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Tittel: Kartlegge trær og busker med optiske bilder. En test på bruk av høyoppløselige bildedata til kart-
legging av vinterføde for elg. 
Forfattere: Floris Jan Groesz og Leif Kastdalen 
Nummer: 5 Utgivelsesår: 2007 Sider: �6 ISBN: 978-82-7671-618-4

 ISSN: �50�-857�
Oppdragsgiver: Direktoratet for naturforvaltning, Norsk Romsenter og Høgskolen i Hedmark

Emneord: Elg – Vinterbeite –Skog -Bildeanalyse -  Segmentering - Stor-Elvdal
Sammendrag: Denne undersøkelsen omhandler bruken av HySpex hyperspektrale bildedata og Quickbird 
satellittdata til klassifikasjon av skog, spesielt skog som er av betydning som beite for elg. Bildedata er hen-
tet fra et mindre område i Stor-Elvdal kommune.

Vi samlet inn feltdata for flere treslag og vegetasjonstyper i studieområdet. Punktene ble nøyaktig kartfestet 
med GPS og avmerket på detaljert ortofoto (�5 cm bakkeoppløsning fotografert med Vexcel UltraCam). 
Vi klassifiserte en HySpex flystripe (25 cm bakkeoppløsning) og et Quickbird satellittbilde (60 cm bakke-
oppløsning). Bildedataene var nøyaktig ortokorrigert. Vi korrigerte ikke for atmosfærisk avvik. For Quickbird 
dataene beregnet vi en normalisert vegetasjonsindeks (NDVI) og flere teksturbilder ble avledet. For HySpex 
bildet ble datamengden redusert ved bruk av prinsipal komponentanalyse (PCA) og med minimum støy 
andel transformasjon (MNF). Begge bilder ble klassifisert med en objektorientert tilnærming med bruk 
av eCognition software. Etter segmentering benyttet vi nærmeste nabo (NN) som klassifikasjonsmetode. 
I tillegg utførte vi klassifikasjon basert på support vektor maskin (SVM) og beslutningstre (DT) på det 
samme datasett som NN klassifikasjonen.

Den gjennomsnittlige klassifikasjonsnøyaktigheten fra analysene på Quickbird dataene var ca 40%. Ved 
reduksjon av antall klasser til furu, gran, løvtre og annen bakkevegetasjon ble resultatet forbedret til 78%. 
Det var liten forskjell mellom algoritmene NN, SVM og DT i analysene av Quickbird dataene. 

Den gjennomsnittlige klassifikasjonsnøyaktigheten fra analysene på HySpex dataene var ca 63%. Reduksjon 
til færre klasser forbedret resultatet til 76% for NN klassifikasjonen og til 81% med SVM og DT som 
klassifikatorer. I klassifikasjonen med HySpex data ble klassene furu, gran, selje godt identifiserte, mens for 
Quickbird var det kun klassen furu som ble godt (over 70% nøyaktighet) identifisert. 

Det var ikke mulig å kartlegge elgbeiteskade med de begrensede feltdata vi hadde tilgjengelig i dette 
prosjektet. Resultatet av klassifikasjonen er rimelig brukbar for a kartlegge elgbeite. Resultatet kan bli 
forbedret med et større feltmateriale, ved å benytte hyperspektrale data fra en større del av spekteret, ved å 
benytte eksisterende kartdata som støtte i klassifikasjonen eller ved å kombinere LIDAR (Light Detection 
And Ranging) høyde data med de optiske bildedataene. Med disse forbedringer tror vi det er mulig å 
kartlegge elgbeite nøyaktig, men det trengs mer forskning for å undersøke hvor nøyaktig beiteskader fra elg 
kan kartlegges.

Vi anbefaler at videre undersøkelser fokuserer på å benytte både LIDAR og optiske flerkanalsbilder i 
kartlegging av beiteressurser for elg.
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Title: Mapping trees and thicket with optical images. Testing the use of high resolution image data for 
mapping moose winter food resources.
Authors: Floris Jan Groesz and Leif Kastdalen 
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 ISSN: �50�-857�
Financed by: The Norwegian Directorate for Nature Management, Norwegian Space Centre and Hedmark 
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Summary: This study describe the use of HySpex hyperspectral images and QuickBird satellite images for 
the classification of forest and vegetation in Stor-Elvdal, especially forest and vegetation that are a resource 
for moose browsing.

Field data was gathered on several tree species and vegetation types in the study area. The sample points were 
exactly georeferenced with the use of GPS and Vexcel orthophotos. A HySpex flight strip (25 cm resolution) 
and a QuickBird satellite image (60 cm resolution) of the exact same area were used for the classification. 
Both images have been orthorectified. No images were atmospherically corrected. For the QuickBird image, 
the Normalize Difference Vegetation Index and several texture images were calculated. For the HySpex 
image two data reduction methods were applied: Principal Component Analysis and Minimum Noise Frac-
tion transformation.

Both images were classified by an object oriented approach with use of the software eCognition. After a 
segmentation procedure, a Nearest Neighbour (NN) classification method was applied. In addition to the 
Nearest Neighbour classification, Support Vector Machines (SVM) and a Decision Tree (DT) classification 
was performed on the same classes and sample data.

The overall classification accuracy of the QuickBird classification was about 40%. Regrouping the classing 
into ‘pine, ‘spruce’, ‘deciduous’, and ‘other groundcover’ improved the result up to 78%. There was little 
difference between the results of the NN, the SVM, and the DT classifiers for the Quickbird images. The 
overall classification accuracy of the HySpex classification was about 63%. Regrouping the classes improved 
the result to 76% (for the NN classifier) to 81% (for the SVM and DT classifiers). The HySpex classification 
discriminated the classes ‘pine’ good, ‘spruce’, and ‘willow’ reasonably well, while the QuickBird classi-
fication only discriminated the class ‘pine’ reasonably well (over 70% accuracy).

We were not able to map the browsing pressure with the limited field data we had available in this study. We 
did not used methods to identified single tree crowns, but we believe tree crown identification could improve 
the result for moderate browsed trees. For hard browsed pine trees the biomass of needles are very low and 
the trees will therefore be difficult to indentify from above, even on images with ground resolution down to 
�5 cm. 

The classification results can be reasonably useful for the mapping of moose browsing resources. The results 
could be improved by taking more and more accurate field samples, by using extended hyperspectral image
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data, by adding existing maps as support for the classification, or by using LIDAR (Light Detection And 
Ranging) height data. 

More research is needed to investigate whether it is possible to map moose browsing pressure, and we 
suggest using a combination of LIDAR and optical images for mapping the browsing resources available for 
moose.



7

Foreword

This project describes a work in the use of optical sensor for forest classification in Stor-Elvdal muni-
cipality. The project was initiated as a test to investigate the capacity of optical sensors available today 
as a source to capture information of forest damage from moose browsing and the biomass of winter 
food for moose.

