# The Pediatric Evaluation of Disability Inventory (PEDI) Differences between the US and the Norwegian Normative Samples 

Jo Kleiven, Marie Berg, Lena Krumlinde-Sundholm og Anne-Stine Dolva

## ISSN 0806-8348

Kr. 150,-

Alle synspunkter står for forfatterne sin regning. De må ikke tolkes som uttrykk for oppfatninger som kan tillegges Høgskolen I Lillehammer. Denne artikkel kan ikke reproduseres - helt eller delvis - ved trykking, fotokopiering eller på annen måte uten tillatelse fra forfatteren.

Any views expressed in this article are those of the authors. They should not be interpreted as reflecting the views of Lillehammer University College. This article may not be reprinted in part or in full without the permission of the author.

# The Pediatric Evaluation of Disability Inventory (PEDI) Differences between the US and the Norwegian Normative Samples 

Jo Kleiven<br>Lillehammer University College, Lillehammer, Norway<br>Marie Berg<br>Sunnaas Rehabilitation Hospital, University of Oslo, Norway<br>Lena Krumlinde-Sundholm<br>Department of Woman's and Children's Health Karolinska Institutet, Stockholm, Sweden<br>Anne-Stine Dolva<br>Lillehammer University College, Lillehammer, Norway


#### Abstract

Sammendrag: The Pediatric Evaluation of Disability Inventory (PEDI) er en standardisert prosedyre for vurdering av barns ferdigheter som ble utviklet i USA. Den er mye brukt ved rehabilitering av barn, også i Norge. Et representativt utvalg av norske barn i ti aldersgrupper ble sammenlignet med det originale amerikanske standardiseringsutvalget. På svært mange ulike punkter viste det seg at norske og amerikanske barn er ulike. Ved vurdering av norske barn bør de derfor sammenlignes med det norske utvalget, ikke med de amerikanske normene for PEDI-testen.


Emneord: PEDI, testing, barns ferdighetsnivå
Summary: The Pediatric Evaluation of Disability Inventory (PEDI) is a standardized procedure for assessing childrens' abilities, developed in the USA. It is widely used in child rehabilitation, also in Norway. A representative sample of Norwegian children in ten age groups is compared to the original American standardizing sample. On a large number of points, Norwegian and American children were shown to be different. In the assessment of Norwegian children, therefore, they should be compared to the Norwegian sample, not to the American norms for the PEDI test.

Key words: PEDI, testing, ability levels of children

## Contents:

## Innhold

Contents: ..... 3
List of figures: ..... 5
List of tables: ..... 7
Introduction ..... 9

1. Self-care function ..... 11
1.1 Self-care domain ..... 11
A. Raw scores ..... 11
B. Scaled scores ..... 12
1.2 Self-care subdomains ..... 15
A. Types of Food Textures (4 items) ..... 15
B. Use of Utensils ( 5 items) ..... 16
C. Use of Drinking Containers (5 items) ..... 17
D. Toothbrushing (5 items) ..... 18
E. Hairbrushing (4 items) ..... 19
F. Nose Care (5 items) ..... 20
G. Handwashing (5 items) ..... 21
H. Washing Body and Face (5 items) ..... 22
I. Pullover/Front-Opening Garments (5items) ..... 23
J. Fasteners (5 items) ..... 24
K. Pants (5 items) ..... 25
L. Shoes/socks (5 items) ..... 26
M. Toileting Tasks (5 items) ..... 27
N. Management of Bladder (5 items) ..... 28
O. Management of Bowel (5 items) ..... 29
1.3 Self-care items ..... 30
A. All-over sample differences in Self-care capability ..... 30
B. Age and sample differences on Self-care single items ..... 32
C. Sample differences of item difficulty ..... 35
D. DIF-tests of Self-Care item difficulty differences ..... 36
2. Mobility function ..... 38
2.1 Mobility domain. ..... 38
2.2 Mobility subdomains ..... 39
A. Toilet Transfers ( 5 items) ..... 39
B. Chair/Wheelchair Transfers (5 items) ..... 40
C. Car Transfers (5 items) ..... 41
D. Bed Mobility/Transfers (4 items) ..... 42
E. Tub Transfers (5 items) ..... 43
F. Indoor Locomotion Methods (3 items) ..... 44
G. Indoor Locomotion - Distance/speed (5 items) ..... 45
H. Indoor Locomotion - Pulls /Carries Objects (5 items) ..... 46
I. Outdoor Locomotion - Methods (2 items) ..... 47
J. Outdoor Locomotion - Distance /Speed (5 items) ..... 48
K. Outdoor Surfaces ( 5 items) ..... 49
L. Up Stairs (5 items) ..... 50
M. Down Stairs (5 items) ..... 51
2.3 Mobility items ..... 52
A. All-over sample differences in Mobility capability ..... 52
B. Age and sample differences on Mobility single items ..... 54
C. Sample differences of item difficulty ..... 56
D. DIF-tests of Mobility item difficulty differences ..... 57
3. Social function ..... 59
3.1 Social function domain ..... 59
3.2 Social subdomains ..... 60
A. Comprehension of Word Meanings (5 items) ..... 60
B. Comprehension of Sentence Complexity ( 5 items) ..... 61
C. Functional Use of Communication (5 items) ..... 62
D. Complexity of Expressive Communication (5 items) ..... 63
E. Problem Resolution (5 items) ..... 64
F. Social Interactive Play (5 items) ..... 65
G. Peer Interaction (5 items) ..... 66
H. Play with Objects (5 items) ..... 67
I. Self -Information (5 items) ..... 68
J. Time Orientation (5 items) ..... 69
K. Household Chores (5 items) ..... 70
L. Self-Protection (5 items) ..... 71
M. Community Function (5 items) ..... 72
3.3 Social Function items. ..... 73
A. All-over sample differences in Social Function capability ..... 73
B. Age and sample differences on single Social Function items ..... 74
C. Sample differences of item difficulty ..... 76
D. DIF-tests of Social Function item difficulty differences ..... 77
4. Concluding comments ..... 79
5. References ..... 81

## List of figures:

Figure 1: Age means for Self-care domain raw score in American and Norwegian samples11
Figure 2: Age means for Self-care domain scaled score in American and Norwegian samples ..... 13
Figure 3: Age means for Food Textures subdomain in US and Norwegian samples ..... 15
Figure 4: Age means for Use of Utensils subdomain in US and Norwegian samples ..... 16
Figure 5: Age means for Use of Drinking Containers subdomain in two samples ..... 17
Figure 6: Age means for Toothbrushing subdomain in two samples ..... 18
Figure 7: Age means for Hairbrushing subdomain in two samples ..... 19
Figure 8: Age means for Nose Care subdomain in two samples ..... 20
Figure 9: Age means for Handwashing subdomain in two samples ..... 21
Figure 10: Age means for Washing Body and Face subdomain in two samples ..... 22
Figure 11: Age means for Pullover/Front-Opening Garments subdomain in two samples ..... 23
Figure 12: Age means for Fasteners subdomain in two samples ..... 24
Figure 13: Age means for Pants subdomain in two samples ..... 25
Figure 14: Age means for Shoes/socks subdomain in two samples ..... 26
Figure 15: Age means for Toileting Tasks subdomain in two samples ..... 27
Figure 16: Age means for Management of Bladder subdomain in two samples ..... 28
Figure 17: Age means for Management of Bowel subdomain in two samples ..... 29
Figure 18: Per cent mastering the five items (SC69-73) of the Management of Bowel subdomain, in two samples with ten age groups. ..... 32
Figure 19: Per cent mastering the five items (SC64-68) of the Management of Bladder subdomain, in two samples with ten age groups ..... 34
Figure 20: Self-care item difficulty scores in the two normative samples ..... 35
Figure 21: DIF analysis of Self-care items in the two normative samples ..... 36
Figure 22: Age means for Mobility domain raw score in two samples ..... 38
Figure 23: Age means for Toilet Transfer subdomain in two samples ..... 39
Figure 24: Age means for Chair/Wheelchair Transfers subdomain in two samples ..... 40
Figure 25: Age means for Car Transfers subdomain in two samples ..... 41
Figure 26: Age means for Bed Mobility/Transfers subdomain in two samples ..... 42
Figure 27: Age means for Tub Transfers subdomain in two samples ..... 43
Figure 28: Age means for Indoor Locomotion Methods subdomain in two samples. ..... 44
Figure 29: Age means for Indoor Locomotion - Distance/speed subdomain in two samples ..... 45
Figure 30: Age means for Indoor Locomotion - Pulls/Carries Objects subdomain in two samples ..... 46
Figure 31: Age means for Outdoor Locomotion - Methods subdomain in two samples. ..... 47
Figure 32: Age means for Outdoor Locomotion - Distance/Speed subdomain in two samples ..... 48
Figure 33: Age means for Outdoor Surfaces subdomain in two samples ..... 49
Figure 34: Age means for Up Stairs subdomain in two samples ..... 50
Figure 35: Age means for Down Stairs subdomain in two samples ..... 51
Figure 36: Per cent mastering the four last items of the Indoor Locomotion - Pulls /Carries Objects subdomain, in two samples with ten age groups ..... 55
Figure 37: Mobility item difficulty scores in the two normative samples ..... 56
Figure 38: DIF analysis of Mobility items in the two normative samples ..... 57
Figure 39: Age means for Social function domain raw score in two samples ..... 59
Figure 40: Age means for Comprehension of Word Meanings subdomain in two samples ..... 60
Figure 41: Age means for Comprehension of Sentence Complexity subdomain in two samples ..... 61
Figure 42: Age means for Functional Use of Communication subdomain in two samples ..... 62
Figure 43: Age means for Complexity of Expressive Communication subdomain in two samples ..... 63
Figure 44: Age means for Problem Resolution subdomain in two samples ..... 64
Figure 45: Age means for Social Interactive Play subdomain in two samples ..... 65
Figure 46: Age means for Peer Interaction subdomain in two samples ..... 66
Figure 47: Age means for Play with Objects subdomain in two samples ..... 67
Figure 48: Age means for Self Information subdomain in two samples ..... 68
Figure 49: Age means for Time Orientation subdomain in two samples ..... 69
Figure 50: Age means for Household Chores subdomain in two samples ..... 70
Figure 51: Age means for Self Protection subdomain in two samples ..... 71
Figure 52: Age means for Community Function subdomain in two samples ..... 72
Figure 53: Per cent mastering the five items of the Time orientation subdomain, in two samples with ten age groups ..... 75
Figure 54: Social function item difficulty scores in the two normative samples. ..... 76
Figure 55: DIF analysis of Social Function items in the two normative samples ..... 77

