with their heads even after five 

times wash with PBS. More than 95% of the attached sperm cells were motile. Attached 

sperm cells were not evenly distributed over the surfaces of the monolayers. They were 
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closely spaced in some areas, sparsely spaced in others and absent in a few areas (Figure 

21C). 

 

Figure 21. Phase contrast images of sperm cells coincubated with BOECs before 

and after 5 times wash. (A) Illustration of  uncapacitated sperm cells scrambling 

for BOECs. The blur nature of the image is due to rapid lashing tail movement of 

sperm tails. (B) Illustration of capacitated sperm cells coincubated with BOECs 

monolayer. Most sperm cells appear floating in the incubation medium, not 

bound to BOECs. (C) Illustration of sperm cells from uncapacitated sperm 

samples that remained bound to BOECs after washing. Many sperm cells 

remained bound to epithelial cells with their heads while lashing their tails. (D) 

Illustration of bound cells from capacitated sperm cells samples coincubated 

with BOECs monolayer after 5 times wash. Very few sperm cells bound to 

BOECs in this case.  

In a situation where BOECs monolayer was not 100% confluent, sperm cells appeared 

crowded on nearby epithelial cells (attached with their heads), with very few sperm cells 

bound to the coverslip without epithelial cells (Figure 22). Sperm cells bound to epithelial 

cells exhibited vigorous lashing of their tails. The vigorous tail lashing movements from 

sperm cells bound to BOECs also resulted in poor image quality during image capture. 
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Figure 22. Phase contrast image of sperm cells selectively bound to BOECs. Sperm 

cells selectively crowded on BOECs at the edge of the cell culture monolayer. Very 

few cells found to bind on coverslips. It is illustrative of binding affinity between 

uncapacitated sperm cells and BOECs. White arrow bar is 50 µm. 

 

CTC staining of sperm cells bound to epithelial cells in both cases (samples with treated and 

capacitation induced semen samples) revealed „‟F‟‟ pattern, which is characteristic of 

uncapacitated spermatozoa (Figure 23). This indicates that in vitro cultured BOECs 

monolayer from NRF cows at estrus selectively bind uncapacitated sperm cells. In other 

binding experiments using cryopreserved semen, CTC staining was not successful in 

revealing the F pattern characteristic of uncapacitated sperms. It was not possible to identify 

sperm cells with the F pattern in CTC stained semen sample. 
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Figure 23. Phase contrast and CTC fluorescence images of sperm cells bound to 

BOECs monolayers. (A) and (C) represent Phase contrast and CTC fluorescence 

images of sperm cells bound to epithelial monolayers after coincubation with 

uncapacitated sperm cells  samples respectively. CTC staining pattern of bound 

sperm cell indicates that bound sperm cells are uncapacitated. (B) and (D) 

represent phase contrast and CTC fluorescence images of sperm cells bound to 

BOECs monolayer after coincubation with capacitated sperm cells samples 

respectively. Very few sperms cells bind as compared to uncapacitated sperm cells 

samples. CTC fluorescence of sperm cells bound to BOECs in both cases indicates 

that the bound sperm cells are uncapacitated.  
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5 Discussion 

Researchers have searched for decades to find a single test or combination of test that can 

accurately predict male fertility from a semen sample. Effective predictors of relative bull 

fertility would be essential to exclude less fertile bulls from breeding programs and thus 

optimise the use of proven high fertility, and genetically high-indexed bulls with lower 

sperm number per AI dose (Amann, 1989). In order to accurately predict semen fertility, it is 

relevant to test all sperm attributes relevant for fertilisation and embryo development within 

large sperm populations, and to develop in vitro techniques that will predict the fertility of 

low sperm doses used for AI. Several techniques have been developed and used to evaluate 

different sperm parameters. Sperm-oviduct binding studies have been used to understand 

sperm oviduct interaction in boars (Suarez, 1987) as well as to detect differences in boar 

fertility (Petrunkina et al., 2001b; Waberski et al., 2005). Studies in pigs indicate that 

assessment of sperm binding to oviduct epithelial cells could be useful as a complementary 

test to assess boar fertility and also gives potentially valuable information on any changes in 

sperm binding function during storage (Waberski et al., 2006). The sperm population in the 

oviductal reservoir depends on the initial sperm quality and may therefore reflect differences 

in ejaculates and male fertility.  In an attempt to establish an assay to assess bull semen 

fertility and quality through binding of sperm cells to BOECs monolayers, it is important to 

have a pure epithelial cell line, without cells showing signs of dedifferentiation. 