The project is financed by the Norwegian Directorate for Nature Management and the Norwegian 
Space Centre through the SatNat program. An addition financial support is given from Hedmark Uni-
versity College through their moose projects. 

The satellite and hyperspectral data is owned by Hedmark University College. The field work was 
done by Tore Horten and Rosemarie Popp. Stor-Elvdal grunneierlag let us use data from their moose 
browsing survey, however within this project we were not able to use them as ground truth in the 
classification. 

Evenstad, June 2007

Floris Groesz    Leif Kastdalen   Torstein Storaas
Hedmark University College   Project manager SatNat      Hedmark University College
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M A PPI NG T R ESS A N D T H ICK ET W IT H oPTICA L I M AGES

1 Study area

The study area is located in the municipality of Stor-Elvdal, in the province of Hedmark. The valley 
Østerdalen with the river Glomma is the main landscape feature in the area (Figure �).

The vegetation belong to the Boreal zone, the hills surrounding the valley are dominated by Norway 
spruce (Picea abies) and Scots pine (Pinus sylvestris), and interspersed with a few deciduous species 
such as birch (Betula spp.) and aspen (Populus tremula). Along Glomma and adjacent rivers different 
species of willow (Salix spp.) are common. The climate is continental with low temperatures and 
snow rich winters. Altitude varies from 250 m in south to �000 m above sea level in the north-west.  
Forestry is important in the local economy. Moose migrate down to the valley when the snow starts 
to accumulate in the hills, so in winter time the moose population aggregates in the lower elevations. 
The young pine forests at lower elevations are heavily browsed.  
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2 Material and methods

2 .1 Fie ld da ta
The field data was collected by visiting sites in the field, describing several parameters and determining 
the coordinates with GPS. The accuracy of the GPS location varied from several meters to about 10 
meters. Therefore the exact location was also marked on orthophoto made from Vexcel Ultra Cam 
images at 15 cm resolution. The descriptions were divided in the three types

- Single trees (identifiable on the Vexcel orthophoto)
- Bushes or groups of small trees
- Other Ground cover.

The following parameters were determined for each point.

Waypoint nr From GPS
Date
UTM X 
UTM Y
Precision Precision of the coordinates (estimated by the GPS)
Species Tree species
Tree height (m)
Crown height (m) Height above ground were the crown starts
Stem dhh (cm) Stem diameter at 1,5 meter height (if possible to 

measure)
Stem d 10cm (cm) Stem diameter at 10 cm height if it is not possible to 

measure it at 1.5 meter.
Crown dia1 (m) Crown diameter (in case the crown is not circular than this 

is the largest length of the crown cross section
Crown dia2 (m) Crown diameter orthogonal to the 1st crown diameter in 

case the crown is not circular
Browsing degree    1-4 Browsing degree measured from 1, no browsing to 4 

heavily browsed.
Crown form (vertical): R,E,S,P R =  Round

E =  Ellipse
S =  Cone
P =  Pear

Crown dens % Crown density in vertical direction. 
Ground coverage % Dominating ground cover types and their % of coverage
Comments

Extra samples of agricultural fields were taken without fieldwork and based on visual interpretation 
of the Vexcel orthophoto. 
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2 .2 Images
The following images were available for the area:
- QuickBird satellite image
- HySpex hyperspectral image
- Vexcel Ultra Cam digital aerial photos

The first two were used for classification, while the Vexcel ima-
ges have only been used to improve spatial accuracy of the field 
data (the GPS data). 

2.2.1 QuickBird
The QuickBird satellite was launched in 2001 and is operated by 
Digital Globe. From an orbit of 450 km QuickBird takes images 
with a swath width of �6.5 km in four multispectral channels and 
one panchromatic (Table 1).

Table 1. QuickBird image characteristics.

Band Spectral range 
(nm)

Pixel size on the 
ground (m)

Blue 450 to 520 2.4
Green 520 to 600 2.4
Red 630 to 690 2.4
Near-IR 760 to 900 2.4
Panchromatic 445 to 900 0.6

2.2.2 HySpex
The HySpex sensor is an airborne sensor produced and operated 
by the company Norsk Elektro Optikk (NEO) HySpex is a so 
called pushbroom scanner, which means that the image is scanned 
line by line. In the VNIR mode, HySpex acquires radiance in �60 
bands, ranging from 400 nm to �000 nm, each with a bandwidth 
of 3.7 nm. See Table 2 for more characteristics or visit (www.
neo.no/HySpex/) The HySpex sensor is also capable to record in 
the SWIR (Short Wave InfraRed) mode, but this mode was not 
available for this area. The SWIR mode ranges from 1000 nm to 
1700 nm. The pixel size of the used image was 0.25 meter.

Figure 1. Overview of the
QuickBird image.
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Table 2. HySpex sensor characteristics VNIR module
Module VNIR-1600
Detector Si CCD 1600*1200
Spectral range 0.4-1µm
Spatial pixels 1600
FOV across track 17
Pixel FOV across track/ along track ~0.185mrad/ 0.37mrad
Spectral sampling 3.7nm
# spectral bands 160
Digitization 12bit
Frame rate to HD 120fps

2 .3 Image preparat ion and pre -process ing
The Quickbird image has been orthorectified using a digital elevation model (DEM) derived from the 
N50 contour curves. Root Mean Squared (RMS) error for the rectified Quickbird image was 2 meters. 
No atmospheric correction or terrain normalization was applied. 

The Quickbird image has been pansharpened with the sharpening model in the PCI Geomatics soft-
ware, which combines the panchromatic (0.6 meter) image and the multispectral (2.4 meter) image 
into a multispectral image with a 0.6 meter pixel size. The results are in this report referred to as a 
Pansharpened Merge (PSM). 

Images of the following textures were derived from the panchromatic image: homogeneity, contrast, 
angular second moment, with a window size of 5x5 pixels. More information on the used algorithms 
can be found in the PCI Geomatica User Manual and in Haralick �97�. A normalized difference 
vegetation index (NDVI) was calculated in the following way using the PSM image as input: ([Near 
Infrared Band] – [Red Band]) / ([Near Infrared Band] + [Red Band]).

The HySpex images were georectified by NEo with the use of a digital elevation model derived from 
elevation data in the national N5 map series. The image values were converted to radiance. The NDVI 
values was calculated and used to mask the areas with no vegetation. Band number �00 (766 nm) and 
7� (667 nm) were used for the calculation. All pixels with an NDVI lower than 0.� were masked. With 
�60 different channels it was necessary to do some data reduction before the analyses.  

2.3.1 Data reduction
We used two alternatives for data reduction. Principle Component Analysis (PCA) and Minimum 
Noise Fraction Linear Transformation (MNF).

