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Running title: SIMULTANEOUS ACTIVITY PATTERNS OF PREDATOR AND PREY  

 

 We studied the simultaneous activity patterns of a breeding wolf (Canis lupus) pair and five adult 

moose (Alces alces) cows from April through November 2004 in a wolf territory in south-eastern 

Norway. All study animals were GPS collared, and we used a total of 8,297 fixes to analyze their 

temporal activity patterns. We 1) describe the daily activity rhythm of the two species and how 

this varied seasonally through the study period, and 2) investigate the association in activity 

patterns between the two species. Wolf activity peaked at dawn. The distance moved per time unit 

and the linearity of the movement was higher in wolves than in moose, but both species showed a 

decrease in these variables in June, coinciding with the denning and calving seasons. With the 

exception of the summer months when the activity of wolves and moose was limited by the 

raising of offspring, we found no correlation between the temporal activity of the two species. 

                                                 
1 Author for correspondence: Centre for Ecological and Evolutionary Synthesis (CEES), Department of 
Biology, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway; e-mail: 
ane.eriksen@bio.uio.no; phone: (+47) 45269840 

mailto:ane.eriksen@bio.uio.no�


 

 

 

2 

Hence, we did not find support for the hypothesis that the wolves and moose in Scandinavia have 

adjusted to each other’s activity patterns.  We discuss the results in light of the relative density of 

the two species and the intensive human harvest of moose, and hypothesize that synchronicity of 

predator-prey activity patterns may be ratio-dependent. 

 

Keywords: Activity pattern, Alces alces, Canis lupus, GPS-collar, moose, predation risk, 

predator avoidance, wolf. 

 

Continuous arms races are believed to be ongoing in predator-prey systems (Dawkins & 

Krebs 1979; Matter & Mannan 2005), resulting in a variety of predator- and anti-predator 

adaptations (Stephens & Peterson 1984). As one such adaptation, prey may adjust their activity 

pattern in response to that of their predator, and vice versa. Predators may increase their access to 

prey by being active in periods when prey is active (Jenny & Zuberbühler 2005). Conversely, 

prey may avoid their predators by reducing activity when predators are active (Nelson & Vance 

1979; Overdorff 1988) or in circumstances in which predators find it easy to locate prey (Caro 

2005). Prey, in particular females with young, may also avoid their predators in space by shifting 

their habitat use in response to predators (Main 1987; Festa-Bianchet 1988; Decaestecker et al. 

2002; Caro 2005).  

 

The moose, Alces alces, is an important Holarctic prey species for wolves, Canis lupus 

(Peterson & Ciucci 2003), including within the boreal forests of south-central Scandinavia (Sand 

et al. 2008). Wolves and moose may both adjust their activity patterns to a number of factors, and 

when correlations between wolf and moose activity are found, it is a challenge to separate 

between those resulting from the same external factors acting on both species, and actual 

adjustments of one of the species to the activity pattern of the other. Without being predator- or 
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anti predator adaptations, both wolves and moose may adjust their activity to climatic factors 

(Harrington & Mech 1982; Sæther et al. 1992; Demarchi & Bunnell 1995; Fancy & Ballard 1995; 

Gundersen et al. 1998; Theuerkauf et al. 2003) and reproductive season (Mech 1970; Phillips et 

al. 1973; Harrington & Mech 1982; Ballard et al. 1991; Vilà et al., 1995; Theuerkauf et al. 2003). 

However, wolves might adjust their activity pattern to that of their prey to improve hunting 

efficiency (Harrington & Mech 1982; Fuller 1991; Theuerkauf et al. 2003). Moose have been 

shown to adjust their activity to the amount of daylight (Bubenik 1997, Rolandsen et al. 2010), 

and wolf activity peaks have been found at dawn and dusk coinciding with prey activity 

(Harrington & Mech 1982; Theuerkauf et al. 2003). But moose can also potentially modify both 

their temporal and spatial activity pattern to avoid predation and other disturbances (Edwards 

1983; Stephens & Peterson 1984; Demarchi & Bunnell 1995; Berger 2007).  

