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Abbreviations and Glossary 

Abbreviations: 

 ABP: Androgen-binding protein 

 ADAM: A disintegrin and metalloproteinase 

 AI: Artificial insemination 

 AIJ: Ampulla Isthmus Junction 

 ASMA: Automated sperm morphometry analysis 

 ATP: Adenosine triphosphate 

 BCECF-AM : 2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester 

 BTS: Beltsville Thawing Solution 

 CaMKII: Calcium/calmodulin-dependent protein kinases II 

 cAMP: Cyclic adenosine monophosphate 

 CatSper: Cation channels of sperm 

 CFDA: Carboxy fluorescein diacetate 

 CTC: Chlortetracycline 

 DAPI: 4',6-diamidino-2-phenylindole 

 DFI: DNA fragmentation index 

 ERp: Endoplasmic reticulum membrane protein  

 Fluo-3: C₂₆H₃₀Cl₂N₂O₁₃ 

 Fluo-4: C₃₆H₃₀F₂N₂O₁₃ 

 FS: Forward scatter 

 FSC: Forward scatter channel 

 FSH: Follicle-stimulating hormone 

 Fura-2-AM: Fura-2-acetoxymethyl ester 

 GnRH: Gonadotropin-releasing hormone 

 GPI: Glyco phosphatidyl inositol 

 HA: Hyaluronate, hyaluronic acid 

 HCO₃⁻: Bicarbonate  

 HSP: Heat shock protein  

 IMF: Intramuscular fat 

 JC-1: 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide 
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 LH: Luteinizing hormone 

 MDA: Malondialdehyde 

 NO: Nitric oxide  

 PGF2α: Prostaglandin F2 alpha 

 PKA: Protein kinase A 

 PLA2: Phospholipase A2 

 PLD: Phospholipase D 

 PMN: Polymorphonuclear 

 PMT: Photomultiplier tube 

 PNA: Peanut agglutinin 

 PSA: Pisum sativum agglutinin 

 ROS: Reactive oxygen species 

 sAC: Soluble adenylate cyclase 

 s-GAG: Sulfated glycosaminoglycan  

 SS: Side scatter 

 SSC: Side scatter channel  

 SNARE: Soluble N-ethylmaleimide-sensitive factor activating protein receptor 

 SR: Sperm reservoir 

 TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling 

 VAMP: Vesicle-associated membrane protein 

 ZP: Zona pellucida  

Glossary: 

 Acrosin: Acrosin is the major proteinase present in the acrosome of mature 

spermatozoa, which release in acrosome reaction event and help to sperm penetration 

into the zona pellucida.  

 Adenohypophysis: The anterior segment of the pituitary gland that its secreted 

hormones play an important role in regulation of reproduction and growth. 

 Albumin: Simple proteins that are water-soluble and heat-coagulable and could be 

found in blood and other type of body fluids.  

 Ampulla: The goblet-shaped dilatation (expansion) located in the middle portion of 

the Fallopian tube 
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 Androgen: Androgens are sex hormones, e.g. testosterone secreted by the testes, and 

hormone(s) secreted by the adrenal supplementing 

 Androstenedione: A steroid sex hormone C₁₉H₂₆O₂ that is secreted by the testes, 

ovaries, and adrenal cortex and is converted to testosterone and oestrogen 

 Arachidonic: A liquid unsaturated fatty acid and is a precursor of prostaglandins 

 Axoneme: The fibrillar bundle of a flagellum or cilium that usually consists of nine 

pairs of microtubules in a ring around a single central pair 

 Blastocyst: The modified blastula of a placental mammal 

 Calmodulin: A calcium-binding protein that found in the brain and heart and after 

binding with Ca²⁺ could be actives and interacts with phosphodiesterases and adenyl 

cyclase therefore could regulate the cAMP level.  

 Capacitation: The structural and functional changes undergone by spermatozoa in 

the female genital tract that enables them to bind, interact, penetrating to oocyte and 

fertilize an egg 

 Capitulum: The main part of connection tissue between the head and sperm tail  

 Carbonic anhydrase: An enzyme, which aids carbon-dioxide transport from the 

tissues and its release from the blood in the lungs 

 Chaperones: A class of proteins that facilitate the proper folding of proteins 

 Cleavage: The series of synchronized mitotic cell divisions of the fertilized egg that 

results in the formation of the blastomeres 

 Cold shock: Effects of rapid cooling of sperm, which is mainly, trigger the plasma 

membrane architecture.  

 Corpora albicantia: The white fibrous scars that remain in the ovaries after 

resorption of the corpora lutea and replaces a discharged graafian follicle 

 Corpora lutea: A yellowish mass (in cow and mares) pink mass (in sows) or a 

progesterone-secreting endocrine tissue that consists of pale secretory cells derived 

from granulosa cells, which forms after ovulation from the ruptured follicles in the 

mammalian ovary 

 Cryopreservation: Preservation of sperm or egg by subjection to extremely low 

temperatures  

 Dynein: An ATP converter protein that play a key role in cell motility and 

microfilament gliding  
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 Endometrium: The mucous membrane lining the uterine and after fertilization it is 

responsible for developing the emberyos.  

 Equatorial segment: A segment in post acrosome region that fuses with egg 

membrane  

 Estrous cycle: The correlated phenomena of the endocrine and generative systems of 

a female mammal from the beginning of one period of estrus to the beginning of the 

next 

 Estrus: Special period in the estrous cycle, female animal exhibit special behavior 

and accepts the male animal for mating.  

 Extender: Is a liquid diluent, which is available commercially and widely used in 

artificial insemination to maintain sperm fertilizing capacity during the preservation. 

 F-actin: A linear protein present in microfilament and is essential for cell motility 

and division  

 Farrowing rate: The number of sows that farrow divided by the number of the 

mated sows 

 Fibroblastic penis: Special types of penis that found in boar, ram and bull, which 

consisting of both fibrous and elastic tissues 

 Fluorometry: An instrument for measuring fluorescence that is used especially to 

determine intensities of radiations 

 Follicles: A vesicle in the mammalian ovary that contains a developing egg 

surrounded by a covering of cells 

 Follicular phase: The period of the estrous cycle representing follicular growth, 

increase in ovarian oestrogen production, and epithelial regeneration of the 

endometrium.  

 Germ cells: An egg or sperm cell or one of their antecedent cells 

 Granulosa cells: Single layer of cells, which surrounding the oocyte in the ovary. 

The major function of granulosa cells is oestrogen-secretion and developing the LH 

receptors. 

 Glycolysis: The metabolic process of breakdown of a carbohydrate. Which lead to 

production of two molecules of pyruvic acid and ATP 

 HeLa cell: A cell type, which widely used in cell culture, originally derived from 

human cervical cancer 

 HEPES: A buffer, which is mainly used in cell culture. 
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 Hyaluronidase: One of the most important acrosome contents, which breaks down 

the hyaluronic acid forming part of the material in the interstices of tissue or cell like 

ovum. 

 Hydrogen peroxide: H₂O₂, simplest oxidizing agent 

 Hypothalamus: A part of the brain below the thalamus, which acts as a thermostat, 

play critical role in maintaining body temperature and hormonal balance. It also 

influences blood circulation, urinary secretion, and appetite 

 Infundibulum: The funnel-shaped structure, which is attached to fimbriae and 

located in the distal end of the oviduct. Medially it narrows to merge with the 

ampulla. 

 Inguinal canal: Is the passage (one in each side) from the abdominal cavity to the 

outside, down which pass each spermatic cord and its associated structures in the 

male, and in the female, the round ligament of the uterus. 

 Inhibin: A glycoprotein hormone that is secreted by the pituitary gland and in the 

male by the Sertoli cells and in the female by the granulosa cells and that inhibits the 

secretion of follicle-stimulating hormone 

 Isthmus: The short narrowed segment of the uterus located inferior to the body and 

superior to the cervix. 

 Jensen’s ring: A region of the mammalian sperm flagellum, which make the 

connection between mid-piece and the principal piece 

 Leydig cells: A cell of interstitial tissue of the testis that is usually considered the 

chief source of testicular androgens and especially testosterone 

 Lipid peroxidation: A process which lipids undergo oxidative degeneration  

 Litter size: The number of offspring produced by an animal at one birth  

 Luteal phase: It begins with the formation of the corpus luteum and the main 

hormone associated with this stage is progesterone.  

 Morula: A globular solid mass of blastomeres formed by cleavage of a zygote that 

typically precedes the blastula 

 Neurotransmitters: A substance (as norepinephrine or acetylcholine) that transmits 

nerve impulses across a synapse 

 Nitric oxide synthases: Any of various enzymes that catalyze the oxidation of 

arginine to form nitric oxide and citrulline  

 Oestrogens: Any of various natural steroids (as estradiol) that are formed from 

androgen precursors, which are secreted chiefly by the ovaries and that stimulate the 
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development of female secondary sex characteristics and promote the growth and 

maintenance of the female reproductive system 

 Oogenesis: the development process of germ cell to ovum in female ovary  

 Pampiniform plexus: a venous complex network that is associated with each 

testicular and ovarian veins  

 Perinuclear theca: a cytoskeletal structure that covers the nucleus of mammalian 

spermatozoa, which shows two distinct regions, a subacrosomal layer and, continuing 

caudally beyond the acrosomic system 

 Polyspermy: the entrance of several spermatozoa into one egg 

 Proestrus: The 1st phase of the estrous cycle, when the ovary is producing hormones, 

which cause the enlargement of the uterus, oviducts, and vagina, and when the 

ovarian follicle containing the ovum is increasing in size.  

 Progesterone: A sex hormone from the corpus luteum and (in the pregnant animal) 

the placenta, which prepares the reproductive tract for pregnancy. 

 Protein kinase A: An enzyme whose actives by cAMP level and play numerous role 

in regulating intracellular  

 Rete testis: The network of tubules in the mediastinum testis 

 Retinol binding protein: Family of proteins that could bind with retinol and 

involved in maternal-fetal recognition  

 Seminiferous tubules: Any of the coiled threadlike tubules that make up the bulk of 

the testis and are lined with a layer of epithelial cells from which the spermatozoa are 

produced. 

 Sertoli cells: Cells in the testicular tubules to which spermatids becomes attached. 

Their function is believed to be the nourishment of spermatids. 

 Soluble adenylate cyclase: A non-trans membrane enzyme that act as bicarbonate 

sensor  

 Spectrophotometry: A photometer for measuring the relative intensities of the light 

in different parts of a spectrum 

 Sperm basal plate: The basal plate is adherent to the nuclear envelope, defining the 

implantation fossa and forming the site of attachment of the flagellum to the sperm 

head 

 Spermatids: One of the haploid cells that formed by the second meiotic division of a 

spermatocyte and that differentiate into spermatozoa 
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 Spermatogenesis: The process of germ cell development in male including 

formation of a primary spermatocyte from a spermatogonium, further meiotic 

division of the spermatocyte, and conversion of the resulting spermatids into 

spermatozoa 

 Spermatogonia: A primitive male germ cell that gives rise to primary spermatocytes 

in spermatogenesis 

 Syntaxin: A membrane proteins integrated with Q-SNARE protein which participate 

in acrosome reaction 

 Testosterone: The hormone, C₁₉H₂₈O₂ secreted by the testicle, which controls 

development of the secondary sex organs, sex characteristics and libido 

 Theca cells: The stromal cells forming an envelope or theca outside the basal lamina 

at the mature ovarian follicle 

 Tris: A white crystalline powder C4H11NO3 used as a buffer 

 Tunica albuginea: A white fibrous capsule which surrounding the testes 

 Tunica vaginalis: A bulge of serous membrane covering the testis and derived from 

the peritoneum 

 Uteroferrin: A glycoprotein which is secreted by porcine uterus as a feedback to 

progesterone  

 Zygote: The body that results from the fertilization of an egg cell by a sperm 

 α6β1: An integrin on egg surface whose help to sperm-egg fusion  
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Abstract 

Porcine production industry demand effective artificial insemination for future challenges. 

Variation in field fertility and litter size not only caused by sows or farm management but 

also affected by semen and boar related parameters. Assessment of semen using objective 

methods provides an effective tool for better and precise assessment of sperm quality during 

the collection until consumption and leads to prediction of field fertility and genetic 

selection.  

In order to evaluate sperm intracellular Ca²⁺  level by flow cytometry, a Fluo-4 assay was 

successfully adapted for boar spermatozoa by minimizing the handling effect and optimizing 

the Fluo-4 incubation and concentration. Clear different Fluo-4 patterns were observed for 

spermatozoa with low and high intracellular Ca²⁺  by fluorescence microscope and flow 

cytometry.  

In the present study, semen samples from Norwegian Landrace and Duroc were analyzed by 

flow cytometry for assessment of sperm intracellular Ca²⁺  level and CASA for sperm 

motility parameters on the day of collection and after 4 days liquid preservation at 18 °C. 

Results showed that in both Duroc and Landrace, proportion of sperm cells with high 

intracellular Ca²⁺  were increased during the storage time. The amount of motile sperm cells 

was remained constant during the preservation in Landrace and decreased in Duroc. 

Furthermore, high degree of hyperactivated sperm cells were detected in Duroc on the day of 

collection and hyperactivited sperm population decreased after 4 days preservation while, 

Landrace sperm motility pattern developed toward hyperactivation. In addition, for Duroc 

semen, hyperactivation significantly affected positively by motility and negatively by 

intracellular Ca²⁺ . While, Landrace semen hyperactivity level was affected just by 

intracellular Ca²⁺ level. The present finding provides further evidence supporting the effect 

of breed on sperm physiology and behavior. Moreover, this study has shown that objective 

methods for assessment of semen quality could count as valid, rapid and precise methods in 

sperm evaluation. 
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1. Background 

1.1 Origins of the project 

This project is 60 credits (ects) constituting Master’s Thesis of Hedmark University College 

Master`s Degree program in Applied and Commercial Biotechnology, 2013. Current study 

was carried out in collaboration with Norsvin SA, with the aim of introducing new 

techniques for assessing key quality parameters in spermatozoa from Norwegian Landrace 

and Duroc boars. 

1.1.1 Norsvin 

The Norwegian Pig Breeders’ Association, Norsvin was founded in 1958, and is owned by 

1700 Norwegian pig producers. Norsvin is the only Norwegian company doing pig breeding. 

This includes pure breeding, crossbreeding and artificial insemination (Norsvin, 2012). 

Each year, about 50 Landrace and 50 Duroc boars are selected for elite AI. These boars are 

used for developing the Landrace and Duroc populations in Norway and abroad. In 2012, 

8632 fresh elite semen doses were delivered from Norway to affiliated nucleus herds located 

in Finland, Sweden, USA, Spain and Lithuania. In addition, frozen elite semen has been 

shipped to Iceland and New Zealand (Norsvin, 2012). 

The Norsvin vision is swine genetics for the future. The aim of Norvin`s genetic program is 

to produce an effective, healthy and robust pig, ensure a good quality end product and 

contribute to ethical and sustainable production. Data entering the breeding value estimation 

mainly originates from four different places. First, at Delta, Norsvin’s boar test station, 

candidates are tested from 40 kg to 120 kg live weight. The station has a capacity of about 

3500 boars annually. From 2008 and on, all male selection candidates has been subjected to 

Computed Tomography (CT) as part of a routine in the breeding program. Norsvin will 

focus on three fields of study using CT, estimation of body composition, assessment of meat 

quality and diagnostic imaging. All images (500 MB of data per boar) are stored and this 

will provide a stronger and more powerful genetic engine. Second, meat laboratory, meat 

quality is evaluated according to pH, drip loss, intramuscular fat (IMF) and color on non-

selected boars from norsvin Delta. Third, field test in nucleus herds, muscle, back fat and 

growth are measured on all purebred gilts both in Norway and abroad and fourth, the ingris 

scheme including the litter recording and herd management data (Norsvin, 2012). 
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The present study is part of an ongoing R&D project, by Norsvin in collaboration with 

Hedmark University College and Spermatech AS. The main goal of this project is to 

evaluate the sperm quality parameters during the time by modern techniques for different 

breeds, and use this knowledge to improve sperm quality in Norwegian boars. The results 

obtained in the present study will be used in this project. 
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The spermatic cord itself consists of the ductus deferens, nerves, and blood and lymphatic 

vessels smooth muscle and the tunica vaginalis. The accessory glands are well developed in 

boars except for the ampulla, which is absent. The vesicular glands are lobulated and pinkish 

red and located within the genital fold and dorsally to the urinary bladder. They are very 

large, weighing about 400 g and pyramid shaped. The prostate gland has yellowish-pinkish 

color and is overlapped by the vesicular glands. The bulbourethral glands are very large, 

completely covering the urethra from and surrounded by the bulboglandularis muscles. The 

penis of the pigs is fibroelastic, very long about 60 cm and 2 cm in diameter. It is composed 

of three different parts; glans, body and two roots. In boars, the glans is twist shaped. A skin 

fold, called the prepuce (figure 1A), surrounds the free extremity of the boar penis. The fold 

constructs a diverticulum in dorsal position to the penis, which has about 135 ml capacity 

and urine, secretions and dead cells accumulate on it and produce the typical odor of the 

mature boar. The testicle is supplied by the testicular artery and vein. The pampiniform 

plexus is composed of vein surrounding the testicular artery which help to decrease the blood 

temperature for spermatogenesis (Schatten and Constantinescu, 2007). 

2.2 Male reproduction physiology 

2.2.1 Testis structure and hormones 

The parenchyma of the testis is made up of various tubules, lobules, and ductules. Each 

lobule consists of seminiferous tubules. Each seminiferous tube has two main cells, Sertoli 

cells and germ cells (figure 2A). Sertoli cells support, protect and nourish the germ cells and 

secrete androgen binding protein (ABP) and inhibin. Germ cells develop into spermatozoa 

during the spermatogenesis process. The interstitial space between lobules fills up with 

interstitial tissue and Leydig cells (figure 2B) which are responsible for testosterone 

production (Schatten and Constantinescu, 2007).  

Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamus and stimulates 

Follicle-stimulating hormone (FSH) and Luteinizing hormone (LH) secretion from the 

adenohypophysis. FSH acts on germ cells and promotes spermatogenesis, and LH acts on 

interstitial cell or Leydig cells to promote androgen hormone secretion like testosterone. 

Testosterone acts on intracellular cells and promote the development of male characteristics 

and behavior. Testosterone could have a suppressive effect on LH release. Inhibin which is 

secreted from Sertoli cells has suppressive effect on FSH release (Frandson et al., 2009)  
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peripheral microtubules is composed of α and β sub-fibers which are arranged clockwise. 

Each α sub-fiber is attached to both β sub-fibers and central paired microtubule by one 

dynein arm (Schatten and Constantinescu, 2007). 

The tail can be divided into a connecting piece (neck), mid-piece, principle piece, and end-

piece. The connecting piece consists of both basal plate and capitulum, which provide 

appropriate structure for the tail and head connection. A helix of 75-100 mitochondria, 

which are responsible for generating the energy for sperm motility, is located in the mid-

piece. The principle piece is separated from the mid-piece by Jensen’s ring and a fibrous 

sheath, which is responsible for more sperm axoneme support, covers the principle piece. In 

the tail segment, the diameter of flagella becomes more narrow and continues with axonemal 

doublets and fibrous sheath (De Jonge and Barratt, 2006). 