Principal Components Analysis is a procedure for transforming a set of correlated variables (image 
bands) into a new set of uncorrelated variables. This transformation is a rotation of the original axes 
to new orientations that are orthogonal to each other and therefore there is no correlation between 
variables. The result of PCA is the same number of output bands as the number of input bands. The 
output bands however, are ordered by the amount of variance in the band. This means that the first 
PCA bands contain most information, while the last PCA bands contain almost no information. Figure 
2 illustrates this by showing the first 8 components of the originally 160 band HySpex image.
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The Minimum noise fraction (MNF) transformation is a method for producing component images 
that are ordered in terms of image quality. This method seeks to concentrate image noise present in 
the input channels into as few output components as possible. In contrast, the principal components 
(PCA) transformation seeks to concentrate image variance into as few output components as possible. 
Only when the noise in the set of input channels is uncorrelated and has equal variance across all of the 
bands will the PCA transform produce component images that are ordered in terms of image quality 
(source: PCI Geomatica User Manual), (Green et al, 1988). Figure 3 shows the first 8 components of 
MNF. 

The PCA was performed only on the image after doing the NDVI masking, while the MNF was 
performed both on the image with and without the NDVI mask. The reason to mask non vegetated areas 
is to focus on the vegetation areas. A large part of the variance in an image can be caused by spectral 
difference between vegetation and non vegetation. These differences could then be dominant in the 
first components of the transformed image. If none vegetated areas are masked out then differences 
between vegetation types could dominate the first components of the transformed image.

PC1 PC2 PC3 PC4

PC5 PC6 PC7 PC8

Figure 2. Principle Components of HySpex image. PC1 (top left) is the first component. In total 8 
components are displayed. The information in each component decreases from the 1st to the 8th com-
ponent.
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MNF1 MNF 2 MNF 3 MNF 4

MNF 5 MNF 6 MNF 7 MNF 8

Figure 3.  MNF components of HySpex image. MNF1 (top left) is the first component. In total 8 com-
ponents are displayed. The information in each component decreases from the 1st to the 8th compo-
nent.

Figure 4 and Figure 5 show how rapidly the variance decrease as the number of the component in-
creases. Variance in the image contains both information and noise. The components of the PCA have 
a generally higher variance than the MNF components. This is probably caused by the fact that the 
MNF transformation removed a large part of the noise in the image. It can be concluded that there is 
relatively a very low amount of information in the components �0 and higher.
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Figure 4. MNF components of HySpex image and their variance.
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Figure 5. PCA components of HySpex image and their variance.

The first 12 components of each data reduction method were used further in the classification. The 
other components did presumably not contain useful information. (This has not been tested).

2 .4 Image c lass if ica t ion
The software eCognition can be used for object-oriented image classification. Contrary to pixel bas-
ed image classification, where each pixel in an image is analysed and classified separately, object-
oriented classification works with image objects. To be able to do this, the image has to be divided into 
groups of pixels, together forming an object or a so called segment. This step is called segmentation. 
eCognition makes uses of a multiresolution segmentation process, where several image layers are 
divided simultaneously into homogeneous groups of pixels. Each segment receives characteristics 
derived from the image, for example the mean value of a band for the segment, information on the 
shape and position of the segment, information on the neighbouring segments of the segment, or on 
segments of a higher or lower scale.  

For the Quickbird image all layers were imported into eCognition. The image was segmented on one 
level using the PSM bands Blue, Green, Red, and Near Infrared. The following parameters were used: 
Scale �5, Shape factor 0.�, Compactness 0.9. Shadow areas were masked. For the HySpex image we 
used the layers of the MNF and PCA with NDVI mask. In addition we used the layers of the MNF 
without NDVI masked. 

For the HySpex images three eCognition projects were created: one for MNF_NDVI, one for PCA_
NDVI, and one for MNF. The image was segmented on all the components of MNF. The following 
parameters were used: Scale �5, Shape factor 0.�, Compactness 0.9.

2 .5 Fie ld samples
An ESRI shapefile with sample locations was also imported into the eCognition projects. A part of 
the field samples were not recognizable on the QuickBird image, especially small trees (of about 1.5 
meter high). They were visible on the Vexcel orthophoto, but not on the QuickBird and the HySpex 
images. These samples had to be rejected.
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Table 3. Number of samples for each class. Classes in bold have over 10 samples.
Class name Number of sample areas Grouped class name

Quickbird HySpex
Alder          (Alnus glutinosa) 11 9 Deciduous
Birch          (Betula pendula /pubescens) 69 39 Deciduous
Larch          (Larix deciduas) 1 0 Deciduous
Aspen        (Populus tremula) 25 7 Deciduous
Beech         (Fagus sylvatica) 2 0 Deciduous
Pine            (Pinus Sylvestris) 51 45 Pine
Rowan       (Sorbus Aucuparia) 20 9 Deciduous
Spruce       (Picea Abies) 81 64 Spruce
Willow        (Salix caprea) 35 15 Deciduous
Lichen 4 3 Other groundcover
Moss 1 5 Other groundcover
Fireweed 7 1 Other groundcover
Blueberry 0 2 Other groundcover
Raspberry 7 2 Other groundcover
Grass 11 2 Other groundcover
Rock 1 3 Other groundcover
bare soil 1 0 Other groundcover
Agriculture 85 0 Other groundcover

Total 412 206

Due to the rejection of samples we got very few training data in several classes (Table 3). The minimum 
number of samples needed is dependent of the classification algorithm used and the number of features 
(variables). It is difficult to specify an exact number of samples needed. As an estimate, classes with 
less than �0 samples are critical to use in this case.

2 .6 Class if iers
In eCognition you can only use the k-Nearest Neighbour classification with k = 1 (1NN). The NN 
classifier is not building a model for doing the classification. Instead it calculates a distance metrics 
and classify according to the closes training samples measured with the used metric. With k=1 only 
the closest sample is used. Sometimes it is better to look at a group of samples and classify according 
to the most dominant. That is done when the classifier use k>1. 

The classifiers use a simple principle: first, each class needs to be defined by a certain amount of 
representative samples. Each sample is an image object and has features (variables extracted from 
image data or other GIS data). An example of a feature is the “mean value of the red channel” of an 
object, or the “standard deviation of the green channel” of an object. 
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Figure 6. The principle of a 1-Nearest Neighbour classifier (source: eCognition User Guide).

Nearest Neighbour
The 1-NN classifier searches for each ‘unknown’ image object, the closest sample object in feature 
space and labels the image object with that class.
 
Figure 1 shows this principle for one unknown image object, two classes and two features. The image 
object is assigned to the class ‘blue’ because a ‘blue’ sample is closest to it in the two-dimensional 
feature space.

The 1-NN classifiers make their predictions based on local information, while other algorithm (decision 
tree and Support Vector Machine) try to find a global model that fits the entire input space. Because 
the classification is made locally a 1-NN classifier is very susceptible to noise. on the other hand, if 
the samples give a good representation of the classes the algorithms work well with few samples.