5.1 Cell culturing of BOECs 

After isolation of BOECs from the isthmic oviduct and seeding into culture wells, cells 

appeared as small rounded structures within 24 hours of culture. Mobile cell aggregates were 

also dominant during culture. This is similar to observations by Sostaric et al. (Sostaric et al., 

2008). During media changes, these mobile aggregates were lost and cell islands were 

visible after 72 hours of culture. These islands proliferated outwards and neighbouring cell 

islands finally merged to give the appearance of confluency. It was also obseverd that 

primary cell cultures of BOECs seeded out from a single oviduct into about 10 wells in a 24 

well culture plate could attain 100% confluence in about 7-9 days. Cells from single oviduct 

could be seeded out into about 10 culture wells to attain confluence within the time frame 

indicated above. 
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In this study, it was noticed that passage cells attached to culture plates and grow faster than 

primary cells. This observation is line with what Schoen et al. observed (Schoen et al., 

2008). Third passage cells also grew relatively faster than first passage cells at the similar 

starting cell number (Table 3). This may be due to increased adaptation of cells to in vitro 

culture conditions as the number of passages increase. 

BOECs grown on coverslips were characterised by indirect and direct immunostaining for 

cytokeratin and vimentin filaments, respectively. Control experiments were set up in parallel 

for both markers. Immunostaining results indicated a mixed culture. Cells of epithelial nature 

stained positive for cytokeratin while cells of mesenchymal origin (such as endothelial cells) 

stained positive for vimentin (Figure 14). Cells of epithelial nature were however dominant 

in the culture, accounting for over 60%. This is in accordance with reports from Schoen et al. 

(Schoen et al., 2008). Results from our study did also show that some cells appeared to stain 

positive for both cytokeratin and vimentin (Figure 14C). Primary oviductal epithelial cells 

have been reported not to express intermediate filament proteins of the vimentin type 

(Rottmayer et al., 2006). However, it is well known that synthesis of vimentin, playing a 

major role during cellular transformation and differentiation, is enhanced in most 

transformed cells (Schwartz et al., 1991). The occurrence of traces of positive vimentin stain 

in some cells during our study, may be indicative of commencement of dedifferentiation 

process, though not to a large extend.  

5.2 OVGP1 expression in BOECs 

OVGP1 is expressed in BOECs and is known to support embryonic development in vivo and 

in vitro (Nancarrow and Hill, 1994). It has been suggested to be a marker for the 

embryotrophic ability of an oviduct cell culture system (Schoen et al., 2008). According to 

studies by Rottmayer et al. (Rottmayer et al., 2006), primary suspension cultures of BOECs 

express OVGP1, and no significant difference in OVGP1 expression pattern over 24 hrs of 

culture is reported. During our study, it was observed that RNA quality greatly influenced 

the performance of qPCR. Preservation of time point BOECs samples in RNAlater solution 

followed by RNA extraction following manufacturer‟s instructions resulted in both low 

RNA yields and low RNA quality. Salts and possibly ethanol were eluted in the RNA and 

these substances inhibit downstream applications. An additional wash with ethanol followed 

by an extra spin as indicated in section 3.4.1 greatly improved the quality of RNA. By 
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passing RNAlater preservation of time point cell samples and performing RNA extraction 

just after isolation of cells at each time also resulted in non degraded RNA samples. This 

was indicated by the prominence of 28S and 18S ribosomal RNA bands on a 1% agarose gel 

(figure not shown).  

Real Time PCR was a simple and elegant method for determining the amount of OVGP1 

target sequence in time point cDNA samples. The use of 5 x Hot FirePol
® 

EvaGreen
® 

qPCR 

Mix Plus (ROX), greatly increased the performance of this technique. This qPCR mix is 

incorporated with Hot FirePol
® 

DNA polymerase enzyme that is activated by 15 min 

incubation at 95
o
C. This prevented extension of non-specifically annealed primers and 

primer dimers formed at low temperature during the qPCR setup (Solis BioDyne). The use 

of EvaGreen, a DNA binding dye which is a superior alternative to SYBR Green 1 to 

monitor the progress of the qPCR reactions, also attributed to the performance of this 

technique. The extreme stability of EvaGreen and its much less PCR inhibitory action 

together with its non mutagenic and non cytotoxic nature makes it a better alternative to 

SYBR Green 1 (Solis BioDyne).  