## List of tables:

Table 1: ANOVA of Self-care raw score in two samples and ten age groups ..... 12
Table 2: ANOVA of Self-care scaled scores in two samples and ten age groups ..... 13
Table 3: Mixed-design ANOVA of ten (American) age groups with Self-care scaled scores based on 10 vs. 14 groups ..... 14
Table 4: ANOVA of Food Textures subdomain in two samples and ten age groups ..... 15
Table 5: ANOVA of Use of Utensils subdomain in two samples and ten age groups ..... 16
Table 6: ANOVA of Use of Drinking Containers subdomain in two samples and ten age groups ..... 17
Table 7: ANOVA of Toothbrushing subdomain in two samples and ten age groups ..... 18
Table 8: ANOVA of Hairbrushing subdomain in two samples and ten age groups ..... 19
Table 9: ANOVA of Nose Care subdomain in two samples and ten age groups ..... 20
Table 10: ANOVA of Handwashing subdomain in two samples and ten age groups ..... 21
Table 11: ANOVA of Washing Body and Face subdomain in two samples and ten age.. 22 ..... 22
Table 12: ANOVA of Pullover/Front-Opening Garments subdomain in two samples and ten age groups ..... 23
Table 13: ANOVA of Fasteners subdomain in two samples and ten age groups ..... 24
Table 14: ANOVA of Pants subdomain in two samples and ten age groups ..... 25
Table 15: ANOVA of Shoes/socks subdomain in two samples and ten age groups ..... 26
Table 16: ANOVA of Toileting Tasks subdomain in two samples and ten age groups ..... 27
Table 17: ANOVA of Management of Bladder subdomain in two samples and ten age groups ..... 28
Table 18: ANOVA of Management of Bowel subdomain in two samples and ten age groups ..... 29
Table 19: Self-care items; proportion mastering items in two samples (US=313, Norw=224) ..... 30
Table 20: Self-care items with significant sample differences ..... 37
Table 21: ANOVA of Mobility raw score in two samples and ten age groups ..... 38
Table 22: ANOVA of Toilet Transfer subdomain in two samples and ten age groups ..... 40
Table 23: ANOVA of Chair/Wheelchair Transfers Transfer subdomain in two samples and ten age groups ..... 41
Table 24: ANOVA of Car Transfers subdomain in two samples and ten age groups ..... 42
Table 25: ANOVA of Bed Mobility/Transfers subdomain in two samples and ten age groups ..... 43
Table 26: ANOVA of Tub Transfers subdomain in two samples and ten age groups ..... 44
Table 27: ANOVA of Indoor Locomotion Methods subdomain in two samples and ten age groups ..... 45
Table 28: ANOVA of Indoor Locomotion - Distance/speed subdomain in two samples and ten age groups ..... 46
Table 29: ANOVA of Indoor Locomotion - Pulls/Carries Objects subdomain in two samples and ten age groups ..... 47
Table 30: ANOVA of Outdoor Locomotion - Methods subdomain in two samples and ten age groups ..... 48
Table 31: ANOVA of Outdoor Locomotion - Distance/Speed subdomain in two samples and ten age groups ..... 49
Table 32: ANOVA of Outdoor Surfaces subdomain in two samples and ten age groups. 50
Table 33: ANOVA of Up Stairs subdomain in two samples and ten age groups ..... 51
Table 34: ANOVA of Down Stairs subdomain in two samples and ten age groups ..... 52
Table 35: Mobility items; proportion mastering items in two samples (US=313, Norw=224) ..... 52
Table 36: Mobility items with significant sample differences ..... 58
Table 37: ANOVA of Social Function raw score in two samples and ten age groups ..... 59
Table 38: ANOVA of Comprehension of Word Meanings subdomain in two samples and ten age groups ..... 60
Table 39: ANOVA of Comprehension of Sentence Complexity subdomain in two samples and ten age groups ..... 61
Table 40: ANOVA of Functional Use of Communication subdomain in two samples and ten age groups ..... 62
Table 41: ANOVA of Complexity of Expressive Communication subdomain in two samples and ten age groups ..... 63
Table 42: ANOVA of Problem Resolution subdomain in two samples and ten age groups ..... 64
Table 43: ANOVA of Social Interactive Play subdomain in two samples and ten age groups ..... 65
Table 44: ANOVA of Peer Interaction subdomain in two samples and ten age groups. ..... 66
Table 45: ANOVA of Play with Objects subdomain in two samples and ten age groups ..... 67
Table 46: ANOVA of Self Information subdomain in two samples and ten age groups... ..... 68
Table 47: ANOVA of Time Orientation subdomain in two samples and ten age groups ..... 69
Table 48: ANOVA of Household Chores subdomain in two samples and ten age groups70
Table 49: ANOVA of Self Protection subdomain in two samples and ten age groups ..... 71
Table 50: ANOVA of Community Function subdomain in two samples and ten age groups ..... 72
Table 51: Social Function items; proportion mastering items in two samples (US=313, Norw=224) ..... 73
Table 52: Social Function items with significant sample differences ..... 78

## Introduction

During the last couple of years, a stimulating cooperation around the well-known PEDI inventory (S. M. Haley, Coster, Ludlow, Haltiwanger, \& Andrellos, 1992) has taken much of our time. Utilizing Marie Berg's two samples (Berg, Frey Frøislie, \& Hussain, 2003; Berg, Aamodt, Stanghelle, Krumlinde-Sundholm, \& Hussain, 2008), we have made an effort to provide Norwegian norms for the PEDI.

A central question in this work has been the differences between American and Norwegian PEDI results. While certain cross-cultural problems have been documented (Berg et al., 2003; Berg et al., 2008), an even more precise knowledge of the differences may be needed to avoid mistakes in the clinical use of the PEDI in Norway. To allow exact and detailed comparisons with our data, professor Wendy Coster at Boston University has graciously provided access to the original American normative material.

A journal article in preparation (Berg, Dolva, Kleiven, \& Krumlinde-Sundholm) will report the main results of the Norwegian norming project. All our discussions, arguments and conclusions will be provided there - not in the present informal paper. Also, the complete set of relevant norms will be available to Norwegian PEDI users at this web site of the Sunnaas Hospital (http://www.sunnaas.no/aktuelt/rapporter).

But neither the journal article nor the final set of norms will provide a suitable home for a large number of detailed analyses that have become necessary in the process. To be sufficiently concise, just a few selected examples and simplifications could be used to support the conclusions of our publications. But, admittedly, "killing your darlings" was somewhat painful.

The need for brevity may perhaps also be unfortunate for more advanced PEDI users. Some experts may feel the need for a closer scrutiny of the basis of the norms, to ascertain that their diagnostic conclusions are sufficiently well founded.

We have decided, therefore, that some of our more comprehensive analyses should be made available, including rather detailed information on the differences between the American (US) and the Norwegian samples that form the bases for the two national norms. Although the arguments as well as the conclusions of the Norwegian PEDI project will be provided elsewhere, it is our opinion that the present analyses further support the need for Norwegian norms for the PEDI.

The PEDI research team at Boston University has recently developed a revised version of the PEDI named PEDI-CAT, which was just published (S.M. Haley, Coster, Dumas, Fragala-Pinkham, \& Moed, 2012). The new PEDI-CAT is based on previous PEDI applications. This new instrument will, like the original PEDI, need both translation and Norwegian validation before it is applicable to Norwegian clinicians and researchers. In the meantime, there is not only a need for Norwegian norms on the original PEDI. Hopefully, our Norwegian norm analyses will also be useful to those who initiate translation and validation of the PEDI-CAT.