 

Wolves have recently re-colonized south-central Scandinavia after being exterminated in 

the mid-to-late 1800s (Wabakken et al. 2001; Sand et al. 2006a). Predation by wolves has become 

an increasingly important mortality factor for moose in areas of established wolf territories 

(Olsson et al. 1997; Gundersen 2003; Sand et al. 2005; 2006a). Here, moose constitute > 90% of 

wolves’ prey biomass (Sand et al. 2008), and calves and yearling moose are particularly exposed 

to predation (Palm 2001; Gundersen et al. 2003; Sand et al. 2005; 2008). However, human 

harvesting is still the most important mortality factor for moose overall in southern Scandinavia 

(Gundersen 2003; Milner et al. 2005; Sand et al. 2006a), even within present wolf territories 

(Solberg et al. 2003). Locally, where moose cross and stay close to major traffic routes during 

migration or in the wintering areas, collision with vehicles may also be a significant mortality 

factor (Gundersen & Andreassen 1998; Gundersen 2003; Andreassen et al. 2005). Moose 

behaviour in encounters with wolves and humans typically differs in Scandinavia compared to 

North America, where moose have been continuously exposed to natural predators (Sand et al. 
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2006a; Wikenros et al. 2009). Furthermore, hunting success is higher for the re-colonizing 

Scandinavian wolves than reported for their North American conspecifics (Sand et al. 2006a). 

Thus, after the long period of wolf absence, Scandinavian moose do not seem to have readjusted 

their behaviour to the renewed predation pressure (Sand et al. 2006a), and we may not be able to 

simply transfer findings from other wolf-moose systems to Scandinavia.  

 

Although our understanding of factors related to wolves’ hunting success and prey 

vulnerability is in its infancy, for the purposes of this paper we base our hypotheses on the 

following rational. In boreal forests visibility is generally low. Hence, wolves and moose have to 

rely on senses other than vision, such as sound and scent, to detect each other (Peterson & Ciucci 

2003). Active animals make more noise than inactive ones, and it is reasonable to assume that 

smell is dispersed more effectively from an animal that is standing up and moving than from an 

animal that is lying down (Peters & Mech 1975). Hence, seeking prey with a synchronous activity 

pattern should be advantageous for wolves. For the moose on the other hand, an asynchronous 

activity pattern in relation to their predators would be advantageous, because a resting moose will 

more easily hear approaching predators, than an active moose that is generating noise itself. 

Whether it is the wolf, the moose, or neither that leads this arms race will depend on the 

differential costs and benefits associated with a synchronous or an asynchronous activity pattern, 

in addition to other constraints influencing the activity patterns of the two species. The high wolf 

hunting success and the apparent lack of behavioural adjustments by moose in south-central 

Scandinavia may be explained by the relatively low predation pressure by wolves on moose 

compared to the high hunting pressure by humans (Gundersen 2003; Solberg et al. 2003; Sand et 

al. 2006a), and thus a low pressure for adaptation to wolf predation. Hence, we may expect this 

lack of behavioural adjustment by the moose also to extend to their temporal activity pattern. For 
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the wolves on the other hand, we expect an adjustment of the temporal activity pattern to that of 

the moose, given their high hunting success (Sand et al. 2006a). 

 

 We used GPS fixes from a territorial wolf pair in south-central Scandinavia and five adult 

female moose living within this wolf territory, with the objectives of describing daily and 

seasonal variations in wolf and moose activity patterns. We investigated two alternative 

hypotheses of how the two species may affect each other’s temporal activity patterns: (1) The 

wolves have adopted an activity pattern that is synchronous with the activity of the moose to 

enable the location of prey by their superior olfactory and acoustic sensitivity. A positive 

correlation between the temporal activity patterns of the two species would support this 

hypothesis (cf. Jenny & Zuberbühler 2005). (2) Alternatively, the moose have adjusted to the 

wolves’ activity pattern in order to avoid predation. If so, we predict a negative correlation 

between the temporal activity patterns of the two species. This is to our knowledge the first study 

investigating the synchronicity in activity patterns of large predators and their prey within the 

same area using simultaneous GPS (Global Positioning System) activity data. 

 

METHODS 

 

Study Area and Period 

 

The study area was at 61°45’N, 10°57’E, in Hedmark county, south-eastern Norway 

(Eriksen et al. 2009). Through the eight months duration of this study, 1 April through 30 

November 2004, two scent-marking breeding wolves utilized a territory of 4,846 km2 (100% 

minimum convex polygon, MCP), the so-called Koppang wolf territory, as revealed by the use of 

GPS-collars on both wolves (Figure 1). Moose were the most abundant ungulate species in the 
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area (Gundersen et al. 2008), and also the most important prey species for wolves in this region, 

both during summer and winter (Gundersen 2003; Sand et al. 2005; 2008). Most of the moose in 

the area migrated from summer habitats at higher altitudes (600-850 m. a. s. l.), and gathered 

along the valley bottoms (250-400 m. a. s. l.) in winter when the snow depth increased 

(Gundersen 2003; Gundersen et al. 2004; Storaas et al. 2005). This migration generally starts in 

November/December, and the spring migration normally occurs during April/May (Gundersen 

2003). The average moose population density in the central winter area was relatively high, and 

was estimated at 1.3-1.7 moose/km2 during winter 2004 (Storaas et al. 2005). 