Decision Trees
In addition to the Nearest Neighbour classification done in eCognition we tested two other algorithms. 
For doing that we had to export the sample data with all features to a table, and use other software in 
the analysis. All samples that were created by eCognition were exported, including the same features 
that were used for the NN classification. Thereby we have the exact same dataset as in the NN 
classification. The accuracy for the different algorithms was tested by n-fold cross validation.

one of the other algorithms we tested was the TreeBoost (Friedman 1999). This algorithm is optimized 
for improving accuracy based on decision tree classification. TreeBoost generate a number of decision 
tree models. The residual from the first tree are fed into the next tree with an attempt to reduce the 
error in the first tree. The final predicted value is formed by adding the weighted contribution of each 
tree. A full TreeBoost series can consist of hundreds of trees. 

Support Vector Machine
The other algorithm we tested was the support vector machine (SVM). This is a broader range of 
algorithms and was originated from research in statistical theory (Vapnik �995, �998). SVM have 
shown to work well with high-dimensional data and avoids the dimensionality problem, often a 
serious limitation for many other methods.
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We will not explain the method behind SVM here. It is complex and well explained in several books 
(Tan et. al. 2005, Abe 2005). Shortly the SVM look for a hyperplane that can linearly separate the data 
in an optimal way. For using the algorithm with a high number of features the data are transformed to 
higher dimensional space by using a kernel function. We used the SVM software from the LIBSVM 
project (Chang and Lin 2005), and selected a Radial Basis Function as the kernel function.

2.6.1 Feature selection
Several combinations of features were tested for both types of image data using the feature selection 
options in eCognition. The method built into eCognition for testing the successfulness of a classification 
is to calculate the separability of the samples in the defined feature space. If the separability is low it 
means that the samples of the different classes are very close (or alike) in feature space. The assignment 
of ‘unknown’ image objects to these classes will then be quite arbitrary. If the separability is high it 
means that the classes are well defined and easy to differentiate.

A tool called ‘Feature Space Optimization’ in eCognition calculates the optimum set of features to use 
based on a group of classes and their samples. The tool proposes a number of samples and reports a 
‘separation distance’. The tool is designed for uncorrelated features. The features used are all derived 
from image data and image bands are strongly correlated. This mean that the result of Feature Space 
Optimization’ in eCognition will not necessarily be the optimum feature set to use.

Therefore several proposed feature sets from the Quickbird image were tested by means of a 5-fold 
cross validation (Table 4). The set of samples was divided in five parts. 4/5 was used as training 
sample for the classification and the 5th for validation. This process was repeated five times.

The following feature sets from the HySpex image were tested: 
• The first 12 components of the MNF with a NDVI mask 
• The first 12 components of the MNF without a NDVI mask
• The first 12 components of the PCA. 

The used combinations of these features are listed in the Table 9, Table 11 and Table 13 together with 
the classification results. The classification result was derived by a 3-fold cross validation, since the 
number of samples was fewer for the HySpex classification than the QuickBird.

For the TreeBoost and the SVM a n-fold cross validation can be calculated automatically as a part of 
the analysis. 
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Table 4. Features that were tested for the QuickBird classification.

Feature name Explanation
mean PAN Mean value of the panchromatic band (0,6 m pixel size)

mean MS-BLUE Mean value of the blue band (2,4 m pixel size)

mean MS-GREEN Mean value of the green band (2,4 m pixel size)

mean MS-RED Mean value of the red band (2,4 m pixel size)

mean MS-NIR Mean value of the near infrared band (2,4 m pixel size)

mean PSM-NDVI Mean value of the NDVI calculation based on the PSM image

mean PSM-BLUE Mean value of the PSM blue band (0,6 m pixel size)

mean PSM-GREEN Mean value of the PSM green band (0,6 m pixel size)

mean PSM-RED Mean value of the PSM red band (0,6 m pixel size)

mean PSM-NIR Mean value of the PSM near infrared band (0,6 m pixel size)

mean PAN-HOM Mean value of homogeneity texture filter based on the panchromatic 
band

mean PAN-CON Mean value of contrast texture filter based on the panchromatic band

mean PAN-ASM Mean value of angular second moment texture filter based on the 
panchromatic band

studded PAN Standard deviation of the panchromatic band (0,6 m pixel size)

stddev MS-BLUE Standard deviation of the blue band (2,4 m pixel size)

stddev MS-GREEN Standard deviation of the green band (2,4 m pixel size)

stddev MS-RED Standard deviation of the red band (2,4 m pixel size)

stddev MS-NIR Standard deviation of the near infrared band (2,4 m pixel size)

stddev PSM-NDVI Standard deviation of the NDVI calculation based on the PSM image

ratio MS-BLUE Value of MS-BLUE divided by the total of MS-BLUE, MS-GREEN, MS-
RED, MS-NIR

ratio MS-GREEN Value of MS-GREEN divided by the total of MS-BLUE, MS-GREEN, 
MS-RED, MS-NIR

ratio MS-RED Value of MS-RED divided by the total of MS-BLUE, MS-GREEN, MS-
RED, MS-NIR

ratio MS-NIR Value of MS-NIR divided by the total of MS-BLUE, MS-GREEN, MS-
RED, MS-NIR

ND RED-BLUE Normalized difference of MS-RED and MS-BLUE

ND GREEN-BLUE Normalized difference of MS-GREEN and MS-BLUE
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3 Results
The moose browsing occurs from about 0,5 meter to 3 meters above the ground and mainly on the 
species pine, rowan, aspen and willow. The browsing damage can be easy to notice from the ground 
(see Figure 7), but more difficult to detect from above. We were clearly not able to separate out the 
browsing levels on the images, even when the pixel resolution was down to 25 cm as the HySpex data. 
With the limited number of sample data we had available we find it unnecessary to do analysis of 
browsing pressure. The data could not differentiate the pressure with any good confidence. 

We got some data on moose browsing damage from a survey Stor-Elvdal grunneierlag conducted in 
2006. The accuracy of the GPS points from this browsing survey was not good enough to relate this 
field data to the exact same area in the images, and we lack a digital forest plan with data of sufficient 
quality. We did not go further in analysing this data. 

Instead we focused on the use of images for the classification of tree species, and other ground 
components.

 

Figure 7. Moose browsing in Stor-Elvdal. 
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3 .1 QuickBird images
3.1.1 Nearest Neighbour classif ication
Table 5 presents five different feature sets, their content, and their separation distance. Many more 
feature sets were tested, but only the most interesting sets are shown.  Feature set � (FS�) consists of 
the mean values of all four multispectral bands and of the mean value of the panchromatic band, a 5 
dimensional feature space. This resulted in a separation distance of 0.085. For an explanation of all 
features see Table 4.