2.3 Female reproduction anatomy 

The female reproductive tract is responsible for generating female gametes, transfer them to 

the fertilization site, provide an environment for development of embryo(s) and deliver the 

fetus/litter. In normal mammals, the tract consists of two ovaries, two uterine tubes 

(oviducts), uterus, vagina and vulva (Frandson et al., 2009). 

The surface of the ovaries in sows is about 5 cm long and looks bumpy because of the many 

follicles and corpora lutea. In sow, the uterine tube is about 20 cm long and divided into 

three main parts, infundibulum, ampulla and isthmus. The sow uterus has a short body about 

5 cm, whereas the uterine horns are coiled and about 100-120 cm long (figure 6A). The 

cervix is located half in the pelvic and half in the abdominal region and has a length of about 

25 cm (Dyce et al., 2009). Between the cervix and vulva, the vagina is located and it is as 

long as the cervix (figure 6B). The end part of the female reproductive tract is the vulva, 

which includes two lobes, and the clitoris normally is obvious in sow and has a length of 

about 7 cm (Schatten and Constantinescu, 2007).  
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Secreted oestrogen from developing follicles, increase the FSH and LH receptors and in 

overall follicular development, also it has a positive effect on LH secretion and leads to 

ovulation and negative feedback effect on FSH secretion and leads to follicular atresia (after 

ovulation) (Frandson et al., 2009). 

Ovulated follicles release a large amount of progesterone (figure 7B) and prepare the uterine 

environment for pregnancy, If pregnancy is established, corpora lutea remain, Otherwise, 

under the effect of prostaglandin (PGF2α), which is secreted from the uterus, degeneration of 

corpora lutea will begin and the will forms corpora albicantia, which are masses of scar 

tissue (Frandson et al., 2009).  

Sexual maturity in gilts occurs about 7 months of age. The estrous cycle in sows is divided 

into the follicular phase (proestrus), the ovulatory phase (estrus) and the luteal phase 

(diestrus). Domestic sows are polyoestrous and wild pigs are seasonal. The estrous cycle in 

the sow takes about 21 days and estrous period takes about 15-96 hours. During this period 

the vulva becomes swollen and the sow is preparing for accepting the boar (Arthur et al., 

2001).  

2.5 Sperm journey in the female reproduction tract  

Final destination of sperm is Ampullary-Isthmic Junction (AIJ), where sperm and ovum 

meet each other and fertilization occurs. Before fertilization, sperm undergo several 

physiological and critical steps through the female reproduction tract; however, some of 

these phenomenons remain unclear. 

2.5.1 Copulation and sperm transport 

Copulation of boar and sow takes at least 2-8 min (Whittemore and Kyriazakis, 2006) and 

ejaculated sperm in cervix (Coy et al., 2012) has a mean volume of about 200-250 ml and 

>30×10⁹ in number (Rodriguez-Martinez et al., 2005). Huge amounts of ejaculated sperm 

cells are eliminated from female reproduction tract (Neill, 2005). After ejaculation, 

spermatozoa start to move through the female reproduction tract during three main steps: 

rapid transportation, colonization and slow transportation.  

During the rapid phase, sperm are transported through the cervix by myometrial contractions 

and this step could takes around 2-10 minutes. Huge numbers of sperm cells will be 
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phagocytosed in epithelial folds of the endometrium. However, in sows sperm colonization 

of spermatozoa takes place in the location of uterotubular junction (UTJ), which is known as 

sperm reservoir (SR) and finally amounts of sheltered spermatozoa release and move 

through the oviduct in the slow transportation process (Hafez and Hafez, 2000; Rodriguez-

Martinez, 2007a; Rodriguez-Martinez et al., 2005). 

Different physiological processes are involved in sperm transportation in the uterus and 

oviduct such as myometrial activity, peristalsis and anti-peristalsis constriction of the 

oviduct, fluid direction, ciliary action and ovarian hormonal balance (Mwanza et al., 2000; 

Rodriguez-Martinez et al., 2005). During the mating, boars contact stimulates the release of 

oxytocin in estrous sows, which would enhance myometrial contractions and hence sperm 

transport (Langendijk et al., 2005). 

Because mating could occur before ovulation, it is necessary for sperm cells to keep their 

viability, quality and fertilization capacity. It has been shown that SR has a critical role in 

maintaining the sperm cells and prevent phagocytosis by polymorphonuclear cells (PMN) 

(Mburu et al., 1997; Rodriguez-Martinez et al., 1990; Rodriguez-Martinez et al., 2001) and 

also provides a certain degree of selection against sperm with low motility and 

morphological defects (Petrunkina et al., 2001). It has been shown that SR is extensively 

involved in regulation of capacitation. Spermatozoa acquire fertilizing capacity in this 

complex phenomenon. Previous studies suggested that due to low concentrations of Ca²⁺ 

(Dobrinski et al., 1997), and bicarbonate (Rodriguez-Martinez et al., 1991) and low 

temperature (Hunter and Nichol, 1986) in SR, probably the sperm reservoir segment 

prevents the premature capacitation (Tienthai et al., 2004). Moreover, it seems that SR acts 

more like a regulator and prepares the sperm cell for capacitation by removing the 

decapacitation factors from the sperm surface (Rodriguez-Martinez et al., 2005; Smith and 

Nothnick, 1997). Sperm retrieved from SR shows that they need less than 30 minutes for 

capacitation if added to capacitation media (Rodriguez-Martinez et al., 2001). Besides, it is 

observed that spermatozoa retained from SR have intact membranes and are still not 

capacitated at least in pre- or peri-ovulation stage (Rodriguez-Martinez et al., 2001; Tienthai 

et al., 2004). Other factors, which are available in SR and could regulate the capacitation are 

sulfated glycosaminoglycans (s-GAGs) and hyaluronic acid (HA) (Tienthai et al., 2003; 

Tienthai et al., 2000). Some studies have discussed that HA has a temporal capacitation 

effect on sperm cells (Tienthai et al., 2004) and even can play a delaying role on the sperm 

capacitation process (Rodriguez-Martinez et al., 2001).  
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In contrast some studies reported that capacitation takes place in SR and that spermatozoa 

after capacitation are released from SR (Fazeli et al., 1999). It has been suggested that 

spermatozoa become released from SR by three main mechanisms. It’s believed that GAGs 

either sulfated or non-sulfated, which are in high concentration in the oviductal fluid in the 

pre-ovulatory stage (Bergqvist and Rodriguez-Martinez, 2006; Bergqvist et al., 2005; Buhi, 

2002; Tienthai et al., 2000) have a positive effect on induction of hyperactivation in 

spermatozoa (Bakhtiari et al., 2007). The hyperactivation observed in SR is reported not to 

be the same as the hyperactivation post capacitation and hyperactivation at the SR is due to 

alkaline fluids (Nichol et al., 1997). However hyperactivation is the first mechanism that 

facilitates the spermatozoa releasing (Schmidt and Kamp, 2004). Furthermore, GAGs are 

suggested to accelerate the releasing process by inhibiting the interaction between the 

surface sperm proteins and SR (Liberda et al., 2006). In addition it is observed that 

spermatozoa in response to ovulation signal such as progesterone become less eager to attach 

to SR (Hunter, 2008). 

2.5.2 Capacitation  

Spermatozoa after release from SR need to be guided towards the site of fertilization in the 

ampullary-isthmic junction. Some reports showed that it can be a result of thermotaxis 

factors (Eisenbach and Giojalas, 2006) or chemotaxis factors like Calcium (Ca²⁺) and 

Progesterone (Chang and Suarez, 2010). 

Spermatozoa in epididymis are unable to fertilize the ovum (Visconti et al., 1999b). It is 

believed that some anti-capacitation molecular factors in epididymis, which protects 

spermatozoa from being capacitated (Vadnais et al., 2007). For successful fertilization, it is 

necessary that the sperm cell be capacitated. During capacitation the sperm cell undergo 

several biochemical, physical and metabolic events and achieves this ability to be 

hyperactivated, bind to glycoprotein membrane of oocyte (ZP), undergo acrosome reaction, 

and to penetrate the ZP (De Jonge and Barratt, 2006; Schatten and Constantinescu, 2007). 

The capacitation process takes about 5-6 hours (Hunter, 1990) and occurs probably once 

spermatozoa have left the SR, in the isthmus of the oviduct (Rodriguez-Martinez et al., 

2001) 

Capacitation initiates with removal of the decapacitation factors and a change in plasma 

membrane architecture such as cholesterol efflux (figure 8) (Bailey, 2010; Boerke et al., 

2008; Gadella and Harrison, 2000; Visconti et al., 1999b). Some investigators indicated that 
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albumin, which is present in uterine fluid is the main agent for removal of steroids and 

cholesterol from the plasma membrane (Boerke et al., 2008; Visconti et al., 1999b). Another 

receptor for cholesterol is cyclodextrins (Shadan et al., 2004). It has been shown that 

cholesterol efflux could increase the plasma membrane permeability for massive amounts of 

bicarbonate (HCO₃⁻) and Ca²⁺. (Shadan et al., 2004; Visconti et al., 1999b). In addition, 

HCO₃⁻, which is observed in uterine fluid, leads to phospholipase and translocase activation, 

with resulting on phospholipid remodeling of sperm plasma membrane. (Flesch et al., 2001b; 

Gadella and Harrison, 2000; Harrison and Gadella, 2005). 

High concentrations of HCO₃⁻ exist in the uterus (Bailey, 2010) and it has been shown that 

insufficient secretion of HCO⁻3 in the female reproductive tract could be associated with 

pregnancy failure in mice (Wang et al., 2003). Indeed HCO₃⁻ enters sperm cell via the 

HCO₃⁻/Na⁺ pump (Demarco et al., 2003). In light of increased HCO₃⁻, hyperpolarization 

occurs and hyperpolarization leads to change in trans membrane channel manner and forces 

them to be open and allow Ca²⁺  influx (Santi et al., 2010). Another effect of HCO₃⁻ is 

increase in intracellular pH which could accelerate the hyperactivation (Wennemuth et al., 

2003). HCO₃⁻ could trigger the downstream signaling pathways in collaboration with Ca²⁺. 

Different studies both in vivo and in vitro have showed that capacitation is a Ca²⁺ dependent 

mechanism (Fraser, 1998; Hossain et al., 2011; Ramio-Lluch et al., 2011; Witte and Schafer-

Somi, 2007). Increased level of intracellular Ca²⁺ during the capacitation process could occur 

through several different pathways. The Ca²⁺/ATPase and Ca²⁺/Na⁺ pumps provides the 

primary levels of intracellular Ca²⁺ (de Lamirande et al., 1997; Fraser, 1998). In addition, 

alkaline pH stimulates the CatSper channels in the principle piece of flagella and this results 

in huge amounts of Ca²⁺ influx (Qi et al., 2007; Xia et al., 2007). Furthermore, alkaline pH 

enhances the release of Ca²⁺ from intracellular stores such as the redundant nuclear envelope 

(Suarez, 2008). Furthermore, previous studies showed that Ca²⁺ influx could be controlled 

both via T-type Ca²⁺ and L-Type Ca²⁺ channels (Darszon et al., 2006b; Gonzalez-Martinez et 

al., 2002). 
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suggested that it has a close relation with hyperactivation and protein phosphorylation 

(Aitken and Baker, 2002). 

It is observed that analogs of cAMP leads to activation of PKA and causes protein tyrosine 

phosphorylation through protein tyrosine kinase activation (Bravo et al., 2005; Harrison, 

2004; Osheroff et al., 1999; Thundathil et al., 2002; Toshimori, 2009; Visconti et al., 1999a). 

PKA is also been reported that required for the activation of flagellar beat associated with 

hyperactivation (Harayama and Nakamura, 2008). Furthermore, activation of PKA could 

lead to Phospholipase D (PLD) activation and F-actin polymerization in human, bull and 

ram spermatozoa (Cohen et al., 2004). Inhibitors of PKA have been reported to inhibit 

protein tyrosine phosphorylation as well as sperm capacitation (Asquith et al., 2004; Bravo 

et al., 2005; Kirkman-Brown et al., 2002; Thundathil et al., 2002; Visconti et al., 1995). 

Tyrosin phosphorylation as a post-translational modification of proteins, has been shown 

occurs upon induction of optimal level of HCO₃⁻ and Ca²⁺ and by cAMP (Dube et al., 2003; 

Piehler et al., 2006; Shadan et al., 2004; Tardif et al., 2001b). Therefore, it is believed that 

capacitation and tyrosine phosphorylation have a close and direct relationship (Green and 

Watson, 2001; Kalab et al., 1998; Tardif et al., 2001b). Some researcher also believe that 

tyrosine phosphorylation level could control the T type Ca²⁺ channel and maybe the 

capacitation status (Witte and Schafer-Somi, 2007). During the capacitation, phosphorylation 

occurs in tyrosine residues of the proteins (Gadella and Van Gestel, 2004; Galantino-Homer 

et al., 1997). Some researcher have observed that during the capacitation, phosphorylation 

could happen in a special 32 kDa protein in boar spermatozoa (Kumaresan et al., 2011; 

Kumaresan et al., 2012; Tardif et al., 2001a). 

2.5.3 Hyperactivation 

The study of the sperm hyperactivity was first carried out by Yanagimachi in 1969 

(Yanagimachi, 1969). Latter study clearly found that hyperactivation is an essential 

phenomenon for sperm cells and plays a key role in zona pellucida penetration (Stauss et al., 

1995). Hyperactivated spermatozoa exhibits less symmetrical flagella beating (figure 9A) 

and swim vigorously in circles (figure 9B). (Ho and Suarez, 2001a). 

Follicular fluid contains different ions and hormones, it has been suggested that it could 

stimulate the hyperactivation probably at the proper place and time, which is necessary for 

fertilization (Nichol et al., 1992). A numbers of physiological factor such as HCO₃⁻, Ca²⁺ 
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viscose after ovulation and thereby facilitates the sperm movement in the oviduct (Hunter et 

al., 2011).  

ZP is a sulfated glycoproteinaceous matrix, which surrounds the plasma membrane of 

oocytes. In pigs, three types of ZP have been reported including ZP2, ZP3 and ZP4 (Gupta 

and Bhandari, 2011; Gupta et al., 2012). Acrosome reaction (AR) is an essential 

phenomenon for sperm cells for penetrating the zona pellucida and binding to egg plasma 

membrane (Florman et al., 2008). Only acrosome intacted sperms can bind with ZP (Fazeli 

et al., 1997). 

In freshly ejaculated spermatozoa, some chaperones like hsp60 and ERp99 are located on the 

cytoplasmic side of the membrane, and phosphorylation during the capacitation facilitates 

the activation and redistribution of these molecules on the sperm surface, which will 

contribute to ZP binding (Asquith et al., 2004). Therefore, only capacitated sperm cell can 

undergo the acrosome reaction. It is now generally accepted that ZP3 is the natural agonist 

that initiates the acrosome reaction (O'Toole et al., 2000; Thaler and Cardullo, 1996; 

Wassarman, 1999) and pharmacological antagonists of ZP3 can inhibit acrosome reaction 

(Arnoult et al., 1999). It has been suggested that zona binding could lead to opening of the 

voltage dependent Ca²⁺ channel such as L and T type channels and huge amount of Ca²⁺  

influx to the sperm cells (Florman et al., 2008; O'Toole et al., 2000). In addition, zona 

pellucida can activate the Phospholipase A2 (PLA2) enzyme inside the sperm (Shi et al., 

2005). Activation of PLA2 could increase the arachidonic production (figure 11) and 

arachidonic activates membrane fusion proteins in acrosome vesicle and facilitates the 

acrosome reaction (Darios et al., 2007). 

It has been shown that in response to bicarbonate and albumin and finally in response to 

capacitation, Q and R subfamilies of SNARE protein, will be redistributed in the sperm head 

(Tsai et al., 2007) and probably SNARE proteins have a regulatory role on the acrosome 

reaction, zona binding and membrane fusion (De Blas et al., 2005; Tomes et al., 2002) and 

may prevent spontaneous acrosome reaction (Tsai et al., 2010). Some other investigators 

have suggested that proteins like syntaxin and Vesicle associated membrane proteins 

(VAMP) during the capacitation immigrate to the acrosome region and facilitate the 

cholesterol efflux and acrosome reaction (Tsai et al., 2007). 

Exact location of AR during the fertilization is still not clear but some researcher believe that 

it takes place during sperm passage through the cumulus due to progesterone presence (Jin et 
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catechol estrogens (Gaustad-Aas et al., 2002), secreted estradiol from blastocysts and some 

uterine secreted proteins such as uteroferrin and retinol binding protein (Whittemore and 

Kyriazakis, 2006). The attachment of blastocysts to the uterine wall in sows begins in day 13 

and will complete between days 18-24. The placenta in sows is a diffuse epitheliochorial 

type and placental development begins in day 18. The length of gestation depends on breed, 

litter size and season, is between 112-116 days. Parturition begins with a fall progesterone 

level. Normal age for piglet weaning is 3-4 weeks (Whittemore and Kyriazakis, 2006). In 

Norway due to welfare legislation, weaning age is relatively long and is between 28-33 days 

(lovdata, 2003; Norsvin, 2012) 

2.6 Artificial insemination in porcine production industry  

Today swine artificial insemination (AI) in modern countries has become more and more 

common (Kadirvel et al., 2013) and reasons for that could be transferring the genetic 

potential of the best boars to large number of females, lower boar feeding cost (Lamberson 

and Safranski, 2000; Vargas et al., 2009; Wolf, 2009) and prevention of infectious 

reproductive disease (Leiding, 2000). In addition, pregnancy rate and litter size by AI is at 

least equal or higher compared with natural mating (Am-in et al., 2010; Lamberson and 

Safranski, 2000) 

The ejaculated semen, after routine quality assessment such as motility and morphology 

analyzes, is diluted by semen extenders, which are available commercially. Extenders are 

chosen by the expected storage life of the product and can be categorized as short-term 

extenders (1-3 days) and long-term extenders (more than 4 days). Long-term preservation 

can be favorable for instance at long distance transport (Gadea, 2003). Extenders should 

provide nutrition and buffer the pH by adding substances like glucose and 

bicarbonate/Tris/Hepes, respectively. Also osmolality should be adjusted by adding NaCl 

and KCl and prevention of microbial growth should be considered by adding the antibiotics 

(Gadea, 2003).  

Depending on extender aptitude, dilution rates of 1:4 to 1:25 (ratio of semen to extender) are 

used. After dilution, the semen usually has a concentration of 25-80×10⁶ spz/mL. Extended 

semen is processed into 75-125 ml tubes dose of semen, with about 2-4 billion sperm cells 

(figure 13A). Some components for increasing the fertility, and semen quality may be added 

in form of pharmacological agent, then doses may be transported and stored at 15-18 °C until 
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Dichromic mirror in on hand can block and deflected the specified wavelength at 90° and on 

other hand can pass wavelengths in the forward direction for further separation by others 

filters and dichromic mirrors. Final destination of produced light (FS or SC) is detectors, 

which convert the fluorescence light emission to electric pulse (Rahman et al., 2006) (Figure 

15A).  