The organization of this paper assumes that the reader is somewhat familiar with the PEDI. Our exposition will be limited to the three functional skills areas: Self-care, Mobility and Social Function.

Analyses will be provided at the domain level (complete summed scores for 73,59 or 65 items, respectively), the subdomain level (13-15 scores summing 2-5 related items), as well as the level of single items. In addition, a few examples of single-item sample by age analyses will be given.

## 1. Self-care function

### 1.1 Self-care domain

## A. Raw scores

With this scale (with max. score $=73$ ), the curve of means for the US sample may suggest a ceiling effect. This is less pronounced in the Norwegian sample, however.


Figure 1: Age means for Self-care domain raw score in American and Norwegian samples

Limiting ourselves to the ten age groups employed in Norway, a two-way ANOVA was used to assess the differences between the two national samples as well as the differences between the age groups. The results (Table 1) indicate significant effects of age group as well as significant national differences. The non-significant interaction effect (Group by Nation) shows that the Nation and the Age differences are largely independent of each other; i.e., the national differences are rather consistent across all ten age groups.

Table 1: ANOVA of Self-care raw score in two samples and ten age groups
Tests of Between-Subjects Effects

Dependent Variable:Self-Care summed raw score

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $157944.630^{\mathrm{a}}$ | 19 | 8312.875 | 187.447 | .000 |
| Intercept | 1182441.278 | 1 | 1182441.278 | 26662.898 | .000 |
| group | 139359.533 | 9 | 15484.393 | 349.158 | .000 |
| Nation | 6036.281 | 1 | 6036.281 | 136.112 | .000 |
| group * Nation | 557.073 | 9 | 61.897 | 1.396 | .187 |
| Error | 22927.821 | 517 | 44.348 |  |  |
| Total | 1466586.000 | 537 |  |  |  |
| Corrected Total | 180872.451 | 536 |  |  |  |

a. R Squared $=.873$ (Adjusted R Squared $=.869$ )

## B. Scaled scores

The raw scores of the PEDI, however, are normally not used in testing. Typically, the raw scores are used as a basis for computing 1-100 scaled "Rasch" scores (Bond \& Fox, 2007), using the tables of the original PEDI manual (S. M. Haley et al., 1992) or suitable computer programs like Winsteps (Linacre, 2010). In addition, these scaled scores need to be transformed into T-scores (Mean $=50 ; \mathrm{SD}=10$ ) to enable comparisons to the test norms.

While the $T$ transformation is simple, linear and comprehensible, understanding the Rasch transformation is perhaps a less simple matter. It may be worth checking, therefore, if this transformation in any way influences the nation or age differences observed with the raw data.

A potential complication, however, is that the American and the Norwegian do not cover the same age span. The original American sample includes 14 half-year groups, starting at $<12$ months and peaking at $>83$ months. The Norwegian sample, however, is limited to 10 half-year groups, omitting the group $<12$ months as well as the groups $>72$ months.

To be on the safe side, therefore, it may be prudent to first compare the 10-group Norwegian Rasch scale scores to American scaled scores derived from the original 14group sample used to compute the PEDI test norms. Secondly, the Norwegian scores should also be compared to their age-matched American counterparts. All three versions of scaled Rasch scores were obtained with the Winsteps program (Linacre, op.cit.), and results are displayed in figure 2 .

First of all, figure 2 clearly shows that all three mean scores increase with age. It may also suggest some difference between the two American scores, possibly decreasing with age.

In addition, the Norwegian scores in all age groups are clearly lower than their American counterparts, closely resembling the difference shown in figure 1.


Figure 2: Age means for Self-care domain scaled score in American and Norwegian samples

Table 2: ANOVA of Self-care scaled scores in two samples and ten age groups Tests of Between-Subjects Effects

Dependent Variable:Rasch10SC

| Source | Type III Sum <br> of Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $140978.734^{2}$ | 19 | 7419.933 | 153.726 | .000 |
| Intercept | 1812885.423 | 1 | 1812885.423 | 37559.306 | .000 |
| Nation | 18061.324 | 1 | 18061.324 | 374.194 | .000 |
| group | 116715.572 | 9 | 12968.397 | 268.679 | .000 |
| Nation * group | 307.553 | 9 | 34.173 | .708 | .702 |
| Error | 24954.182 | 517 | 48.267 |  |  |
| Total | 2154594.292 | 537 |  |  |  |
| Corrected Total | 165932.916 | 536 |  |  |  |

a. R Squared $=, 850($ Adjusted R Squared $=, 844)$

The ANOVA results in table 2 show that with scaled scores based on 10 groups, there are significant differences between age groups as well as between nations.

Table 3: Mixed-design ANOVA of ten (American) age groups with Self-care scaled scores based on 10 vs. 14 groups

Tests of Within-Subjects Effects

| Source | Type III Sum <br> of Squares | df | Mean <br> Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 10 - vs.14-group scaled scores | 764,70 |  | 1 | 764,70 | 4281,72 |
| 10 vs. 14 factor * Age groups | 298,84 | 9 | 33,20 | 185,92 | , 000 |
| Error (10 vs. 14) | 54,11 | 303 | 0,18 |  | , 000 |

Tests of Between-Subjects Effects

| Source | Type III Sum <br> of Squares | df | Mean <br> Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Intercept | 2735803,51 |  | 1 | 2735803,51 | 25522,41 |
| Age groups | 160151,22 | 9 | 17794,58 | 166,01 | , 000 |
| Error | 32479,23 | 303 | 107,19 |  | , 000 |

The powerful repeated-measurement ANOVA used to test the difference between the two scaled scores (based on 10 and 14 age groups, respectively), yield interesting results. First of all, the scores based on the full age range are generally significantly higher than the scores based on 10 groups only. Secondly, this difference significantly decreases with age. Thirdly - and perhaps less surprising - the differences between the age groups are also statistically significant.

All in all, therefore, fairly clear conclusions may be drawn. By using scaled self-care scores based on a more limited age range than what was used in the original PEDI, the difference between the American and the Norwegian samples may be somewhat overestimated. This effect, however, is obviously smaller than the differences in the raw data. It is to be expected, therefore, that Norwegian children should have lower PEDI self-care scores than the original American normative sample. Consequently, there may be cases where using the original PEDI norms with Norwegian children have lead to inaccurate results.

### 1.2 Self-care subdomains

## A. Types of Food Textures (4 items)

Here, the Norwegian sample scores higher, mainly with the younger groups.


Figure 3: Age means for Food Textures subdomain in US and Norwegian samples

Table 4: ANOVA of Food Textures subdomain in two samples and ten age groups Tests of Between-Subjects Effects
Dependent Variable:SCA

| Sependent Variable:SCA |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| Corrected Model | $143.059^{\mathrm{a}}$ | 19 | 7.529 | 22.092 | .000 |
| Intercept | 6917.394 | 1 | 6917.394 | 20295.940 | .000 |
| Nation | 12.970 | 1 | 12.970 | 38.054 | .000 |
| group | 72.048 | 9 | 8.005 | 23.488 | .000 |
| Nation * group | 16.930 | 9 | 1.881 | 5.519 | .000 |
| Error | 176.207 | 517 | .341 |  |  |
| Total | 7495.000 | 537 |  |  |  |
| Corrected Total | 319.266 | 536 |  |  |  |

## B. Use of Utensils (5 items)

No sample differences were found.


Figure 4: Age means for Use of Utensils subdomain in US and Norwegian samples

Table 5: ANOVA of Use of Utensils subdomain in two samples and ten age groups Tests of Between-Subjects Effects
Dependent Variable:SCB

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $418.994^{\mathrm{a}}$ | 19 | 22.052 | 55.594 | .000 |
| Intercept | 8490.648 | 1 | 8490.648 | 21404.942 | .000 |
| Nation | .051 | 1 | .051 | .129 | .720 |
| group | 373.248 | 9 | 41.472 | 104.551 | .000 |
| Nation * group | 4.123 | 9 | .458 | 1.155 | .322 |
| Error | 205.077 | 517 | .397 |  |  |
| Total | 9711.000 | 537 |  |  |  |
| Corrected Total | 624.071 | 536 |  |  |  |

a. R Squared $=.671$ (Adjusted R Squared $=.659$ )

## C. Use of Drinking Containers (5 items)

No sample differences were
found.


Figure 5: Age means for Use of Drinking Containers subdomain in two samples

Table 6: ANOVA of Use of Drinking Containers subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SCC

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $362.493^{\mathrm{a}}$ | 19 | 19.079 | 44.615 | .000 |
| Intercept | 8817.622 | 1 | 8817.622 | 20619.655 | .000 |
| Nation | .658 | 1 | .658 | 1.539 | .215 |
| group | 301.020 | 9 | 33.447 | 78.214 | .000 |
| Nation * group | 4.837 | 9 | .537 | 1.257 | .258 |
| Error | 221.086 | 517 | .428 |  |  |
| Total | 9894.000 | 537 |  |  |  |
| Corrected Total | 583.579 | 536 |  |  |  |

a. R Squared $=.621$ (Adjusted R Squared $=.607$ )

## D. Toothbrushing (5 items)

The US sample scores
higher.