Table 5. Feature sets and separation distance for the QuickBird Nearest Neighbour classification.

Feature Set name FS1 FS5 FS13 FS14 F15

Separation distance 0.085 0.135 0.548 0.684 0.928

Number of features 5 6 6 6 11
mean PAN 1 1 1

mean MS-BLUE 1 1

mean MS-GREEN 1 1

mean MS-RED 1 1

mean MS-NIR 1 1 1 1

mean PSM-NDVI 1 1

mean PSM-BLUE

mean PSM-GREEN

mean PSM-RED

mean PSM-NIR

mean PAN-HOM 1 1 1

mean PAN-CON 1 1

mean PAN-ASM 1

stddev PAN 1 1

stddev MS-BLUE

stddev MS-GREEN 1

stddev MS-RED

stddev MS-NIR 1

stddev PSM-NDVI 1

ratio MS-BLUE

ratio MS-GREEN

ratio MS-RED 1

ratio MS-NIR 1

ND RED-BLUE 1 1 1

ND GREEN-BLUE 1 1 1



24

GRoESz & K AST DA LEN

Table 6. Cross validation results for the QuickBird Nearest Neighbour classification.

5-fold cross validation FS1 FS5 FS13 FS14 F15

Grouped Overall Accuracy Average 0.65 0.68 0.75 0.69 0.69
Grouped Kappa Average 0.50 0.56 0.64 0.56 0.57
grouped Overall Accuracy T1234-V5 0.60 0.64 0.72 0.66 0.62
grouped KAPPA T1234-V5 0.43 0.49 0.58 0.51 0.46
grouped Overall Accuracy T1235-V4 0.63 0.76 0.79 0.72 0.72
grouped KAPPA T1235-V4 0.46 0.66 0.70 0.59 0.61
grouped Overall Accuracy T1245-V3 0.69 0.68 0.78 0.74 0.88
grouped KAPPA T1245-V3 0.58 0.58 0.70 0.64 0.84
grouped Overall Accuracy T1345-V2 0.74 0.75 0.82 0.73 0.62
1grouped KAPPA T1345-V2 0.61 0.64 0.74 0.58 0.45
grouped Overall Accuracy T2345-V1 0.57 0.58 0.61 0.61 0.62
grouped KAPPA T2345-V1 0.42 0.45 0.46 0.48 0.49

Overall Accuracy Average 0.40 0.38 0.40 0.40 0.41
KAPPA Average 0.31 0.29 0.31 0.30 0.32
Overall Accuracy T1234-V5 0.40 0.40 0.40 0.42 0.34
KAPPA T1234-V5 0.31 0.30 0.32 0.34 0.26
Overall Accuracy T1235-V4 0.29 0.31 0.35 0.35 0.41
KAPPA T1235-V4 0.22 0.23 0.27 0.25 0.31
Overall Accuracy T1245-V3 0.49 0.44 0.47 0.46 0.56
KAPPA T1245-V3 0.39 0.34 0.37 0.35 0.48
Overall Accuracy T1345-V2 0.37 0.35 0.37 0.32 0.28
KAPPA T1345-V2 0.29 0.26 0.29 0.24 0.20
Overall Accuracy T2345-V1 0.46 0.42 0.41 0.43 0.47
KAPPA T2345-V1 0.36 0.32 0.29 0.33 0.37

In Table 6 the corresponding results of the cross validation can be seen. The table is divided in two 
parts: the lower part shows overall accuracies and kappa index for all feature sets, five times for each 
5-fold cross validation, and one average. The top part shows overall accuracies for grouped classes. 
These classes are deciduous (all deciduous tree species), pine, spruce, and other ground cover (all 
other vegetated and non-vegetated groundcover). The classes were grouped because it was expected 
that different deciduous tree species would be hard to separate in a QuickBird image.

FS1 has an overall accuracy for all classes of 0.40 and a kappa index of 0.31. The accuracy and kappa 
for the grouped classes are 0.65 and 0.50. Kappa index is the coefficient of agreement, ranging from 
0 (no agreement) to � (full agreement).

When we compare the separation distance of each feature set from Table 5 with the overall accuracies, 
we see that an increase in separation distance does not result in the same increase in overall accuracy / 
kappa index. eCognition user manual reports (Definiens, 2000-2004) that Feature Space optimization 
does not function optimal with strongly correlated features. This makes very hard to choose the opti-
mum feature set for a classification.

While there is almost no difference in performance of different feature sets in overall accuracy, 
there is difference in grouped overall accuracy. FS�� yields the best results for the grouped overall 
accuracy.
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Table 7  Confusion matrix of the QuickBird classification expressed in percentage. Only selected 
classes are shown.
Classification \ Reference Alder Birch Aspen Pine Rowan Spruce Willow
Alder 0 3 12 2 10 7 6
Birch 27 36 40 6 35 21 34
Aspen 9 10 20 0 5 0 14
Pine 9 6 4 73 0 15 0
Rowan 9 4 8 2 5 0 9
Spruce 27 23 8 18 10 43 11
Willow 9 16 8 0 30 11 17
Sum 100 100 100 100 100 100 100

Table 7 shows the confusion matrix of the QuickBird classification of selected classes. The marked 
cells (bold) show the percentage of reference cells of each class that were correctly classified. For 
example, 36 % of the ‘birch’ samples were correctly classified. only the class ‘pine’ scores above 
70% correct. There is large confusion between deciduous species and between spruce and deciduous 
species.

one reason for the low accuracies is the fact that the field samples contained a large variation. Samples 
for the class ‘spruce’ could vary from 2 meter high young trees with low crown density to 25 meter 
mature spruces with dense crowns. There were too few field samples available to divide the classes 
further into age classes or to put samples of young trees aside. Mature trees in production forest 
are easier to discriminate than young trees or combinations of young and mature trees in a natural 
environment.

3.1.2 Support Vector Machine and TreeBoost classif ication
SVM and TreeBoost classification were tested in order to compare these classifiers with the NN 
classifier from eCognition. For this comparison we tested only Feature Set 1 and 13 with a classification 
to four classes. Table 8 shows the accuracy results for the SVM and TreeBoost classification with the 
same sample data as the NN classification.

Table 8. Cross validation results for the QuickBird Support Vector Machine and TreeBoost classifi-
cation. For comparison the results of eCognition NN classification are repeated.

SVM TreeBoost eCognition NN
5 fold cross validation FS1 FS13 FS1 FS13 FS1 FS13
Grouped Overall Accuracy 0.76 0.78 0.75 0.77 0.65 0.75

The results of SVM and TreeBoost are only slightly better than the results of the eCognition NN 
classification. While the eCognition NN classification result improves remarkably by choosing another 
Feature Set, there is almost no difference between the feature sets in case of SVM and TreeBoost 
classification.
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3 .2 HySpex images
3.2.1 Nearest Neighbour classif ication
Table 9 shows the different feature sets for the MNF_NDVI classification. This is the MNF where the 
non-vegetated areas were masked out. The separation distance increases with an increase in the number 
of features. Since the features (or components) are uncorrelated, the feature space optimization tool 
of eCognition will function well. In order to save time and effort, only 4 feature sets were tested with 
cross validation. These are listed in Table 10. Both overall accuracy and grouped overall accuracy 
increase with an increase of used features.