Silicon detectors and Photomultiplier tube (PMT) are used for converting the FS and SC 

fluorescence light to electrical pulse, respectively. The converted voltage then invigorate by 

a collection of linear or logarithmic amplifiers. Logarithmic amplifier, increases the 

resolution of weak signals therefore, both weak and strong signals appear at the same scale 

in the surface stained cells cases while, linear amplifier is preferable when not excessive 

fluorescence broad range exist such as DNA studies (Radbruch, 2000). By this way, the cell 

population can often be separated based on differences in their size, density and fluorescence 

(Figure 15B). Finally, a numerous software programs, such as Summit, Flowjo, Kaluza, etc., 

can analyze the results. 

Although forward scatter can assess approximate cell size however, different flow cytometer 

devices measure the cell size differently due to differences in angle of forward scatter used 

(Yong Song et al., 2006). There are some machines working on electronic volume (EV) 

instead of FS. EV parameter is an accurate scale, which is not influence by color, shape or 

refractive index. EV is measured by converting the displaced corresponding amount of 

electrolyte due to particle passes through the aperture to the electrical pulse (Coulter, 2006). 

Each single molecule can be presented alone or in combination with other molecules, in 

different charts (Figure 16), including the histogram for a single parameter against the 

number of events or dot plot, density plot and contour plot for display of two parameters 

simultaneously (Rahman et al., 2006). By this way, the different cell subset can be 

characterized based on the expression of different cell surface or intracellular particles. 

However, the recent technology allows the flow cytometer to quantify the expression of 

different molecules by using beads in combination with each run.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure
Contou
2006).

 

2.7.3 

First r

1979).

method

charac

CASA

warme

princip

detecti

for spe

their m

images

e 16. Differ
ur diagram
 

Comput

report of a 

 With the u

d, more acc

cteristics can

A instrumen

er, an image

ple behind m

ive unit (Mo

erm heads, 

movement a

s based on 

rent charts 
, C) Dot pl

er Assiste

CASA syst

use of comp

curate and p

n be achieve

nt generally 

e converter a

most CASA

ortimer and

and numbe

across the 

sperm hea

from analy
lot, D) Hist

ed Sperm

tem comes 

uter-assiste

precise resu

ed (ESHRE

consist of 

and a comp

A systems is

d Mortimer,

r of frames

fields of v

ad displacem

lyzis of flow
togram. Ima

 Analysis

back to m

d sperm an

ult of sperm

E, 1998; Mo

f a camera, 

puter (figure

s that, a pha

 2013) and 

s, the instrum

view (Holt 

ment during

w cytometry
ages taken f

 (CASA).

more than 30

alysis (CAS

m morpholo

rtimer, 199

a phase co

e 17A) (Rijs

ase contrast 

according t

ment can d

et al., 2007

g the prede

y results. A
from Rahm

. 

0 years ago

SA) as an ob

gy, concent

7; Wang et 

ontrast mic

sselaere et a

microscope

to a predefi

detect the sp

7; Mortime

efined field

4

A) Density 
man (Rahma

o (Dott and

bjective ass

tration and 

al., 2011).  

croscope wi

al., 2012). T

e is used as 

ined range o

perm cells a

er, 2000). C

ds, are trans

43

plot, B) 
an et al., 

d Foster, 

sessment 

motility 

ith stage 

The basic 

a visual 

of pixels 

and trace 

Captured 

slated to 



 44

digital 

mathem

CASA 

differen

suggesti

such as;

using a 

200 mo

maximu

body te

2010) . 

 

 

 

 

  

 
 
 

 

Image 1
are com
the ana
phase c
sperm c
translat
from Ha

 

Several 

include:

data and 

matical algor

settings for

nt (Verstege

ions, some 

; CASA mu

minimum c

tile spermat

um 50×10⁶ 

emperature a

 

17. Illustrat
mposed of a
lyzing unit.
contrast mi
cells and ac
ted by the c
amilton Tho

sperm mot

: 

then sperm

rithms (figu

r each mod

en et al., 2

protocol an

ust be perfo

chamber de

tozoa shoul

spz/ml. Be

and CASA 

  

tion of comp
a phase con
 B) Sperm s

icroscope, w
ccording to

computer sof
orne (THOR

tility param

m motility 

ure 17B) (Br

del and inst

2002). How

nd standard

rmed with a

pth of 10 µ

ld be analyz

efore analys

analyzes m

       

mputer asses
ntrast micro
samples are
which is no
o frame sett
oftware to g
RNE, 2011)

meters are re

characters 

roekhuijse e

trument as 

wever, acco

s should be

an objective

µm with a m

zed per sam

sis, samples

must be per

ssed sperm 
oscope as th
e analyzed 
ormally att
tings, the c

graphical pa
and figure

eported by C

and kinem

et al., 2012a

well as for

ording to s

e considered

e with maxi

minimum sa

mple, semen

s should be

formed at 3

analyzer (C
he visual un
in special a

tached to a
camera take
aths and sta
B taken fro

CASA (figu

matics are 

a). 

r each anim

scientific an

d by the ope

imum 10X 

mpling time

n samples sh

e reactivated

37 °C (ESH

CASA). A) 
nit and a co
and pre war
a digital ca
es several i
atistical dat
m (Broekhu

ure 18), and

calculated

mal species 

nd manufac

erating tech

magnificati

e of 0.5 s. A

hould be dil

d by incuba

HRE, 1998; 

CASA instr
omputer sys
rmed cham

amera, dete
images, wh
ta. Figure A
uijse et al., 2

d these para

d using 

can be 

cturer’s 

hnician, 

ion and 

At least 

luted to 

ation at 

WHO, 

ruments 
stem as 
bers. A 

ects the 
ich are 
A taken 
2012a)  

ameters 



 

VAP =

trajecto

VSL =

straigh

VCL =

curvili

STR =

LIN = 

BCF =

crosses

ALH =

sperm 

 

 

 

 

 

 

 
 
 
 

There 

some C

Mircu 

if VCL

= average pa

ory 

= straight-li

ht line betwe

= curvilinea

inear path 

= straightnes

linearity. T

= beat cross

s its average

= amplitude

head about 

is relativel

CASA syst

et al., 2008

L and ALH 

ath velocity

ine velocity

een its first 

r velocity (

ss. The linea

The linearity

s frequency

e path 

e of lateral h

its average

y a new pa

tem. Accord

8), which sev

have increa

Figure 1
motility 
CASA. Im

y (µm/s). Th

y (µm/s). T

and its last 

(µm/s). Tim

arity of the 

y of a curvil

y (Hz). The

head displac

e path 

arameter kn

ding to def

veral labora

ased and ST

18. VAP, VS
characteris

Image taken

he mean vel

Time averag

position 

me average 

average pat

linear path, 

e average ra

cement (µm

nown as hy

finitions of 

atories have

TR, LIN, and

SL, VCL, BC
stic, which n
 from (Luco

locity of the

ge velocity

velocity of 

th, (VSL/VA

(VSL/VCL

ate at which

m). Magnitu

yperactivity,

hyperactivi

e agreed upo

d progressiv

CF and ALH
normally as
oni et al., 20

e sperm hea

y of a sper

f a sperm he

AP) × 100 (

L) × 100 (%)

h the sperm

ude of latera

, which cou

ity (Hinrich

on, hyperac

vity have de

H are main 
ssessted by 
006). 

4

ad along its 

rm head al

ead along it

(%).  

). 

m's curvilin

al displacem

uld be anal

hs and Loux

tivation is o

ecreased. 

45

average 

long the 

ts actual 

near path 

ment of a 

lyzed by 

x, 2012; 

observed 



 46

2.8 Assessment of semen quality in vitro  

The aim of semen analysis is to assess the fertilizing potential of the semen sample by using 

a rapid and inexpensive procedure (Moce and Graham, 2008). Recent developments in 

breeding have heightened the need for semen assessment using precise and modern 

techniques. Semen samples consist of a heterogeneous cell population (Rodriguez-Martinez, 

2006; Rodriguez-Martinez, 2007b). Sperm response to stress is individual and may depend 

on several conditions (Petrunkina et al., 2005a). In other hand, sperm calls can be infertile 

for several unknown reasons (Moce and Graham, 2008). Therefore, assessment of sperm 

quality by excluding the low quality male candidate could provide a great tool for increasing 

the herd output. 

2.8.1 Counting and morphological assessment 

Assessment of sperm cell quality normally begins with counting. Different methods are 

available like counting by the hemacytometer method (Sokol et al., 2000), 

spectrophotometry (Tan et al., 2010), CASA , nucleocounter and flow cytometry 

(Christensen et al., 2004). It has been reported that high rate of morphological abnormalities 

has a strong correlation with low fertility (Lavara et al., 2005; Love, 2011). Assessment of 

morphological abnormalities can be performed by light microscopy or digital spermatozoal 

images techniques such as automated sperm morphometry analysis (ASMA). In both 

methods spermatozoa with nuclear vacuoles, head abnormality and abnormal acrosome will 

be determined (Graham and Moce, 2005). 

2.8.2 Assessment of viability and acrosome integrity 

The integrity of the sperm plasma membrane is often synonymous with sperm cell viability. 

Analyzes of sperm membrane integrity and viability can be performed by microscopy 

assessment, fluorometry and flow cytometry (Graham and Moce, 2005). Sperm cells consist 

of three apparent membrane segments, one that covers the acrosome region, another which 

covers the post acrosome region and the last one that covers the middle and principal pieces. 

Different techniques are available for assessment of each segment (Moce and Graham, 

2008). Hypo-osmotic swelling test enables the assessment of plasma membrane intactness of 

the principle piece (Nur et al., 2005; Samardzija et al., 2008). The Eosin–nigrosin or eosin 

aniline blue staining method could be used for head membrane evaluation (Graham, 1996). 

Carboxyfluorescein diacetate analyze (CFDA) could be used for detection of the damaged 
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membrane (Fraser et al., 2001). CFDA is a colorless substrate, which shows green 

fluorescence activity when exposed to intracellular esterases (Graham and Moce, 2005). In 

addition, DNA binding fluorescent dyes such as propidium iodide (PI) and Hoechst 33258 

can penetrate to damaged sperm membrane and bind with DNA in dead cells (Graham and 

Moce, 2005). 

The integrity of acrosomal membranes can be studied by both flow cytometry and 

fluorescence microscopy (Graham and Moce, 2005). Acrosomal integrity is assessed using 

fluorescently labeled plant lectins such as Pisum sativum agglutinin (PSA) (Cross and 

Watson, 1994; Sukardi et al., 1997) and Peanut agglutinin (PNA) (Hossain et al., 2011; 

Yoshida et al., 2010). PSA binds to α-mannose and α-galactose and PNA binds to β-

galactose residues in acrosome reacted sperm cells of non-fixed cells (Graham, 2001). 

2.8.3 Assessment of DNA integrity and mitochonderial activity  

Several assays are available for evaluation of the DNA integrity such as acridine orange test 

(AOT), TUNEL assay, Comet assay and sperm chromatin structure assay (SCSA). Acridine 

orange shows green and orange fluorescence activity when it combines with double stranded 

and single stranded DNA, respectively. In the TUNEL assay damaged, DNA is stained at the 

3’ end. Comet assay is a single cell gel electrophoresis techniques, showing the DNA 

damaged sperm cells by larger DNA migration areas. However the SCSA method has been 

reported to be the most trustable, and cost effective diagnostic tool (Evenson and Wixon, 

2006). In addition, several studies have shown the distinctive value of the SCSA test in 

sperm quality assessment for different species (D'Occhio et al., 2013; Minervini et al., 2010; 

Waberski et al., 2011). 

Direct mitochondrial activity could be analyzed by specific fluorescent dyes such as 

Rhodamine 123 (Giannoccaro et al., 2010; Partyka et al., 2011) or JC-1(Martinez-Pastor et 

al., 2004). The JC-1 is usually used in combination with sperm motility analyzes such as 

CASA, because JC-1 shows intensity of mitochondrial activity and provides appropriate data 

for the relation between mitochondrial activity and motility capacity (Anel et al., 2010; Del 

Olmo et al., 2013). 

2.8.4 Assessment of capacitation and intacellular calcium 

Capacitation is a complex process which involves several parts of the sperm cell including 

change in the membrane, increase in intracellular calcium (Ca²⁺), bicarbonate and pH and 
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protein phosphorylation (Moce and Graham, 2008). Several studies have been performed for 

analyzing the capacitation status. Some studies used Filipin for analyzing the cholesterol 

efflux as a primary indicator of capacitation (Flesch et al., 2001a), others have shown that 

evaluation of phospholipid rearrangement using merocyanin 540 could provide valuable 

result for the assessment of capacitation (Flesch et al., 2001a; Hallap et al., 2006; Purdy, 

2008). Intracellular pH increases during the capacitation, and some researchers used 

BCECF-AM as an alkalinized pH indicator (Neri-Vidaurri Pdel et al., 2006). Monitoring of 

tyrosine phosphorylation as a downstream product in capacitation process is discussed in the 

literature. Assessment of phosphorylated proteins can be perform by direct immunostaining 

of sperm cells (Asquith et al., 2004; Kumaresan et al., 2011; Tardif et al., 2001b) or by 

protein extraction and western blotting (Bravo et al., 2005; Kumaresan et al., 2011; 

Kumaresan et al., 2012) and also by flow cytometry (Kumaresan et al., 2012; Piehler et al., 

2006; Sidhu et al., 2004). 

One of the most common assays for assessment of capacitation is Chlortetracycline (CTC) 

assay. CTC is a fluorescent antibiotic that can bind to hydrophobic regions and has 

excitation maximum at 390 nm and emission maximum at 520 nm (Shapiro, 2005). Many 

researchers have used CTC for assessment of capacitation in different mammals (Bucci et 

al., 2012; Dapino. et al., 2006; Kaneto. et al., 2002; Vadnais et al., 2005). CTC assay has 

been reported to be the more trustable assay because it can distinguish three main patterns in 

capacitated spermatozoa (Rathi et al., 2001). F pattern, which is a uniform pattern over the 

head and shows non-capacitated sperm cells, and B pattern with a fluorescence-free band in 

the post-acrosomal region, shows capacitated sperm cells. In AR pattern, the acrosomal 

region of the sperm head in the equatorial region is stained and this shows the acrosome 

reacted sperm cells (Dapino. et al., 2006; Mattioli et al., 1996b; Wang et al., 1995). 

Calcium plays a critical role as a second messenger in variety of cells (Takahashi et al., 

1999). Because of the important role of calcium in biology, plenty of methods are now 

introduced for measurement of calcium concentration in different cell types (Takahashi et 

al., 1999). In sperm cells calcium concentration has been reported to play a key role in 

capacitation, hyperactivity and fertilization process (Publicover et al., 2008). Measurement 

of calcium concentrations in sperm cells could be performed using both fluorescence 

microscopy (Ded et al., 2010; Henning et al., 2012a) and flow cytometry (Hossain et al., 

2011; Kumaresan et al., 2011). Today different fluorochromes are available which can be 

used in assessment of intracellular calcium (Takahashi et al., 1999).  
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Fura-2-AM is a calcium indicator, which has been reported to enables detection of the 

calcium concentration in spermatozoa (Carlson et al., 2005; Gonzalez-Martinez et al., 2002; 

Wennemuth et al., 1998). In addition, it has been shown that Indo1-AM also can be used in 

measurement of calcium concentration in sperm cells by flow cytometry (Collin and Bailey, 

1999; Dube et al., 2003; Purdy and Graham, 2004; Wennemuth et al., 2003). However, this 

probe has been shown to has low affinity for calcium and high affinity for Mg (Takahashi et 

al., 1999) . Fluo-3 AM has been reported to be one of the most suitable sperm calcium 

indicators by fluorescence microscopy and flow cytometry (Bains et al., 2001; Green and 

Watson, 2001; Harrison et al., 1993; Kadirvel et al., 2009b; Landim-Alvarenga et al., 2004; 

Marquez and Suarez, 2007; Piehler et al., 2006). It has absorption and emission maximum at 

about 488-506 and 526 nm, respectively (Takahashi et al., 1999). Fluo-3 has also been 

extensively used for detection of second messengers and neurotransmitters (Chatton et al., 

1998; Lipp and Niggli, 1998; Ukhanov and Payne, 1997) and for cell-based drug discovery 

screening (Sullivan et al., 1999). Fluo-3 fluorescence pattern for sperm cells with high 

calcium concentration appears in both the head and the middle piece and for low calcium 

concentration pattern becomes apparent just in the middle piece of sperm cells (Henning et 

al., 2012b)  

Fluo-4 is a new generation of Fluo-3 and the difference between Fluo-3 and Fluo-4 is two 

chlorine atoms in Fluo-3 that are replaced by two fluorine atoms in Fluo-4 (Device, 2010). 

Some reports are available on evolution of calcium in spermatozoa by Fluo-4 in human 

(O'Rand and Widgren, 2012; Shahar et al., 2011), mouse (Rodriguez-Miranda et al., 2008; 

Schuh et al., 2004; Xia et al., 2007; Xia and Ren, 2009), monkey (Dong et al., 2009), bovine 

(Navarrete et al., 2010), and boar (Hossain et al., 2011; Kumaresan et al., 2011; Kumaresan 

et al., 2012). In addition Fluo-4 is widely used for assessment of intracellular calcium in 

glioma cells grown in cell culture (Vines et al., 2010), human erythrocytes (Light et al., 

2003; Rohrbach et al., 2005), mouse liver cells (Barhoumi et al., 2000), mouse myocytes 

(Kojima et al., 2012), murine gastric antrum (Kim et al., 2008), bovine articular 

chondrocytes (Knight et al., 2003), porcine aortic valve (Hutcheson et al., 2012) and in hair 

cells (Spinelli and Gillespie, 2012). According to some investigations, fluorescence pattern 

for Fluo-4 is the same to fluorescence pattern for Fluo-3 (Navarrete et al., 2010). Due to its 

greater absorption rate near 488 nm (figure 19), Fluo-4 shows brighter fluorescence emission 

(Gee et al., 2000). Therefore, Fluo-4 can be used at lower concentration and lower loading 

time and this properties makes Fluo-4 safer that Fluo-3 (Device, 2010; Gee et al., 2000). 
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another technique, known as videomicrography. In this method, the proportion of motility 

patterns and progressivity of sperm cells as well as mean swimming speed can be calculable 

(Ben Ali, 2013; Gottlieb et al., 1991; Katebi et al., 2005). 

At the present, CASA is a modern techniques for sperm motility analyzes (2.7.3) (Mortimer, 

1997). Computer-assisted sperm analysis (CASA) provides objective and detailed 

information on motility characteristics and morphometric properties that cannot be 

recognized by light microscopic analyzes (Rijsselaere et al., 2005). CASA instruments now 

become more and more advanced and easy to use. Different companies attempt to optimize it 

for different animals both in hardware and software aspects (Rijsselaere et al., 2005) and the 

number of publications in related with CASA application for different species is increasing 

(Verstegen et al., 2002). 

Recent studies show that CASA has great value in analyzes and study of mammalian sperm 

cells. For instance, CASA utilization has been reported in assessment of human sperm 

(Alasmari et al., 2013; Awadalla et al., 2011; Hereng et al., 2012), boar sperm (Antonczyk et 

al., 2012; Broekhuijse et al., 2011; Purdy et al., 2010), bovine sperm (Bucak et al., 2010; 

Nothling and dos Santos, 2012) and stallion sperm (Gibb et al., 2013; Vidament et al., 2012). 