 

The re-colonizing wolf population in Scandinavia typically has a very low density, a mostly 

non-continuous distribution of wolf territories, and large territory sizes (Wabakken et al. 2001; 

2005; Pedersen et al. 2005). During the winter of 2003-2004, the Scandinavian wolf population 

numbered between 91 and 110 individuals, including 22 resident pairs and family groups, and the 

following summer, wolf litters were confirmed in 14 of these territories, including the Koppang 

territory (Wabakken et al. 2005; Alfredéen 2006). For further description of the study area, see 

Eriksen et al. (2009). 

 

Study Animals 

 

We studied the male (animal ID 0402) and female (0403) wolf that occupied the Koppang 

territory from the winter of 2003-2004 until January 2005, when both were shot in a license hunt 

(Eriksen et al. 2009). The male and the female were GPS-collared and aged as 3-6 and 1.7 years 

old on 28 and 29 January 2004, respectively, with aging being done by a combination of tooth 

wear, body characteristics, pedigree analysis based on DNA-analysis (Liberg et al. 2005), and 

known pack histories from monitoring (Eriksen et al. 2009). We used snow to locate the wolves, 

searching for fresh tracks and thereafter circling in an area with entrance tracks but no exit tracks. 
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We then immobilized the wolves from a helicopter with a CO2-powered dart gun and a dose of 

500 mg of tiletamine-zolazepam (Zoletil®, Virbac, Carros, France) according to current protocol 

(Sand et al. 2005; 2006b; Kreeger & Arnemo 2007; Arnemo & Fahlman 2008). Chasing time did 

not exceed 3 minutes for any of the wolves, and induction time (from when the wolves were 

darted until they were asleep) was 4 minutes for both wolves. We sampled 4x10 ml blood from 

the cephalic or femoral vein, and tissue from inside the ear using a sterile 4-mm biopsy punch. 

We equipped the wolves with GPS collars (Simplex, Televilt International, Lindesberg, Sweden). 

The weight of the collars was 675 g, equivalent to 1.4 and 1.9% of the body weight of the male 

and female wolf, respectively. The wolves did not receive additional drugs for reversal of 

immobilization, but were under observation at the site of capture until full recovery (4-6 h). At 

the time of capture, both wolves were scent-marking and therefore regarded as a territorial pair. 

DNA analysis later revealed that they were actually father and daughter (from the litter born in 

the same territory in 2002; Liberg et al. 2005; Wabakken et al. 2005). The two wolves seem to 

have operated as a pair nonetheless, because reproduction was confirmed during summer 2004. 

However, there was no sign of any pups after August 2004 (Wabakken et al. 2005).  

 

We used GPS data from five adult female moose, all captured inside the Koppang wolf 

territory on 6 April 2004 (Figure 1; Table 1). The moose were immobilized from a helicopter 

using a dart gun and a dose of 7.5 mg etorphine (Etorphine HCl® 9.8 mg/ml, Vericore Veterinary 

Products, Novartis Animal Health UK Ltd., Litlington, UK) according to current protocol 

(Arnemo et al. 2003; Kreeger & Arnemo 2007). Chasing time for the moose did not exceed 5 

minutes, and induction time averaged 5.8 minutes (N = 5, range 4-9 minutes). The moose were 

ear-tagged and equipped with GPS collars (Simplex or Direct, Televilt International, Lindesberg, 

Sweden) of 1.7 kg, equivalent to 0.5% of the average body weight of adult female moose in the 

area (calculated from the slaughter weight of hunted moose in the study area during 1997-2001). 

For reversal of immobilization, the moose received a dose of 7.5 mg diprenorphine 
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(Diprenorphine HCl® 12 mg/ml and large Animal Revivon® 3 mg/ml, Vericore Veterinary 

Products, Novartis Animal Health UK Ltd.). 