Specificity of primers designed against OVGP1 and 18S were tested by performing qPCR 

followed by 2 % gel analysis of qPCR products. Gel analysis revealed products of the 

expected sizes (Figure 15). DNA Sequencing of qPCR products however indicated mixed 

PCR products for OVGP1 primer set 2 and 3. These PCR products were probably within the 

same size range and could therefore not be detected during 2% gel analysis due to weak 

resolution.  In the same experiment, higher molecular weight DNA bands were visible on the 

18S lanes (Figure 15). This was indicative of possible double qPCR products. However, 

DNA sequencing of 18S qPCR products revealed unique products. Dissociation curve 

analysis of both OVGP1 primer set 1 and 18S qPCR products also indicated that only single 

PCR products were formed (Figure 16). In addition, this high molecular weight DNA band 

was completely absent during subsequent gel analysis of 18S qPCR products (Figure 15). 

Therefore this DNA band may have arisen from contamination of qPCR products prior to gel 

electrophoresis or from other experimental artefacts. 

Results from our study showed that the expression of OVGP1 in BOECs cultivated in vitro 

dropped over time during cultivation (Figure 18). It has previously been reported that semi-

quantitative PCR analysis of OVGP1 mRNA levels shows significant differences between 

freshly isolated cells and cells cultured in monolayers on different supports (Reischl et al., 
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1999). This is in line with the findings in our study. In our study, a significant drop in the 

relative expression pattern of OVGP1 was noticed after 6 hrs of culture (Figure 18). This 

rapid drop in OVGP1 expression may be due to the instability of OVGP1 gene transcript in 

vitro under culture conditions. In humans, it was noticed that oviductal mucosal cells lose 

their ability to produce oviductins after a short-term culture period. A significant reduction in 

oviductin mRNA expression after 3 days in culture, with complete loss after 6 days in 70% 

of the samples (Briton-Jones et al., 2002). This observation is in line with the results 

obtained in our study. The lower relative expression after 6 hours of culture as compared to 

24 hours culture period (Figure 18) might be due to poor RNA quality of this time point 

samples. As previously mentioned, it was observed in the study that the RNA quality greatly 

affects qPCR results. 

5.2.1 Regulation of OVGP1 expression 

In our study, 10 ng/ml HCG stabilised in 1% BSA had no significant effect on the regulation 

of OVGP1 expression in BOECs cultured in vitro over time (Figure 19). Sun et al. (Sun et 

al., 1997) demonstrated that HCG can increase the expression of OVGP1 by decreasing the 

degradation of its transcript in BOECs. In order to achieve this, the native conformation of 

the hormone is required. In the same study, estradiol was found not to have any effect on 

OVGP1 expression. In a similar study in humans, exogenous HCG demonstrated to have a 

significant stimulating effect on oviductin  mRNA expression (Briton-Jones et al., 2003).  

However, this stimulating effect was only possible in samples that had maintained a baseline 

level of oviductin expression. The addition of estradiol had no effect on oviductin mRNA 

expression. According to Nancarrow and Hill, (Nancarrow and Hill, 1994) the expression is 

induced by oestrogen in vivo, not in vitro. With a cell culture system that maintains the cell 

architecture, estradiol is found to significantly increase oviductin mRNA expression. 

Estradiol fails to alter oviductin mRNA expression in oviduct mucosal cells cultured under 

conditions in which ciliated phenotype, cell to cell, and cell to basement membrane anchor 

are lost (Briton-Jones et al., 2004). The lack of HCG effect on OVGP1 expression in our 

study might be due to loss of the stability of HCG solution during storage. It might also be 

due to the time of addition of HCG in the course of the experiments. Sun et al. (Sun et al., 

1997) cultured cells for 6 days and HCG (10 ng/ml final concentration) was added at various 

times during the culture. For a 6 days treatment, HCG was added at the beginning of culture. 