CASA offers multiple benefits in comparison to manual sperm evaluation for instance, 

several hundred of sperm cells can be analyzed in few minutes and in a real time without 

manual interference (Mortimer, 1997). In addition, high statistical data could be obtained by 

objective analysis of numerous sperm cells (Schleh and Leoni, 2013) and by using the 

CASA obtained parameters, relationship between sperm motility and field fertility can be 

investigated (Broekhuijse et al., 2012c; Holt et al., 2007). The main reservations for using 

CASA systems is that high investment costs for establishment needed and normally very 

percise standardization is demanded before use (Broekhuijse et al., 2011; Schleh and Leoni, 

2013). In addition, CASA has weak calculation in sperm agglutination cases and can not 

discriminate between immotile spermatozoa and other similar sized particles in the semen 

(Broekhuijse et al., 2011; Mortimer, 1997). Furthemore, small changes in device setting mey 

lead to deep change of result (Schleh and Leoni, 2013). 
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2.9 Aims of the study  

Norsvin is the sole Norwegian swine genetic company, focusing on transfer and 

improvement of genetic material through semen. The existence and ability to compete in the 

international market is completely dependent on the quality of the breeding material, and 

thus the quality of the breeding scheme at all times.  

Due to large geographical distances more than 70% of AI is performed with semen stored for 

more than 24 hours. Therfore, assessment of semen quality within the time preservation is 

critical. In other hand, recent developments in artificial insemination and animal science 

have heightened the need for assessment and improvement of semen quality. In recent years, 

there has been an increasing interest in evaluation of sperm quality by precise and objective 

methods. On other hand it has been observed that sperm quality is associated with genetic 

line. The aim of this study was to evaluate the Norwegian Landrace and Duroc semen quality 

by Flow cytometry and CASA techniques during the long-term liquid preservation. In order 

to achieve this, the following tasks are intended to be conducted: 

1) Optimization of a flow cytometry protocol with Fluo-4 staining for evaluation of 

intracellular Ca²⁺ in sperm cells from boars 

2) Pilot project 

a) Flow cytomtrey analyzes of intracellular Ca²⁺ in sperm cells from Landrace 

and Duroc boars in production 

b) Analyzes of sperm motility parameters by CASA in semen from Landrace 

and Duroc boars in production 

c) Statistical analyzes of results from sperm motility and intracellular Ca²⁺ in 

semen from Landrace and Duroc boars  
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3. Materials and Methods 

3.1 Experimental plan 

The current study has been divided into three following sections: 

1: Optimization of a protocol for assessment of intracellular Ca²⁺ level in boar sperm 

cells by Fluo-4 staining and flow cytometry analyzes 

Different conditions were tested for method optimization and for limiting the spontaneous 

capacitation. CTC assay and fluorescence microscopy techniques were used as control 

methods to verify the capacitation status in relation to intracellular Ca²⁺ level using the 

calcium indicator Fluo-4 acetoxymethyl ester (Fluo-4). 

2: Evolution of intracellular Ca²⁺ level by flow cytometry analyses in Norwegian 

Landrace and Duroc sperm cells stained with Fluo-4 

For assessment of the intracellular Ca²⁺ level of sperm cells in semen samples from 

Norwegian Landrace and Duroc boars, semen samples were incubated with Fluo-4 and 

analyzed by flow cytometery both on the day of collection and after 4 days preservation in 

18 °C. Gating of sperm cells with low or high level of intracellular Ca²⁺ was performed 

according to differences in Fluo-4 fluorescence intensity in the flow cytometry histogram. 

Influence of storage time and breed on intracellular Ca²⁺ level, were analyzed by statistical 

tests.  

3: Evolution of sperm motility characters using computer assisted semen analysis 

(CASA) in Norwegian Landrace and Duroc sperm cells 

Semen samples in parallel with samples evaluated in section 2 were analyzed by CASA for 

the following motility parameters: VAP, VSL, VCL, ALH, BCF, STR, LIN, motility, 

progressivity and hyperactivity. Both influences of storage time and breed were studied on 

sperm motility parameters and relations between motility parameters and intracellular Ca²⁺ 

were analyzed by statistical tests. 
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3.2 Chemicals and solutions 

All chemical in this study were from Merck, Germany unless otherwise stated.  

Non-capacitation medium (NCM) was used as sperm dilution buffer and diluent solution for 

Fluo-4 and probenecid. The content of NCM was based on Dapino (Dapino. et al., 2006) 

with slight modification. (96 mM NaCl, 3.1 mM KCl, 0.4 mM MgSO₄, 0.3 mM NaH₂PO₄, 

20 mM Hepes, 2mM Sodium Pyruvate, 21.7 mM Sodium Lactate). Medium prepared with 3 

mM CaCl₂, 20 mM NaHCO₃ and 4mg/ml BSA is called Capacitation Medium 1 (CM1). 

Variation of CM1 were prepared adding 5 mM Glucose (CM2), 10 mM CaCl₂ and 50 mM 

NaHCO₃ (CM3), 15 mM CaCl₂ and 75 mM NaHCO₃ (CM4) and 20 mM CaCl₂ and 100 

mM NaHCO₃ (CM5). The buffers were made on the day of experiment. pH and osmolality 

were adjusted to 7.4 and 300 mOsm/kg, respectively. After preparation, the buffers were 

further filtrated through a 0.2-µm single use filter unit (Minisart Sartorius, Gottingen, 

Germany) and stored at room temperature.  

3.3 Animals, sperm collection and processing.  

Semen doses for optimizing the method were obtained from a routine schedule of 

commercial AI Center (NORSVIN, Hamar, Norway) without respect to breed. 

Sperm doses for screening of sperm intracellular Ca²⁺ and motility (described in 3.6.1 and 

3.6.2), were collected from a total number of 56 purebred boars (33 Norwegian Landrace 

and 23 Norwegian Duroc) (Table 1), provided by commercial AI Center (NORSVIN, 

Hamar, Norway), between May 2012 and April 2013. The sperm-rich fraction of ejaculates 

was collected using the gloved hand technique. Before dilution, at the NORSVIN sperm 

laboratory, the total concentration of sperm cell were  calculated using the Nucleo Counter® 

SP-100TM (Chemometec, Denmark) and according to routine sperm evaluation, ejaculates 

with less than 70% progressive motility and more than 20% morphological defects (tail and 

head defects, protoplasmic droplets) were discarded. Then semen samples fulfilling the 

quality criteria were diluted approximately to 28x10⁶ ml in an Androstar® Plus extender 

(Minitube, 84184 Tiefenbach, Germany), and stored at 18 °C. All the samples were 

aliquoited in four 15 ml falcon tubes, one pair for analyzing on the day of collection by both 

Flow cytometry and CASA and another pair for analyzing at fourth day after collection. 

Meanwhile the experiment, samples were stored at 18 °C. During the procedure, some of the 
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samples dedicated for Ca²⁺ level analysis in the pilot project were used for further 

optimization the Fluo-4 flow cytometry protocol. Results from analysis of these samples 

therefore excluded.  

Table 1. Number of boars and ejaculates evaluated for intracellular Ca²⁺ by flow cytometry 
and sperm motility by CASA at the day of collection and at fourth day after collection. 

Breed Number of 
ejaculation 

Ejaculates analyzed for 
intracellular calcium 

Ejaculates analyzed for 
sperm motility parameters 

Day 0 Day 4 Day 0 Day 4 

Landrace 
(n=33) 

74 48 48 74 74 

Duroc 
(n=23) 

46 35 35 46 46 

 

3.4 CTC and Fluo-4 staining in spermatozoa 

3.4.1 Cholortetracycline staining assay for evalution of sperm capacitation 
status 

CTC staining solution was prepared at the day of experiment, according to Dapino (Dapino. 

et al., 2006). 750 μM CTC (Sigma Aldrich, Norway, C4881) and 5 mM D,L-Cysteine 

(Calbiochem, 2430) were added to CTC buffer containing 130 mM NaCl and 20 mM Tris. 

The solution was pH adjusted to 7.8, filtrated through a 0.2 μM sterile filter, stored at room 

temperature, and protected from light. For each semen treatment, 100 μl of the CTC staining 

solution was added to 100 μl semen sample, following 1 minute incubation, 200 μl of 2% 

PFA, in BPS, was added as a fixative. Slides were prepared by mixing 4 μl of stained sperm 

cells with 2 μl of 0.22 M 1,4 –diazabicyclo (2, 2, 2) octane (Sigma) dissolved in 

glycerol:PBS (9:1). Coverslips were placed on the sperm cell samples and slides were stored 

at 4 °C, protected from light. The cells were analyzed using an inverted Nikon ECLIPSE Ti 

–U fluorescent microscope (Nikon Corporation, Japan) equipped with phase contrast and 

fluorescence filter blocks. For CTC fluorescence evolution, a BV-2A filter block (Nikon) 

giving excitation light between 400-440 nm and collecting emission light with wavelengths 

longer than 470 nm (LP470) was used. At least 200 sperm cells were counted in each slide. 

The Nikon NIS –Elements Basic Research (version 3.00) software was used for digital 

visualization of the cells and for capture of images.  
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3.4.2 Fluo-4 staining assay for evalution of intracellular calcium in 
spermatozoa 

A 500 µM Fluo-4 stock solution was prepared by dissolving 50 µg Fluo-4 (Molecular 

Probes, Invitrogen, Norway, F14201) in 91 µL DMSO (Fluka AG, Buchs, Switzerland). On 

the day of the experiment, a 250 µM working solution of Fluo-4 was acquired by further 

dilution in 91 µL of 20% Pluronic F127 (Molecular Probes, Invitrogen, Norway, P3000MP). 

The Fluo-4 working solution was diluted 1:10 in NCM.  

According to Fransplass (2012) with slight modification, a 60 µl of semen sample was mixed 

with Fluo-4 to a final concentration of 2 µM. The solution was protected from light and was 

incubated for 30 min at 25 °C. Following incubation, samples were centrifuged at 800 g for 

10 min and the cell pellet was resuspended in 60 µl of NCM with 2.5 µM Probenecid 

(Molecular Probes, Invitrogen, Norway, P36400). The cells were analyzed directly, after 

placing a coverslip over 3µl of stained cells, using the same fluorescence microscope, which 

used in CTC assay. For detection of Fluo-4 fluorescence a FITC filter giving excitation light 

between 465-495 nm and collecting emission light between 515–555 nm, was used. At least 

200 sperm cells were counted in each slide. Digital visualization of the cells and capture of 

images were performed using the same software described in CTC assay.  

3.5 Optimization of a protocoll for assessment of intracellular 
Ca²⁺ level in boar sperm cells by flow cytometry  

3.5.1 Beckman Coulter flow cytometer instrument setup 

Stained cells after dilution in NCM down to 2×10⁶ cell/ml, were analysed by flow cytometry 

using Cell Lab Quanta SC MPL (Beckman Coulter), equipped with a 488 nm argon-ion laser 

(Figure 21), at the rate of 200 cell/sec. Fluo-4 fluorescence with maximum emission at 516 

nm was collected through a 525 Band Pass Filter in FL1. Data were collected for 10 000 

cells per sample. Acquisitions and analyses were made using Cell Lab Quanta™ SC MPL 

Analyzis software package, Beckman Coulter (Version 1, 0 A) and Beckman Coulter 

(Caluza® Analyzis software, Version 1, 2). 
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During the optimizing the protocol for assessment of intracellular Ca²⁺ level in boar sperm 

cells, for each trial three different semen samples without respect to breed were included. 

3.5.2 Minimizing the handling effect on spontaneous capacitation 

Recent study for assessment of capacitation in fresh semen samples has heightened the need 

for optimizing the protocol for handling of sperm cells in a Fluo-4 staining procedure 

(Fransplass, 2012). For these reasons, different condition and factors were tested. 

Fresh semen samples were aliquited in four rows. First row of samples was centrifuged at 

800 g for 10 min and resuspended in 1 ml non-capacitation media (NCM) and then washing 

and centrifugation was repeated twice. The second and third rows with samples were 

centrifuged two times and one time, respectively. The last row was considered as control. In 

addition, samples from each row were prepared for optimizing the incubation time. After 

loading the samples with Fluo-4, subsets were incubated in different incubation time (15 and 

30 min) and temperatures (18 °C, 25 °C, 30 °C, and 37 °C). In addition, subsets for 

chlortetracycline hydrochloride (CTC) pattern evaluation were stained after incubation. 

3.5.3 Induction of in vitro acrosome reaction  

1 ml of each semen sample was centrifuged at 800 g for 10 min and the cell pellet was 

resuspended in 1 ml of capacitation media (CM1). Then a 2 mM stock solution of Ca²⁺  

ionophore (Sigma Aldrich, Norway, A23187) in DMSO (Chemika, 41640) was added to a 

final concentration of 10 µM. The sperm solution was incubated in 37 °C and 5% CO₂ for 2 

hours. After incubation, the sample was centrifuged again and the cell pellet was 

resuspended in 1 ml of NCM. CTC and Fluo-4 staining were performed according to method 

described in 3.4.1 and 3.4.2. 

3.5.4 Induction of in vitro capacitation and flow cytometry setup 

Semen was aliquoted (1ml) and after centrifugation at 800 g for 10 min, the cell pellet was 

resuspended in 1 ml of different capacitation medium including CM1, CM2, CM3, CM4 and 

CM5. Then a 5 mg/ml stock solution of heparin from porcine intestinal mucosa (Sigma 

Aldrich, Norway, H3393) was added in 10, 50, 100 and 200 µg/ml final concentrations to 

cells in both CM1 and CM2. Cells resuspended in CM3, CM4 and CM5 were incubated with 

heparin to a final concentration 100 µg/ml. A control group without heparin was included for 

all treatments. All samples were incubated at 37 °C with 5% CO₂ for 4 hours. Sub samples 
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were taken 1 hour, 2.5 and 4 hours after adding the heparin. In addition, 100 µl of a 5 days 

old semen sample was centrifuged at 800 g for 10 min and the cell pallet was resuspended in 

1ml of CM1. Centrifugation and pellet resuspending were repeated three times. Finally, a 

60µl cell sample was stained with Flou-4 as described in 3.4.2. Flow cytometry analyzes was 

performed as described in 3.5.1 with PMT value at 5.35. In addition, a parallel microscope 

slide was prepared for each sample. 

3.5.5 Further optimizing of the Fluo-4 staining protocol for flow cytometry 

Semen samples were aliquoted (12 µl) in 96 well microplate with V shaped button and after 

mixing with Fluo-4, subsets were incubated in 18 °C for 30 minutes, 18 °C for 1 hour, 25 °C 

for 30 minutes, or at 25 °C for 1 hour. In addition, Fluo-4 was applied in two different 

concentrations, 2 and 1 µM final concentration. After centrifugation at 800 g for 10 min, the 

cell pellet was resuspended in 200 µl of NCM containing 2.5 µM Probenecid. Stained cells 

were analyzed by flow cytometry (3.5.1) and PMT value was adjusted to 4.99. Parallels of 

sperm samples were incubated at the same temperature and time and were stained by CTC 

for validation of the result by fluorescence microscopy.  

3.6 Pilot project  

3.6.1 Evalution of intracellular Ca²⁺ by flow cytometry analyzes in Fluo-4 
stained boar sperm cells  

Fluo-4 working solution was prepared as described in (3.4.2). After gentle mixing of each 

semen tube, a sample of 12 µl of semen from each tube (triplet) were mixed with 1.2 µM 

final concentration of Fluo-4 in a 96 well microplate with V shaped button. The cell samples 

further were incubated for 30 min in 25 °C while protect from light. Then samples were 

centrifuged at 800 g for 10 minutes. Further, each cell pellet was resuspended in 200 µl of 

NCM with 2.5 mM final concentration of probenecid for preventing Fluo-4 leakage from 

stained cells. Stained cells were analyzed by flow cytometry, as described in (3.5.1) with 

PMT value 4.99. 
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3.6.2 Evalution of motility characters using computer assisted semen 
analysis (CASA) in boar sperm cells  

Sperm motility parameters were analyzed in a computer assisted sperm analyzer (CASA), 

(HTM-IVOS system, version 12, Hamilton-Throne Research Beverly, USA), with the 

following settings: frames per second: 60 Hz; number of frames: 45; cell detection with 

minimum contrast: 46; minimum cell size: 7 pixels; cell intensity: 50; average path velocity 

cutoff: 20 µm/sec; straight-line velocity cutoff: 4.9 µm/sec; straightness: 45%; minimum 

average path velocity:45 µm/sec; hyperactivity: VCL>97 µm/s, ALH>3.5 µm, STR<100%, 

LIN<32%. After gentle mixing, a portion of each sample was warmed to 37 °C for 10 min in 

the incubator. After two times pipetting, a 5 µL drop of the sperm suspension was placed in 

two chambers of a 20 micron deep standard count chamber slide ( Leja, Nieuw Vennep, The 

Netherlands) warmed to 37 °C. The loaded slide was placed for 2 min on the thermal stage 

of the microscope (37.5 °C) before analyze for uniform distribution of sperm cells in the 

chamber. For each chamber, 15 predetermined optical fields around the central area of the 

chamber were analyzed, a minimum of 1000 spermatozoa per chamber were analyzed under 

a 10x objective of a negative phase contrast microscope (Olympus). The means of following 

variables for each chamber were calculated, average path velocity or VAP (µm/sec), 

straight-line velocity or VSL (µm/sec), curvilinear velocity or VCL (µm/sec), amplitude of 

lateral head displacement or ALH (µm), beat cross frequency or BCF (Hz), straightness or 

STR (%), linearity or LIN (%), total motility (%), progressive motility (%), and the 

percentage of hyperactivity. The final level for each parameter was calculated as mean for 

both chambers on the slides. 

3.6.3 Statistical analyzes  

All statistical analyses were performed using SPSS (IBM SPSS Statistics for Windows, 

Version 19.0. Armonk, NY: IBM Corp) and GraphPad Prism (GraphPad Prism version 6.01 

for Windows, GraphPad Software, San Diego, California, USA). Data for both Landrace and 

Duroc were categorized separately and were sorted for each day. Normal distribution of data 

was tested using the D’Agostino-Pearson omnibus test. In both Landrace and Duroc group, 

Pairwise t Test was performed for comparison between the means of motility parameters and 

intracellular Ca²⁺ level for Day 0 and Day 4. For analyzing the means of motility parameters 

and intracellular Ca²⁺ whithn the breeds at the same day of experiment, normal t Test was 

used. For non-parametric data, means were compared using Wilcoxon matched pairs test and 

Mann-Whitney test for paired and unpaired cases, respectively. Correlations between 
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motility parameters and intracellular Ca²⁺ level were determined by using the Pearson 

correlation coefficient in case of normal distribution and by Spearman’s rank correlation 

coefficient in case of non-normal distribution. Interaction between day and breed was 

calculated using two-way repeated measures ANOVA. In addition, data were subjected to 

linear regression analyzes for estimating the relationships among variables. The limit of 

significance was set at p < 0.05. 



 

4. R

4.1 F

Sperm

majori

pattern

CTC a

acroso

the CT

segmen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
of
F
c
w
e
r

Results 

Fluo-4 a

m cells staine

ity of sperm

n) and this p

assay was B

mal region.