Figure 6: Age means for Toothbrushing subdomain in two samples

Table 7: ANOVA of Toothbrushing subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SCD

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $458.373^{\mathrm{a}}$ | 19 | 24.125 | 38.957 | .000 |
| Intercept | 5268.973 | 1 | 5268.973 | 8508.330 | .000 |
| Nation | 47.787 | 1 | 47.787 | 77.166 | .000 |
| Group | 339.481 | 9 | 37.720 | 60.910 | .000 |
| Nation * group | 15.085 | 9 | 1.676 | 2.707 | .004 |
| Error | 320.164 | 517 | .619 |  |  |
| Total | 6475.000 | 537 |  |  |  |
| Corrected Total | 778.536 | 536 |  |  |  |

A. R Squared $=.589$ (Adjusted R Squared $=.574$ )

## E. Hairbrushing (4 items)

The US sample scores
higher.


Age group
Figure 7: Age means for Hairbrushing subdomain in two samples

Table 8: ANOVA of Hairbrushing subdomain in two samples and ten age groups Tests of Between-Subjects Effects

Dependent Variable:SCE

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $149.409^{\mathrm{a}}$ | 19 | 7.864 | 19.714 | .000 |
| Intercept | 2762.265 | 1 | 2762.265 | 6924.885 | .000 |
| Nation | 7.955 | 1 | 7.955 | 19.943 | .000 |
| group | 140.016 | 9 | 15.557 | 39.002 | .000 |
| Nation * group | 3.175 | 9 | .353 | .885 | .539 |
| Error | 206.226 | 517 | .399 |  |  |
| Total | 3345.000 | 537 |  |  |  |
| Corrected Total | 355.635 | 536 |  |  |  |

a. R Squared $=.420$ (Adjusted R Squared $=.399$ )

## F. Nose Care (5 items)

The US sample scores higher.


Figure 8: Age means for Nose Care subdomain in two samples

Table 9: ANOVA of Nose Care subdomain in two samples and ten age groups Tests of Between-Subjects Effects
Dependent Variable:SCF

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $618.159^{\mathrm{a}}$ | 19 | 32.535 | 36.014 | .000 |
| Intercept | 5476.174 | 1 | 5476.174 | 6061.867 | .000 |
| Nation | 147.400 | 1 | 147.400 | 163.165 | .000 |
| group | 447.566 | 9 | 49.730 | 55.048 | .000 |
| Nation * group | 4.133 | 9 | .459 | .508 | .869 |
| Error | 467.048 | 517 | .903 |  |  |
| Total | 7240.000 | 537 |  |  |  |
| Corrected Total | 1085.207 | 536 |  |  |  |

a. R Squared $=.570($ Adjusted R Squared $=.554)$

## G. Handwashing (5 items)

The US sample scores
higher.


Age group
Figure 9: Age means for Handwashing subdomain in two samples

Table 10: ANOVA of Handwashing subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SCG

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $931.348^{\mathrm{a}}$ | 19 | 49.018 | 69.266 | .000 |
| Intercept | 6105.508 | 1 | 6105.508 | 8627.425 | .000 |
| Nation | 62.587 | 1 | 62.587 | 88.439 | .000 |
| group | 818.763 | 9 | 90.974 | 128.551 | .000 |
| Nation * group | 5.319 | 9 | .591 | .835 | .584 |
| Error | 365.874 | 517 | .708 |  |  |
| Total | 8041.000 | 537 |  |  |  |
| Corrected Total | 1297.222 | 536 |  |  |  |

a. R Squared $=.718$ (Adjusted R Squared $=.708$ )

## H. Washing Body and Face (5 items)

US sample scores higher, especially in the older age groups.


Age group
Figure 10: Age means for Washing Body and Face subdomain in two samples

Table 11: ANOVA of Washing Body and Face subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SCH

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $920.578^{\mathrm{a}}$ | 19 | 48.451 | 39.446 | .000 |
| Intercept | 3047.617 | 1 | 3047.617 | 2481.152 | .000 |
| Nation | 139.893 | 1 | 139.893 | 113.891 | .000 |
| group | 707.392 | 9 | 78.599 | 63.990 | .000 |
| Nation * group | 23.690 | 9 | 2.632 | 2.143 | .025 |
| Error | 635.035 | 517 | 1.228 |  |  |
| Total | 5005.000 | 537 |  |  |  |
| Corrected Total | 1555.613 | 536 |  |  |  |

a. R Squared $=.592$ (Adjusted R Squared $=.577$ )

## I. Pullover/Front-Opening Garments (5 items)

The US sample scores
higher.


Figure 11: Age means for Pullover/Front-Opening Garments subdomain in two samples

Table 12: ANOVA of Pullover/Front-Opening Garments subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SCI

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $1009.321^{\mathrm{a}}$ | 19 | 53.122 | 74.308 | .000 |
| Intercept | 5668.360 | 1 | 5668.360 | 7928.983 | .000 |
| Nation | 22.496 | 1 | 22.496 | 31.468 | .000 |
| group | 924.153 | 9 | 102.684 | 143.635 | .000 |
| Nation * group | 7.318 | 9 | .813 | 1.137 | .334 |
| Error | 369.599 | 517 | .715 |  |  |
| Total | 7588.000 | 537 |  |  |  |
| Corrected Total | 1378.920 | 536 |  |  |  |

a. R Squared $=.732$ (Adjusted R Squared $=.722$ )

## J. Fasteners (5 items)

The US sample scores higher.


Figure 12: Age means for Fasteners subdomain in two samples

Table 13: ANOVA of Fasteners subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SCJ

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $1045.138^{\mathrm{a}}$ | 19 | 55.007 | 63.917 | .000 |
| Intercept | 4083.472 | 1 | 4083.472 | 4744.887 | .000 |
| Nation | 28.933 | 1 | 28.933 | 33.620 | .000 |
| group | 939.993 | 9 | 104.444 | 121.361 | .000 |
| Nation * group | 7.629 | 9 | .848 | .985 | .451 |
| Error | 444.933 | 517 | .861 |  |  |
| Total | 5964.000 | 537 |  |  |  |
| Corrected Total | 1490.071 | 536 |  |  |  |

a. R Squared $=.701$ (Adjusted R Squared $=.690$ )

## K. Pants (5 items)

The US sample scores
higher.


Figure 13: Age means for Pants subdomain in two samples

Table 14: ANOVA of Pants subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SCK

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $942.573^{\mathrm{a}}$ | 19 | 49.609 | 82.482 | .000 |
| Intercept | 5378.875 | 1 | 5378.875 | 8943.163 | .000 |
| Nation | 20.402 | 1 | 20.402 | 33.921 | .000 |
| group | 866.286 | 9 | 96.254 | 160.036 | .000 |
| Nation * group | 2.024 | 9 | .225 | .374 | .947 |
| Error | 310.950 | 517 | .601 |  |  |
| Total | 7114.000 | 537 |  |  |  |
| Corrected Total | 1253.523 | 536 |  |  |  |

a. R Squared $=.752$ (Adjusted R Squared $=.743$ )

## L. Shoes/socks (5 items)

The US sample scores
higher.


Figure 14: Age means for Shoes/socks subdomain in two samples

Table 15: ANOVA of Shoes/socks subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SCL

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $689.197^{\mathrm{a}}$ | 19 | 36.274 | 74.943 | .000 |
| Intercept | 4324.838 | 1 | 4324.838 | 8935.312 | .000 |
| Nation | 8.885 | 1 | 8.885 | 18.358 | .000 |
| group | 611.264 | 9 | 67.918 | 140.322 | .000 |
| Nation * group | 4.944 | 9 | .549 | 1.135 | .336 |
| Error | 250.237 | 517 | .484 |  |  |
| Total | 5600.000 | 537 |  |  |  |
| Corrected Total | 939.434 | 536 |  |  |  |

a. R Squared $=.734$ (Adjusted R Squared $=.724$ )

## M. Toileting Tasks (5 items)

The US sample scores higher, especially in the mid-range age groups.


Age group
Figure 15: Age means for Toileting Tasks subdomain in two samples

Table 16: ANOVA of Toileting Tasks subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SCM

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $1486.272^{\mathrm{a}}$ | 19 | 78.225 | 81.634 | .000 |
| Intercept | 3814.833 | 1 | 3814.833 | 3981.103 | .000 |
| Nation | 71.837 | 1 | 71.837 | 74.968 | .000 |
| group | 1308.007 | 9 | 145.334 | 151.668 | .000 |
| Nation * group | 16.852 | 9 | 1.872 | 1.954 | .043 |
| Error | 495.408 | 517 | .958 |  |  |
| Total | 6194.000 | 537 |  |  |  |
| Corrected Total | 1981.680 | 536 |  |  |  |

a. R Squared $=.750$ (Adjusted R Squared $=.741$ )

## N. Management of Bladder (5 items)

The US sample scores higher, especially in the mid-range age groups.