HCG was added on the second day for a 5 days treatment. Control samples were cultured in 
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the absence of HCG. They noticed maximum effect of HCG treatment on OVGP1 expression 

after 3 days of culture. i.e. highest expression level was obtained for cell samples that were 

cultivated in the presence HCG after 3 days.  In the same experiment, isolated subunits of 

HCG were unable to mimic HCG in stimulating the expression of OVGP1, suggesting that 

this effect required the native conformation of the hormone. In our study, HCG stimulation 

was done after 24 hours of culture (D2 on figure 19) using HCG stabilised in 1% BSA (in 10 

ng/ml final concentration of culture media containing 10% FBS). The lack of HCG effect on 

OVGP1 expression in our study was probably due to loss of native conformation of the 

hormone arising from instability during storage. However, because of the lack of sufficient 

time, it was not possible to repeat this hormone stimulation exercise.  

5.3 Binding of sperm cells to BOECs 

5.3.1 Evaluation of sperm capacitation by CTC staining assay 

In this study, one of the objectives was to investigate if CTC fluorescence could be used to 

monitor the capacitation status of bull spermatozoa bound to BOECs. For optimization of 

this analysis method, Ca
2+

 ionophore was used to induce capacitation in sperm cells. Studies 

have demonstrated that the treatment of human sperm cells with Ca
2+

 ionophore could cause 

marked alterations in the distribution of CTC staining patterns (Dasgupta et al., 1993). In this 

study, CTC staining proved to be a useful tool in assessment of the capacitation status of bull 

spermatozoa. The  CTC patterns observed for uncapacitated, capacitated and capacitated 

acrosome reacted sperm cells were identical to those reported for mouse and human sperm 

cells (Dasgupta et al., 1993; Ward and Storey, 1984). For this reason, the same nomenclature 

was used. The three patterns are: „‟F,‟‟uniform fluorescence on the head (uncapacitated 

sperm cell),„‟B‟‟ with a fluorescence free band in the post acrosomal region (capacitated 

sperm cell) and „‟AR‟‟ with fairly dull head fluorescence and often with a thin band of 

fluorescence in the equatorial segment (capacitated acrosome reacted sperm cell) (Figure 

18). Incubation of sperm cell suspension with 10 µM Ca
2+

 ionophore witnessed a noticeable 

fall in the proportion of B pattern sperm cells, followed by a rise in the F and AR patterns. 

Within 2 hrs of incubation in Ca
2+

 ionophore, most of the cells were exhibiting the AR 

pattern, with only a minority of F and B patterns. This change in distribution pattern 

indicated that sperm cells initially altered sequentially from the F to the B pattern and then to 

the AR pattern. This imply that cells underwent changes associated with capacitation first, 
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followed by acrosome reaction (Fraser et al., 1995). An earlier study have shown that 

exposure of mouse sperm to 15 µM Ca
2+

 ionophore significantly stimulated fertilization in 

vitro, a result consistent with promotion of capacitation related changes in the sperm (Fraser, 

1982). Since Ca
2+

 ionophore dissolved in DMSO provides a rise in intracellular Ca
2+

,
 
these 

results show that capacitation and acrosome reaction in bull sperm like in other mammalian 

sperm cells, is affected by Ca
2+

 levels (Yanagimachi, 1994).  

At first, cryopreserved semen was used in the CTC staining assay. However, CTC staining 

of some cryopreserved semen samples was not able to reveal F pattern diagnostic of 

uncapacitated cells. This might have arisen from sperm cells gradually progressing into the 

capacitation state during the procedure. This is probably due the occurrence of 

precapacitation process following treatment of sperm cell samples (Kuroda et al., 2007). So 

in order to be able to distinguish the CTC staining patterns of sperm cells bound to BOECs 

monolayer, fresh semen was chosen for use.  