TC assay i

nt of the he

Figure 23. D
of spermatoz
F pattern, 
categorized 
week fluores
equaterial f
reacted sper

and CTC

ed by CTC 

m cells exh

pattern is re

B pattern. In

. Spermatoz

s AR patte

ad, reported

Different CT
zoa. CTC a
with unifo
in the litera
scence radi
fluorescenc
rmatozoa re

C staining

(3.4.1) show

hibited unif

epresented th

n this patter

zoa with B 

ern, which 

d to acrosom

TC patterns
ssay reveal

orm fluores
ature as non
iance in po
ce ring is 
espectively. 

g pattern

wed three d

form fluore

he uncapac

rn, a non-flu

pattern are

is exhibite

me reacted s

s in boar sp
led three diff
scence rad
n-capacitat
st acrosom
categorized
White bars 

ns in boa

different stai

escence pat

itated sperm

uorescence 

 capacitated

ed a fluores

sperm cells.

ermatozoa. 
fferent patte

diance in t
ted spermat
al region a
d as capa
represent 2

ar sperm

ining patter

ttern over t

matozoa. Th

area was o

d. The last 

scence band

.  

A and B) C
erns in sper
the head o
ozoa, D) B 

and D) AR p
acitated an
20 μm. 

6

m cells  

rns (Figure 2

the head re

he second p

observed in 

observed p

d in the eq

CTC stainin
rmatozoa, C
of sperm i
pattern wit
pattern wit
d acrosom

63

23). The 

egion (F 

pattern in 

the post 

attern in 

quatorial 

ng 
C) 
is 
th 
th 

me 



 64

Sperm c

Sperma

mid-pie

were ca

 

 

 

 

 

 

 

 

 

 

Figure 
Sperma
head an
μm. 

4.2 O
level 

In order

on fresh

Fluo-4 p

status.  

 

cells stainin

atozoa with 

ece. In addi

ategorized to

24. Fluo-4
tozoa with l

nd mid-piec

Optimiza
in boar s

r to optimiz

h spermatoz

protocol, CT

ng with Fluo

low level 

ition, sperm

o have high 

4 staining of
low intrace

ce staining i

ation of a
spermato

zing the pro

zoa, differen

TC staining

o-4 (3.4.2) 

of intracell

matozoa with

level of int

of boar spe
llular Ca²⁺,
indicated th

a protoco
ozoa by 

otocol for Fl

nt laboratory

g was used a

showed tw

lular Ca²⁺, 

h fluoresce

tracellular C

ermatozoa  
 stained in 

he high intr

oll for e
flow cy

luo-4 stainin

y conditions

as a control

o different 

exhibited f

ence pattern

Ca²⁺. 

A) Sperma
mid-piece a

racellular C

valution
ytometry 

ng, and red

s were teste

l for evoluti

staining pa

fluorescence

n in both he

atozoa stain
and C) sper
Ca²⁺. White 

n of intra
 

duce negativ

ed. During o

ion of sperm

atterns (Figu

e staining o

ead and mi

ned by Fluo
rmatozoa wi

bars repres

acellular

ve handling 

optimization

m cell capac

ure 24). 

only in 

d-piece 

o-4. B) 
ith both 
sent 20 

r Ca²⁺ 

effects 

n of the 

citation 



 65

4.2.1 Minimizing the handling effect on spontaneous capacitaion 

An attempt to reduction of spontaneous capacitation in fresh semen samples, different 

condition and factors were tested including number of washing steps prior to Fluo-4 staining. 

In addition, incubation time and temperature during Fluo-4 staining were tested (3.5.2).  

The result from this optimization clearly shows that handling including both incubation time, 

temperature during the Fluo-4 staining and washing steps influenced on the percentage of 

capacitated (strongly positive for Fluo-4 staining and B pattern) and acrosome reaction 

(CTC-pattern AR) in fresh sperm cells. Data shows that spermatozoa in both 25 °C and 18 

°C for 30 minutes didn’t exhibit the acrosome reacted pattern (AR) (Figure 25). However, 

probably 25 °C caused better Fluo-4 penetration to sperm cells. Therefore, for further 

experiments incubation at 25 °C for 30 min was selected for Fluo-4 assay. 

Figure 25. Influence of incubation time and temperature on spontaneous capacitation and 
acrosome reaction. Red labeled categories shows the samples, which were incubated for 30 
minutes and the black categories shows samples, which were incubated for 15 minutes. 18 
°C and 25 °C for both 15 and 30 minutes, yield lowest degree of spontaneous capacitation 
and acrosome reaction in fresh samples. H & Mp = head and mid-piece stained cells 

 

In addition, data for washing steps shows that semen samples which were included as 

control, were exhibited no acrosome reacted pattern in CTC assay and in this category 

stained sperm cells with Fluo-4 assay (H & Mp pattern) were lower in compare with other 

washing protocol (Table 2). Therefore, for further trials, sperm cells stained with Fluo-4, 

without including any centrifugation steps. 
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Table 2. Influence of different washing steps on spontaneous capacitation and acrosome 
reaction in fresh boar semen. Fresh semen samples were subjected up to three times 
centrifugation before staining. 200 sperm cells were counted for each group. H & Mp = 
head and mid piece staining  

   Control  
(%) 

1 step washing 
(%) 

2 steps washing 
(%) 

3 steps washing 
(%) 

CTC – Pattern B 3.2 4.0 7.2 10.2 

CTC – Pattern AR 0.0 1.3 1.1 1.2 

Fluo-4 – H & Mp 2.7 10.0 12.2 20.0 

 

4.2.2 Fluo-4 staining of Ca²⁺ ionophore stimulated sperm cells  

There is no information in the literature regarding staining of acrosome reacted in sperm 

cells by the Ca²⁺  probes Fluo-3 or Fluo-4. In other hand, previous result showed that sperm 

handling such as incubation and centrifugation, performed during the Fluo-4 staining 

protocol, could lead to an increasing level of acrosome reacted cells (4.2.1).  

Literature clearly showed that Ca²⁺  ionophore could lead to in vitro capacitation and 

acrosome reaction. Spermatozoa were incubated with Ca²⁺  ionophore at 37 °C for 2 hours 

for induction of acrosome reaction, prior to Fluo-4 or CTC staining. Results from the 

experiment shows that, the sperm cells clearly exhibited both AR and B patterns evaluated 

by the CTC assay (Table 3). Whereas the percentage of sperm cells with high intracellular 

Ca²⁺  pattern evaluated by Fluo-4 staining, was similar to percentage of B pattern cells in the 

CTC assay. This result confirmed that Fluo-4 do not reveal any specific pattern for acrosome 

reacted sperm cells and stains only sperm cells categorized as capacitated (table 3). 

Table 3) Assessment of induced acrosome reaction in boar spermatozoa using CTC and 
Fluo-4 assay by fluorescence microscope. Acrosome reaction was induced using Ca²⁺ 
ionophore. 200 sperm cells counted for each group. H & Mp= (head and mid piece staining) 

   Control (%) Boar A (%) Boar B (%) Boar C (%) 

CTC – Pattern B 4.8 20.0 8.3 6.2 

CTC – Pattern AR 0.0 63.0 87.0 67.7 

Fluo-4 – H & Mp 6.0 28.8 13.5 9.7 
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4.2.3 Induction of in vitro capacitation  

According to results (Figure 24) and Fluo-4 pattern described by Navarrete (Navarrete et al., 

2010) the sperm cells with high intracellular Ca²⁺  exhibit the florescence pattern both in 

head and mid piece regions, conversely sperm cells with low Ca²⁺  content, appeared just 

with mid piece fluorescence radiance. In order to record the mentioned difference by flow 

cytometry, positive samples with high intracellular Ca²⁺  were needed as control group 

during the optimization of the protocol. It has been reported that one of the most effective 

reagents for in vitro induction of capacitation is heparin (Dapino. et al., 2006; Marquez and 

Suarez, 2004). For this purpose, different capacitation medium (without or with different 

concentration of heparin) were tested for induction of capacitation and Ca²⁺ influx to the 

sperm head. 

Results from this experiment clearly shows that induction of capacitation by heparin was 

unstable for all types of capacitation buffers (figure 26). The most striking result to emerge 

from the data was that the capacitation level in cells, which were resuspended in CM 1 

(without glucose) and CM 2 (with glucose) was almost the same.  

Figure 26. Effect of different concentration of heparin on induction of capacitation in boar 
spermatozoa. Semen samples diluted in two different capacitation media  A) Capacitation 
media I (CM 1) without glucose and B) with glucose (CM 2). Control samples were 
considered without adding heparin. After 30 minutes incubation at 25 °C, spermatozoa were 
stained by 2 µM Fluo-4 for evaluation of the intracellular Ca²⁺ by both fluorescence 
microscopy and flow cytometry.  
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Figure 27 presents the result obtained from the analysis of induction of capacitation in 

capacitation buffers (CM) with high concentration of CaCl₂ and NaHCO₃ (3.5.4). Not only 

capacitation level was insufficient but also flow cytometry analyzes for samples with high 

degree of capacitation (Figure 27B) showed unclear peaks (Figure 28A and B). 

However, strong evidence of capacitation and change in Fluo-4 fluorescence signal intensity 

was detected when semen samples were washed three times in CM 1 buffer (800 g for 10 

minutes) (figure 28C). This finding was validated by fluorescence microscope evaluation of 

both Fluo-4 and CTC stained cells (Table 4). 

 

Figure 27. Effect of heparin stimulation in different capacitation buffers on capacitation of 
boar spermatozoa evaluated by fluorescence microscope. The sperm cells were stimulated 
with 100µg/ml heparin (1, 2.5 or 4 hours incubation at 37 °C with 5% CO₂) in capacitation 
buffers with increased concentrations of CaCl₂ and NaHCO₃. Control samples were 
considered without adding heparin (3.5.4). A) CM3 (10 mM CaCl₂ , 50 mM NaHCO₃). B) 
CM4  (15 mM CaCl₂ and 75 mM NaHCO₃) and C) CM5(20 mM CaCl₂ and 100 mM 
NaHCO₃). Following heparin stimulation, in CM the cells were stained by 2µM Fluo-4 and 
were incubated at 25 °C for 30 minutes for evaluation of intracellular Ca²⁺  level by flow 
cytometry. Result indicated that degree of spermatozoa with high intracellular Ca²⁺ (A and 
C) were not insufficient for peaks differentiation in flow cytometry. 
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Analyzes of intracellular Ca²⁺ was performed using the optimized Fluo-4 protocol for flow 

cytometry (3.6.1). Nor for Day 0 (p > 0.05) neither for Day 4 (p > 0.05), intracellular Ca²⁺ 

level was not affected by breed. An increasing rate of spermatozoa with high intracellular 

Ca²⁺ level in Day 4 was observed for both Landrace (p < 0.005) and Duroc (p < 0.005) 

semen samples (Figure 32). There was no significant interaction between the breed and day 

of experiment (p > 0.05) on sperm cells with high intracellular Ca²⁺ level. 

 

 

4.3.2 Assesment of sperm motility parametrs by CASA 

CASA images clearly shows that development of sperm motility characters during the 4 days 

liquid preservation, was different in both Landrace and Duroc. For instance, proportion of 

hyperactivated spem cells (green and circular pattern) at the day of collection was higher for 

Duroc semen in compare with Landrace. On other hand after 4 days preservation, 

proportions of hyperactivated sperm cells were decreased and increased in Duroc and 

Landrace, respectively (Figure 33).  

Landrace VAP was increased significantly after 4 days storage at 18 °C (p < 0.005) but 

Duroc VAP almost remained unchanged (p > 0.05). Difference between the breed was 

observed only in day 0 for and Duroc VAP was higher in compare with Landrace VAP (p < 

0.005) (Figure 34A), interaction between breed and storage time was significant (p < 0.005) 

in VAP group.  

VSL was affected only by breed in both Day 0, (p ≤ 0.01) and Day 4 (p < 0.05) and in both 

days, Landrace VSL was higher. Storage time didn’t change the VSL nor in Landrace (p > 

0.05) neither in Duroc (p > 0.05) (Figure 34B), interaction between breed and storage time 

was not significant (p > 0.05) in VSL group. 

Figure 32. Changes in intracellular Ca²⁺ 
level for Landrace and Duroc semen, after 4 
days liquid preservation in 18 °C.  
* = p ≤ 0.05, ** = p ≤ 0.01. *** = p ≤ 0.005 
 



 74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3
and D b
and red
spermat
window
decreas
spermat

 

Landrac

consist 

Day 0 (

compare

significa

 

33. CASA s
belong to th
d colors sho
tozoa with 

w. Circular g
sed in Day 
tozoa in Day

ce VCL wa

during the 

(p < 0.005)

e with Lan

ant (p < 0.0

screenshot. A
he same Du
ows motile,
blue path d

green path s
4 for Land

ay of collect

as increased

time (p > 

) and in Da

ndrace (Fig

005) in VCL

A and B be
roc boar in
, progressiv
didn’t inclu
shows the h
drace and 

tion was hig

d in Day 4

0.05). Bree

ay 4 (p < 0

gure 34C). 

L group. 

long to Day
n Day 0 and
ve, slow, an
ude to analy
hyperactivat

Duroc resp
gher in Duro

4 (p < 0.00

ed was sign

0.05) and in

Interaction

y 0 and Day
d Day 4, res
nd static sp
yzes becaus
ted spermat
pectively. P
oc in compa

05), while 

nificant effe

n both days

n between b

y 4 in same 
spectively. G
permatozoa
se they pas
tozoa that w
Percentage 
are with Lan

Duroc VCL

ective factor

s, Duroc V

breed and 

Landrace b
Green, aqua

a, respective
ssed the sen
were increas

of hyperac
ndrace. 

L remaind 

r for VCL 

VCL was hig

storage tim

boar. C 
a, pink, 
ely. the 
nsitivity 
sed and 
ctivated 

almost 

in both 

gher in 

me was 



 

 

Duroc 

Landra

while 

and st

preserv

0.005)

Duroc 

was no

 

 

ALH was 

ace ALH. H

Duroc ALH

torage time

vation, Lan

, also BCF 

BCF was lo

ot significan

higher in b

However, a

H remainde

e was sign

drace BCF 

affected by

ower in bot

nt (p > 0.05)

both Day 0 

after 4 days

ed constant 

nificant (p

decreased s

y breed in 

h days (Fig

) in BCF gr

(p < 0.005)

s Landrace 

(p > 0.05) 

< 0.005) 

significantly

both Day 0

gure 35B). In

roup.  

Fig
par
°C.
line
(VC
* =
 

) and Day 4

ALH incre

(Figure 35

in ALH g

y (p < 0.00

0 (p < 0.00

nteraction b

gure 34. 
rameters du
 A) Averag
e velocity 
CL)  
= p ≤ 0.05, *

4 (p < 0.00

ased signif

A). Interac

group. Afte

5), as well 

5) and Day

between bre

Landrace 
uring the ti

ge path velo
(VSL). C)

** = p ≤ 0.0

7

5) in comp

ficantly (p <

tion betwee

er 4 days 

as Duroc B

y 4 (p < 0.0

eed and stor

and Duro
ime preserv

ocity (VAP).
) Curve li

01. *** = p

75

pare with 

< 0.005) 

en breed 

samples 

BCF (p < 

005) and 

age time 

oc velocity
vation in 18
 B) Straigh

ine velocity

 ≤ 0.005 

y 
8 

ht 
y 



 76

 

Figure 3
Amplitu
× 100 (
* = p ≤ 

 
Both ST

in Day 

Duroc. 

0.005) a

between

A

C

35. A and B
ude of latera
(%); D) LIN
0.05, ** = p

TR and LIN

4 (p < 0.0

However S

also were r

n breed and 

B. Effect of 
al head; B) 

N = linearity
p ≤ 0.01. **

N significant

005) and in

STR and LIN

remained co

storage tim

storage tim
BCF, Beat 

y = (VSL/VC
** = p ≤ 0.0

tly affected

n both day 

N after 4 d

onsist in Du

me was signi

me on head v
cross frequ

CL) × 100 (
005 

d by breed in

Landrace c

days, signifi

uroc (p > 0

ificant (p < 

velocity pat
uency. C) ST
(%) 

n day of co

characters w

icantly were

0.05) (Figur

0.005) in b

F
re

q
u

en
cy

 (
H

z)

B

D

tterns of spe
TR, straight

ollection (p 

were higher

e decreased

re 35C and

oth STR an

erm cells. A
tness = (VSL

< 0.005) as

r in compar

d in Landrac

d 35D). Inte

nd LIN grou

A) ALH, 
L/VAP) 

s wel as 

re with 

ce (p < 

eraction 

ups.  



 

After 4

semen 

signifi

(Figure

group 

.  

Propor

decrea

had si

higher 

time w

S
p

e
rm

 c
el

l (
%

)
S

p
e

rm
 c

el
l (

%
)

4 days prese

(p < 0.00

cant effect 

e 36A). Inte

rtion of pro

ased (p < 0.

ignificant e

degree of 

was not signi

ervation, pe

05) and rem

at the day

eraction bet

ogressive m

005). In bo

effect on pr

progressive

ificant (p >

ercentage of

mained unc

y 4 of expe

tween breed

motility afte

oth day of c

rogressive 

e motility (

 0.05) in pr

f motile spe

changed in

eriment (p

d and storag

er 4 days in

ollection an

motility lev

Figure 36B

rogressive g

F
m
of
* 

erm cells sig

n Landrace 

< 0.005) a

ge time was 

n both Dur

nd day 4 of

vel and La

B). Interacti

group.  

Figure 36. 
motility B) p
f sperm cell
= p ≤ 0.05,

S
p

e
rm

 c
el

l 
(%

)

gnificantly 

(p > 0.05

and Duroc m

significant 

oc and Lan

f experimen

andrace spe

on between

Effect of 
progressivity
ls in Landra
, ** = p ≤ 0

7

decreased i

5). Breed o

motility wa

(p ≤ 0.01) i

ndrace sign

nt (p < 0.00

erm cells e

n breed and

storage ti
ty and C) hy
ace and Dur
0.01. *** = 

77

in Duroc 

only had 

as lower 

in motile 

nificantly 

5) breed 

exhibited 

d storage 

ime on A)
yperactivity
roc semen.
p ≤ 0.005. 

) 
y 



 78

Hyperactivated sperm cells increased after 4 days in Landrace (p < 0.005). However, what is 

surprising is that hyperactivity level in Duroc semen decreased in Day 4 (p < 0.005) and 

breed was effective factor for hyperactivation level in both Day 0 (p < 0.005) and Day 4 of 

experiment (p < 0.05), in both days Duroc sperm cells shows high degree of hyperactivity ( 

Figure 36C). Interaction between breed and storage time was significant (p < 0.005) in 

hyperactivity group. Hyperactivity is affected by higher degree of VCL, ALH and lower 

degree of STR, LIN and progressivity (2.7.3). After 4 days preservation, all mentioned 

parameters were unchanged in Duroc category except proportion of progressive sperm cells. 

VCL and ALH were highr and STR, LIN and progressivity were lower for Duroc in compare 

with Landrce in both day 0 and day 4 of experiment. Therefore, Duroc sperm cells exhibited 

higher degree of hyperactivity in both days of experiment (Figure 32). 

