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Abstract

In principal-agent theory, Holmstrém (1979, Bell Journal of Economics, 10, 74-91) offers the
canonical model including a hidden one-shot action taken by an agent contracted to provide
effort. Holmstrém’s classical investigation led to an important body of applied literature. In
investigating a specification in which effort is a sequence of actions, Holmstrém and Milgrom
(1987, Econometrica, 55, 303-328) were able to provide a proof of the optimality of linear
reward schenies (in the one-shot model, reward schemes are never linear). The sequence-of-
actions model has a corresponding (static), very tractable companion. In this paper a simplified
and illustrated version of this model is presented. @ 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Based on elements from Mirtlees (1975,1976), together with an important paper by
Holmstrom (1979), the canonical model of hidden action was established. In princi-
pal-agent theory this is the classical model of moral hazard. Despite the fact that it is
among the technically most demanding models in economic theory, it has been

*The paper is an abbreviated version of a paper presented at the 14th Nordic Conference on Business
Studies (14-16 August 1997 in Bodg, Norway) entitled “The Holmstrém-Milgrom Model: Applications
and Extensions.” A rather extensive survey included in Chapter IIT of Lundesgaard (1996) has been omitted
from this shorter version. In our work on the present version, the comments of an anonymous referee and of
the language editor have been most helpful.
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a direct source of a rich literature of applied work. The initial model has been a direct
source of a rich literature of applied work. The initial model has been refined and
extended in various directions. Among the most interesting of these is an extension by
Holmstréom and Milgrom (1987) in which the (hidden) effort of the agent is represent-
ed in a manner that is less restricted. Instead of a one-shot action, effort is seen as
a series of actions over a finite time interval. In introducing this more complex
specification of effort a certain price is paid in that the model offered is less general as
regards how uncertainty is introduced, and in the representation of the utility
assessment of the parties involved. An assumption of the dynamic model is that results
are observed continuously by the agent as they are generated over the time interval
(i.e. not only as an aggregate at the end of the time interval). Only aggregates over the
time interval are observed by the principal. The dynamic action specification has
dramatic effects on the optimality of reward schemes. This is because, as well as the
total of effort provided, the time profile of effort is also important. In the model
investigated by Holmstrom and Milgrom a constant level of effort is optimal. This
means that the agent is offered a reward that is optimally linear in the aggregate of
outcomes produced. This is particularly interesting in that in practice we often
observe less complex schemes, such as linear schemes. The prediction of the classical
theory of hidden action is more complex schemes.! In addition, for the limit case of
continuous action, there are interesting implications in terms of practical applicabil-
ity. Thus, it is interesting that in the aggregates over a time interval the optimal linear
model leads to a formal framework that is attractive due to its simplicity and
tractability. This framework is a static version of the specification investigated by
Holmstrom and Milgrom (1987), and it is simply referred to here as the Holmstrom-—
Milgrom model. ;

The history of the establishment and further development of hidden action theory is
intriguing. It is a history that offers a fascinating account of analytical ingenuity, in
interaction with practical relevance. In an admirable manner Hart and Holmstrom
(1987) have surveyed important aspects of this history. Building on this survey, an
introduction to the hidden effort problem and to Holmstrom and Milgrom (1987) was
included in Chapter IT of Lundesgaard (1996). In the following pages, and in a less
specialised manner, a step-by-step outline of the Holmstrom-Milgrom model is
presented. The model has been simplified as much as possible and a set of graphic
illustrations has been utilised.

2. Some preliminaries to the Holmstrom-Milgrom model

In motivating and illustrating models it is common practice to relate the models to
some sort of standard stories told. Thus, in moral hazard theory and the discussion of

! The prediction of the classical theory is even stronger. In one of the most remarkable papers in the
whole of this literature, namely in a student paper by Gjesdal (1976), it is demonstrated that linearity is
contrary to the classical model.
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hidden effort a standard story concerns a principal who is the owner of a technology
producing certain outcomes, subject to exogenous uncertainty. Under additive uncer-
tainty, for instance, the structure of this technology is represented by

x =f(a) + ¢ , 1)

in which x represents outcomes. The a priori known and deterministic structural
element of this technology is represented by f(a), while a is the level of effort provided.
Element ¢ is random, and in the Holmstrom—Milgrom model this stochastic element is
random normal with zero mean. In the representation

xX=a-+te, (2)

outcome x is a noisy observation of effort a, or x is seen as a product that is one-to-one
random normal in effort provided. Moreover, and alternatively, (2) is secen as the
normalised version of the technology element of a model including (1). Henceforth,
and for the sake of simplicity, our discussion is based upon (2).