5.3.2 Sperm binding to BOECs monolayers 

The mammalian oviduct consists of distinct anatomical and functional regions where crucial 

reproductive events occur. As regards sperm binding, it has been suggested that the caudal 

isthmus acts as a sperm reservoir in vivo (Baillie et al., 1997; Hunter, 1981; Hunter and 

Nichol, 1983; Hunter et al., 1980; Suarez, 1987) and the sperm cells capacity to bind and 

make reservoir is thought to be essential to the fertilization potential. In this study, BOECs 

monolayers from the isthmus were coincubated with sperm cells. One sperm cell population 

was subjected to capacitation induction to serve as a control for sperm quality. Incubation of 

capacitated sperm cell population with BOECs monolayer resulted in very few cells bound 

to the monolayer (Figure 21). These capacitated sperm cells showed decreased motility and 

appeared as if they were dead cells. This observation is in line with studies by Ellington et al. 

(Ellington et al., 1991). Uncapacitated sperm samples had more cells attached to BOECs 

monolayers and most of the bound cells remained motile (> 95%). These motile sperm cells 

could be identified by their rapidly beating tails. This observation is similar to that obtained 

using bovine explants (Lefebvre et al., 1995). Repeated washing was unable to release bound 

sperm cells. This indicates that the binding between sperm cells and BOECs is quite strong. 

Other studies indicate that enzymatic treatment of oviductal explants is unsuccessful for 

releasing bound sperm cells (Raychoudhury and Suarez, 1991). The sperm cells were bound 

to epithelial cells with their heads. Using scanning electron microscopy, it was demonstrated 
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that sperm cells bind to apical surfaces of epithelial cells using the rostral portion of the 

intact acrosome (Pollard et al., 1991). In our study, BOECs monolayers bound more sperm 

cells from the uncapacitated semen samples than from the capacitated semen samples. Smith 

and Yanagimachi, (Smith and Yanagimachi, 1991) have reported that uncapacitated harmster 

sperm infused into the oviduct attached to the oviductal epithelium, while capacitated sperm 

cells did not. Some studies in bovine have shown that isthmic and ampullary oviduct 

explants bind sperms in a comparable way (Lefebvre et al., 1995). Ampullary monolayers 

have also been reported to bind sperm cells and maintain their motility more than isthmic 

monolayers (Gualtieri and Talevi, 2000; Sostaric et al., 2008). However, this apparent 

contrast between in vivo and in vitro studies may be as a result of accessibility of such cells 

to high number of sperm cells in vitro as compared to the natural situation in vivo. Thomas et 

al. (Thomas et al., 1994) demonstrated that the number of stallion spermatozoa that were  

bound to explants was dependent on both the stage of the oestrus cycle and the anatomical 

origin of the explants, with more sperm cells bound to isthmic than to ampullary explants.  

Results from CTC staining of sperm cells bound to BOECs monolayers revealed the F 

pattern (uncapacitated sperm cells). This was also the case for sperm cells from the 

capacitated sperm cell sample (Figure 23). This shows that BOECs monolayers selectively 

bind uncapacitated sperm cells. Several reports in different species indicate that only sperm 

cells characterised by intact acrosomes (Gualtieri and Talevi, 2000), an uncapacitated status 

(Fazeli et al., 1999; Lefebvre and Suarez, 1996), superior morphology (Thomas et al., 1994), 

normal chromatin structure (Ellington et al., 1999), low intracellular Ca
2+

 content and 

suppressed tyrosine phosphorylation (Petrunkina et al., 2001a) can adhere to tubal epithelial 

cells in vitro. Gualteri and Televi, (Gualtieri and Talevi, 2000) demonstrated that in addition 

to the ability of specific BOECs monolayer to selectively bind acrosome intact sperm cells, 

their acrosomes are preserved intact over the time and the release of these sperm cells is 

likely due to changes of the sperm surface probably triggered by capacitation. These results 

also suggest that induction of capacitation in sperm cells under these experimental conditions 

is not 100% efficient, as few sperm cells from such samples did bind to BOECs monolayers.   

Hormones could affect sperm binding to oviductal epithelium by affecting the number of 

binding sites expressed by the oviductal epithelial cells (Lefebvre et al., 1995).  This effect 

could also be exerted on the sperm cells directly. The rise in estradiol levels during 

proestrous of the follicular phase (Figure 4) may directly or indirectly initiate the synthesis 

of sperm binding sites.  
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5.4 Further studies 

Primary cell cultures BOECs that were established in this study was shown to have a mixture 

of epithelial cells and cells of mesenchymal origin. It has been reported that pure epithelial 

cell lines could be established from primary cells through trypsination and cultivation in 

selection media. According to Schoen et al. (2008) epithelial cells can be selected from other 

cell types in culture using the selection media, MEM-D-Valin. In this experiment, primary 

epithelial cells were trypsinated and transferred to a selection medium (MEM D-Valin, 10% 

FBS, 0.68 mM sodium pyruvate and gentamycin). After one passage, cells were transferred 

back to the normal growth media for two passages in order to recover surviving epithelial 

cells. Immunocytochemistry against cytokeratins was used to confirm the purity of the 

epithelial cells. 