In addition, linear relationship using regression model shows that proportion of 

hyperactivation in Landrace semen is not affected by motile sperm cells population (R² = 

2.462 e⁻⁰⁰⁵ , p = 0.96), while in Duroc, motile sperm cells could strongly influence on 

hyperactivated sperm proportion (R² = 0.088, p = 0.012) (Figure 37A and B).  

Figure 37. Linear regression model between proportion of motile sperm cells and 
percentage of hyperactivated sperm cells, A and B, in Landrace and Duroc, respectively. 
(Data for both day 0 and day 4 were included). 95% confidence band is shown by error line. 
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4.3.3 Relationships between intracellular Ca²⁺ level and sperm motility 
parameters

According to correlation coefficient results during the time, Landrace sperm cells 

populations with high intracellular Ca²⁺ level significantly were correlated to VSL (p < 

0.005), ALH (p < 0.01), BCF (p < 0.05), STR (p < 0.05), LIN (p < 0.005), Motility (p < 

0.01), Progressivity (p < 0.005) and hyperactivity (p < 0.005). In Duroc, proportion of sperm 

cells with high intracellular Ca²⁺ level was associated significantly with only STR (p < 0.05), 

LIN (p < 0.05) and hyperactivity (p < 0.05). Therefore, most Landrase motility parameters 

were associated with intracellular Ca²⁺ level. 

Landrace data shows that, in day of collection proportions of sperm cells with high 

intracellular Ca²⁺ level were associated with ALH (p < 0.005), STR (p < 0.01), LIN (p < 

0.005), Motility (p < 0.005) and Hyperactivity (p < 0.005). Data shows that none of Duroc 

motility parameters were not associated with sperm cells contains high level of intracellular 

Ca²⁺ (p > 0.05). However, in day 4 of experiment, Duroc VCL was in correlation with sperm 

cells contains high intracellular Ca²⁺ level (p < 0.05). Data for Landrace group, in Day 4 

shows that VSL (p < 0.005) and LIN (p < 0.05) were significantly associated with sperm 

cells contains high intracellular Ca²⁺ level. 

Linear regression analyses shows that sperm cells with high intracellular Ca²⁺ level, are not 

in relationship with motile sperm cells, nor in Landrace (p > 0.05), neither in Duroc (p > 

0.05) (figure 38A and B). On other hand, percentage of hyperactivated sperm cells were 

affected significantly by intracellular Ca²⁺ level, positively in Landrace (p < 0.005) and 

negatively in Duroc (p < 0.05) (figure 38C and D). Therefore, obviously over the time 

hyperactivity development is different in Landrace and Duroc semen samples.  
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Figure 38. Linear regression model between motile sperm cells and percentage of sperm 
cells with high intracellular Ca²⁺ level, in Landrace (A) and in Duroc (B). Linear regression 
model between hyperactivated sperm cells and percentage of sperm cells with high 
intracellular Ca²⁺ level shows different patterns in Landrace (C) and Duroc (D). (Data for 
both day 0 and day 4 were included). 95% confidence band is shown by error line. 
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5. Discussion 

5.1 CTC and Fluo-4 staining patterns in boar sperm cells  

The findings of the current study are consistent with those of Dapino et all (2006) who found 

sperm cells stained with CTC exhibit three different patterns including, F pattern, B pattern 

and AR pattern regarding to uncapacitated, capacitated and acrosome reacted cells. These 

findings further support the reported Fluo-4 staining patterns including mid piece staining 

for low intracellular Ca²⁺  and mid piece plus head staining for high intracellular Ca²⁺  level 

in sperm cells (Navarrete et al., 2010) 

5.2 Optimization of a protocoll for evalution of intracellular Ca²⁺ 
level in boar spermatozoa by flow cytometry  

A major problem in area related to boar sperm cell is that boar spermatozoa are very 

sensitive to environmental changes. Previous study clearly showed an increasing rate in 

capacitation and acrosome reacted in fresh samples during the CTC and Fluo-4 staining 

(Fransplass, 2012). Therefore, an attempt to reduction of handling and procedure negative 

effects on fresh semen sample and in order to accelerate the procedure, different laboratories 

condition were tested. First, to reduce spontaneous capacitation and acrosome reaction, 

centrifugation steps and incubation temperature and time were surveyed. In second step, 

tried to induce acrosome reaction and capacitation using different methods and analyze the 

Fluo-4 stained capacitated cells using flow cytometry. 

5.2.1  Minimizing the handling effect on spontaneous capacitaion 

In the present study, it has been attempted to achieve a reduction of spontaneous capacitation 

and limitation the extracellular Ca²⁺  influx during the Fluo-4 staining procedure. Although 

no statistical analyzes have been done, our results clearly indicated that, by increasing the 

incubation time and temperature, percentage of spermatozoa with both B and AR patterns in 

CTC stained increased as well as percentage of Fluo-4 stained spermatozoa with both head 

and mid piece staining (Figure 25). This study produced results which corroborate the 

findings of several of the previous work in this field that observed an increasing rate of 

capacitation during the incubation the samples in high temperature (Garcia Herreros et al., 
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2005; Hossain et al., 2011; Vallorani et al., 2010). Our results are in agreement with Hossain 

et al’s result, which showed incubation in 37 °C for 60 minutes significantly increases the 

sperm proportion with high intracellular Ca²⁺  level, assessed by Fluo-4 probe and showing 

that even 15 minutes incubation has a significant effect on Ca²⁺  influx. These authors 

discussed that high temperature over time made sperm plasma more permeable to 

extracellular Ca²⁺  (Hossain et al., 2011). It has been shown that storage of sperm cells in 

sub-optimal conditions leads to decrease in plasma membrane integrity, which is responsible 

for maintaining cellular integrity and encourage acrosome reaction (Zou C-X and Z-M., 

2000). Also high temperatures results in plasma membrane deformity and accelerate 

cholesterol efflux (Kadirvel et al., 2009a; Shadan et al., 2004), and as mentioned previously 

(2.5.2), the efflux of cholestrole facilitates the influx of extracellular Ca²⁺  and hence the 

sperm cells are triggered to capacitate.  

The current study showed that spontaneous capacitation and acrosome reaction could occure 

as a result of centrifugation and washing steps (Table 2). Prior studies have noted that 

centrifugation could trigger the spermatozoa to undergo several physiological changes. For 

this reason, several studies have applied just one washing step at 600 – 800 g for 5 – 10 min 

for separate the extender and spermatozoa (Dziekonska and Strzezek, 2011; Oh et al., 2010; 

Purdy et al., 2010; Vidament et al., 2012). As mentioned in literature not only boar 

spermatozoa relatively exhibit lower cholesterol content in compare with other mammalian 

sperm cell (Tomas et al., 2011; Tomss et al., 2008) but also it has been observed that certain 

handling procedures like centrifugation accelerate the cholesterol efflux (Kruse et al., 2011). 

Although some researchers have suggested that a standard method for control of the negative 

effects induced by handling in sperm laboratories should be developed in the future (Tejerina 

et al., 2008). However, different laboratories still use different centrifugation protocols. 

Some laboratories applied at least 3 washing steps (Dapino. et al., 2006; Hossain et al., 

2011) or discontinuous multiple steps (Henning et al., 2012b; Waberski et al., 2006) or even 

high rate like 3000 g (Xia et al., 2012) or longer time such as 30 min at 400 g (Kadirvel et 

al., 2009a). It seems that the centrifugation rate could be different, depending on experiment 

and species. In the current study a centrifugation rate of 300 g for 10 min was tested for 

removing the Fluo-4 staining solution after incubation, but the results were not clear enough 

(data not shown). Since the Fluo-4 intensity peaks were not distinguishable, it is 

hypothesized that a 300 g centrifugation rate was unable to remove the supernatant and 

stained solution completely and after centrifugation, still Fluo-4 dye existed in the solution 
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and could make some background fluorescence noise and interfere with sperm cells’ Fluo-4 

signal. Therefore, further research should be considered to investigate the centrifugation rate 

effect on boar sperm fluorescence staining.  

5.2.2 Fluo-4 staining of Ca²⁺ ionophore stimulated sperm cells  

It is well established that the CTC assay can reveal three different patterns: non-capacitated, 

capacitated and acrosome reacted sperm cells (Dapino. et al., 2006; Oh et al., 2010). 

However, far too little attention has been paid to assessment of acrosome reaction by Fluo-3 

or Fluo-4 staining techniques.  

In the current study, comparing the percentage of stained sperm cells in the CTC assay with 

the Fluo-4 assay showed that the mean degree of capacitated sperm cells is almost equal in 

both techniques (Table 3). Whereas the CTC assay showed a high degree of acrosome 

reaction in sperm cells, Fluo-4 techniques didn’t show any specific changes in fluorescence 

pattern. Fluo-4 staining only showed two main patterns, mid-piece staining for sperm cells 

with low intracellular Ca²⁺  and head plus mid-piece staining for sperm cells with high 

intracellular Ca²⁺ . In other words, the percentage of acrosome reacted cells was missing in 

the Fluo-4 assay. Previous studies indicated that for assessment of capacitation and 

intracellular Ca²⁺, both CTC and Fluo-3 staining techniques should be used simultaneously 

(Kadirvel et al., 2009a). Obviously, it seems that CTC cannot be applied as Ca²⁺  indicator 

and Fluo-3 or Fluo-4 cannot be applied for the detection of acrosome reaction. A possible 

explanation for this might be that CTC bind to hydrophobic membrane regions of those 

organelles, which contains high amount of Ca²⁺  but Fluo-3 or Fluo-4 interact directly with 

Ca²⁺  (Gee et al., 2000; Mattioli et al., 1996a; Takahashi et al., 1999). As a consequence, AR 

pattern could be a specific pattern in the CTC assay, which appears due to Ca²⁺  

accumulation in rostral reservoir in head and equatorial regions of sperm cell during the 

acrosome reaction (Walensky and Snyder, 1995). Furthermore, research showed that without 

using confocal microscope, it is almost impossible to differentiate between the 

intracytoplasmic Ca²⁺  and intranuclear Ca²⁺  fluorescence signal using Fluo-4, and 

intracytoplasmic Fluo-4 fluorescence signal would be masked by intranuclear Fluo-4 

fluorescence signal (Thomas et al., 2000). The current result shows that although Fluo-4 is a 

sensitive Ca²⁺  indicator, due to its insufficiency in detection of acrosome reacted cells, it 

should be used conservatively in stored semen samples and parallel samples should be 

considered for CTC staining as a control assay.  
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5.2.3  Induction of in vitro capacitation 

Very little was found in the literature on the question of induction of capacitation by heparin 

in boar semen. The role of GAGs in boar sperm physiology is not so clear. It has been 

reported that heparin present in sow oviductal fluid (Tienthai et al., 2000) and enhances the 

sperm capacitation by different mechanisms. Firstly, heparin could bind with uncapacitated 

factors located in the sperm membrane, which known as heparin binding proteins (Dapino et 

al., 2009) and secondly heparin leads to increasing the intracellular Ca²⁺ , pH and cAMP, 

which are all involved in capacitation process (Galantino-Homer et al., 2004; Parrish et al., 

1994). 

It is now well established that heparin could induce capacitation in bull (Chamberland et al., 

2001; Farlin et al., 1993; Marquez and Suarez, 2004; Parrish et al., 1988) stallion (Farlin et 

al., 1993) dog (Kawakami et al., 2000) and ram (Ferrari et al., 2000) semen. The only report 

of induction of capacitation in boar semen by heparin is done by Dapino (Dapino. et al., 

2006). Our results are not consistent with their report. They used different concentrations of 

heparin (10 and 100 µg/ml) and after 90 and 120 minutes’ incubation of the samples at 37 

°C, and 5% CO₂, found that B pattern or capacitation increased significantly up to 45-50%. 

Our result shows that maximum capacitated cells in different capacitation solutions were 

about 20 – 40 % (Figure 27A and C), which is not valuable to count as a positive control 

sample in flow cytometry. Although after 4 hours incubation, about 60% capacitation was 

observed in some capacitation buffers (Figure 27B). However, one unanticipated finding was 

that the capacitated spermatozoa didn’t show any clear peaks during flow cytometry 

analyzes. A possible explanation for this might be that 4 hours incubation at 37 °C conducts 

serious damage of sperm cells. Further investigation by fluorescence microscopy revealed 

fragmented spermatozoa after 4h incubation time. Therefore, fragmented spermatozoa could 

interfere in sperm cell population assessed by EV in flow cytometry analyzes. Another 

possible explanation for this is that according to Dapino et all (2006) observation, heparin 

binding proteins in boar are mostly located in acrosome region and they found increasing 

level of AR pattern in CTC stained boar spermatozoa stimulated by heparin and as discussed 

previously (5.2.2) acrosome reacted sperm cells could not be differentiated by Fluo-4 assay. 

Our result showed that effect of heparin in induction of capacitation was almost equal when 

added to both CM1 and CM2 buffers (Figure 26, Figure 28A and B) while CM2 was 

contained glucose and it has been shown that heparin and glucose are not compatible to each 
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other (Yin et al., 2007). Therefore, interaction between heparin and glucose regarding to 

induction of capacitation in this study is unclear as well as effect of heparin in boar 

spermatozoa capacitation. Furthermore, although in current study Probenecid was applied as 

an inhibitor of trans membrane anion transporters, it has been reported that some degree of 

Fluo-4 leakage could be occurs following incubation of the HeLa cells stained with Fluo-4 at 

37 °C due to temperature sensitive anion transporters (Thomas et al., 2000).  

Regarding the quest of finding an effective procedure for induction of capacitation, this 

study found that 3 times washing with centrifugation at 800 g for 10 minutes of a 5-7 days 

old sperm cells in capacitation buffer without Ca²⁺  ionophore (CM 1) could induce the 

capacitation successfully (Table 4). According to our results more that 50% of spermatozoa 

were capacitated, in addition the percentage of capacitated sperm cells was almost at the 

same level evaluated by the CTC and Fluo-4 staining and for flow cytometry as well (Figure 

28C). Some authors have speculated that sperm samples, stored at suboptimal conditions, 

were most sensitive to in vitro induction of capacitation (Guthrie and Welch, 2005; 

Petrunkina et al., 2005b). Although ionophore Ca²⁺  didn’t include in the capacitation 

solution for washing the sperm cells, our result confirms that capacitation could increase 

both during the time and during the handling procedures and sperm cells become most 

sensitive to induction of capacitation probably due to membrane changes and cholesterol 

efflux. We found that this innovative method for induction of capacitation, was very useful 

and time consuming. This method used further in the project for optimization of the Fluo-4 

protocol for flow cytometry.  

5.2.4 Further optimizing the Fluo-4 staining procedure for flow cytometry 

Our study showed that incubation the Fluo-4 stained sperm cells at 25 °C (room temperature) 

for 30 minutes (Figure 29), was the best incubation condition for Fluo-4 staining procedure 

(confirmed by CTC analyze of parallel fresh samples). We hypothesized that 25 °C is 

optimal temperature, which Fluo-4 could penetrate to the sperm cells and by this means, 

actual status of intracellular Ca²⁺ level would be revealing. Previous report confirms that 

incubation the HaLa cells with Fluo-4 at 20-22 °C for 30 minutes, is the best protocol for 

limitation of Fluo-4 leakage (Thomas et al., 2000). It can be seen from the result in Figure 30 

that lower concentration of Fluo-4 facilitated the peak separation in the flow cytometry 

histogram. Two clearer peaks in flow cytometry of Fluo-4 stained sperm cells, belongs to 

sperm cells with low and high intracellular Ca²⁺  level, previously has been reported by 
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Fransplass (Fransplass, 2012). Fransplass applied Fluo-4 in three different concentrations (1, 

2.5 and 5 µM) for analyzing the intracellular Ca²⁺  in boar spermatozoa and found that 1µM 

of Fluo-4 yield better peak separation in flow cytometry. In addition, optimizing the 

fluorescence concentration was found useful for better data collection in apoptosis studies 

(Yong Song et al., 2006). Result from our analyzes of intracellular Ca²⁺  in 96 wells 

microplate, shows that using the microplate could save the time and accelerate the analyzing 

process in flow cytometry. However, one of the important factors, which then should be 

considered is that, analyze of each sample takes about 2 minutes. Therefore, analyzing a high 

numbers of samples should be performed conservatively. The current study showed that the 

maximum samples, which can be run together without changes in fluorescence pattern is 12 

samples. Analyzing more than 12 samples may lead to differences in fluorescence pattern 

and intensity due to unnecessary and extra sample incubation time before flow cytometry 

analyze.  

5.3 Pilot project 

In the present work, all data according to two different genetic lines (Duroc and Landrace) 

were divided into two categories. For each category, intracellular Ca²⁺  level and sperm 

motility parameters using CASA were analyzed both at the day of collection and at 4 days 

after collection. Effect of breed and storage time on intracellular Ca²⁺  level and sperm 

motility parameters were surveyed using statistical analyzes. In addition, possible 

correlations between intracellular Ca²⁺  level and sperm motility parameters were 

investigated.  

5.3.1 Measurement of intracellular Ca²⁺ using Fluo-4  

To this author’s knowledge, this is the first report about measurement of intracellular Ca²⁺ 

by Fluo-4 during liquid preservation. The result of this study is in agreement with research 

which showed 18.5% of high intracellular Ca²⁺ for boar fresh samples with the CTC assay 

(Garcia Herreros et al., 2005). Present results for fresh semen are in contrast to Dube et al’s 

(Dube et al., 2004) results who reported 7-9 % capacitated sperm cells in the CTC assay for 

fresh semen samples. The differences could be related to extenders and procedure. They 

used Androhep Plus and X-Cell extenders for sperm dilution. Data for current project shows 

that individual differences could be exist for intracellular Ca²⁺ level in both Landrace and 
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Duroc categories. This finding somehow supports previous research, which has been 

reported an different response among spermatozoa to capacitation environment due to 

difference in individual maturation (Harrison and Gadella, 2005). However, current results 

indicate that the sperm intracellular Ca²⁺ level for both Duroc and Landrace categories 

increased after 4 days semen preservation at 18 °C (Figure 31 and 32). These findings 

further support the idea of researchers who observed increasing rate of intracellular Ca²⁺ 

during stressing conditions such as liquid long-term preservation. According to Dube et al.’s 

report (Dube et al., 2004), during semen preservation at 17 °C for 12 days, the proportion of 

capacitated sperm cells in the CTC assay increased up to 45%. Other researchers have 

reported that after preservation for 13 days at 15 °C more than 70 % of sperm cells are 

capacitated in the CTC assay (Huo et al., 2002). In an interesting study, after 120 hours 

storing the boar semen at 17 °C, proportion of Pietrain and German Large White boars 

sperm cells with high intracellular Ca²⁺ in Fluo-3 assay significantly increased (Henning et 

al., 2012b).  

Another finding was that in day of semen collection the proportion of sperm cells with high 

intracellular Ca²⁺ was higher in Landrace in compare with Duroc (Figure 32), although the 

deference was not significant. The difference between the breed also was not significant at 

day 4 after preservation. To our knowledge, the present study is the first report of the 

occurrence about effect of breed on intracellular Ca²⁺  level. However, as mentioned 

previously (2.5.2), Ca²⁺  increasing rate is depend on different factors such as viability and 

integrity. Previous studies clearly reported that viability significantly affected by breed in 

Hampshire, Landrace and Danish Large White boars (Boe-Hansen et al., 2008). 