The situation becomes interesting if the principal is unable to provide the needed
effort himself. The problem then is to decide what sort of contract to write with the
party who provides effort. Under full certainty, establishing a contract for the
provision of a specific amount of effort by the other party (the agent) is a trivial matter.
Things are different, however, if the principal cannot observe the amount of effort
provided. In other words, it is not possible to write a contract to which the parties can
commit themselves, with reference to some desired amount of effort. Hence, as an
alternative to a contract regarding effort (observed directly under full certainty), the
parties may establish their business relation on the basis of an observation correlated
with effort provided. The result is a contract built on observations of a noisy or
random kind. Otherwise, effort could have been inferred with full certainty from what
is observed (so that the problem is eliminated). In (2), for instance, it is registered that
outcomes x are random and correlated with effort a. Thus, if jointly observed and
contractible, x in (2) provides an opportunity for the parties involved to establish
a business relation. It is this business relation that is the object of the following
exposition.

It is noted that the value of an observation, consisting only of realisations of the
random result x, depends on the variance in the error term of the random element. In
this connection, and more formally, Holmstrom and Milgrom use an interpretation of
informativeness based on the signal-to-noise ratio.* For the more generally formulated
technology x = f(a) + &, the signal-to-noise ratio is (df (a)/da)*/a*. For (2) we have

*The interpretation has been used in several published applications, such as Holmstrom and Milgrom
(1994). In the classical model the likelihood ratio is important to an understanding of informativeness, that
is to say, an understanding related to the problem of the testing of hypotheses in statistical theory. In the
Holmstrom-Milgrom model, the understanding of information correponds to that of estimation. Thus,
consider an effort level a* and the deviation Aa from this level. Outcomes are generated by
x = f(a* + da) + ¢ = f(a*) + f'(a*)da +e. We then have the transformation (x — f(a¥))/f"(a*)=
Aa + gff "(a*). On the right-hand side and in taking advantage of the transformation of the original signal
x in the observation of Aa, it is seen that the precision of the transformation in estimating Aa is (f'(a*))*/a>.
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df(a)/da =1, which gives the signal-to-noise ratio 1/c?, often referred to as the
precision of x (as an estimate of effort).

Further, it is registered that if effort a is provided at no costs to the agent, there is no
problem. If the agent is indifferent between effort and no effort, he would have a weak
preference to perform. Thus, for there to be a problem, it is important that the effort of
the agent is costly. The costs of effort provided are represented by

¢ =c¢(a), inwhichc'(a)>0 and c"(a)>0 (3)

(the costs of effort are strictly convex). A consequence of costly effort is that the
principal-agent contract has to motivate the agent to provide effort. Again, the
contract is based on a jointly observed x, and in the IHolmstrém—Milgrom model this
contract is optimally linear in x, so that the rewards offered are

s(x) = ax + B. 4)

Hence, the agent is exposed to some uncertainty, and this uncertainty increases in the
contractual parameter o. The other contractual parameter ff assumes the character of
a fixed (non-random) transfer. The random net of the principal is

x—s(x)=(1—0o)x—p, (%)

and if risk neutral for instance, the certainty equivalent (and expected net) of this party
is m, = (1 — a)a — B. That is to say, the principal’s assessment of element (1 — o)x of
the contract is in no way affected by transfer element §. For there to be an interesting
problem, the agent has to be risk-averse. Otherwise, the problem is to find an optimal
trade-off between the expected outcome (E[x] = a) and the costs ¢(a) of producing
outcomes. The optimal solution to this problem is always o = 1.