Figure 16: Age means for Management of Bladder subdomain in two samples

Table 17: ANOVA of Management of Bladder subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SCN

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $1612.961^{\mathrm{a}}$ | 19 | 84.893 | 94.160 | .000 |
| Intercept | 4969.528 | 1 | 4969.528 | 5512.038 | .000 |
| Nation | 65.037 | 1 | 65.037 | 72.137 | .000 |
| group | 1443.013 | 9 | 160.335 | 177.838 | .000 |
| Nation * group | 38.041 | 9 | 4.227 | 4.688 | .000 |
| Error | 466.115 | 517 | .902 |  |  |
| Total | 7569.000 | 537 |  |  |  |
| Corrected Total | 2079.076 | 536 |  |  |  |

a. R Squared $=.776$ (Adjusted R Squared $=.768$ )

## O. Management of Bowel ( 5 items)

The US sample scores higher, especially in the mid-range age groups.


Age group
Figure 17: Age means for Management of Bowel subdomain in two samples

Table 18: ANOVA of Management of Bowel subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SCO

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $1634.691^{\mathrm{a}}$ | 19 | 86.036 | 96.638 | .000 |
| Intercept | 5646.047 | 1 | 5646.047 | 6341.738 | .000 |
| Nation | 37.294 | 1 | 37.294 | 41.889 | .000 |
| group | 1461.493 | 9 | 162.388 | 182.397 | .000 |
| Nation * group | 41.215 | 9 | 4.579 | 5.144 | .000 |
| Error | 460.285 | 517 | .890 |  |  |
| Total | 8243.000 | 537 |  |  |  |
| Corrected Total | 2094.976 | 536 |  |  |  |

a. R Squared $=.780$ (Adjusted R Squared $=.772$ )

### 1.3 Self-care items

## A. All-over sample differences in Self-care capability

When considering the individual items, it should be kept in mind that "easy" items will be mastered by more respondents than the more difficult items. The proportion of "capable" respondents mastering the behavior in question, therefore, may be read as a proxy for the "difficulty" of the item. When most respondents master an item, it is an easy one.

The Fisher statistic for each item is based on a two-by-two table containing the number of people mastering and not mastering the item in the two national samples. There is no missing data here. Hence, the initial fourfold table may be reconstructed from the percentages given and the number of cases in each sample. The p statistic gives the probability that the observed difference in (raw) numbers is due to random chance variation, and a $p$ value $<.05$ is viewed as statistically significant. Assuming that a two-tailed test is appropriate, 31 out of the 73 items yield significant differences between the two samples.

Please note that the difference may go either way. While most items are more difficult to the Norwegian children, the US children have more trouble with other items. The items "favoring" the Norwegian sample are marked by asterisks in the table.

Table 19: Self-care items; proportion mastering items in two samples (US=313, Norw=224)

|  |  |  |  |  |  |
| :---: | :--- | :--- | :---: | :---: | :---: |
| Scale | No | Label | \% US | \% Norw | Fisher $\mathbf{p}$ |
| SC | 1 | Eats pureed/strained foods | 99.7 | 100.0 | 1.000 |
| SC | 2 | * Eats ground/lumpy foods | 91.4 | 100.0 | .000 |
| SC | 3 | * Eats cut/chunky foods | 88.2 | 97.8 | .000 |
| SC | 4 | *Eats all textures of table food | 69.6 | 91.1 | .000 |
| SC | 5 | Finger feeds | 100.0 | 100.0 | - |
| SC | 6 | Scoops and brings spoon | 96.2 | 96.9 | .814 |
| SC | 7 | Uses spoon well | 87.2 | 87.9 | .895 |
| SC | 8 | Uses fork well | 78.0 | 84.8 | .058 |
| SC | 9 | * Butters and cuts with knife | 42.8 | 51.8 | .044 |
| SC | 10 | Holds bottle/spout cup | 99.7 | 100.0 | 1.000 |
| SC | 11 | Lifts cup to drink | 95.2 | 98.2 | .095 |
| SC | 12 | *Lifts cup securely w/two hands | 89.5 | 97.3 | .000 |
| SC | 13 | Lifts cup securely w/one hand | 77.0 | 77.7 | .917 |
| SC | 14 | *Pours liquid | 44.7 | 57.6 | .004 |
| SC | 15 | Opens mouth for toothbrush | 96.2 | 94.6 | .406 |
| SC | 16 | Holds toothbrush | 93.9 | 94.6 | .852 |
| SC | 17 | Brushes some teeth | 83.1 | 73.7 | . $\mathbf{0 1 0}$ |
| SC | 18 | Brushes teeth thoroughly | 38.3 | 4.5 | .000 |
| SC | 19 | Prepares toothbrush/paste | 32.9 | 32.1 | .926 |
| SC | 20 | Holds head for combing | 98.1 | 86.2 | .000 |
| SC | 21 | Brings brush/comb to hair | 95.5 | 96.0 | .833 |
| SC | 22 | Brushes/combs hair | 40.3 | 36.2 | .369 |
| SC | 23 | Manages tangled hair | 8.0 | 9.4 | .640 |
| SC | 24 | Allows nose wipe | 96.5 | 92.4 | .048 |
| SC | 25 | Blows nose | 90.4 | 66.1 | .000 |
| SC | 26 | Wipes nose on request | 84.3 | 75.4 | . $\mathbf{0 1 1}$ |


| SC 27 Wipes nose without request | 67.1 | 37.5 | . 000 |
| :---: | :---: | :---: | :---: |
| SC 28 Blows and wipes without request | 35.8 | 17.4 | . 000 |
| SC 29 Holds hands out for washing | 96.5 | 94.2 | . 212 |
| SC 30 Rubs hands together in washing | 89.1 | 81.3 | . 012 |
| SC 31 Turns water on, gets soap | 73.8 | 67.0 | . 101 |
| SC 32 Washes hands thoroughly | 58.5 | 45.5 | . 004 |
| SC 33 Dries hands thoroughly | 54.3 | 41.5 | . 004 |
| SC 34 Tries washing parts of body | 91.7 | 79.5 | . 000 |
| SC 35 Washes body thoroughly, not face | 60.7 | 29.5 | . 000 |
| SC 36 Gets soap and soaps cloth | 63.9 | 50.0 | . 001 |
| SC 37 Dries body thoroughly | 36.1 | 18.3 | . 000 |
| SC 38 Washes/dries face thoroughly | 34.5 | 29.5 | . 226 |
| SC 39 Assists in dressing | 97.4 | 98.7 | . 374 |
| SC 40 Removes most pullover garments | 81.5 | 75.0 | . 087 |
| SC 41 Puts on most pullover garments | 66.1 | 65.6 | . 927 |
| SC 42 Puts on/removes front-opening garments | 61.3 | 61.2 | 1.000 |
| SC 43 Puts on/removes fastened garments | 40.6 | 29.9 | . 014 |
| SC 44 Tries assisting with fasteners | 84.7 | 87.5 | . 381 |
| SC 45 Zips/unzips | 75.4 | 85.7 | . 003 |
| SC 46 Snaps/unsnaps | 58.1 | 45.5 | . 005 |
| SC 47 Buttons/unbuttons | 46.6 | 32.1 | . 001 |
| SC 48 Separates and unhooks zipper | 31.9 | 26.3 | . 180 |
| SC 49 Assists with pants | 94.8 | 96.0 | . 679 |
| SC 50 Removes elastic waist pants | 83.7 | 83.5 | 1.000 |
| SC 51 Puts on elastic waist pants | 70.6 | 72.3 | . 699 |
| SC 52 Unfastens and removes pants | 51.4 | 43.3 | . 066 |
| SC 53 Puts pants on and fastens | 35.1 | 27.7 | . 075 |
| SC 54 *Removes socks and unfastened shoes | 93.3 | 97.3 | . 044 |
| SC 55 Puts on unfastened shoes | 77.6 | 83.5 | . 101 |
| SC 56 Puts on socks | 69.3 | 65.1 | . 350 |
| SC 57 Puts shoes on correct foot, manages Velcro | 42.5 | 45.1 | . 597 |
| SC 58 Ties shoelaces | 13.4 | 1.3 | . 000 |
| SC 59 Assists with clothing | 76.4 | 73.7 | . 480 |
| SC 60 Tries to wipe self after toilet | 68.1 | 56.3 | . 006 |
| SC 61 Manages toilet seat, paper, flush | 64.9 | 58.0 | . 125 |
| SC 62 Manages clothes before and after toilet | 58.5 | 55.4 | . 481 |
| SC 63 Wipes self thoroughly after bowel | 30.7 | 11.2 | . 000 |
| SC 64 Indicates when wet | 85.6 | 79.0 | . 049 |
| SC 65 Occasionally indicates need to urinate | 74.8 | 68.8 | . 143 |
| SC 66 Consistently indicates need to urinate | 64.2 | 54.9 | . 032 |
| SC 67 Takes self to bathroom to urinate | 63.3 | 55.8 | . 090 |
| SC 68 Consistently dry day and night | 47.6 | 39.3 | . 064 |
| SC 69 Indicates need to change | 88.8 | 88.8 | 1.000 |
| SC 70 Occasionally indicates toilet need | 72.2 | 66.5 | . 182 |
| SC 71 Consistently indicates toilet need | 64.2 | 56.7 | . 088 |
| SC 72 Distinguishes urination/bowel | 63.6 | 61.2 | . 588 |
| SC 73 Takes self into toilet for bowel | 57.8 | 53.6 | . 334 |

It may also be worth noting that while there were sample differences on several subdomains, such differences do not necessarily occur with the individual scales within the subdomain.