 

Ethical Note 

 

All captures, handling and collaring were made with permission from the national 

management authority, i.e. the Directorate for Nature Management, and evaluated and approved 

by the Norwegian Agency of Animal Welfare (Application: 3/2002, 1/2004, Forsøksdyrutvalget, 

Ministry of Agriculture, Oslo, Norway). The captured animals were all observed by trained 

personnel until full recovery was evident. The relatively short chasing times minimized stress of 

the study animals during immobilization, and severe stress with physiological side-effects 

(hyperthermia) was not observed. The weight of both wolf and moose collars was below 2% of 

the body weight, which is not believed to impede or increase costs of locomotion (Sand et al. 

2006b).  

 

GPS Positioning 

 

All GPS collars stored data in their internal memory, including latitude and longitude (as 

UTM coordinates WGS 84 datum), date, time, and estimates of position quality (2D/3D, Dop-

value; Zimmermann et al. 2001; Sand et al. 2005). We retrieved all the complete datasets when 

the collars were recovered from the study animals. Both wolves were shot during a licensed hunt 

in January 2005, after which the collars were retrieved. The moose collars were released by a 

drop-of function in April 2005. Accuracy of GPS positions is reported to be < 20 m (Bowman et 

al. 2000; Rodgers 2001).  
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The collars of the wolves and the moose were programmed for simultaneous positioning six 

times per day, at 00:00, 04:00, 08:00, 12:00, 16:00 and 20:00. A total of 8,297 GPS fixes were 

obtained and used in the analyses, 6,254 for moose and 2,043 for wolves. The overall GPS 

success rate (i.e. the number of positions fixed by an individual GPS collar in proportion to the 

total number of programmed positions) was 83.1% (range 63-97%).  

 

Data Analyses 

 

We excluded the positions from the day of collaring and two subsequent days due to the 

potential effects that the capture event may have had on the activity of the animals. The 

positioning of the Direct collar of moose 501 (Table 1) showed an increasing delay relative to the 

Simplex collars. For the analyses, each fix from the Direct collar was assigned to the closest fix of 

the Simplex collars.  

 

Each fix was classified as either dawn, day, dusk or night. We obtained data for times of 

sunrise, sunset and civil twilight (centre of the sun ≤ six degrees below the horizon) from the U.S. 

Naval Observatory, Washington, DC. For the biological concepts of “dawn”, we considered the 

time from the beginning of civil twilight to sunrise, for “day” from sunrise to sunset, for “dusk” 

from sunset to the end of civil twilight, and “night” was the period between civil twilight periods. 

For cases in which the period from the previous fix included more than one category for time of 

day (e.g. dusk and night), the category that covered > 50% of the period was assigned to the fix. 

 

We calculated the size of the home ranges of each moose and the wolf pair (Figure 1) using 

the 100% MCP of positions from the whole study period. Thus, for the moose that migrated 

during the study period, the home ranges include parts of the wintering areas and/or migration 
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routes, in addition to the summer home ranges. We performed GIS analyses and calculations in 

ArcView GIS 3.2 (ESRI, Redlands, CA, USA).  

 

As response variables we used the following measures, calculated from straight line 

distances between consecutive GPS positions: (1) Activity, given by the binomial response active 

(> 50 m straight line distance moved per hour from the previous fix) vs. inactive (< 50 m straight 

line distance moved per hour from the previous fix), (2) travel speed given as meters moved per 

hour, and (3) linearity of the movement, given as a fraction (0-1) for each set of three consecutive 

positions, where linearity = (distance position 1-3)/((distance position 1-2) + (distance position 2-

3)). The linearity value was assigned to the second position, and indicates whether the movement 

is directional (linearity value close to 1), or concentrated within a smaller area (linearity value 

close to 0). Travel speed was transformed by ln(x + 1), and linearity by exp(arcsin( √x)) to meet 

the assumption of normally distributed residuals for the statistical analyses. We considered results 

statistically significant at an alpha level of P < 0.05. Statistical analyses were run in S-Plus GUI 

(Insightful Corp., Seattle, WA, U.S.A) and SAS 8.0 (Littell et al. 2006). 

 

We analyzed variation in activity, travel speed and linearity by generalized linear mixed 

models (GLMM). Not all months were divided into four categories for time of day, since no fixes 

in May, June and July fell within our definition of night due to the short summer nights at this 

latitude. Therefore, we did not include month and time of day as explanatory variables in the 

same model. Activity was used to investigate variation through the day for each month of the 

study period. For this purpose we used logistic models (i.e. binomial error and logit link function) 

with a nested model structure, where animal ID was nested within species (wolf and moose), 

while time of day (dawn, day, dusk and night) was crossed with animal ID. We made separate 

models for each month (4-11). The continuous variables speed and linearity were used to 

investigate variation between months. For these variables we used normal error and identity link 
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functions with a nested structure, nesting animal ID within species, while month (4-11) was 

crossed with animal ID. Month was used as a categorical variable in the models as there is no 

reason to expect movements from April to November to be a linear function of month. In all 

models, animal ID was included as a random intercept to account for the repeated observations of 

the same individuals. The other explanatory variables were included as fixed factors. All models 

were extended to all two-way interactions. We present lsmeans (least square means) to account 

for unbalanced data due to a varying number of missing fixes for each study animal.  