In Holmstrém and Milgrom (1987), exponential utility is attributed to the contract-
ing parties. In other words, if they are exposed to uncertainty (and are risk-averse), the
parties’ absolute degree of risk aversion is a constant. Hence, for the agent we have

ug(ox + f —ca) = — exp{ —r4(ox + f — c(a)}. (6)

The certainty equivalent of the agent is n 4, and due to the combination of exponential
utility, normal uncertainty and linearity, it is possible to find the amount (the risk
premium) that renders the agent indifferent between a fixed n4 and ax + § — ¢(a). The
first step is to utilise an exponential transform of the expected utility.> For the agent,
the exponential transform is

Efuy(oax + f — c(a)] = j— exp{ — ralex + B — c(a))} f(x) dx
= —exp{ —ralea + f — c(a)) + rqo?a?/2}.
3 Using the exponential transform means that the expected (exponential) utility is written in a similar

manner to that of the utility function, i.e. on the form of — exp{-}. This transform is obtained in going
through the steps of integration that follow from the definition of expected utility.
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The certainty equivalent 74 is found in .
—exp{ —ra(0a + B — cla) + rq0a’c”/2} = — exp{ — rym,}, such that
4 = oa+ f— cla) — ryo*o?/2,

in which r,0*a%/2 is the risk premium of the agent. In the characterisation of m, above,
it is important that the agent can be brought to any level of n, by fixing  appro-
priately. It is also important that this is free of effects upon the agent’s share of
expected outcomes, his effort costs, and his costs due to exposure to risk. Apart from
the outcomes x, it can be noted that both parties are fully informed about preferences,
about the technology involved, about the agent’s cost function (the agent’s effort costs
are unobserved by the principal, however), about the distributional and parametric
aspects of uncertainty, and about the agent’s opportunity loss from taking the job*

3. The problem of the agent seen as an “inner” problem

In Fig. 1, in a flow-chart type of illustration, the problems facing the contracting
parties are shown. There are two problems, interlinked as a problem within the
problem. In this complex of problems, we should start by looking at the “inner”
problem (the solution of this problem is important for the other problem). The “inner”
problem is that of the agent, and it concerns finding an optimal level of effort. The
character of the problem facing this party can be seen from his certainty equivalent. In
providing effort, he has to find the right trade-off between a linearly increasing fixed
share of x on the one hand and increasing convex costs of effort on the other. The
overall problem is then to find the optimal parameters o and § of the contract. A more
powerful incentive, i.e. a higher «, leads to more effort. With more effort, the expected
outcome increases, and so do the costs of effort. In addition, with more powerful
incentives the costs of exposure to risk also rise (a higher risk premium for the agent).
For any « chosen, using the contractual instrument f, it will be remembered that the
agent can be brought to any level of n,. Hence, in the incentive parameter «, the
problem of the principal is to find the right trade-off between the net of effort provided
(efficiency in the provision of effort) and increasing costs of exposure to risk (efficiency
in risk-sharing). In other words, in the Holmstrom-Milgrom model, the focus is on
efficiency. Distribution issues are less interesting.

By first analysing the problem of the agent, analytical elements already introduced
can be used. The agent’s problem is to find an effort level g, such that 74 is maximised
(for a given pair of {«, fi}). That is,

Max oa + f — c(a) — r40%0%/2, (7)

+1If the principle is the active party in the contracting process, such as in the role of a Stackelberg leader,
the agent is in no need of knowing the principal’s preferences.
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An appropriately set transfer B (without efficiency effects)

In 0, a constrained trade-off
between efficiency in risk-sharing
and efficiency in the provision of effort

The residual (1-c)x \l / Rewards as a fraction of x

Uncertain Optimal linear
e ptimal linear
rewards =0Xk
Atrade-off in
The structire effort a, between
i x=ate random rewards
The risk neutral (belongs to the and the costs o
principal oo :
principal) effort, so that o=¢

Normal uncertainty SSSV/ 1
(the zero mean Costs c(a) of effort
additive element )

Effort a, known only to the risk-averse
agent and provided at a cost

Fig. 1. The “inner” and the overall principal-agent problem.

giving the first-order condition
a«—c(@=0 or o=cl(a) (8)

In (8), the effort level is determined, and the only parameter of importance in this
context is .. The agent adjusts his effort level in such a way that the marginal benefits
of effort (his marginal expected reward) are equal to his marginal cost of effort. Fig, 2,
illustrates the problem of the agent in terms of the benefits and costs of effort and the
corresponding marginal effects. The benchmark case o = 1 is also included in the
illustration.

