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Abstract

The Power-Normal distribution (PN) originates from the inverse Box-Cox transformation and is used
in this study to fit the frequency distributions of tree diameter and height. PN is flexible in describing
different shapes of observed distributions as indicated by the certain areas in the skewness x kurtosis
shape plane. The estimation of the parameters using maximum likelihood is straightforward and the
resulting numerical properties are desirable. The shapes achieved by PN are very diverse, even
though only three parameters are used. In forestry, Johnson’s System Bounded distribution (Sg) has
been widely used to fit tree diameter distributions, but it is often susceptible to numerical problems
when fitted by maximum likelihood estimation. Our results indicate that the performance of PN is
superior to Johnson’s Sg, as shown by the Kolmogorov-Smirnov statistic and visual inspection,
particularly for fitting the tree height distributions.

Key words: Power-Normal distribution; Diameter and height distributions; Johnson’s System
bounded distribution; Maximum likelihood estimation; Percentiles.

Introduction

A major task in forestry is to predict the distribution of diameters or heights of a forest stand. The
consideration of the possible shapes of a theoretical distribution was addressed by Hafley and
Schreuder (1977) who introduced the Johnson System of distributions (Johnson 1949) as well as the
Weibull and the Gamma distributions into forestry. Prediction functions that use a maximum
likelihood (ML) estimation of the Johnson’s System Bounded (Sg) distribution were proposed by
Mgnness (1982). Some of the issues involved in estimation using Sg were discussed in Lambert
(1970), who introduced an improved parametrization, Siekierski (1992), and Rennolls and Wang
(2005). The Weibull distribution was reconsidered by Maltamo et al. (2000) and Merganic¢ and Sterba
(2006). A new distribution, the logit-logistic, was introduced by Wang and Rennolls (2005). This paper
introduces the Power-Normal distribution (PN) into forestry. Properties of PN are explored, and are
compared with the Johnson’s Sg.

PN has its origins in the Box-Cox transformation (Box and Cox 1964). The idea behind the Box-Cox
transformation is to apply a non-linear transformation to normalize the data before the actual
analysis takes place. This procedure has now gained wide acceptance and is discussed in many text
books on applied statistics e.g. Box et al. (2005). The Box-Cox procedure assumes that the data
distribution can be transformed to the normal distribution (Hernandez and Johnson 1980). Thus the
inverse Box-Cox transformation can give rise to a family of distributions (PN), shown by Goto and
Inoue (1980) and Freeman and Modarres (2006). With respect to forestry applications, Garcia (1983)
has described the application of Box-Cox transformation to forestry growth curves.

Methods

The Johnson Distributions

The Johnson’s distribution system consists of three non-linear transformations of a normal variate
that cover the entire skewness x kurtosis space of shapes. Johnson himself referred to these three
transformations as System bounded (Sg), System lognormal (S,), and system unbounded (Sy).
Lambert (1970) introduced a statistically improved parameterization of Sz that was revisited by
Rennolls and Wang (2005) and will be used herein.
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Let Z be a standard normal variate and X be the observed data. S is represented by the non-linear
transformation:

IOg(X—rj_u
1 7 - 0-X
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where (1,0) are the lower and upper bounds on the X scale, whereas (l,0) are the expectation and
standard deviation on the Z scale.

Estimating Sg by ML is rather complex. However, once (t,08) have been found, (u,0) are readily
available. The Sg log-likelihood surface as a function of (t,8) is rather flat around the maximizing
value, which can result in problems of convergence.

Numerical convergence problems with Sz ML estimation were found here in some cases as also
reported by Siekierski (1992). It can be seen that fixing the lower bound t improves the numerical
convergence. In this study, the lower bound of the parameter 1 of Johnson’s Sg was set to zero (t=0)
for the diameter distributions, while the lower bound of the parameter t of Johnson’s Sg for the

height distributions was computed as follows ©=H ;, —(H . — Hpin )/x/ﬁ where H_.. isthe

minimum heightand H _, is the maximum height.

The Power-Normal distribution

The Box-Cox transformation is applicable to positive data, i.e. X=0.

X' -1
2] Z=—2— whenA#0
O
log(X)—
[3] Z:M when A=0
(e)

The log() case [3] is identical to the Johnson’s S, so both SP and Sg has S, as a limiting case.
Transformation [2] is always possible, but Z can only be N(0,1) when A=1 and in the log() case.
However, Z is a truncated normal (Freeman and Modarres 2006).