 

We performed Spearman correlation analyses for each month separately, to assess whether 

travel speeds of wolf and moose were correlated. In order to get one data point per time interval 

per species, we averaged the travel speed for the different wolf and moose individuals for each 

time interval, i.e. six intervals per day per species.  

 

To analyse whether the different individuals of the same species had synchronous activity 

patterns, we performed correlation analyses for the travel speed and linearity. Due to missing 

fixes, there was a small difference in sample size for wolves and moose. To test whether the 

number of fixes where the variable active vs. not active coincided between the individuals of each 

species, we used a Pearson’s chi-square test for wolves and an Exact binomial test for moose. 

 

RESULTS 

 

Within Species Activity Patterns  

 

Travel speed of the male and the female wolf covaried (r = 0.484, N = 752, P < 0.0001), 

and so did the linearity (r = 0.33, N = 752, P < 0.0001). The activity variable coincided between 
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the male and female in 563 out of 753 simultaneous observations, which was significantly more 

than expected by chance (Pearson’s chi-square test: Χ2 = 121.6, df = 1, P < 0.0001).  

 

Also the pairwise correlation coefficients for travel speed between moose individuals were 

positive, and 60% were significantly different from 0 (r range = 0.004-0.197, N = 739, P range = 

0.0001-0.3104). The pairwise correlation coefficients for linearity between moose individuals 

were low, but with the exception of the correlations including moose 562, they were all positive 

(r range = -0.059-0.055, N = 739, P range = 0.11-0.98). The activity variable coincided between 

all five moose in 170 out of 739 simultaneous observations, which was significant (Exact 

binomial test: P < 0.0001, expected probability of all five moose being active or not active by 

chance at any given time being P = 0.54). 

 

Between Species Activity Patterns 

 

The proportion of active fixes differed significantly or almost significantly between species 

in most months, being generally higher for wolves than for moose, and with a significant 

variation through the day for both species during the summer months (May – August, Figure 2; 

Table 2). The species * time of day interaction was significant except in the summer months 

(Table 2). The general pattern was that moose activity peaked at dusk, whereas the wolves peaked 

at dawn (Figure 2). This was consistent for almost all months. Wolf daytime activity was lowest 

during the summer months, but increased during autumn (Figure 2). No corresponding pattern 

was seen in moose; their daytime activity was low in all months. The wolves, but not the moose, 

reduced their diel variation in activity in autumn (Figure 2; Table 2). 

 

Travel speed varied significantly between species and months, the species * month 

interaction being significant (Table 3). For the wolves, distance travelled per time unit was 
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highest in September and lowest in June (Figure 3). The moose moved the longest distances per 

time unit in May and August. In October and November the moose reduced their travel speed 

substantially (Figure 3). Travel speed for wolves was on average 179.9 m/h (range = 0-6568), 

while the moose moved on average 24.8 m/h (range = 0-2528) when calculated from straight line 

distances between consecutive GPS positions taken every four hours (back transformed lsmeans 

from the nested GLMM, resulting in lower values than normal mean values).  

 

The linearity of the movement also varied significantly between species, with a significant 

interaction of species * month (Table 3). The movement of the wolves generally showed a higher 

degree of linearity than that of the moose. Both species showed the lowest degree of linearity in 

June, although the moose showed only minimal variation between months (Figure 4). 

 

With the exception of June, wolf and moose travel speed covaried positively during the 

summer months (May through August), which is in accordance with our first hypothesis. During 

the rest of the study period, there was no significant relationship between the travel speeds of the 

two species (Table 4).  