## B. Age and sample differences on Self-care single items

A closer look at the five items of the Management of Bowel subdomain (SC69 through SC 73, cf. Figure 17 above) may provide an illustrative example of the advantage of considering sample and age differences simultaneously.

Blandly overstretching normal measurement assumptions, an ANOVA was performed on the individual item scores ( 0 or 1 ), with age groups (10) and samples (2) as factors.
Results should of course be interpreted very cautiously, but offer an interesting first look.


Figure 18: Per cent mastering the five items (SC69-73) of the Management of Bowel subdomain, in two samples with ten age groups.

The first of these items (SC69: Indicates need to change), yields an age effect only. This lack of a significant sample effect is consistent with results from the simpler approach used for the Fisher statistics in table 19.

With the remaining four items (SC70 through SC73), however, we obtain three significant effects:

1. An age effect, indicating general age differences across both samples
2. A sample effect, showing higher mean scores with the US sample
3. An interaction effect, indicating that the difference between the samples is not consistent across different ages.

Inspecting all curves in figure 18, we first see that they "peak" at different ages. While most American children indicate a need to be changed at the age of 24-29 months, mastery of the more difficult items comes later. Also the curves for the Norwegian children reflect the increasing difficulty of items SC69 through SC73.

Second, we see that the curve for the US children generally is above that of the Norwegians, showing that their mean score most often is the higher one. This is the sample effect.

Third, the percentage of children mastering each item clearly increases with age. While the younger children do not master most items, the older children generally do. This is the age effect.

Last, but not least, the sample difference is generally small with the younger groups. It then increases in mid-range, only to decrease again with the older age groups. In the beginning, the items are too difficult for most children. The American children soon face the challenges, however, and rise to master the items within 3-4 half-years. The Norwegian children also do, but a couple of half-years later. After a while, however, the Norwegians catch up, and both samples master the items. This slightly complex pattern is the interaction effect.

Since both age, sample and interaction effects are roughly similar with four out of the five items, they combine nicely to yield the very same effects on the subdomain level (cf. figure 17 and table 18, Management of Bowel subdomain).

A rather similar pattern may be found with the Management of Bladder subdomain, as shown in figure 19. Across all items, the American sample generally shows a higher percentage mastering the item. This adds up to a significant sample effect for this subdomain. This effect, however, does not extend to all single items. The difference between the proportion mastering the item in the two samples is significant only with two out of the five items (Indicates when wet and Consistently indicates need to urinate).

Viewed together, the item data from this subdomain suggest a pattern quite similar to that of the Management of Bowel subdomain. In the younger and the older age groups, the differences between the national samples are limited. At intermediate ages, however, a larger part of the American sample masters the items. If even younger and older groups had been added to these samples, ceiling as well as floor effects would quite likely become evident, clearly showing a limited age span where the items are relevant and useful.


## C. Sample differences of item difficulty

For a more sophisticated different way of comparing items across the two samples, consider the item difficulty calibrations computed in the Rasch analyses. Here, the "easy" items (mastered by most children) will have low scores, while item mastered by just a few will have high.

Self-care functional skill items


Figure 20: Self-care item difficulty scores in the two normative samples
Roughly speaking, the items are not too far from the regression line. With some exceptions, their relative placement therefore is relatively similar with the two samples.

In the scatterplot, each item is placed according to its difficulty calibration in the American (X-axis) and Norwegian (Y axis) samples. If the relative ranks in the two samples for all items had been equal, all observations would sit close to the regression line. Clearly, this is not the case: a number of items are placed some distance from this ideal line. To indicate the meaning of some of the "deviating" items, texts have been added. It may be worth noting that while some items are more difficult to the American sample (Eats ground/lumpy foods, Eats all textures of table food, Manages tangled hair), others are easier (Holds head for combing, Brushes teeth thoroughly, Ties shoelaces).

It is also worth noting that the regression line passes through the Y axis well below its zero point. Hence, a regression equation attempting to predict the Norwegian scores from their American counterparts will include some negative constant. In simpler terms, this
implies that item difficulty scores are generally higher in the American than in the Norwegian sample.

## D. DIF-tests of Self-Care item difficulty differences

Still another way of assessing the difficulty of items in the two samples, is to employ a DIF analysis (Tennant \& Pallant, 2007). In figure 21, the item difficulty scores from the two normative samples are plotted. Please cf. table 19 for viewing the content of the different item numbers.

Many items have rather similar scores in the two samples, and fall close to the dotted straight regression line. Quite a few items, however, have appreciably different scores in the two samples. They fall outside the $95 \%$ confidence interval shown as a "funnel" formed by heavy black lines. Among these are, e.g., item 25 (Blows nose) and item 4 (Eats all textures of table food).


Figure 21: DIF analysis of Self-care items in the two normative samples
The numbers in table 20 confirm that the differences between the samples are substantial, listing the items displaying $t$-values $>2$.

It is worth observing that differences are relatively numerous. Also, they go both ways, and generally correspond fairly well to the differences mapped in table 19.

Table 20: Self-care items with significant sample differences

| Norwegian |  |  | American |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Item } \\ \# \end{gathered}$ | Item name | $\begin{gathered} D I F \\ t \text {-value } \\ >2 \end{gathered}$ | $\begin{gathered} \text { Item } \\ \# \end{gathered}$ | Item name | $\begin{gathered} D I F \\ t \text {-value } \\ >2 \end{gathered}$ |
| 25 | Blows nose | 7.19 | 4 | Eats all textures of table food | 6.71 |
| 27 | Wipes nose without request | 5.66 | 14 | Pours liquid | 5.30 |
| 20 | Holds head for combing | 5.38 | 9 | Butters and cuts with knife | 4.55 |
| 18 | Brushes teeth thoroughly | 5.35 | 45 | Zipes/unzips | 3.49 |
| 35 | Washes body thoroughly, not face | 5.33 | 3 | Eats cut/chunky foods | 3.29 |
| 34 | Tries washing parts of body | 4.19 | 2 | Eats ground /lumpy foods | 3.26 |
| 30 | Rubs hands together in washing | 2.62 | 57 | Puts shoes on correct foot, Velcro OK | 3.18 |
| 17 | Brushes some teeth | 2.42 | 23 | Manages tangled hair | 2.92 |
| 26 | Wipes nose on request | 2.40 | 19 | Prepares toothbrush/paste | 2.89 |
| 24 | Allows nose wipe | 2.37 | 12 | Lifts cup securely w/one hand | 2.70 |
|  |  |  | 8 | Uses fork well | 2.44 |
|  |  |  | 55 | Puts on unfastened shoes | 2.17 |

## 2. Mobility function

### 2.1 Mobility domain

Secondly, consider the Mobility scale (Max. score = 59). Here, the ceiling effect may be observed in both samples.


Figure 22: Age means for Mobility domain raw score in two samples
And again, a two-way ANOVA identifies both age group and nation as significant effects. Consistent with the impression gained from the graphs, however, the national (sample) difference is smaller here than with the Self-care domain data.

Table 21: ANOVA of Mobility raw score in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:Mobility summed raw score

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $42148.590^{\mathrm{a}}$ | 19 | 2218.347 | 131.546 | .000 |
| Intercept | 1294671.825 | 1 | 1294671.825 | 76773.116 | .000 |
| group | 37114.244 | 9 | 4123.805 | 244.539 | .000 |
| Nation | 327.018 | 1 | 327.018 | 19.392 | .000 |
| group * Nation | 127.224 | 9 | 14.136 | .838 | .581 |
| Error | 8718.486 | 517 | 16.864 |  |  |
| Total | 1436813.000 | 537 |  |  |  |
| Corrected Total | 50867.076 | 536 |  |  |  |

Tests of Between-Subjects Effects
Dependent Variable:Mobility summed raw score

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $42148.590^{\mathrm{a}}$ | 19 | 2218.347 | 131.546 | .000 |
| Intercept | 1294671.825 | 1 | 1294671.825 | 76773.116 | .000 |
| group | 37114.244 | 9 | 4123.805 | 244.539 | .000 |
| Nation | 327.018 | 1 | 327.018 | 19.392 | .000 |
| group * Nation | 127.224 | 9 | 14.136 | .838 | .581 |
| Error | 8718.486 | 517 | 16.864 |  |  |
| Total | 1436813.000 | 537 |  |  |  |
| Corrected Total | 50867.076 | 536 |  |  |  |

a. R Squared $=.829$ (Adjusted R Squared $=.822$ )

### 2.2 Mobility subdomains

## A. Toilet Transfers (5 items)

The US sample scores higher.