Table 9.  Feature sets and separation distance for the HySpex MNF_NDVI classification.
Feature Set name FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12
Separation distance 0.017 0.191 0.387 0.603 0.833 1.032 1.24 1.34 1.376 1.422 1.455 1.474
Number of features 1 2 3 4 5 6 7 8 9 10 11 12
NDVI mask MNFLT B1 m 1
NDVI mask MNFLT B2 m 1 1 1 1 1 1
NDVI mask MNFLT B3 m 1 1 1 1 1 1
NDVI mask MNFLT B4 m 1 1 1 1 1 1 1
NDVI mask MNFLT B5 m 1 1 1 1 1 1 1 1 1 1 1
NDVI mask MNFLT B6 m 1 1 1
NDVI mask MNFLT B7 m 1 1 1 1 1 1 1 1 1 1
NDVI mask MNFLT B8 m 1 1 1 1 1 1 1 1 1
NDVI mask MNFLT B9 m 1 1 1 1 1 1 1 1 1 1 1 1
NDVI mask MNFLT B10 m 1 1 1
NDVI mask MNFLT B11 m 1 1 1
NDVI mask MNFLT B12 m 1 1 1 1 1 1 1

Table 10. Cross validation results for the HySpex MNF_NDVI classification.
3-fold cross validation FS3 FS6 FS9 FS12
grouped Overall Accuracy Average 0,64 0,73 0,75 0,76
grouped Kappa Average 0,48 0,60 0,64 0,65
grouped Overall Accuracy T12-V3 0,68 0,78 0,82 0,80
grouped Kappa T12-V3 0,53 0,68 0,72 0,70
grouped Overall Accuracy T13-V2 0,56 0,64 0,65 0,64
grouped Kappa T13-V2 0,37 0,47 0,49 0,48
grouped Overall Accuracy T23-V1 0,68 0,76 0,80 0,83
grouped Kappa T23-V1 0,55 0,66 0,71 0,76
Overall Accuracy Average 0,56 0,62 0,62 0,63
Kappa Average 0,45 0,52 0,52 0,54
Overall Accuracy T12-V3 0,60 0,70 0,64 0,64
Kappa T12-V3 0,49 0,61 0,54 0,54
Overall Accuracy T13-V2 0,41 0,45 0,52 0,52
Kappa T13-V2 0,29 0,35 0,42 0,42
Overall Accuracy T23-V1 0,66 0,71 0,69 0,73
Kappa T23-V1 0,56 0,61 0,60 0,64
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Table 11 and Table 12 show the different feature sets and cross validation results for the HySpex_MNF 
classification. This is the MNF classification without any vegetation masking. overall accuracy and 
kappa are lower than in the MNF_NDVI classification and so is the separation distance. Increasing 
the amount of features used in the classification does not increase the accuracy in this classification.

Table 11. Feature sets and separation distance for the HySpex MNF classification.
Name FS21 FS22 FS23 FS24 FS25 FS26 FS27 FS28 FS29 FS30 FS31 FS32
Separation 
distance 0.032 0.191 0.441 0.634 0.841 1.006 1.08 1.159 1.196 1.236 1.283 1.291

Number of 
features 1 2 3 4 5 6 7 8 9 10 11 12

MNFLT B1 1 1 1 1 1 1 1 1 1
MNFLT B2 1 1 1 1
MNFLT B3 1 1 1 1 1
MNFLT B4 1 1 1 1 1 1 1 1
MNFLT B5 1 1 1 1 1 1 1 1 1 1
MNFLT B6 1 1 1 1 1
MNFLT B7 1 1 1 1 1 1 1 1 1 1
MNFLT B8 1 1 1 1 1
MNFLT B9 1 1 1 1 1 1 1 1 1 1 1
MNFLT B10 1 1 1
MNFLT B11 1
MNFLT B12 1 1 1 1 1 1 1

Table 12. Cross validation results for the HySpex MNF classification.
3 fold cross validation FS23 FS26 F29 F32
grouped Overall Accuracy Average 0.73 0.72 0.69 0.72
grouped KIA Average 0.60 0.60 0.55 0.59
grouped Overall Accuracy T12-V3 0.78 0.78 0.74 0.78
grouped KIA T12-V3 0.66 0.673 0.619 0.67
grouped Overall Accuracy T13-V2 0.667 0.583 0.563 0.594
grouped KIA T13-V2 0.522 0.406 0.371 0.417
grouped Overall Accuracy T23-V1 0.729 0.797 0.763 0.78
grouped KIA T23-V1 0.61 0.71 0.653 0.682
Overall Accuracy Average 0.57 0.61 0.58 0.60
KIA Average 0.45 0.51 0.47 0.50
Overall Accuracy T12-V3 0.6 0.68 0.62 0.66
KIA T12-V3 0.481 0.587 0.51 0.559
Overall Accuracy T13-V2 0.458 0.448 0.427 0.458
KIA T13-V2 0.351 0.333 0.308 0.352
Overall Accuracy T23-V1 0.644 0.695 0.695 0.695
KIA T23-V1 0.522 0.605 0.588 0.595
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Table 13 and Table 14 show the different feature sets and cross validation results for the HySpex_PCA 
classification. In this case, only the feature set FS49 (consisting of 9 features) has been cross validated. 
Overall accuracy, kappa, grouped overall accuracy and grouped kappa are lower than in the MNF and 
in the MNF_NDVI classification.