  

DISCUSSION 

 

The activity of the male and the female wolf appeared to be highly synchronized, even 

during the pup rearing period when a negatively correlated activity could be expected in order to 

minimize the time wolf pups were left alone. During summer, the wolf activity peaked at dawn 

and dusk, and morning peaks were more or less evident throughout the study period. This 

coincides with results of Wabakken et al. (unpubl.) who found a major activity peak for 

Scandinavian wolves during early morning in winter, which was also the time when they killed 

most prey. The wolves showed a higher degree of linearity and travel speed compared to the 
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moose, as expected considering the difference in ecology and feeding behaviour of the two 

species. Scent-marking wolves as territorial top predators are expected to utilize much larger 

areas within a given time period than the non-territorial herbivorous moose, expressed by higher 

travel speed and greater linearity for wolves. Both linearity and distance travelled by wolves were 

lowest in June. Estimated birth date for the pups was 20 May (Alfredéen 2006); and in June, both 

wolves stayed close to the den most of the time (Eriksen et al. 2009). In reproducing wolf packs, 

the early summer activity generally centres on the den, and the activity is greatly influenced by 

the rearing of pups (Mech 1970). After June, the wolves gradually reduced the time spent around 

the den, with a concurrent increase in linearity and travel distance per day.  

 

There was a positive correlation in activity in most of the pair-comparisons of moose. The 

moose reduced their mean travel speed in June, coinciding with the peak of the calving season. 

The reduced travel speed from October may reflect a general decrease in activity continuing 

through the winter, as found in previous studies (Phillips et al. 1973; Cederlund 1989; Van 

Ballenberghe & Miquelle 1990; Sæther et al. 1992).  

 

The correlation analyses of wolf and moose travel speed, and the interaction term in the 

activity models both suggest some degree of synchronization of the wolf and moose activity 

during summer, whereas there was no such relationship during the rest of the study period. This 

seems to be consistent with the hypothesis that the wolves have adjusted to the activity pattern of 

the moose during the summer months. Previous studies indicate that wolves are capable of 

adjusting their activity pattern to that of their prey if this increases their hunting efficiency 

(Harrington & Mech 1982; Fuller 1991; Theuerkauf et al. 2003), and the need for such an 

adjustment may be highest in summer. This is because juvenile moose killed in summer offer a 

relatively small amount of biomass per kill, and hence the number of individual prey killed during 

summer may be higher than during the rest of the year (Sand et al. 2008). However, it is likely 
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that the synchronous summer activity of wolves and moose found in this study was rather a result 

of external factors acting on both species. During summer, the movement of both species is 

limited by the raising of offspring, which could possibly result in similar activity patterns. 

Furthermore, the relatively higher summer temperatures may also have favoured reduced activity 

in the middle of the day for both species, leading to increased synchronicity.  

 

We found no synchronicity between wolf and moose activity in June whereas the activity of 

the two species seemed to be synchronous for the rest of the summer months. This may be due to 

the relatively low frequency of fixes (six fixes per day), giving an underestimate of the movement 

of the study animals. Low sampling resolution may particularly affect the results when the 

activity centres on a focal point to which the animals return regularly. This is the case for the 

wolves during the early pup-rearing period. During this period, the wolves may have completed 

foraging trips and returned to the den within four hours without it being detected in our data, 

possibly affecting the wolf activity data for June.  

 

Generally, given the high moose-wolf ratio, finding prey may not have been a problem for 

the Koppang wolves (Eriksen et al. 2009), giving them little need to adjust their activity pattern to 

that of the moose. This contrasts with the situation for the wolves in the food-stressed population 

(one wolf per 26 km2) in Minnesota studied by Harrington & Mech (1982). These wolves did 

adjust to the activity of their prey (Harrington & Mech 1982), and under such conditions, with a 

saturated wolf population and low prey density, any increase in foraging efficiency would be 

rewarded to the predator. The activity pattern of the Koppang wolves appears to have been 

affected by the tendency to search for and kill prey predominantly during early mornings 

(Wabakken et al. unpubl.), which was also the case for wolves studied in Poland by Theuerkauf et 

al. (2003). This may be due to the good hunting conditions provided by the dim morning light 

(Theuerkauf et al. 2003) combined with the better scenting conditions when humidity is high 
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(Müller-Schwarze 2006), and with ground temperatures higher than air temperatures, e.g. during 

the night hours (Asa & Mech 1995). Wolves, which very much depend on their sense of smell for 

hunting (Peterson & Ciucci 2003), may therefore benefit from being more active at dawn to take 

advantage of the accumulated scent of prey, even if the prey is not active during this time of the 

day.  