Figure 23: Age means for Toilet Transfer subdomain in two samples

Table 22: ANOVA of Toilet Transfer subdomain in two samples and ten age groups Tests of Between-Subjects Effects
Dependent Variable:MOA

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $884.957^{\mathrm{a}}$ | 19 | 46.577 | 63.202 | .000 |
| Intercept | 6140.806 | 1 | 6140.806 | 8332.753 | .000 |
| Nation | 25.807 | 1 | 25.807 | 35.019 | .000 |
| group | 768.206 | 9 | 85.356 | 115.824 | .000 |
| Nation * group | 5.007 | 9 | .556 | .755 | .658 |
| Error | 381.002 | 517 | .737 |  |  |
| Total | 7932.000 | 537 |  |  |  |
| Corrected Total | 1265.959 | 536 |  |  |  |

a. $\quad$ R Squared $=.699$ (Adjusted R Squared $=.688$ )

## B. Chair/Wheelchair Transfers (5 items)

The US sample scores higher.


Figure 24: Age means for Chair/Wheelchair Transfers subdomain in two samples

Table 23: ANOVA of Chair/Wheelchair Transfers Transfer subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:MOB

|  | Type III Sum of <br> Squares | df |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | Mean Square | F | Sig. |  |  |
| Corrected Model | $105.228^{\mathrm{a}}$ | 19 | 5.538 | 21.895 | .000 |
| Intercept | 8817.177 | 1 | 8817.177 | 34857.285 | .000 |
| Nation | 1.905 | 1 | 1.905 | 7.532 | .006 |
| group | 91.136 | 9 | 10.126 | 40.032 | .000 |
| Nation * group | 4.029 | 9 | .448 | 1.770 | .071 |
| Error | 130.776 | 517 | .253 |  |  |
| Total | 9655.000 | 537 |  |  |  |
| Corrected Total | 236.004 | 536 |  |  |  |

a. R Squared $=.446$ (Adjusted R Squared $=.426$ )

## C. Car Transfers (5 items)

The US sample scores higher, but not in the two oldest groups.


Figure 25: Age means for Car Transfers subdomain in two samples

Table 24: ANOVA of Car Transfers subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:MOC

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $1221.077^{\mathrm{a}}$ | 19 | 64.267 | 87.983 | .000 |
| Intercept | 5077.731 | 1 | 5077.731 | 6951.486 | .000 |
| Nation | 37.141 | 1 | 37.141 | 50.847 | .000 |
| Group | 1117.914 | 9 | 124.213 | 170.049 | .000 |
| Nation * group | 21.577 | 9 | 2.397 | 3.282 | .001 |
| Error | 376.183 | 515 | .730 |  |  |
| Total | 7185.000 | 535 |  |  |  |
| Corrected Total | 1597.260 | 534 |  |  |  |

a. R Squared $=.764$ (Adjusted R Squared $=.756$ )

## D. Bed Mobility/Transfers (4 items)

The US sample scores higher, but the sample difference diminishes with age.


Figure 26: Age means for Bed Mobility/Transfers subdomain in two samples

Table 25: ANOVA of Bed Mobility/Transfers subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:MOD

| Source | Type III Sum of <br> Squares | df |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Mean Square | F | Sig. |  |  |  |
| Corrected Model | $234.043^{\mathrm{a}}$ | 19 | 12.318 | 38.176 | .000 |
| Intercept | 4845.569 | 1 | 4845.569 | 15017.387 | .000 |
| Nation | 36.116 | 1 | 36.116 | 111.930 | .000 |
| Group | 205.140 | 9 | 22.793 | 70.641 | .000 |
| Nation * group | 12.513 | 9 | 1.390 | 4.309 | .000 |
| Error | 166.817 | 517 | .323 |  |  |
| Total | 5751.000 | 537 |  |  |  |
| Corrected Total | 400.860 | 536 |  |  |  |

a. R Squared $=.584$ (Adjusted R Squared $=.569$ )

## E. Tub Transfers (5 items)

The US sample scores higher.


Figure 27: Age means for Tub Transfers subdomain in two samples

Table 26: ANOVA of Tub Transfers subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:MOE

| Source | Type III Sum of <br> Squares | df |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Mean Square | F | Sig. |  |  |  |
| Corrected Model | $322.560^{\mathrm{a}}$ | 19 | 16.977 | 34.493 | .000 |
| Intercept | 9071.502 | 1 | 9071.502 | 18431.052 | .000 |
| Nation | 5.654 | 1 | 5.654 | 11.489 | .001 |
| group | 283.560 | 9 | 31.507 | 64.014 | .000 |
| Nation * group | 6.836 | 9 | .760 | 1.543 | .130 |
| Error | 254.460 | 517 | .492 |  |  |
| Total | 10317.000 | 537 |  |  |  |
| Corrected Total | 577.020 | 536 |  |  |  |

a. R Squared $=.559$ (Adjusted R Squared $=.543$ )

## F. Indoor Locomotion Methods (3 items)

No significant difference between the two samples.


Figure 28: Age means for Indoor Locomotion Methods subdomain in two samples

Table 27: ANOVA of Indoor Locomotion Methods subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:MOF

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $6.495^{\mathrm{a}}$ | 19 | .342 | 7.766 | .000 |
| Intercept | 4449.981 | 1 | 4449.981 | 101083.900 | .000 |
| Nation | .066 | 1 | .066 | 1.509 | .220 |
| Group | 3.664 | 9 | .407 | 9.249 | .000 |
| Nation * group | .363 | 9 | .040 | .917 | .510 |
| Error | 22.760 | 517 | .044 |  |  |
| Total | 4743.000 | 537 |  |  |  |
| Corrected Total | 29.255 | 536 |  |  |  |

a. R Squared $=.222$ (Adjusted R Squared $=.193$ )

## G. Indoor Locomotion - Distance/speed (5 items)

No significant difference between the two samples.


Figure 29: Age means for Indoor Locomotion - Distance/speed subdomain in two samples

Table 28: ANOVA of Indoor Locomotion - Distance/speed subdomain in two samples and ten age groups

> Tests of Between-Subjects Effects

Dependent Variable:MOG

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $81.002^{\mathrm{a}}$ | 19 | 4.263 | 21.306 | .000 |
| Intercept | 11311.605 | 1 | 11311.605 | 56531.507 | .000 |
| Nation | .249 | 1 | .249 | 1.244 | .265 |
| Group | 69.341 | 9 | 7.705 | 38.505 | .000 |
| Nation * group | 2.230 | 9 | .248 | 1.238 | .269 |
| Error | 103.449 | 517 | .200 |  |  |
| Total | 12227.000 | 537 |  |  |  |
| Corrected Total | 184.451 | 536 |  |  |  |

a. R Squared $=.439$ (Adjusted R Squared $=.419$ )

## H. Indoor Locomotion - Pulls /Carries Objects (5 items)

The Norwegian sample scores higher.


Figure 30: Age means for Indoor Locomotion - Pulls/Carries Objects subdomain in two samples

Table 29: ANOVA of Indoor Locomotion - Pulls/Carries Objects subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:MOH

|  | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | $82.411^{2}$ | 19 | 4.337 | 25.513 | .000 |
| Corrected Model | 11304.415 | 1 | 11304.415 | 66493.288 | .000 |
| Intercept | .718 | 1 | .718 | 4.221 | .040 |
| Nation | 70.097 | 9 | 7.789 | 45.813 | .000 |
| Group | 1.169 | 9 | .130 | .764 | .650 |
| Nation * group | 87.894 | 517 | .170 |  |  |
| Error | 12175.000 | 537 |  |  |  |
| Total | 170.305 | 536 |  |  |  |
| Corrected Total |  |  |  |  |  |

a. $\quad$ R Squared $=.484$ (Adjusted R Squared $=.465$ )

## I. Outdoor Locomotion - Methods (2 items)

No significant difference between the two samples.


Figure 31: Age means for Outdoor Locomotion - Methods subdomain in two samples

Table 30: ANOVA of Outdoor Locomotion - Methods subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:MOI

|  | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | $16.237^{\mathrm{a}}$ | 19 | .855 | 10.685 | .000 |
| Corrected Model | 1892.867 | 1 | 1892.867 | 23667.070 | .000 |
| Intercept | .058 | 1 | .058 | .722 | .396 |
| Nation | 11.610 | 9 | 1.290 | 16.130 | .000 |
| group | .155 | 9 | .017 | .215 | .992 |
| Nation * group | 41.349 | 517 | .080 |  |  |
| Error | 2064.000 | 537 |  |  |  |
| Total | 57.587 | 536 |  |  |  |
| Corrected Total |  |  |  |  |  |

a. R Squared $=.282$ (Adjusted R Squared $=.256$ )

## J. Outdoor Locomotion - Distance /Speed (5 items)

No significant difference between the two samples.


Figure 32: Age means for Outdoor Locomotion - Distance/Speed subdomain in two samples

Table 31: ANOVA of Outdoor Locomotion - Distance/Speed subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:MOJ

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $291.688^{\mathrm{a}}$ | 19 | 15.352 | 21.723 | .000 |
| Intercept | 10951.087 | 1 | 10951.087 | 15495.543 | .000 |
| Nation | 1.765 | 1 | 1.765 | 2.497 | .115 |
| Group | 233.866 | 9 | 25.985 | 36.768 | .000 |
| Nation * group | 2.522 | 9 | .280 | .397 | .937 |
| Error | 365.377 | 517 | .707 |  |  |
| Total | 12240.000 | 537 |  |  |  |
| Corrected Total | 657.065 | 536 |  |  |  |

a. $\quad$ R Squared $=.444$ (Adjusted R Squared $=.423$ )

## K. Outdoor Surfaces (5 items)

No significant difference between the two samples.