Table 13. Feature sets and separation distance for the HySpex PCA classification.
Name FS41 FS42 FS43 FS44 FS45 FS46 FS47 FS48 FS49 FS50 FS51 FS52
Separation 
distance 0.036 0.19 0.365 0.595 0.752 0.872 0.95 0.997 1.03 0.997 0.932 0.892

Number of 
features 1 2 3 4 5 6 7 8 9 10 11 12

NDVI mask PCLT B1 1 1 1 1 1 1 1 1 1 1 1
NDVI mask PCLT B2 1 1 1 1
NDVI mask PCLT B3 1 1 1 1 1 1 1 1
NDVI mask PCLT B4 1 1 1
NDVI mask PCLT B5 1 1 1 1 1 1 1 1 1 1
NDVI mask PCLT B6 1 1
NDVI mask PCLT B7 1 1 1 1 1
NDVI mask PCLT B8 1 1 1 1 1 1
NDVI mask PCLT B9 1 1 1 1 1 1 1 1 1 1 1 1
NDVI mask PCLT B10 1 1 1 1 1 1 1
NDVI mask PCLT B11 1
NDVI mask PCLT B12 1 1 1 1 1 1 1 1 1

Table 14. Cross validation results for the HySpex PCA classification.
3 fold cross validation FS49
grouped Overall Accuracy Average 0.69
grouped KIA Average 0.55
grouped Overall Accuracy T12-V3 0.72
grouped KIA T12-V3 0.572
grouped Overall Accuracy T13-V2 0.646
grouped KIA T13-V2 0.497
grouped Overall Accuracy T23-V1 0.695
grouped KIA T23-V1 0.571
Overall Accuracy Average 0.51
KIA Average 0.38
Overall Accuracy T12-V3 0.5
KIA T12-V3 0.364
Overall Accuracy T13-V2 0.458
KIA T13-V2 0.346
Overall Accuracy T23-V1 0.559
KIA T23-V1 0.436



29

M A PPI NG T R ESS A N D T H ICK ET W IT H oPTICA L I M AGES

The marked cells in Table 15 show the percentage of reference cells of each class that were correctly 
classified in the HySpex NDVI classification. 86% of the ‘pine’ samples were correctly classified. The 
classes ‘pine’, ‘spruce’ and ‘willow’ can be detected quite well. There is a large confusion between 
the deciduous tree species.

Table 15. Confusion matrix of the HySpex MNF_NDVI classification. Only selected classes are 
shown.

Classification \ reference Alder Birch Aspen Pine Rowan Spruce Willow
Alder 11 10 0 0 11 5 0
Birch 44 56 29 5 11 11 0
Aspen 0 3 43 0 11 0 0
Pine 22 0 0 86 0 5 0
Rowan 22 0 29 0 11 3 20
Spruce 0 23 0 7 22 72 7
Willow 0 3 0 0 33 3 73
Sum 100 100 100 100 100 100 100
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Figure 8. Separation distance and accuracy for HySpex MNF classification.

The Euclidian separation distance for the HySpex_MNF classification is plotted as a blue line in 
Figure 8.  This separation measure is reported in eCognition as a helpful tool for feature reduction. 
The figure shows first a steady increase with an increasing number of features. From 8 features and 
up the curve flattens. The accuracies, displayed as green and red markers, show the same trend and 
reach a top of about 0.76.
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3.2.2 Support Vector Machine and TreeBoost classif ication
Table 16 shows the accuracy results for the SVM and TreeBoost classification, using the same sample 
data as for the eCognition NN classification. only Feature Set 3 and 12 were tested for the four 
grouped classes.

Table 16. Cross validation results for the HySpex MNF_NDVI Support Vector Machine and TreeBoost 
classification. For comparison the results of eCognition NN classification are repeated.

SVM TreeBoost eCognition NN
3 fold cross validation FS3 FS12 FS3 FS12 FS3 FS12
Grouped Overall Accuracy 0,63 0,81 0,64 0,81 0,64 0,76

The accuracies from SVM and TreeBoost are both 5% higher than the results from eCognition NN 
classification for feature set 12. SVM and TreeBoost have equal accuracies. Both eCognition NN, 
SVM and TreeBoost show an increase in accuracy when more features are used. This is illustrated by 
the difference between FS� (� features) and FS�2 (�2 features).
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4 Discussion, conclusion and recommendations

4 .1 Discuss ion
It is not very practical to use optical aerial or satellite sensors to measure browsing damage, since 
these sensors measure from above. Browsing can take place at the lower, reachable parts of the crowns 
of mature trees, or at the whole crowns of young trees. In the case of mature trees, the damaged part 
of the crown is easily obscured by the unaffected part of the crown above it. This makes the browsing 
damage invisible from above, no matter how detailed the sensor can make an image. In case of young 
trees, browsing damage eliminates almost all green biomass of the tree. This leaves only the stem 
and branches, which are almost invisible from above. To make it worse the young trees are difficult to 
separate from ground vegetation.

Optical images from above do not seem an obvious choice for detecting moose browsing damage at 
the level of single trees. At the level of forest stands they could be useful in case of browsing damage 
at young trees. If an existing forest map is available, giving information on soil productivity, planted 
(or natural re-growth) tree species, and the tree age, then images could be used to detect differences 
of vegetation quantity. For example, if to forest stands have equal soil productivity, tree species and 
age, and one stand has less re-growth, then this difference could be caused by moose browsing. Other 
causes like deceases or slightly different environments could also be the cause.

The overall accuracy of the classification of all classes (9 classes listed in Table 3) is generally low. 
Only the classes pine, spruce and willow perform reasonably well.

Using the HySpex image increases the classification results compared to using the QuickBird image, 
keeping the classification algorithms the same. overall accuracy increases from 40% to 63%. Where 
the QuickBird image could only separate the class pine well, the HySpex image separates spruce and 
willow in addition to pine. It is remarkable that the classification result of the grouped classes (Pine, 
spruce, deciduous, other groundcover) does not increase so much when HySpex is used instead of 
QuickBird.

The accuracies of the classification are not very high. A part of the reason for this is the fact that the 
number of sample areas is not high, and the fact that the samples of the classes have a large variation. 
This could be improved by taking more samples in general, by further dividing classes into subclasses 
(age or size), and by taking more homogeneous samples for these subclasses. But still then there would 
be confusion between several classes. Young spruce, for example, is very alike mature deciduous tree 
species on images. And grass and small bushes are difficult to separate from mature deciduous tree 
species.

The classification results in our study are comparable to those of (Kamagata et al. 2006). He used 
three different methods to classify vegetation in an IKONOS image. Object-base, pixel-based and 
ISoDATA classification method were compared. The vegetation classes were Evergreen broad-leaved 
forest, Deciduous broadleaved forest, Secondary Grassland, Wetland vegetation, Conifer plantations, 
and Bamboo groves. object-based classification resulted in an overall accuracy of 64% and a kappa 
index of 0.55. Pixel-based classification scored 60% and 0.49, while ISoDATA gave the lowest results, 
54% and 0.39.
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There is no large difference in classification result between the different algorithms. Nearest Neighbour, 
Support Vector machines, and TreeBoost all perform almost equally on the QuickBird image. on the 
HySpex image SVM and TreeBoost perform about 5% better than Nearest Neighbour. The HySpex 
image contains much more information than the QuickBird image. Apparently, SVM and TreeBoost 
are better to make use of this higher information content.

No ancillary data has been used in our study. Using Digital terrain models or for example soil 
productivity maps could increase classification results. (Förster and Kleinschmit, 2006) compared 
results of a QuickBird classification in the Bavarian forest with and without the use of ancillary 
information. Ancillary information consisted of Digital Terrain Models (DTM), soil maps and 
silvicultural maps. An object oriented image classification method was performed with the software 
eCognition. The tree species Beech, Spruce, Black Alder, Larch and Sycamore were used as classes. 
overall accuracy of 75 to 77 % was reached with the use of ancillary information and 64 to 70 % 
without the use of ancillary information.