 

We found no support for the hypothesis that the Koppang moose have adopted an 

asynchronous activity pattern to that of the wolves in order to avoid them. In the following, we 

offer a possible explanation for this finding. During the absence of wolves from the area, hunting 

by humans has replaced most natural mortality (Sand et al. 2006a). Between 1996 and 2001, i.e. 

after the re-colonization of wolves to the area, human harvest was still the most important 

mortality factor overall for moose in the Koppang territory, while predation was the most 

important factor only for calves (Gundersen 2003). Furthermore, during the study period of 

Gundersen (2003), the average wolf density was substantially higher than in 2004 when we 

conducted our study (Wabakken et al. 2002; Gundersen 2003), so the predation rate by wolves 

may have been lower during our study period. The time budget of an animal is a trade-off 

between several factors, predator avoidance merely being one of them, and the predation risk 

should be balanced against the cost of anti-predator behaviours (Creel et al. 2005). A permanent 

adjustment of the activity pattern by the moose may have costs that are not compensated for when 

compared to the relatively small increase in the risk of mortality by having wolves present at low 

density. We have previously found that the Koppang wolves generally spent a relatively small 

proportion of their time within the home ranges of the individual moose, and that the frequency of 

close encounters between wolves and individual moose was very low (only 0.13% of all moose 

fixes were closer than 1 km to a wolf; Eriksen et al. 2009). Consequently, adjusting activity to 

optimize foraging or reduce the probability interaction with humans might have been more 

rewarding than adjusting to wolf activity patterns. Variation in selection pressures such as 
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predation risk or food stress in moose may result in the ability for individuals to optimally 

balance the costs and benefits by applying different behavioural responses in different situations 

(Creel et al. 2005). Thus, the net benefit of adjusting the activity pattern in a predator-prey 

relationship may depend on the relative density of the two species. We hypothesize that 

synchronicity of predator-prey activity patterns may be ratio-dependent, with a stronger arms race 

and accordingly higher likelihood of correlated activity patterns in areas where the predator-prey 

ratio is high. The direction of the correlation in a particular system will depend on the differential 

costs and benefits associated with an adjustment of the activity pattern for each species. 

 

In summary, with the exception of the summer months when the activity of wolves and 

moose was limited by the raising of offspring, we found no correlation between the temporal 

activity of the two species. Hence, we did not find support for neither of our two hypotheses; that 

the Scandinavian wolves have adopted a synchronous activity pattern to that of the moose to 

increase hunting efficiency, or that the moose have adopted an asynchronous activity pattern to 

avoid predation. The design of this study does not allow us to fully determine the validity of the 

different hypotheses, as observed correlations, or a lack of such, do not necessarily imply a causal 

relationship. However, assuming that our results will be confirmed by future studies, we argue 

that the reason for the lack of adjustments of wolf and moose temporal activity patterns is the 

relative density of the two species in combination with an intensive human harvest of moose. In 

saturated wolf populations or areas of low prey density, it may be advantageous for wolves to 

synchronize their activity pattern with that of their prey to facilitate prey detection. Conversely, 

the moose may benefit from asynchronous activity patterns, allowing them to detect active 

predators more easily while being inactive themselves. However, the Scandinavian moose were 

free from wolf predation for more than a century (Sand et al. 2006a), and the wolf-moose ratio is 

still very low. Therefore, permanent adjustments of activity patterns may not be sufficiently 

compensated for by an increase in hunting efficiency for wolves or by a reduction in predation 
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risk for moose. During the absence of wolves in Scandinavia, moose were continuously hunted by 

humans. Because it remains the most important mortality factor for moose in southern 

Scandinavia (Gundersen 2003; Milner et al. 2005; Sand et al. 2006a), human harvesting probably 

constitutes a stronger selection pressure for shaping moose behaviour than predation by wolves. 

An interesting future study to further investigate the relationship between wolves and moose in 

Scandinavia would be to compare moose activity patterns in areas with and without wolves, or 

alternatively within a particular area before and after wolf re-colonization. 
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Figure captions: 

 

Figure 1 Home ranges of the study animals (100% MCPs) for the total study period (April-

November, 2004) and location of the wolf den. Upper right corner: location of the study area on 

the Scandinavian Peninsula. 

 

Figure 2 Daily and seasonal variation in proportion of active GPS fixes ± 2SE for wolves (solid 

dots) and moose (open dots). GPS positions were fixed every four hours. The values are back 

transformed lsmeans from nested logistic GLMMs (Table 2). Active fixes were defined as fixes 

with a straight line distance moved per hour of > 50 m from the previous fix. None of the 

intervals in May, June or July fell into our definition of night due to the short summer night at this 

high latitude (61o).  

 

Figure 3 Seasonal variation in travel speed ± 2SE for wolves (solid dots) and moose (open dots). 