The agent’s second-order condition is — ¢”(a) < 0, which in accordance with
the assumption in (3) means that the cost function has to be strictly convex. Otherwise,
as can be seen from the marginal effects shown in Fig. 2, the intersection point
giving an optimal level of effort is not achieved. Further, the natural interpretation
in Fig. 2 is that of ¢(0) =0 and ¢(0) > 0. If ¢(0) > 0, we can of course regard this
as a set-up cost. Strictly speaking, for a cost function with ¢'(0) > 0, the agent’s
first-order condition is @ — ¢'(a) < 0, and the optimal effort level is equal to zero if the
inequality part is satisfied. Fig. 3 shows that in addition to ¢'(0) > 0, we could have
c'(0) =0 or ¢'(0) < 0. In the last case, effort is marginally pleasurable up to a certain
level of effort,

Up to now the ¢'(a)-curves have been convex. However, the curvature of ¢'(a) is not
important to the problem. What does matter is that ¢'(a) is increasing (which means
that c(a) is convex). A linear ¢'(a) means that ¢"(a) is constant. As we are going to see, if
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Fig. 2. The problem of the agent.

Marginal effects
c'(a)
- (o
SO0 e
= Efforta
¢'(0)=0 >
---------- For the given a, the
c'(0)<0 ¢ optimal level of effort
0

Fig. 3. Different assumptions regarding the marginal costs of effort.

this is the case, the understanding and determination of the incentive parameter
o becomes simpler, which explains why this case is of some interest.

The effort level that gives an optimal inner solution from the agent’s point of view
can be found in (8). For each admissible value of the incentive parameter a, there is
a level of effort that is optimal in this perspective. The slope characteristics of the
agent’s implied reaction function a = a() can be obtained from (8). Thus, starting
from o =c'(a()), a marginal increase in o gives us 1=c"da/do, such that
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da/do. = 1/¢". Reactions to incentives are positive, and they depend on the curvature
of the agent’s effort costs. A less curved cost function leads to stronger reactions to
a marginal increase in the incentive parameter. The second-order derivative is gener-
ally a function of the effort level chosen, which means that (in general) reactions to
incentives are going to vary as regards the levels of effort provided. For a constant
second-order derivative, reactions to incentives are constant.

4. Finding the optimal incentives

The analysis of the second problem, ie. the problem of finding the incentive
parameter o of the optimal contract, is simpler than in the standard formulations of
a principal-agent problem. First, instead of maximising the net of the principal, we
may as well maximise the joint surplus of the agency (remembering that without any
efficiency effects the agent reaches any level of his certainty equivalent by an appropri-
ate fixing of f). Second, the incentive constraint is dropped, since the reaction function
of the agent is inserted in the maximand. Thus, the joint surplus problem is

MAX a(e) — cla()) — rqo*a?/2, 9)
which leads to the first-order condition
' i 2 3 a
— —— —ryn0 =0, ie. — —c—=r 00" (10)
o o

The joint surplus in (9) is composed of two parts.® The first part, a(e) — c(a(e)), is the
expected net of effort provided. The second part, r, o*c?/2, gives the costs associated
with exposing the agent to risk. In a contracting optimum, the marginal net of effort
has to be equal to the marginal costs of exposing the agent to risk. Thus, alternatively,
after an insertion of o = ¢'(¢) and da/de = 1/¢” from the “inner” problem, we have

1 —a=ry o0, (11)

Instead of marginal effects in the incentive parameter o, the equilibrium condition (11)
is appropriately interpreted as the marginal effects of an increased effort level a, on the
part of the agent. The left-hand side is the marginal increase in the expected net
a — c(a) for a marginal increase in effort. The right-hand side is the agent’s marginal
risk premium for a marginal increase in effort. This can be seen by writing the risk
premium as a function of effort, i.e. r((@))>c?/2 (o = a(a) is the inverse function of
a = a(e)). The interpretations connected with (10) and (11) are based upon regarding
the maximand as composed of benefit and cost elements. In optimum these elements

5 The second-order condition of problem (9) is explored in Chapter II of Lundesgaard (1996)
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are in a best possible manner traded off against each other, and the optimal o is
obviously

1

= 12
” 1+ ry 0" (12)

The incentive parameter increases in reductions in the agent’s risk aversion, and in the
exogenously given uncertainly. In addition, « increases in stronger reactions to the
fixed incentive. For the very simple version of the static model described here, it is
a natural interpretation to see « as the fraction of x that should reward the agent (the
share of the agent in the jointly observed result). For r, — Qor o —» 0, we get oo — 1. In
addition, o — 0 follows from ¢* — o . An incentive equal to unity leads to a situation
equivalent to first-best. At ¢'(0) = 0, for instance, with an incentive equal to zero, no
effort is made. The bounds on values of the optimal incentives that follow from our
discussion of (12), are then 0 < o < 1. More importantly, the strict version of these
bounds is inappropriate since — for there to be a problem — it is assumed that r,, o>
and ¢” are non-zero and finite. However, tighter bounds could be placed upon ¢ as
a result of the specification of the agent’s cost function, and because the minimum
expected net acceptable to the principal may have an effect. At ¢” = Q, the agent is
infinitely responsive to incentives, and at ¢” — 0, we get a — 1. Finally, after having
recognised that ¢” is not necessarily a constant, it is too simplistic to say that « is
computed by (12). In general, the optimal e is the value of the incentive parameter that
satisfies o = 1/(1 + rya*c"(a(er))).