The truncation point on the z scale, when x=0 is

A+l o 1

[4] k=

ol o ol
The truncation is to the left or right of k depending on the sign of A. Define K, = ® (sign (X) k) ,

where <I>( ) is the cumulative distribution function of the standard normal.

The cumulative distribution function of PN is

}\‘ —_—
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and the probability density function of PN is
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When A>0, K, is typically close to 1 (often in real data p>>0 so k is large). When A<0, but close to

zero, K, is still close to 1. If A<<0, K, becomes small and the truncation has an influence. However,
large absolute values of A are of little practical value because then the transformation tends towards

a vertical and a horizontal line that have a junction at (1’_E) in the X*Z plane. Both PN and Sg have
(e}

the log-normal and the normal distribution as their limiting cases.

The shape of the density function is given by A and k (Goto and Inoue 1980). If A<O or A>1 the density
is unimodal. A distribution with kK < 2y/A™ —1 & A>0 has a density with a maximum at x=0. If

k>2JA 71 =1 & \<1the density has a local minimum close to x=0, but the size of the local minimum
is negligible with most k found in practice and the shape appears to be unimodal. A plot of A x k with
the data in use is shown later in Figure 6.

The shape of PN is herein evaluated in terms of its skewness x kurtosis, and compared with Sz in the
same space. Goto and Inoue (1980) provide some formulas for the skewness and kurtosis of the PN.
Freeman and Modarres (2006) provide explicit formulas for some special cases, but these formulas

are rather complicated. Herein, simulated skewness and kurtosis values are used as evidence of the
capabilities of PN.

Five independent draws of 1000 independent random N(0,1) values were carried out (Z values). For
each set of draws, A was varied from -3 to 3 in steps of 0.1, u was varied from -1 to 100 in steps of 2,
o was varied from 0.1 to 20 in steps of 2 (o cannot be zero). Only X values with

X= (1+ 7\.(26 + u)) > Qwere included in the “observed data set of X values”. This represented the

truncation effect. The skewness and kurtosis of the X data were then calculated.

The PN showed both left and right skewness (see Figure 1). There are three cases to be discussed:

1) Ae (—3, O) . Theoretically, skewness and kurtosis do not always exist: “No moments exist

” (Goto and Inoue 1980), although estimates do always exist.

for any order more than |k

The truncation is a critical factor in this case because most draws yield a negative out-of
range value. Some of the estimated skewness x kurtosis points are in the “theoretically
impossible region”, above the upper lines. However, the points are statistics, not
theoretical values. These irregular points typically arise from data sets that have very few
data points (less than 10 out of 1000, due to the truncation).

2) Ae (0,1) : The shapes are in a well defined area with right skewness around the log-

normal line.

3) Ae (1, 3) . The points indicating right skewness in Figure 1 occur when ((A<= 1.5) & (k<=
2.0)), otherwise the distribution is skewed to the left. Generally, in practice, k is large,
thus A € (1, 3) will usually consist of left skewed distributions within a well defined area.

The negative values of u will cause partial reversal of the plots shown. A specific skewness x kurtosis
point may be achieved using different combinations of the three parameters.
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The PN transformation [2] is continuous in A thus estimation involves only one functional form. If the
estimated value of A is close to zero, the log-normal form [3] may be used instead. Typically, K, is

ignored in the estimation step. A ML procedure is described in Madansky (1988). The estimation is
well established and has good numerical properties.

The statistical software SAS (2008) was used for programming and Systat Software (2004) for
graphics. Graphs were enhanced using a metafile program (Companion-Software 2008)