The use of primary cells to establish a binding assay shall also post as a bottle neck because 

few BOECs monolayers can be obtained from a single oviduct. There is need to have many 

BOECs monolayers from the same oviduct to be able to compare binding of semen from 

several bulls. This could be achieved through trypsination and possible sub-culturing of cells 

from a single oviduct. The expression of vimentin in such sub-cultures could also be checked 

for possible transformation and dedifferentiation of epithelial cells. Our results from the 

analysis of the expression pattern of the embryotrophic glycoprotein, OVGP1, indicated that 

its expression declines with time of in vitro culture. To be able to use its profile as a marker 

of the embryotrophic ability of a cell culture system, there is need to develop new methods 

for cell culturing in this project. It has previously been shown that cell support systems have 

a great effect on the differentiation status of cultured epithelial cells. Permeable support 

materials (e.g. cellulose nitrate) have been shown to maintain epithelial cells more 

undifferentiated than non permeable materials (e.g. glass, thermanox) (Reischl et al., 1997). 

Permeable support systems allow culture media to get in contact with both the apical and 

basolateral domains of cultured cell and may maintain cells in a more polar structure. Cell to 

cell, and cell to basement membrane anchor are maintained in permeable support systems. 

Perfusion cultures tend to maintain morphological and physiological aspects of cultured cells 

for a prolonged period as compared to static system (Reischl et al., 1999). Perfusion culture 

systems allow culture media to flow over cultured cells, eliminating the accumulation of 
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waste materials. Oviduct specific features such as cell height, cilia, bulbous protrusions, 

secretory granules and physiological events such as gene expression patterns are maintained 

for a significantly longer period in perfusion system. There is therefore a need for a culture 

system that maintains the functionality of cells for a longer period. A comparative study on 

both the type of cell support material and the type of culture system capable of maintaining 

both the architecture and functionality of BOECs is needed. This shall pave a way towards 

the possible establishment of BOECs monolayers with maintained functionality for use in a 

sperm binding assay. HCG stimulation of OVGP1 gene expression could also be included, 

with the possibility of increasing the stability of the diluted hormone solution during storage 

before use. 
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6 Conclusion 

This study was aimed at paving a way towards the establishment of a sperm quality 

assessment assay in NRF through assessing binding of sperm cells to BOECs monolayer. 

Our results show that primary BOECs monolayers is a mixed population of both epithelial 

and cells of mesenchymal origin. In addition, it was found that BOECs from estrus are not 

able to maintain the expression of OVGP1 during in vitro cultivation. Our studies therefore 

provides substantial framework on which further work towards the build up of a sperm 

oviduct binding assay can rely. However, our study of sperm cell binding to BOECs 

monolayer revealed that BOECs selectively bind uncapacitated sperm cells. This is an 

important finding because the proportion of uncapacitated sperm cells in a semen sample 

capable of binding to oviductal epithelial cells is a potential indicator of its quality. 

 

. 
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7 Appendix 

              

 

Supplementary figure 1.Electrophoregram of direct sequencing of qPCR product 

using 18 S specific primers.  
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Supplementary figure 2.Sequence alignment of direct sequencing results of qPCR 

products using 18S specific primer set following nucleotide blast at NCBI. 98% 

identity to the published sequence and the low Expect value indicate the high 

specificity of primer set. 

 

  

Supplementary figure 3.Electrophoregram of direct sequencing of qPCR product 

using OVGP1 specific primers (primer set 1).  
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Supplementary figure 4.Sequence alignment of direct sequencing results of qPCR 

products using OVGP 1 specific primer set (Primer set 1) following nucleotide blast 

at NCBI. 98% identity to the published sequence and the low Expect value indicate 

the high specificity of primer set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