From the re-arranged version of the first-order condition in (10) and the insertion of
o = ¢'(a) and da/de = 1/¢", we get the equilibrium condition

(1 — a)fc" = rq00> (13)

Lastly, this alternative to (11) expressed in the incentive parameter o is investigated.
Again, the left-hand side is the marginal increase in the expected net a — ¢(a), and the
right-hand side is the marginal risk premium. For constant reactions to incentives (c”
constant), this version of the equilibrium condition offers an interesting opportunity
to illustrate the trade-off in the optimal contracting problem. This straightforward
and simple illustration is given in Fig, 4.

Marginal effects
A

Left-hand side in (13)
1/e" (

Right-hand side in (13)

> O

The optimal o

Fig. 4. The determination of an optimal incentive parameter .



296 J. Lundesgaard [ Scand. J. Mgmt. 17 (2001) 287-303
5. Some observations

The classical principal-agent model, particularly starting from Holmstrom (1979)
has been a very useful tool for applied research, for instance in accounting. The
diffusion of applied research based on the optimal linear result, however, seems to
have been slower.’ Given the merits of the linearity result, and the continuous search
for new points of view that could produce further contributions, this is surprising.
Some speculations are offered here. (i) The linear model is special, and seemingly less
general and more restrictive. This may have led to certain reservation about basing
applied work on the model.” (ii) More specifically, the lack of wealth effects, in
combination with the infinite fixed support of normal distributions, may have been
seen as problematic. (iii) The classical principal-agent model and the Hol-
mstrom-Milgrom model differ in the way information is understood. The simple
signal-to-noise interpretation of the Holmstrom—Milgrom model could have been
regarded erroneously as less fundamental. (iv) Linearity is contrary to the insights of
the classical model, and with some justification, linearity on an ad hoc basis is seen as
little short of a deadly sin, especially with respect to the investigation of problems of
information. This (relevant) point of view may have been carried over to linearity that
is a priori optimal. (v) Less crucially, the sunk costs of the expertise established could
have been to the disadvantage of the Holmstrom-Milgrom model. In addition, there
could be a snob effect arising from the mathematical simplicity of this model.
Naturally, there are forces due to tractability that pull in the opposite direction.

Nevertheless, a significant amount of applied research has been carried out in the
format of the linearity result of Holmstrdm and Milgrom (1987). This research is
surveyed fairly comprehensively in Lundesgaard (1996), which also presents some
original applied work. The investigation of multitask problems is probably the most
important offspring of the work on linear reward schemes. In a multitask problem there
will be more than a single type of outcome, and the agent usually provides more than
a single type of effort. In Holmstrém and Milgrom’s original paper this problem was not
investigated in any great detail (although the 1987 paper is based on a formulation of
a multitask problem of some generality). Since then, particularly in Holmstrom and
Milgrom (1991), the multitask problem has been investigated in a more specialised
manner. The focus is on the effects of interaction among tasks due to the agent’s effort
costs. Feltham and Xie (1994) offer a more general formulation of the multitask

S Circulation of the linearity result began in 1984, when it was presented in a working paper from
Northwestern University. In 1985, it was included as Cowles Discussion Paper No. 742 in the working
paper series of the Cowles Commission.

"The seminal paper of Holmstrém and Milgrom (1987} on dynamic incentives represents an important
start to a complex discussion of the underpinnings of analyses based on optimal linear incentives. Hellwig
and Schmidt (1998) point out that elements in the agrument of the initial discussion are rather sketchy, and
it is their ambition to provide formal proofs of a more satisfactory kind. The problem in the original version
to which attention is drawn refers to the underpinnings of the multitask version of the problem. It is
believed that the problem focused by Hellwig and Schmidt may have contributed to the caution displayed
by some researchers.
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problem. In light of the importance of this problem, a presentation of the multitask
problem based on their specification is included as an appendix to the present

paper.