Extracellular Ca²⁺ mostly penetrate to sperm cells by special channels but it has been 

discussed that storage time could leads to cholesterol efflux and makes the plasma 

membrane more permeable for extracellular Ca²⁺influx (Kadirvel et al., 2009b). Research 

questions that could be asked include, is the extracellular Ca²⁺ could be the main source for 

increasing the intracellular Ca²⁺ in fresh samples? Researchers showed that Ca²⁺ accumulates 

in sperm cells both from intracellular sources like the nuclear envelope (Suarez, 2008) or 

from mitochondria (Ardon et al., 2009) as well as external sources (Guthrie et al., 2011). It 

has been shown that sperm cells spontaneously and specially during the preservation, 

produce kinds of reactive oxygen species (ROS) such as superoxide (SO) anion, hydrogen 

peroxide (HP) and nitric oxide (Aitken et al., 2010). As mentioned in literature, produced 
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ROS during the storage could increase the intracellular Ca²⁺ in sperm cells by two different 

pathways. Firstly, ROS by induction of peroxidation in phospholipid residues of 

mitochondrial membrane (Park et al., 2011) leads to mitochondrial membrane damage, and 

leakage the mitochondrial Ca²⁺  (Ardon et al., 2009). Secondly, ROS lead to membrane 

phospholipid degeneration and changes the membrane permeability to extracellular Ca²⁺ 

(Xia et al., 2012). Another factor, which can influence the intracellular Ca²⁺ , is 

phospholipase A2. Stressing environment could increase the phospholipase A2 activity and 

its product, arachidonic acid (Bailey, 2010). In other hand it has been reported that pH of 

different extenders contain sperm cells, over time would like to be alkalinized (Vyt et al., 

2004). Furthermore, phospholipase A2 is an alkaline sensitive enzyme and alkaline pH could 

increase its activity level (Fry et al., 1992). Therefore, phospholipase A2 products can 

regulate voltage-gated calcium channels and facilitate the Ca²⁺  influx (Roberts-Crowley et 

al., 2009). 

Although it is believed that boar spermatozoa could tolerate high degree of intracellular 

Ca²⁺  (Kumaresan et al., 2012), on other hand reported that most of the capacitated sperm 

cells undergo apoptosis (Birck et al., 2009). Therefore, the next question is that increasing 

the intracellular Ca²⁺  levels how much could promote the real capacitation and enhances the 

apoptosis during the liquid preservation? One study showed that boar sperm preservation for 

12 days at 17 °C has resulted in tyrosine phosphorylation as downstream capacitation 

product only in moderate level (Dube et al., 2004). However, some researchers believes that 

capacitation signs, as a result of preservation for 8 days at 15 °C are relate to premature 

capacitation and not related to real capacitation status (Conejo-Nava et al., 2003). However, 

current results further support previous findings that holding time can promote the 

spermatozoa to response to extracellular Ca²⁺  and capacitation (Conejo-Nava et al., 2003). 

5.3.2 Analyzing the sperm motility charcters by CASA 

In this study, storage time for 4 days was found to cause significant changes in sperm 

motility parameters. Our study clearly shows the difference between Duroc and Landrace 

sperm motility characters development during storage for 4 days. 

General motility character  

In Landrace, total motility during the 4 days increased but not significantly (Figure 36A). 

Increasing the motility after 4 days for Landrace is not consistent with physiological 
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principles and sperm aging. However, current result for Landrace somehow is in agreement 

with Fransplass (2012) who observed an increasing rate in Landrace sperm cells viability, 

diluted in Androstar Plus extender over the time preservation for 5 days. Other researchers 

have been also reported an increasing rate in sperm viability, diluted in different extenders 

including MR-A and Androstar over the sample preservation (Boe-Hansen et al., 2005; De 

Ambrogi et al., 2006; Waterhouse et al., 2004). On other hand current Landrace result is not 

in agreement with Frydrychova et al’s (Frydrychova et al., 2010) report that observed 

reduction in sperm motility diluted in both Androstar and Androstar Plus extenders. They 

kept the samples for 96 hours in 17 °C and analyzed both motility and viability. However, 

they analyzed only 21 boars (hybrid) and assessed the motility subjectively using phase 

contrast microscopy. The findings of the current study do not support the previous research, 

which reported about higher motility of Duroc in comparison with Landrace (Thurston et al., 

2001) however, they studied only 5 boars for each breed and analyzed the frozen semen 

sample after thawing.  

The present result may be explained by the fact that storage time led to dissolving of sperm 

clumps and as a result, more sperm cells will be detectable by CASA. One of the CASA 

weaknesses is that CASA is unable to count clumped cells and is also unable to identify 

debris or non-sperm cells precisely especially if debris are in of the same size as sperm cells 

(Mortimer, 1997). In fact, when CASA was run at the day of collection, some degrees of 

clumps and sperm agglutination were observed not for all samples. It has been hypothesized 

that probably some component of extenders encourages the sperm cells to agglutination and 

fragmentation (Waterhouse et al., 2004). Another possible explanation for constant motility 

in Landrace is that storage by providing enough time could help spermatozoa to reconstruct 

their plasma membrane. It is needless to say that plasma membrane integrity is an important 

factor for normal sperm physiology and motility, and reconstruction would increase the 

sperm cells’ capacity to show resistance to environmental change. Prior studies that have 

noted that sperm membrane architecture during storage can undergo remodeling and sperm 

can choose the provided relevant component by seminal plasma and extender for repairing 

the membrane (Caballero et al., 2008; Srivastava et al., 2012).  

In contrast to Landrace, motility for Duroc semen significantly decreased over time (Figure 

36A). It is now well established that the proportion of motile sperm cells during liquid 

preservation is reduced. Our data for Duroc semen motility is in agreement with (Duangjai 

Boonkusol et al., 2010; Dziekonska et al., 2009; Estienne et al., 2007; Henning et al., 2012b; 
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Kumaresan et al., 2009) who all reported the reduced motility after preservation at 15-18 °C 

over the time, in different genetic line boars such as, Swedesh Landrace, Hampshire, german 

Large white and hybrids boars.  

There are several possible explanations for reduction of motility during liquid storage. It has 

been reported that produced ROS could interfere with motility level via three different 

pathways. Firstly, producrd ROS could interfere with mitochonderial activity and reduce the 

ATP synthesis level (Xia et al., 2012). Secondly ROS could decreas the membrane integrity 

and leads to changes in phospholipid architecture (Am-in et al., 2011) and thirdly ROS could 

increase the DNA fragmentation index (DFI) (Guthrie and Welch, 2012). It has been 

observed that sperm cells with high degree of DFI significantly exhibited lower motiliy 

(Micinski et al., 2011). 

Hyperactivity  

The most interesting finding in the current study was that, Landrace and Duroc sperm cells 

exhibited different hyperactivity level both in day of collection and after 4 days preservation 

(Figure 33 and 36C). Hyperactivity is characterized by high flagellar pendulum and high 

amplitude of lateral head displacement which gives the star like and circular movement 

pattern to a sperm cells (Goodson et al., 2011; Hinrichs and Loux, 2012; Kaula et al., 2009). 

Taking everything into consideration, we can say that after 4 days, Landrace sperm cells 

shift their motility pattern to hyperactivation and Duroc sperm cells decreased their 

hyperactivity (Figure 33 and 36C). A comparison between responsible characters for 

hyperactivation could emphasize more on increasing and decreasing the hyperactivation in 

Landrace and Duroc boars, respectively. Higher VCL, ALH and lower STR, LIN and 

progressivity in both days of experiment for Duroc resulted in higher hyperactivation. After 

4 days preservation, in Landrace VCL (Figure 34C) and ALH (Figure 35A) increased, 

significantly, while, VCL (Figure 34C) and ALH (Figure 35A) in Duroc were consisted. In 

addition STR (Figure 35C), LIN (Figure 35D) and progressivity (Figure 36B) after 4 days 

preservation in Landrace, were decreased significantly, nonetheless in Duroc just 

progressivity (Figure 36B) significantly decreased and both STR (Figure 35C) and LIN 

(Figure 35D) were stable. Therefore, it could be concluded that in Landrace all responsible 

characters for hyperactivity development were involved in process and resulted in 

hyperactivity extension. 
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This study produced results, which corroborate the findings of a great deal of the previous 

work in this field. After dilution of split samples of Norwegian Landrace semen in four 

different extenders including Androstar, Mulberry III, BTS and X-Cell and preservation for 

5 days at 18 °C, motility patterns were different (Waterhouse et al., 2004). Waterhouse 

reported that tail movement in day 5 was different in comparison with day 1 and the 

progressivity had decreased. Probably they had observed hyperactivation. The authors 

discussed that this type of movement could relate to changes in intracellular signaling and/or 

be caused by changes in components of extenders over time. Also the findings of the present 

study for Landrace were completely in agreement with (Purdy et al., 2010) who reported that 

keeping sperm cells at 15 °C could trigger hyperactivation motility pattern. In another study, 

3 days storage of semen samples in 17 °C lead to changes in motility parameters and sperm 

cells exhibited hyperactivity pattern (Oh et al., 2010). Research indicated that preservation 

the semen samples collected from crossbreed boars and diluted in Gedil® extender, in both 5 

°C and 17 °C for 24 hours leaded to decrease in VSL, STR, LIN and increase in ALH (Casas 

and Althouse, 2013) which is identic with hyperactivity definition and is in agreement with 

our Landrace result. 

In contrast to Landrace motility characters findings, however, no evidence of increasing the 

hyperactivity for Duroc was detected. The present findings for Duroc, seem to be consistent 

with other research which found Pietrain and German Large White semen exhibit decreasing 

rate in progressivity, and constant rate for VAP, VSL, VCL, ALH, BCF after storage for 120 

hours in 17 °C (Henning et al., 2012b). Results of other researchers showed that liquid 

preservation for 7 days in 17 °C resulted in constant motility parameters in Spanish Duroc 

such as VAP, VSL, VCL and ALH over time (Martín-Hidalgo et al., 2013). They showed 

motility parameters in Duroc are independent of time, which is in agreement with our results. 

Ambrogi (De Ambrogi et al., 2006), diluted the Yorkshire, Landrace and Hampshire sperm 

samples in three different extenders including of BTS, MR-A and X-Cell. After 96 hours 

storing in 17 °C, they found that LIN, VAP, VSL and VCL are not dependent on time; their 

data are in agreement with present Duroc motility result and in contrast with Landrace result. 

In one hand during the preservation all of the responsible characters for development of 

hyperactivity were unchanged for Duroc and on other hand hyperactivity decreased 

significantly (Figure 36C) after 4 days therefore, one question that needs to be asked, is that 

is there could be any other reason for reduction of hyperactivity? Current result clearly 

showed that the percentages of hyperactivated sperm cells could significantly affected by 
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motile sperm population in Duroc, nevertheless motile cells was not an effective factor for 

hyperactivity level in Landrace (Figure 37A and B). Therefore, obviously in first look, in 

Duroc category population of hyperactivated cells decreased due to reduction of the motile 

sperm cells population and in other words percentage of hyperactivated cells decreased due 

to reduction of sperm cells with active physiological property. 

There are several possible explanations for hyperactivity reduction could be discussed. Some 

studies indicate that although sperm motility parameters can be affected by time, they could 

also show a fluctuated proportion during the liquid preservation in 17 °C after 7 days 

(Martin-Hidalgo et al., 2011). Martin’s research group found that VAP, VSL and VCL 

decrease during the 7 days preservation but LIN and STR decreased during the first 4 days 

and increased again in day 7. ALH also increased in day 4 and decreased again in day 7. It 

seems possible that Duroc results and especially hyperactivation are decreased due to 

fluctuated phenomenon of motility parameters. Although motility parameters were not 

analyzed between day 0 and day 4 or after day 4, Martin-Hidalgo et al.’s result showed that 

characters which are responsible for hyperactivity development, like LIN, STR and ALH 

seen in day 4 and reflow again in day 7 (Martin-Hidalgo et al., 2011). It has been shown that 

sex sorting developed the hyperactivity pattern, but 2 hours after sex sorting, sperm motility 

characters, involved in hyperactivation such as ALH and VCL decreased again (Parrilla et 

al., 2005) and this could reflect the biphasic manner of hyperactivation. Also during the 

sperm preservation in 18 °C for 7 days, motility, progressivity, VAP, VSL, VCL decreased 

but after 3 days VCL increased again whereas STR and LIN had less increasing rate in 

comparison with VCL (Estienne et al., 2007).  

It has been considered that hyperactivation is not an absolute definitive motility parameter, 

which means that although once a spermatozoa becomes hyperactivated, it does not return to 

non hyperactivated position however, hyperactivation is not a stable phase and spermatozoa 

can cycle between the different phase of hyperactivation which called transitional phase of 

hyperactivation (Burkman, 1991; Mortimer and Swan, 1995; Robertson et al., 1988). 

Transitional phase of hyperactivation has been observed in human (Le Lannou et al., 1992; 

Mortimer and Swan, 1995), rabbit (Johnson et al., 1981), sheep (Cummins, 1982) and mouse 

(Tessler and Olds-Clarke, 1985). Physiological properties of hyperactivated cells showed 

that flexibility of flagella, which is essential for hyperactivation could differ over time that 

could count as a physiological reason for transitional hyperactivity (Kinukawa et al., 2003).  
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It is encouraging to compare the transitional phase of hyperactivation with that found by 

other researchers about different subpopulations in motility characters, which could be 

observed concurrently. Example of sperm motility sub populations has been reported for 

stallion spermatozoa (Ortega-Ferrusola et al., 2009), Canine (Dorado et al., 2011) , goat 

(Dorado et al., 2010) and more clearly for boar (Cremades et al., 2005; Ramio et al., 2008; 

Thurston et al., 2001). It has been shown that boar semen in response to capacitation medium 

containing progesterone exhibit four different subpopulations of sperm cells including 

subpopulation 1 with lowest values of VCL, VSL, VAP and low percentage of linearity. 

Subpopulation 2 with the second level of VCL and VAP and higher values of LIN and STR. 

Subpopulation 3 characterized by high values of velocity and low values of linearity, which 

is known as hyperactivated sperm cells and finally, Subpopulation 4, characterized by high 

values of velocity and linearity (Ramio et al., 2008). Research also showed that in fresh boar 

semen three different subpopulations can be observed: The first population with high VAP 

and low linearity, the second with high progressivity and low velocity and the third sperm 

cells with high values of VAP and ALH (Quintero-Moreno et al., 2004). Fluctuation in the 

sub population of hyperactivity has been reported during the cryopreservation (Cremades et 

al., 2005), data showed that the sub population of sperm cells with hyperactivity pattern was 

a minor percentage in the first step and clearly increased in second and third step of freezing-

thawing procedure and in fourth and fifth steps, hyperactivation decreased again.  

It has been shown that hyperactivation and high frequency of sperm tail movements 

demands higher intracellular metabolism and high amount of Lactate and ATP (Gogol et al., 

2009; Guthrie et al., 2008; Ho et al., 2002; Ho and Suarez, 2003). Furthermore production of 

high amount of ATP and Lactate significantly correlated with mitochondrial activity and 

respiration and ROS production (Cerolini et al., 2000; Dziekonska et al., 2009). Therefore, it 

may be concluded that higher hyperactivation could be associated with higher amount of 

ROS production. Therefore, it could be hypothesized in Duroc, produced ROS could be 

higher in comparison with Landrace, although hyperactivity decreased in day 4 for Duroc 

but still it was higher in comparison with Landrace (Figure 36C). As previously mentioned, 

ROS has strong negative effects on sperm physiology. The negative effects probably could 

enhance with low antioxidant capacity of boar seminal plasma (Awda et al., 2009; Guthrie et 

al., 2008). However, ROS could result in decrease of hyperactivity as well as motility via 

three distinct mentioned pathways. 
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The observed decrease in hyperactivity in Duroc could be attributed to morphological 

reasons. As mentioned in the literature, Duroc sperm cells have slightly larger and longer 

heads (Kondracki et al., 2012; Saravia et al., 2007). It has been established that 

hyperactivation is significantly correlated with smaller and round heads and those sperm 

cells with higher head size over time showed decreasing rate in hyperactivation (Green and 

Fishel, 1999). In addition, other researchers (Kondracki et al., 2012) showed that Duroc 

sperm cells have smaller tails which result in lower produced energy by the mitochondria 

(Bierła and Giżejewski, 2007). Therefore, it could be concluded that both bigger head size 

and smaller tail in Duroc sperm cell might be result in decreasing rate of hyperactivation. 

The writer believes that on one hand, Duroc spermatozoa consumes more energy for their 

high level of hyperactivation and on the other hand, high level of produced ROS 

theoretically due to higher hyperactivation makes mitochondria unable to provide enough 

energy for hyperactivity development. Therefore, sperm cells arrives in a defective cycle, 

which finally leads to decreasing in hyperactivity, in addition mentioned defective cycle 

could be enhanced further by morphological properties of Duroc sperm cell, moreover 

hyperactivation is a really complex phenomenon and still not so known.  

Some studies reported that individual differences could be observed among the boars in 

sperm quality analyzes (Henning et al., 2012b; Kommisrud et al., 2002), which is in 

agreement with current study result for both Duroc and Landrace. In one study, observed that 

Landrace semen has 5% more capacity for keeping the motility during the first 24 hours of 

liquid preservation in compare with Duroc, Yorkshire and crossbreed boars (Sonderman and 

Luebbe, 2008). Apparently, according to our data, we can conclude that a difference between 

breed could exist in viability and spermatozoa storage capacity.  

The data of the current study confirmed previous studies, showing that both breed and intra 

breed individual boars had significant effect on sperm motility characters (Buranaamnuay et 

al., 2009; Tretipskul et al., 2010). In a big study, 230705 records of semen collections belong 

to different breeds including Duroc, Hampshire, Landrace, Large White, Czech Large White, 

Pietrain and crossbreeds were analyzed for semen quality, concentration and volume of the 

semen. The result was significant for breeds in all traits (Smital, 2009). In another study with 

three different boar breeds, Duroc, Landrace and Large white, Duroc semen had higher 

motility than others and breed had significant effect on VCL, VSL, BCF and ALH (Thurston 

et al., 2001). The effect of time and genetic line also were discussed by Hoflak (Hoflack et 
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al., 2007) and by (Estienne et al., 2007). Their data showed that a significant interaction 

between boars and storage time is observed when different sperm motility characters are 

analyzed. Some studies have demonstrated that VSL and motility are parameters, which 

could be influenced by different breeds including Duroc, Landrace and Yorkshire (Tretipskul 

et al., 2010)  

5.3.3 Correlation between intracellular Ca²⁺ level and sperm motility 
parameters 

Based on writer knowledge too little attention has been paid to find correlation between 

motility characters obtained by CASA and intracellular Ca²⁺  level in literature. Based on the 

results of the present study, there seems to exist differences between Norwegian Landrace 

and Duroc boars regarding the relationship between measured intracellular Ca²⁺ and motility 

parameters. In Landrace, percentage of sperm cells with high intracellular Ca²⁺ level and 

ALH were correlated significantly at the day of collection but not at Day 4 Therefore, 

probably the effect of Ca²⁺  is more on the neck and head region of Landrace spermatozoa, 

which lead to initiation of hyperactivity. None of the Landrace motility parameters 

connected to hyperactivity except LIN, were not associated with sperm cells contains high 

intracellular Ca²⁺ level in Day 4. This may indicate a need of high amounts of Ca²⁺  for 

further development of hyperactivation.  