The use of other sensors could also improve results. We used a hyperspectral sensor with bands from 
400 to 1000 nm. The short wave infrared part of the spectrum (from 1000 to 2500 nm) also contains 
valuable information for vegetation studies. (Clark et al. 2005) used the HYDICE hyperspectral 
scanner in combination with field spectra for the classification of tropical tree species. HYDICE 
has 210 bands ranging from 400 nm to 2500 nm. This sensor data was also used to simulate an 
IKoNoS image. Both pixel based classification and Individual Tree Crown delineation (ITC) was 
used. The highest accuracy was reached at crown level with 30 optimally selected bands. overall 
accuracy was 92 %. The IKoNoS simulated data gave an overall accuracy at crown level of 59 % 
(Linear Discriminant Analysis), 50 % with Maximum Likelihood Classification (MLC), and 20 % 
with Spectral Angle Mapper (SAM).

Individual Tree Crown delineation (Leckie et al. 2005) could be another method to improve classification 
results. This approach delineates individual trees from aerial or satellite images and classifies the tree 
species. ITC functions best on not to dense forest, which means no overlapping crowns. of course 
the tree crowns should be large and dense enough to be detected, but this is mainly dependant on the 
image characteristics. Trees with height less than 3 meters might be hard to detect.

Furthermore, LIDAR (Light Detection And Ranging) data and optical images form a powerful 
combination (Leckie et al. 200�). Optical images are best for classifying tree / vegetation species and 
vegetation health, while LIDAR is best for measuring heights and densities. These two sensor types 
complement each other and could improve a part of the classification errors encountered in our study: 
the confusion of ground vegetation, bushes, and deciduous tree crowns, and the confusion of young 
spruce trees and deciduous trees. Incorporating height classes from LIDAR data would eliminate 
these problems.

It is likely that the use of LIDAR in combination with optical data can increase the classification 
results by 10 to 20%. As an estimate, the use of ancillary data could increase the classification results 
by about 10%, of course depending on the quality of the ancillary data. It cannot be expected that these 
improvements will be evenly divided over all classes: some classes might show large improvements in 
classification accuracy, while others will not show any improvement.



��

M A PPI NG T R ESS A N D T H ICK ET W IT H oPTICA L I M AGES

4 .2 Conclusions
The following conclusions can be drawn with respect to the QuickBird image classification:

• overall accuracy of all classes using NN classification reached 40%, the kappa index 0.31
• Overall accuracy of grouped classes (‘pine’, ‘spruce’, ‘deciduous’, ‘other groundcover’) using 

NN classification reached 75%, the kappa index 0,64
• QuickBird could discriminate the class ‘pine’ reasonably well in this study area.
• Support Vector Machines did not improve the classification much when using the same samples 

and features as the NN classification (78%). Neither did the TreeBoost classification (77%).

• The following conclusions can be drawn with respect to the HySpex image classification:
• overall accuracy of all classes using NN classification reached 63%, the kappa index 0.54
• Overall accuracy of grouped classes (‘pine’, ‘spruce’, ‘deciduous’, ‘other groundcover’) using 

NN classification reached 76%, the kappa index 0.65
• HySpex (400nm -�000nm) can discriminate the classes ‘pine’ good, ‘spruce’, and ‘willow’ rea-

sonably well.
• Minimum Noise Fraction transformation with the use of NDVI masking yields higher classifica-

tion accuracy than MNF without NDVI masking.
• Minimum Noise Fraction transformation with the use of NDVI masking yields higher classifica-

tion accuracy than Principal Component Analysis.
• Both Support Vector Machines and TreeBoost classification improved the accuracy by 5 % us-

ing the same 12 features as the NN classifier.

The main conclusion concerning the use of eCognition:
• The parameter ‘separation distance’ of the feature space optimization tool in eCognition is not 

useful to find the optimal feature set for a Nearest Neighbour classification when the features are 
correlated. By optimal is meant: the feature set resulting in the highest classification accuracy. 
Feature space optimization is useful when features are non correlated; this is the case with PCA 
and MNF.

General conclusions:
Optical images alone (aerial nor satellite) are not suitable to map moose browsing pressure.

It is difficult to say whether the classification results of maximal 70 to 80 % are high enough to be 
valuable for the mapping of moose browsing resources. It’s is however certain that the accuracies of 
some important classes are too low to be of value.

The end result of a classification is determined by the input image, the classification method, and the 
classes / samples. Several classification methods on two different types of images reached comparable 
results. Although some methods perform slightly better there is no large difference. The HySpex image 
yields slightly better results than the QuickBird image, but again there was no major improvement. 
Therefore, the highest potential for improvement lies in choosing samples with a higher quality and 
combine the optical data with LIDAR data. There are three main factors determining the quality of 
samples. The first is complexity of the classes and the landscape. The second is the amount of samples 
that are taken. The third is the amount of errors made in collecting the samples. In forest classification 
the use of LIDAR is increasing, so for future mapping this type of data will be more available. 



�4

GRoESz & K AST DA LEN

The grouping of the samples into four classes decreased the complexity and increased the accuracy 
of the classification. However, the results of some classes (for example spruce) were still lower than 
expected. The amount of samples taken was too low for a good training and validation of the classifiers. 
The low accuracy of some classes indicates that the samples contained a high amount of errors.

4 .3 Recommendat ions
There are several options to improve the results of the vegetation classification in this area.

• The most important is probably to add other sensor data like LIDAR (Light Detection And Rang-
ing) data. Measuring height of the vegetation, LIDAR gives information that is complementary 
to passive optical images and therefore very useful for a classification. 

• A second option is to add more image data. In addition to the VNIR mode used in this study, the 
HySpex sensor could be used in the SWIR mode (which ranges from 1000 nm to 1700 nm). This 
could improve the classification significantly. Such options do not exist in case of the QuickBird 
sensor.

• A third option is to make use of existing information like height models, geomorphologic maps, 
existing forest maps, and other maps as support in a classification. 

• A fourth option is to collect more and more accurate samples of all class that will be mapped.

If these recommendations are followed, we believe it is possible to map moose browsing resources with 
high accuracy. More research is needed to investigate whether it is possible to map moose browsing 
pressure.
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5 Abbreviations and Acronyms

DT  Decision Tree
GPS  Global Positioning System
LIDAR Light Detection And Ranging
MNF  Minimum Noise Fraction
NDVI  Normalized Difference Vegetation Index
NN  Nearest Neighbour
NEO  Norsk Elektro Optikk
PCA  Principal Component Analysis
PSM  Pan Sharpened Merge
RMS  Root Mean Squared
SVM  Support Vector Machine
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