The values are back transformed lsmeans from the nested GLMM (Table 3), resulting in lower 

values than normal mean values. Travel speed was calculated from straight line distances between 

consecutive GPS positions taken every four hours. 

 

Figure 4 Seasonal variation in the linearity (±2SE) of the movement of wolves (solid dots) and 

moose (open dots). The values are back transformed lsmeans from the nested GLMM (Table 3). 

Linearity was calculated for each set of three consecutive GPS positions as [distance position 1-3 

/ (distance position 1-2 + distance position 2-3)].
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Table 1 ID, date of first capture, minimum age, number of calves in 2004, and home range size 

(100% MCP, April-November) for the study moose. Number of calves was determined based on 

visual observations in June. 

Moose ID First captureda Min. agea Calves Home range (km2) 

501 Jan. 2000 7 2 116.4 

550 Dec. 2001 5 ? 59.0 

562 Apr. 2004 3 1 204.8 

571 Jan. 2000 7 1(0)b 15.6 

580 Dec. 2001 5 0 35.5 

a Some of the moose had been captured previously, and were recaptured in April 2004.  

Minimum age was calculated from the fact that all moose were adults, i.e. min. 2.5 years old, at 

the time of first capture. 

b Moose 571 was observed with one calf in June, but limping, with no calf in September 2004. 

The time and cause of death of the calf is unknown. 
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Table 2 Results from nested logistic GLMMs analyzing variation in the proportion of active fixes. 

The response variables were calculated from GPS positions fixed every four hours. Active fixes 

were defined as fixes with a straight line distance moved per hour of > 50 m from the previous 

fix. Animal ID was fitted as a random effect and nested within species (wolf and moose), while 

time of day (dawn, day, dusk and night) was nested within animal ID. 

Month Species Time of day Species*Time of day 

April F1,5 = 25.32, P = 0.004 F3,15 = 1.21, P = 0.34 F3,15 = 6.06, P = 0.007 

May F1,5 = 34.30, P = 0.002 F2,11 = 9.92, P = 0.003 F2,11 = 1.85, P = 0.20 

June F1,5  = 2.60, P = 0.12 F2,10 = 5.88, P = 0.021 F2,10 = 1.26, P = 0.32 

July F1,5 = 5.63, P = 0.064 F2,10 = 13.33, P = 0.002 F2,10 = 1.5, P = 0.35 

August F1,5 = 6.56, P = 0.051 F3,15 = 13.29, P = 0.0002 F3,15 = 1.8, P = 0.19 

September F1,5 = 46.90, P = 0.001 F3,15 = 1.80, P = 0.19 F3,15 = 3.81, P = 0.033 

October F1,5 = 28.92, P = 0.003 F3,15 = 1.82, P = 0.19 F3,15 = 7.86, P = 0.002 

November F1,5 = 13.27, P = 0.015 F3,15 = 0.71, P = 0.57 F3,15 = 3.61, P = 0.038 
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Table 3 Results from nested GLMMs analyzing travel speed and linearity, respectively. The 

response variables were calculated from GPS positions fixed every four hours. Linearity was 

calculated as [distance position 1-3 / (distance position 1-2 + distance position 2-3)]. Animal ID 

was fitted as random effect.  

Response variable Effect DFa D DFb F P 

Travel speed (m/h) Species 1 5 52.20 <0.001 

Month 7 35 3.76 <0.005 

Species*Month 7 35 4.04 <0.005 

      

Linearity  Species 1 5 57.27 <0.001 

Month 7 35 5.45 <0.001 

Species*Month 7 35 3.57 0.005 

a F-ratio degree of freedom 

b Denominator degree of freedom
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Table 4 Correlation between wolf and moose travel speed for each month of the study period. 

Travel speed was calculated as meters per hour from straight line distances between consecutive 

GPS positions taken every four hours. 

Month N r P 

Apr. 111 -0.004 0.965 

May 172 0.212 0.005 

June 174 0.044 0.565 

July 165 0.204 0.009 

Aug. 170 0.217 0.005 

Sept. 139 -0.163 0.055 

Oct. 151 0.046 0.576 

Nov. 166 -0.031 0.694 
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Figure 1. 
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Figure 2.  
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 Figure 3. 

0

10

20

30

40

50

Apr. May June July Aug. Sept. Oct. Nov.

M
o

o
se

 tr
av

el
 s

p
ee

d
 (m

/h
)

0

100

200

300

400

500

600

W
o

lf 
tr

av
el

 s
p

ee
d

 (m
/h

)



 

 

 

34 

Figure 4. 
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