For Duroc, at the day of collection, none of the parameters were correlated with sperm cells 

contains high level of intracellular Ca²⁺ nevertheless, high degree of hyperactivity was 

recorded for Duroc. This could indicate that hyperactivation in Duroc semen could be 

triggered by a different mechanism and more independently of Ca²⁺  level than in Landrace 

semen. At day 4, significant correlation observed between intracellular Ca²⁺  level and VCL, 

therefore obviously decreasing in hyperactivity for Duroc conducted by all responsible 

parameters except VCL. During the time (both day 0 and day 4) for Duroc boars, Ca²⁺  had 

significant correlation with STR and LIN while in Landrace, intracellular Ca²⁺  was 

significantly correlated with VSL, ALH, BCF, STR, LIN and progressivity. 

Correlation between intracellular Ca²⁺ and motility level was significant just in Landrace. 

However, linear regression results showed that percentage of motile sperm cells was not 

affected by intracellular Ca²⁺ level, nor in Duroc neither in Landrace (Figure 38A and B). 

Our correlation results for Landrace are in agreement with Kumaresan et al’s result 
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(Kumaresan et al., 2012) who observed a correlation between intracellular Ca²⁺ level 

assessed by Fluo-4 and motility in frozen-thawed boar spermatozoa. Differences between 

percentage of Landrace and Duroc motile sperm cells in correlation with intracellular Ca²⁺ 

could further reflect the differences between breed and sperm physiology. Regarding to 

linear regression results, it could be hypothesized that motility is more affected by ATP level 

instead of intracellular Ca²⁺ level and Duroc spermatozoa due to their higher hyperactivity 

level had higher degree of ATP consumption therefore, motility decreased due to energy 

consumption. Current finding somehow confirms previous studies, which reported a low 

motility level is in correlation with ATP consumption (Althouse et al., 1998; Vyt et al., 

2007). 

Linear regression results confirms that intracellular Ca²⁺  could significantly influence on 

hyperactivity in Landrace boars (Figure 38C) which is previously reported by (Ho and 

Suarez, 2001b; Xia et al., 2007). The Landrace finding is also in agreement with (Marquez et 

al., 2007; Schmidt and Kamp, 2004) findings, who showed that induction of hyperactivation 

by Ca²⁺  ionophore resulted in increasing VCL and ALH, they notified that a reduction of 

Ca²⁺  was coupled with decrease in BCF and FCR, which means decrease in hyperactivation. 

Current result for Landrace confirms previous reports regarding the increasing the 

intracellular Ca²⁺  level during the hyperactivation. It has been shown that concentration of 

intracellular Ca²⁺  in motile sperm cells was just about 30–50 nM but in hyperactivated 

sperm cells increased up to 200 –1000 nM (Ho et al., 2002; Suarez and Dai, 1995). 

What is surprising is that, in contrast with Landrace, Duroc hyperactivity negatively affected 

by intracellular Ca²⁺  level (Figure 38D). On one hand percentage of motile sperm cells were 

decreased over the time in Duroc (Figure 36A) and on other hand proportion of sperm cells 

with high intracellular Ca²⁺  was increased significantly during the time (Figure 32). 

Therefore, it concluded that a proportion of spermatozoa, which exhibited high intracellular 

Ca²⁺  level, were immotile and physiologically inactive, simultaneously. Current 

observations somehow confirms previous studies indicating that the percentage of 

spermatozoa with high intracellular Ca²⁺ , stained by Fluo-3 and Fluo-4, raised in 

association with PI stained spermatozoa or dead spermatozoa and the cell population defined 

as Ca²⁺  positive and PI negative increased after challenging and cryopreservation (Henning 

et al., 2012b; Kumaresan et al., 2012) although in some cases it wasn’t significant. Although 
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in current study viability of sperm cells didn’t analyze due to spillover of Fluo-4 signal into 

FL3. Current problem also reported in previous study (Fransplass, 2012). 

Understanding about hyperactivation regulation is important to help to find out more about 

this phenomenon. Some studies showed that hyperactivation could be induced by Ca²⁺  

(Marquez and Suarez, 2004), cAMP (Harayama and Miyake, 2006), bicarbonate (Kaneto et 

al., 2008). Furthermore, it has also been shown that hyperactivity could be related to tyrosine 

phosphorylation and capacitation (Harayama et al., 2012). 

As previously mentioned (2.5.2), it has been reported that capacitation is a Ca²⁺  dependent 

phenomenon. However, some authors showed that capacitation and hyperactivation can 

occurs individually and independently. For instance, caffeine, procaine and 4 hours 

incubation of bull spermatozoa in capacitation medium containing heparin resulted in 

tyrosine phosphorylation and capacitation, but capacitated spermatozoa did not exhibit 

hyperactivity pattern (Marquez and Suarez, 2004). The authors concluded that, although 

Ca²⁺  is needed for hyperactivation, the Ca²⁺  signaling for hyperactivation is not dependent 

on activation of PKA, which is however needed for protein tyrosine phosphorylation and 

capacitation. Same results were published also for hamster sperm (White and Aitken, 1989), 

where no hyperactivation was observed after induced capacitation and tyrosine 

phosphorylation by Ca²⁺  ionophore. Results for some studies showed that induction of 

hyperactivation by procaine (Ho and Suarez, 2003) or by caffeine (Ho and Suarez, 2001b) 

could occurs in non-capacitated spermatozoa. Obviously, Ca²⁺  signaling is different in 

capacitation and hyperactivation. An interesting study showed that Ca²⁺  could lead to 

phosphorylation in serine and threonine residues and cause hyperactivation but capacitation 

is not related to serine/threonine phosphorylated residues and normally occurs after 

phosphorylation in tyrosine residues (Chang and Suarez, 2011). 

The present results for Duroc are in agreement with (Oh et al., 2010) who notified that 

proportion of capacitated spermatozoa with B pattern on CTC assay was not significant 

related to hyperactivity. Therefore, our Duroc result further support the idea of that 

capacitation and hyperactivation could happen separately and increasing the Ca²⁺  might not 

necessarily be associated with hyperactivation. Ca²⁺  release from the internal Ca²⁺  source 

like RNE store and mitochondria, might explain the high degree of hyperactivity in Duroc 

spermatozoa in day of collection because it has been shown that intracellular Ca²⁺  could 

initiate the hyperactivity (Ho and Suarez, 2001b; Marquez and Suarez, 2004).  
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A strong relationship between extracellular Ca²⁺ and hyperactivity development has been 

reported in the literature (Luconi et al., 2006). pH sensitive CatSper channels, which are 

located in principle piece are the main responsible channels for Ca²⁺ supplying during the 

hyperactivation, (Ren and Xia, 2010; Strunker et al., 2011). A possible explanation for 

relationship between Ca²⁺ and hyperactivity in Duroc might be that, on one hand, 

hyperactivity that was significantly high in both Day 1 and day 4 could be achieved by 

means of Ca²⁺ from intracellular sources. On the other hand, probably extender pH is not 

high enough to stimulate the CatSper channels for influx of extracellular Ca²⁺ or maybe 

regulation of Ca²⁺ channels in Duroc sperm is different in comparison with Landrace. 

It has been demonstrated that, mice mutant in Caᵥ2.3 channels, were unable to develop 

hyperactivation and mostly exhibit higher degree of VSL and LIN in CASA measurement 

(Sakata et al., 2002). Caᵥ2.3 is a voltage dependent channel, which is located both in head 

and flagellum of sperm cells and is stimulated by depolarization of the sperm membrane 

(Darszon et al., 2006a). Furthermore it has been suggested that the SLO3 K⁺ channel is 

essential for the induction of hyperpolarization of the sperm membrane and mice mutant for 

SLO3 were unable to exhibit hyperactivation and fertilization (Santi et al., 2010). Therefore 

another possible explanation for the findings from the Durocs may be that the threshold for 

the mentioned channels could be different, hence Duroc might need a higher degree of 

depolarization for stimulation and finally influx of huge amounts of extracellular Ca²⁺. In 

this way, it could conceivably be hypothesized that Duroc sperm would remain in 

insufficient levels of internal Ca²⁺, that is, not enough Ca²⁺ to enhance hyperactivation and 

the insufficent level of Ca²⁺ could also intensify the mentioned ATP defect circle. 

A number of caveats need to be noted regarding the present study. Our findings in this report 

are subject to at least four limitations. Firstly, the current investigation was conducted by a 

limited numbers of ejaculations especially for Duroc boar, more samples would provide a 

better and precise result. Secondly, the study did not evaluate the viability status in sperm 

cells after the time preservation due to mentioned technical limitation. Thirdly, analyzes of 

sperm motility and quality were performed in a 4 days interval, smaller intervals such as Day 

0, Day 3 and Day 5 would yield clear data and finally, field fertility data were not available 

to estimate the relationships between sperm motility, quality parameters and storage time 

with litter size.  
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5.4 Further studies 

The current study showed that assessment of sperm quality by objective methods could yield 

precise and effective information. More information on objective analyzes would help us to 

establish a greater degree of accuracy on this matter. One of the suitable datasets, which 

could help expanding the use of objective methods, is field fertility data. Further work needs 

to be done to establish whether the relationship between sperm hyperactivity during the 

different storage times and field fertility. Reproductive efficiency is crucial to obtain 

profitable pork production. Therefore, one of the main strategies for each herd is prediction 

of field fertility, especially for those boars that shows relatively weak motility parameters 

development in CASA. By this means producer can exclude the boars with low quality 

sperm output and maximize reproduction efficiency. It is recommended that further research 

be undertaken associated with both field fertility data and objective analyzes of sperm 

quality by means of for instance CASA. Association between sperm motility parameters and 

litter size has been reported in plenty of studies more recently. Literature has emerged that 

offers contradictory findings about CASA results and field fertility. For instance, it has been 

observed that VSL is significantly related to large litter size (Holt et al., 1997). It has also 

been reported that litter size is positively associated with motility, VAP and negatively 

associated with ALH, VSL, moreover farrowing rate could be positively in associated with 

progressive motility and negatively in associated with VCL and BCF (Broekhuijse et al., 

2012b). Others studies reported little or no association between CASA results and field 

fertility (Farrell et al., 1998; Quintero-Moreno et al., 2007). So far, however, there has been 

little discussion about relationship between hyperactivity and field fertility in the literature. 

Although Duroc boars are interested for their meat quality production, nonetheless current 

study showed that hyperactivity, which is one of the most important factors for fertilization, 

is declined over the time in Duroc boars. Therefore, by merging the CASA results and field 

fertility results, NORSVIN could not only select the genetic lines with high performance and 

output for next generation but also can reveal the mysteries behind the genes responsible for 

sperm quality by arrange the genetically analyze.  

This research has thrown up many questions in need of further investigation in assessment of 

semen quality by several precise and objective methods simultaneously. As discussed 

previously, merging the experiments for assessment of viability and mitochondrial activity 

with CASA analyzes could provide enough data for discussion about the pathophysiology of 
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sperm motility during liquid preservation. Further experimental investigations are needed to 

estimate the viability and intracellular Ca²⁺ simultaneously by combination of Fluo-4 or 

Fluo-3 and cell impairment dyes, such as propidiumiodide (PI) or 7-Amino Actinomycin D 

(7-AAD), which can be used to differentiate live and dead cells. The CASA result would be 

more interesting if could be combine with assessment of ROS and ATP production and 

mitochondrial activity by JC-1 or Rhodamine 123 (R123) during liquid preservation. 

Alternatively, combining of phosphorylated proteins analyze with CASA obtained 

parameters would be very useful, because as reported previously, hyperactivation is seen in 

mid-piece phosphorylated sperm cells (Si and Okuno, 1999) 

The Result for this study shows that Duroc sperm cells exhibited reduction rate in two 

important factors, one motility and another hyperactivity. It has been observed that boar 

spermatozoa are very sensitive to handling and environment changes (Quintero-Moreno et 

al., 2004). For example, large volume of air in artificial insemination tubes could 

significantly reduce the motility (Vyt et al., 2007) and it has been reported that semen 

collection, dilution in extenders and filling the tubes could significantly change the 

spermatozoa threshold to hyperactivity, capacitation and acrosome reaction (Purdy et al., 

2010). Therefore, a definite need for better handling process especially for Duroc semen 

samples is recommended.  

In recent years, there has been an increasing interest in utilizing different kinds of extenders 

for porcine artificial insemination. More studies have been done with at least two or three 

different extenders to determine the best (Dube et al., 2004; Quintero-Moreno et al., 2007). 

Further research regarding the role of different extenders would be of great help in 

increasing the Duroc sperm quality in future. Other types of extender optimization also could 

be the next research project. For instance it has been showed that adding BSA to extenders 

could maintain the motility in boar by decreasing the lipid peroxidation (Alvarez and Storey, 

1995). Adding catalase to frozen-thawed semen led to improve the motility by decreasing the 

SOD level (Roca et al., 2005). EDTA, which could decrease the Ca²⁺ concentration in 

extenders (Dube et al., 2003). According to IPR policy, the composition of Androstar Plus 

extender is unknown but clearly, the composition of extender could have an impact on the 

sperm characters and physiology. Some studies clearly suggested that it would be beneficial 

to formulate the extender for each breed, for reduction of side effects therefore for increasing 

the Duroc sperm quality over the time, is recommended that different extenders surveyed. 
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For instance it has been reported that increasing the K⁺  in extenders may help spermatozoa 

to keep their motility better (Johnson et al., 2000). Some authors reported that also Mg²⁺  

and Se²⁺  are associated with membrane damage reduction (Rodriguez et al., 2013). 

Consideration of the feeding schedule for semen boar could be the next research area. It has 

been shown that adding tuna oil (Rooke et al., 2001) and omega 3 (Estienne et al., 2008) led 

to increasing the viability and motility in boar sperm cells. 

The empirical findings in this study provide a new understanding of utilizing of CASA 

system in analyze of sperm quality. Although CASA system provides precise and objective 

methods for sperm motility assessment, it is very sensitive to setting changes and sperm 

processing before analyze. For instance, it has been shown that frame rate (Contri et al., 

2010), slides types, chambers and temperature could dramatically change the results 

(Verstegen et al., 2002). Therefore, next studies where it is decide to use CASA, demanded 

high attention to standardize procedure and device settings. In addition, Duroc results 

showed that CASA analyzes will be useful if combine with methods for analyzing the 

subpopulation of sperm cells and methods for morphological evaluation like ASMA. This 

research will serve as a base for future studies in CASA utilizing for analyzing the different 

mammalian semen samples.  
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6. Conclusion 

The purpose of the current study was to analyze the Intracellular Ca²⁺ level and sperm 

motility characters using flow cytometry and CASA. One of the more significant findings to 

emerge from this study is that Landrace and Duroc semen showed different development of 

motility characters after 4 days preservation at 18 °C. Taken together, these results suggest 

that breeding and genetic line could have influence on sperm characters and physiology. The 

second major finding was that liquid preservation significantly led to sperm motility 

parameters changes; therefore, it could be concluded that sperm handling and preservation 

for artificial insemination should be performed conservatively especially for Duroc cases. 
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8. Appendix 

Appendix 1. Pairwise t test between Landrace and Duroc sperm motility parameters in Day 
0 and Day 4 of experiment. La = landrace, Du = Duroc. Mot = motility, Prog = 
progressivity and Hyp = hyperactivity. Z value calculated in Wilcoxon test for 
nonparametric data. 

Variables pairs 
Day 0 Day 4 

Df t p Df t p 

VAP La vs VAP Du 118 Z= -3.950 0.000 118 1.354 0.178 

VSL La vs VSL Du 118 2.588 0.010 118 2.550 0.012 

VCL La vs VCL Du 118 7.986 0.000 118 2.514 0.013 

ALH La vs ALH Du 118 11.050 0.000 118 4.280 0.000 

BCF La vs BCF Du 118 17.250 0.000 118 10.080 0.000 

STR La vs STR Du 118 10.950 0.000 118 Z= -3.688 0.000 

LIN La vs LIN Du 118 Z= -5.688 0.000 118 4.316 0.000 

Mot La vs Mot Du 118 Z= -0.645 0.902 118 Z= -3.392 0.000 

Prog La vs Prog Du 118 Z= -3.793 0.000 118 Z= 3.552 0.000 

Hyp La vs Hyp Du 118 11.890 0.000 118 2.250 0.026 

 

Difference between breed was observed for all parameters except motility and VAP in Day 0 

and Day 4, respectively. 
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Appendix 2. Pairwise t test between different motility parameters in Day 0 and Day 4 for 
both Landrace and Duroc. La = landrace, Du = Duroc. Mot = motility, Prog = 
progressivity and Hyp = hyperactivity. Z value calculated in Wilcoxon test for 
nonparametric data. 

Variables pairs 
Landrace Duroc 

Df t p Df t p 

VAP D0 vs VAP D4 73 Z= -5.185 0.000 45 -0.284 0.778 

VSL D0 vs VSL D4 73 0.924 0.358 45 -0.455 0.651 

VCL D0 vs VCL D4 73 -9.001 0.000 45 -0.995 0.325 

ALH D0 vs ALH D4 73 -9.379 0.000 45 -0.966 0.339 

BCF D0 vs BCF D4 73 14.628 0.000 45 5.630 0.000 

STR D0 vs STR D4 73 Z= -5.735 0.000 45 -0.490 0.627 

LIN D0 vs LIN D4 73 Z= -6.114 0.000 45 -0.804 0.426 

Mot D0 vs Mot D4 73 Z= -1.948 0.051 45 Z= -3.690 0.000 

Prog D0 vs Prog D4 73 Z= -4.968 0.000 45 Z= 2.497 0.001 

Hyp D0 vs Hyp D4 73 -10.091 0.000 45 3.566 0.000 

 

All motility parameters except VSL and motility in Landrace semen were changed 

significantly after 4 days preservation in 18 °C. While, in Duroc semen, only BCF, motility, 

progressivity and hyperactivity were changed significantly.  
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Appendix 3. Correlation coefficient between Intracellular Ca²⁺ and sperm motility 
parameters for Duroc and Landrace semen boars in day of collection. Mot = motility, Prog 
= progressivity and Hyp = hyperactivity. 
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Data shows that in Landrace, ALH, STR, LIN, motility and hyperactivity were in associated 

with intracellular Ca²⁺  significantly in day of collection. While, in Duroc none of motility 

parameters were not in associated with intracellular Ca²⁺.  

 

Appendix 4. Correlation coefficient between Intracellular Ca²⁺ and sperm motility 
parameters for Duroc and Landrace semen boars after 4 days preservation in 18 °C. Mot = 
motility, Prog = progressivity and Hyp = hyperactivity. 
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Data shows that in Landrace, VSL and LIN were in associated with intracellular Ca²⁺  

significantly after 4 days of collection. While, in Duroc, only VCL was in associated with 

intracellular Ca²⁺.  
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Appendix 7. Individual differences among the Duroc (A) and Landrace (B) boars regarding 
the level of intracellular Ca²⁺  at the day of collection.  
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