Data

The data sets were obtained from 139 young stands in South East Norway, which comprised both
Scots Pine and Norway Spruce. The fields were established in 1954 and thereafter. The diameter and
height of each tree in the stands (16984 in total) were measured. The data are described in
Vestjordet (1977) (In Norwegian, with a summary in English). The mean size of the plots was 420 m?
for Scots Pine and 370 m? for Norway Spruce. The elevation (the sites height above sea level) varied
from 25 to 510 m. Some stands were located on or near the coast, whereas others were located
further inland. They were not intended to be a representative sample of young forests in southern
Norway. The reasons for this were: 1) the mobility of researchers was low at the time of the study,
and 2) usable areas of even-aged young forest were concentrated in a few locations because clear-
cutting was not common in Norway at the time the stands were established. On the other hand, this
was at the time considered a benefit, because several stands in the same area could be considered as
replicates. The stands were established originally to explore the effects of pre-commercial thinning
(via an early regulation of spacing, which was designed to be carried out before the stand had
achieved a mean height of 5 m). Both un-thinned and thinned stands are included in the data. In the
thinned stands, a regime was in place under which: 1) the remaining trees should be spaced evenly
where possible; 2) the arithmetic heights of stands in the same area should have a small variation; 3)
the height distribution within a stand should be small, and the canopy should be smooth; 4)
deciduous trees should be removed; 5) the remaining trees should be of good quality; and 6) the
mean height should be as high as possible. A summary of the stand data is given in Table 1. The range
of the data values is shown in Figure 2. Histograms of the data (Some examples are shown in Figure
7) showed that the stands had right- or left-skewed unimodal distributions of diameter and height,
respectively.

Results

The skewness x kurtosis of the original data, after the PN and Sg transformations, is depicted in Figure
3. Each cross represents a stand, whereas the squares represent those stands where the Sz ML
estimation did not converge properly. The most common reason for Sz non-convergence was that

the upper bound 6 iterated below H . or D, . Inthose cases the initial values of the upper

X

bound was used.

Stands with skewness x kurtosis points close to normal (0,0) on the transformed scale had estimated
parameters that enabled the shape to be modeled on the original scale. PN was successful in
transforming to near normality in all cases because the skewness x kurtosis points were concentrated
around (0,0). Sg was similarly successful in most cases when the ML estimation converged. There
were Sg ML convergence problems with respect to diameters in 27 stands and with respect to heights
in 79 stands. (If both upper and lower bound were to be estimated, there were convergence
problems with respect to diameter in 84 stands. For heights, the equivalent number was 101).
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The Kolmogorov—Smirnov distance statistic between the data and the estimated distributions is
shown in Figure 4; PN and Sg are shown on the horizontal and vertical axes, respectively. Thus, both
the actual values and a comparison can be seen. If a given point lies above the diagonal, PN provides
a better fit than Sg. The curve is a LOWESS regression. Most Kolmogorov-Smirnov statistic values
were between 0.025 and 0.075. PN appears to be a better distribution, particularly for heights.

There is a slight tendency that Sg underestimates the mean of the distribution (by about 0.5 %), and
in some lesser degree, PN overestimates the mean with about 0.5 %. See Figure 5. But for most
cases, both estimated distributions have a mean very close to the true mean. (The means of the
estimated distribution is approximated by the sum of value x probability)

Figure 6 shows the estimated PN k*A values for the data. No stands havea K <2+A ™' —1oraA
estimate less than zero. The points between the curve and the vertical line A=1 have densities with a
local minimum close to X=0, but the size of the local minimum was negligible with these data. From
Figure 6, it may also be seen that the truncation point k was greater than 2 in all cases. The median k
values were 3.8 (for diameter) and 3.2 (for height). Thus the distribution truncation due to K, was

always less than1— @(Z)z 0.02 and usually much smaller. The case ((A<= 1.5) & (k<= 2.0)) did not

appear: Thus with A <1, the densities are right skewed, and with A>1 they are left skewed. Most of
the diameter distributions are right skewed and most of the height distributions are left skewed.

Figure 7 shows both the actual data distribution (histogram), the estimated PN distribution (solid
line) and the estimated Sg (dashed line) for a selection of stands. In general (although not shown
apart from Figure 4) PN and Sg provided a good fit for all the stands analyzed. The S; fit is reasonable
even in the cases where the initial upper border was in use due to non-convergence. The case
(Height, Stand=55) shows that PN could be left skewed even if the data is not close to zero. An
interesting feature is that the PN is always more spiky than the Sg. This is the case for all stands, both
diameter and height (only examples are shown).

Discussion
The discussion is about shape, estimation and suggestions for further work.

Shape.

A theoretical distribution should be flexible enough to model the observed set of tree distribution
shapes. Both Sg and PN fulfill this requirement. For Sg, there is a theoretical basis for this statement;
however, only simulated evidence for PN has been provided herein. PN seems to yield a smaller
range of shapes than Sg. PN supports shapes that lie below the log-normal line, whereas Sg does not.
PN has been shown to achieve left skewness even if the data are at some distance from zero. An
interesting feature of PN is that it covers an area of the skewness x kurtosis space using only three
parameters. Other three parameter distributions like the Weibull and the Log-normal only covers a
line.