Appendix A. A generalisation to the multitask case

In this more general version of the Holmstrém-Milgrom model, the repres-
entation

Xy = f11d1 + 282 + -+ fypay, + 8,

Xy = a1y + Honly + -+ + Uy, + &3,

X = W1 @y + w2l + -+ W@y + &y

is used.® Error terms are jointly and normally distributed. In describing how the
problem investigated differs from that of Holmstrdm and Milgrom (1991), Feltham
and Xie (1994) point to that “[m]uch of [their, i.e. H&M] analysis focuses on the
alternative forms of [cost functions] and they simplify the impact of the performance
measures by assuming that each measure is influenced by a single task (although there
need not be a measure for each task [ ... ].” Thus, in contrast, Feltham and Xie’s focus
is shifted from the structure of costs of effort to the structure of information generating
elements. Above, parameters u;; could be interpreted as zero or one inclusion para-
meters. For instance, for the multitask problem investigated by Holmstrom and
Milgrom (1991) we have’

1 0 - 0

01 - 0
'u=

0 0 1]

®The expected values of the observations made are linear in the elemements of effort provided (more
compactly we have x = pa + g). Further, it is noted that Holmstrém and Milgrom (1990) is based on the
somewhat more genral x = f(4) + & The corresponding formulation in classical principal-agent theroy is
x =f(a, 0) with @ being random,

? Alternatively, this representation is seen as a normalisation of a representation in which the diagonal of
1 consists of the non-zero impact elements y;;(i = j) that are allowed to differ from unity. Normalisation is
performed by “pushing impact elements back into the cost function” (Holmstrém and Milgrom). Moreover,
the case in which pu = [y;] = [1], is obviously less interesting. This case leads to linear dependence in
expected values in the elements of vector x, and what is observed is a series of identical aggregates with
different noise terms.
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More generally, the parameters j;; are interpreted as impact on the observations
made, per unit of effort provided. On the basis of the observations, and of the linear
reward scheme, the agent is compensated.'® The agent’s problem is

m

Max Z o (i + pipay + -+ .uinan)

1,02, sl o g
+ ﬁ = C(ﬂl; Aoy ey an) o RA(O:’ E)’

in which R ,(a, X) is the risk premium implied by the variance in the problem as
represented by X, an by the vector of incentives o The first-order conditions are

Oyl +952#21 + -+ Oty — Cfl = 05

Oy flys + Oaflag + o A+ Oyllus — €3 =0,

\' —_—
Op iy + G Han - e o O oy — Cpp = 0.

Implied in the first-order conditions are the reaction functions a; =
ai(ety, %o, .-, 0). 2t Thus, for the vector of marginal costs in the first-order conditions
above, we get ¢i(aq (0tgs tay oevy C)s Q2(01, Oayeey Oy ovns A0y, Oay oovy o). We have
n equilibrium conditions. Implicit reactions to incentives can then be found from these
conditions. For each of m incentives, there are n equations, such that

(3&1 W aag

=ci— 4+ ¢ Y iy
Hi1 1160:1 !23051 1 2 .

5(12 P 5‘(1,,

6{11 o 4
e Con 3
60ﬂ1

" "
.luln =Cu7 [
6051 5051

10 Feltham and Xie are careful to point out that rewards in their model are linear on an ad hoc basis. That
is to say, they do not appeal to the arguments for optimal linearity found in Holmstrém and Milgrom
(1987). Strictly speaking, in using the tractability of static versions of the Holmstrém-Milgrom model,
optimal linearity should be checked by going back to an underlying dynamic version. Furthermore, in
investigating specifications that are more compelx and possibly different in seme aspects of their underlying
dynamics compared with what was investigated by Holmstrém and Milgrom (1987), the problem of
optimality in a dynamic version becomes more critical. Thus, in basing their analysis of a complex static
problem on the ad hoc argument, Feltham and Xie (1994) show a necessary degree of caution on this point.
It is observed that Hellwig and Schmidt (1998) appear to offer some help in this connection.

1 1n the case analysed by Feltham and Xie ¢j; = 0 (for i # j), due to the additive character of their cost
function. They also have constant marginal reactions to incentives (¢j; = constant). In other words, the case
of Feltham and Xie is void of some of the effects that are particularly interesting in Holmstrém and
Milgrom (1991).
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In all there are m x n unknown marginal reactions and m x n equations. The system of
equations consists of m blocks, such that block i is attributed with the structure
[14; = ¢"[0a;/0e;]. The admissible set of actions taken by the agent is represented by
A, and for the vector a of effort provided by the agent we have a e A. In hidden action
theory, however, there are no strong traditions for this sort of a priori restriction on
the action set of the agent. Nevertheless, in many cases the destruction of output is not
allowed for. The standard assumption, applied to the case investigated, is simply that
of ae N’ . In the multitask problem investigated by Feltham and Xie, the problem of
restrictions is less straightforward, In a multitask agency a desired set of actions is
implemented by the vector of incentive parameters « of the contract. That is, the
agency faces the question of possible limitations in the admissible set of actions, due to
the two parties’ access to informative and contractible observations. The set of
observations obviously affects the vector of instruments « that is permitted and the set
of actions « for which implementation is a possibility. The access to independent and
informative elements in the set of observations is important to the creation of
incentive instruments that permit the implementation of desired actions. For the
structure presented above, with reference to a simple set of arguments, attention is
drawn to what is believed to be essential in Fletham and Xie’s paper.

e First, consider the case in which m =n. For this case, the number of possible
instruments in the form of incentives is equal to n. Further, this number is equal to
the number of actions taken by the agent, so that

al = ﬂl(als OC‘ZJ (RS ) C’:n):t

ty = az(ﬁla 5 PR OSM))

a, = CI,,(G.’I, 25 PRER OEn)-
In block i, given that ¢"~' exists, we have [da;/00;]=c"""[wy] so that
[0a;/d0;] = "~ ' p for the matrix of all marginal reactions. We could of course also -
see the actions of the agent as ends attained by means of incentives contractually
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implemented. That is, for a given set of targeted ends, the question concerns finding
an appropriate set of means.'? That is, more formally, the problem of finding the
functions

0 = 011((11, Ay eees p)s

0y = (Xz(ﬂl, A2y 0005 an)7

oy = 05,,((11, Ay .00y Qy)-

According to the Inverse Function Theorem, the marginal effects of implemented
incentives, with respect to the levels of effort desired, are found in [de,/da;] = pe”.
Thus, if u exists, an inverted “from-ends-to-means” form can be seen to exist for any
ae R . This inverted “from-ends-to-means” form is a sort of mirror image of the
original “from-means-to-ends” reaction functions a; = a;(@), a; = as(@), ...,
a, = a,(e). In the multitask case focused by Holmstrom and Milgrom (1991) the
same sort of correspondence is established, i.e. on a basis of the inverse function
argument, [da;/de;] = [ci;]™" is found after first establishing [Ge;/0a;] = [cij].
Further, when m = n, and given a g that is identical with a unity matrix, the original
system of implied reactions to incentives is reduced to

i " aal + ” 5[12 i i ” 6“‘”
=il = Cia7— B Cinn >
- 80:1 12 6061 ! @ocl
day ddty da,
1 - crf Fra + C” P + + C” __H,
21 6061 22 6:12 2Zn 6062
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1=C;I_+CH* s gl i
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Thus far, as regards the possibility of an implementation of any ae®’, the
conclusion is that the specifications investigated by Holmstrém and Milgrom
(1991) and Feltham and Xie (1994), lead to the same sort of insights. The case in
which m = n does not include any additional restrictions on the set of possible
actions. In other words, we have to look to other aspects of the problem to find new
and interesting dimensions in multitask theory.

e Second, consider the situation in which m > n. In this case the number of possible
instruments is greater than the number of tasks to which the agent is supposed to

12%When seen as expected values of observations, the approach is analogous with a well-known
discussion started by Tinbergen (1952). A useful summary of this discussion can be found in the published
volumes of Leif Johansen’s (1977,1978) lecture notes. In the second volume of these notes Johansen focuses
on problems under uncertainty and the volume includes a discussion of a case resembling the one
investigated by Feltham and Xie (1994).
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direct his effort. Thus, the agency has access to more instruments than are strictly
needed to implement a set of desired and admissible actions, i.e. there are alterna-
tives when it comes to the implementation of actions. Consequently, in the imple-
mentation of a specific (targeted) allocation of effort, it is possible for the agency to
take other concerns into account. In the problem investigated, the most immediate
concern refers to the cost of exposing the agent to risk. In finally identifying a set of
optimal incentives, this is of course again a problem about the trade-off between
gross benefit and the costs of effort (including cost of exposure to risk). It can be
seen that the m > n case is a more general version of a classical problem of hidden
action theory about the use and value of added information, i.e. the problem of the
value of added information, when the information to which the agency already has
access does not mean that restrictions are added to ae R .13

e Third, consider the situation in which m > n. In this case there is a lack of
instruments,-and-the effect of this is dramatic: the agency is unable to implement all
a e R, and we represent the implementable set of actions by the more restricted set
A" < R, From a practical point of view the case is both relevant and interesting,
and it is the one focused by Feltham and Xie (1994).