Estimation.

PN works without the estimation of an upper bound, a convenient property, whereas Sg is bounded
both from below and above. PN seems to be slightly better than Sg and have better numerical
properties. Provided that convergence is achieved, Sg also fits the data quite well. For our data, the
number of cases where Sg failed to converge was larger than expected from earlier work with Sg.
Given that many stands were rather similar, non-convergence for one stand could imply non-
convergence for similar stands. Also, these stands are young and dense. However, as seen by the
plotted histograms, Sz seems to yield a reasonable fit even when using elementary (initial) estimates
of (t,0).
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Further work.

A typical task in forestry is, in a subsequent stage, to use the estimated distribution as a dependent
variable in a regression, with the characteristics of stands being the independent variables. Typical
independent characteristics are site index, age, density, location/climate, and basal area mean

diameter. (Basal area mean diameter, E(DZ) , is often considered to be an independent

characteristic, but it is also itself a property of the diameter distribution).

The estimated distribution parameters often perform rather poorly as dependent variables in a linear
model of stand characteristics. An alternative method is to calculate a certain set of percentiles from
the estimated distributions that can be used as dependent observations in the regression. After this
second estimation, the calculations must be inverted to obtain predicted parameters. PN requires
three percentiles (the median and two more percentiles chosen symmetrically around the median)
and will always yield a solution (Madansky 1988), whereas Sg requires four percentiles (the same
three as for SP but in addition the minimum value) but might not always yield a solution (M@gnness
1982), revisited in Siekierski (1992).

Conclusion

The Power-Normal distribution has properties that are well suited to the estimation and modeling of
the distributions of tree diameter and height. Figure 7 shows how well it might fit. The PN can yield a
large set of shapes with only three parameters, and is quite easy to use. Its excellent numerical
properties imply that further exploration of its theoretical and practical properties would be
worthwhile.
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Standard
Number of forest stands =139 Minimum Maximum Mean Deviation
Total age 17.0 36.0 23.6 4.2
Upper Height at 15 year breast age, m 4.6 9.5 7.3 9.3
Upper Height, m 4.6 14.5 8.5 20.1
No. Trees pr. hectare 1000.0 6918.9 2831.9 997.2
Basal area mean diameter Dg, cm 4.2 154 8.5 2.1
Mean height, Lorey's formula HI, m 3.7 13.3 7.4 2.0

Table 1. Stand characteristics of the 139 stands.
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Figure 1 Simulated skewness x kurtosis values of the PN distribution. The lines show the border of the
(theoretical) impossible region, and the log-normal line. Sg covers the region between the lines. The normal

distribution has a value (0,0).
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Figure 2 Diameters and heights of the stands. The stands were sorted by basal area mean diameter (Dg) and
Lorey’s height (HI), respectively.
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Figure 3. Skewness and Kurtosis values for diameters and heights. Values for the original data (upper), after
the PN transformation (middle), and after the Sg transformation (bottom) are shown. For S;, T was fixed;

T =0 (Sg 0) on diameters and T=H

-H. )/\/ﬁ on heights (Sg f). Each cross/square

represent one stand of trees. A square indicates a stand where convergence did not occur and the starting

upper value of 6 was used.
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Figure 4. Kolmogorov—Smirnov statistics. PN is shown on the horizontal axis and S is shown on the vertical.

For Sg, T was fixed; T =0 (S 0) on diametersand ©=H .. —(H,. —H, )/\/ﬁ on heights (Sg f).
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Figure 5. The means of the fitted distributions Sg and PN, divided by the true means. A point at (1,1) is a
stand where both Sg and PN estimates the mean correctly. Points in the right-bottom corner are stands

where S underestimates the mean while PN overestimates the mean. Avalueat 1.010or0.99isal1 %

discrepancy.
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Figure 6. The space of A * k. Each cross represents a stand of trees. The area between the curve
k = 24/A7' —1 and A=1 yields right skewed distributions whereas the area where A>1 and k>=2 yields left
skewed distributions.
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Figure 7. Examples of fitted diameter and height distributions. The histograms are the observed distribution.
The fitted PN distribution (solid line) and the fitted SB distribution (dashed line). The areas under the curves
are 1 in each case. The horizontal scale is cm for diameters and dm for heights.