In the cffort levels ay,a,,...,a,, the expected gross benefit at the principal’s
disposal is m(ay, a,,...,a,). In any of the three types of case above, we have
ay (), az (@), ..., a,(«) for 4¥ = R (the possibility that the full « e R’ is implementable
is included). In the incentives, the formulation of the joint problem is

Mé\X mlay (&), az(e), ..., a, () — clag (@), az(@), ..., a,(@) — R4 (a,X).

A detailed exploration of solutions to this very general formulation of the problem
will not be made here. The kinds of solution that the third type of case leads to are
particularly interesting, however, and some further comments will be made on their
structure.

To be more specific about the consequences of the observations made, it can be said
that the character of the information problem is determined by the structure of both
i and 2* (the vector of observations is represented by x). Starting from the observa-
tion of the x, the statistical inference problem is to establish an estimate of elements in
the effort provided—a problem that seems to be related to the problem of identifica-
tion in econometrics. The problem associated with the third type of case is clearly
present in the case with at least a pair of tasks, and it arises because an information
structure restricts the possible inferences that can be made to an aggregate of the
efforts provided. Hence, in the relevant aggregate the allocation across tasks is left to
the discretion of the agent. To put it more technically, the character of the problem is
determined by the structures of g* and X* (characteristics such as sparsity and linear
independence are important are important in this connection).

13 The seminal contributions on this point are those of Holmstrém (1979) and Shavell (1979).
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The costs to the agency due to this sort of problem are determined by the distance
between the allocation chosen by the agent and what would otherwise have been
implemented (taking the preferences of the principal into account). In other words this
is a question of the preferred choice of the agent compared with the preferences of the
principal, which is also a question of the degree of congruence (or non-congruence).
An interesting aspect of Feltham and Xie’s specification is that these authors are able
to propose a precise measure in this respect. The effects of the information problem
just described can naturally be more — or less — severe depending on the degree of
congruence.

A possible and less technical way of looking at the traditional analysis of added
information, is that in a first round more information reduces the exposure to risk. In
a second round the exposure to risk increases because an increase in the power of
incentives is optimal. The net effect of this is an increase in the joint surplus. This is the
problem described in the second type of case above (the agent is not given any
discretion in his allocation of effort over tasks). The third type of case is different in
this respect and thus contributes to new insight into the problem of the value of added
information. Suppose that instead of the original vector of observations x, the more
informational rich x™ is observed (x* includes the original vector of observations x).
This may well mean that the implementable set of actions is expanded, such that
A* < A" = M. This may contribute to increased congruence, which means that the
problem of the value of added information is made more complex and interesting,

Feltham and Xie (1994) was important in drawing attention to an interesting
information problem that had been overlooked in the literature. Furthermore, the
way in which their specification includes more traditional ones, is attractive. Holm-
strom and Milgrom (1991) bring the problem of congruence into their discussion of
immeasurability problems. However, their focus on interesting cost effects meant that
the congruence problem was disregarded. As to the problem of added information,
Feltham and Xie demonstrate the importance of information that is not only indirect-
ly but also directly informative about the effort provided. This has meant a break-
through in our understanding of the Controllability Principle in accounting (agents
should be evaluated on a basis of observations that they are to some extent in control
of themselves). It seems to be recognized that some correlation characteristics can
render the contractual inclusion of a directly informative observation less favourable,
or even (weakly) unprofitable.'* In a situation where this leads to greater congruence,
a conclusion about the zero value of information could of course be altered.
The problem of congruence obviously adds in a significant way to our understanding
of the value of information. Further, in their investigation Feltham and Xie
are able to bring incentive theory into line with more traditional ideas about planning,
and there are interesting parallels here with the problem of identification in econo-
metrics.

#See, Lundesgaard (1996), Chapter VII for a formal discussion of this topic.
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