Figure 33: Age means for Outdoor Surfaces subdomain in two samples

Table 32: ANOVA of Outdoor Surfaces subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:MOK

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $337.476^{2}$ | 19 | 17.762 | 36.096 | .000 |
| Intercept | 10867.077 | 1 | 10867.077 | 22084.034 | .000 |
| Nation | .149 | 1 | .149 | .302 | .583 |
| group | 296.305 | 9 | 32.923 | 66.906 | .000 |
| Nation * group | 4.903 | 9 | .545 | 1.107 | .356 |
| Error | 254.405 | 517 | .492 |  |  |
| Total | 12212.000 | 537 |  |  |  |
| Corrected Total | 591.881 | 536 |  |  |  |

a. $\quad$ R Squared $=.570$ (Adjusted R Squared $=.554$ )

## L. Up Stairs (5 items)

No significant difference between the two samples.


Figure 34: Age means for Up Stairs subdomain in two samples

Table 33: ANOVA of $\boldsymbol{U p}$ Stairs subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:MOL

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $476.442^{\mathrm{a}}$ | 19 | 25.076 | 61.247 | .000 |
| Intercept | 10177.769 | 1 | 10177.769 | 24858.647 | .000 |
| Nation | 1.166 | 1 | 1.166 | 2.847 | .092 |
| group | 402.509 | 9 | 44.723 | 109.234 | .000 |
| Nation * group | 7.718 | 9 | .858 | 2.095 | .028 |
| Error | 211.673 | 517 | .409 |  |  |
| Total | 11486.000 | 537 |  |  |  |
| Corrected Total | 688.115 | 536 |  |  |  |

a. R Squared $=.692$ (Adjusted R Squared $=.681$ )

## M. Down Stairs ( 5 items)

No significant difference between the two samples.


Figure 35: Age means for Down Stairs subdomain in two samples

Table 34: ANOVA of Down Stairs subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:MOM

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $755.327^{\mathrm{a}}$ | 19 | 39.754 | 69.235 | .000 |
| Intercept | 9374.974 | 1 | 9374.974 | 16327.357 | .000 |
| Nation | .013 | 1 | .013 | .023 | .880 |
| group | 651.972 | 9 | 72.441 | 126.163 | .000 |
| Nation * group | 6.724 | 9 | .747 | 1.301 | .233 |
| Error | 296.855 | 517 | .574 |  |  |
| Total | 11058.000 | 537 |  |  |  |
| Corrected Total | 1052.182 | 536 |  |  |  |

a. R Squared $=.718$ (Adjusted R Squared $=.707$ )

### 2.3 Mobility items

## A. All-over sample differences in Mobility capability

Next, consider the Mobility items. Here, 17 out of the 59 items yield significant differences between the "difficulty" scores of the two samples. About half of these differences go in the "unexpected" direction, i.e. the item is most difficult to the US sample - in spite of this sample's higher summed score on the total Mobility scale.

Also here, differences may go either way. While some items are more difficult to the Norwegian children, others are more challenging to the US children. The items that are easiest for the Norwegian sample are marked by asterisks in the table, e.g. items related to walking outdoor or up/down steps.

Table 35: Mobility items; proportion mastering items in two samples (US=313, Norw=224)

| Scale | No | Item | \% US | \% Norw | Fisher $\boldsymbol{p}$ |
| :--- | :---: | :--- | :---: | :---: | :---: |
| MO | 1 | Sits supported on toilet | 88.5 | 90.2 | 0.574 |
| MO | 2 | Sits unsupported on toilet | 85.3 | 88.4 | 0.369 |
| MO | 3 | Climbs/slides low toilet | 81.2 | 81.7 | 0.911 |
| MO | 4 | Climbs/slides adult toilet | 68.7 | 64.7 | 0.353 |
| MO | 5 | Gets on/off toilet not needing arms | 36.7 | 16.1 | $\mathbf{0 . 0 0 0}$ |
| MO | 6 | Sits supported in chair | 99.7 | 100.0 | 1.000 |
| MO | 7 | Sits unsupported in chair | 99.4 | 99.1 | 1.000 |
| MO | 8 | Climbs on/off low chair | 97.4 | 99.6 | 0.087 |
| MO | 9 | * Gets on/off adult chair | 88.2 | 95.1 | $\mathbf{0 . 0 0 6}$ |
| MO | 10 | Gets on/off adult chair not needing arms | 34.8 | 24.1 | $\mathbf{0 . 0 0 8}$ |
| MO | 11 | Moves in car | 92.0 | 80.4 | $\mathbf{0 . 0 0 0}$ |
| MO | 12 | Gets in/out of car | 81.4 | 77.2 | 0.277 |


| MO | 13 | Gets in/out of car independently | 71.1 | 71.4 | 1.000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MO | 14 | Manages seat beltrestraint | 51.1 | 30.8 | 0.000 |
| MO | 15 | * Opens/closes car door | 37.3 | 50.0 | 0.004 |
| MO | 16 | Raises to sitting in bed | 100.0 | 100.0 | - |
| MO | 17 | Sits and lies down at edge of bed | 94.2 | 87.1 | 0.005 |
| MO | 18 | Gets in/out of own bed | 90.1 | 81.3 | 0.005 |
| MO | 19 | Gets in/out of bed not needing arms | 47.6 | 24.6 | 0.000 |
| MO | 20 | Sits supported in tub | 99.7 | 100.0 | 1.000 |
| MO | 21 | Sit unsupported in tub | 98.7 | 99.6 | 0.407 |
| MO | 22 | Climbs in/out of tub | 82.1 | 79.0 | 0.376 |
| MO | 23 | Sits down/stands up in tub | 86.9 | 90.6 | 0.218 |
| MO | 24 | Gets in/out of adult tub | 60.7 | 53.6 | 0.111 |
| MO | 25 | Crawls on floor | 100.0 | 100.0 | - |
| MO | 26 | Walks with support | 98.4 | 100.0 | 0.079 |
| MO | 27 | Walks without support | 96.2 | 98.7 | 0.111 |
| MO | 28 | Moves in room with difficulty | 100.0 | 100.0 | - |
| MO | 29 | Moves in room without difficulty | 88.0 | 100.0 | 0.269 |
| MO | 30 | Moves between rooms with difficulty | 97.8 | 99.1 | 0.317 |
| MO | 31 | Moves between rooms without difficulty | 97.1 | 98.2 | 0.572 |
| MO | 32 | Moves and handles doors | 78.0 | 78.6 | 0.916 |
| MO | 33 | Changes position on purpose | 100.0 | 100.0 | - |
| MO | 34 | Moves objects along floor | 99.4 | 100.0 | 0.513 |
| MO | 35 | Carries one-hand objects | 98.7 | 99.6 | 0.407 |
| MO | 36 | Carries two-hand objects | 96.2 | 97.3 | 0.628 |
| MO | 37 | * Carries fragile/spillable | 71.9 | 85.3 | 0.000 |
| MO | 38 | Walks outdoor with support | 96.8 | 99.1 | 0.084 |
| MO | 39 | Walks outdoor without support | 94.2 | 97.3 | 0.095 |
| MO | 40 | Moves 10-50 feet outdoor | 97.1 | 97.8 | 0.786 |
| MO | 41 | Moves 50-100 feet outdoor | 93.6 | 96.4 | 0.171 |
| MO | 42 | * Moves 100-150 feet outdoor | 89.8 | 95.5 | 0.015 |
| MO | 43 | * Moves 150+ feet with difficulty | 87.5 | 95.5 | 0.001 |
| MO | 44 | * Moves 150+ feet without difficulty | 84.7 | 95.5 | 0.000 |
| MO | 45 | Walks level surfaces | 97.4 | 97.8 | 1.000 |
| MO | 46 | Walks uneven surfaces | 94.6 | 96.9 | 0.289 |
| MO | 47 | Walks rough surfaces | 92.0 | 96.0 | 0.073 |
| MO | 48 | Walks up/down inclines | 90.1 | 92.9 | 0.283 |
| MO | 49 | Walks up/down curbs | 85.0 | 90.2 | 0.089 |
| MO | 50 | * Crawls up 1-11 steps | 97.8 | 100.0 | 0.045 |
| MO | 51 | Crawls up 12-15 steps | 95.8 | 97.8 | 0.331 |
| MO | 52 | Walks up 1-11 steps | 87.2 | 91.5 | 0.126 |
| MO | 53 | * Walks up 12-15 steps with difficulty | 81.8 | 88.8 | 0.028 |
| MO | 54 | * Walks up 12-15 steps without difficulty | 73.5 | 87.5 | 0.000 |
| MO | 55 | Crawls down 1-11 steps | 94.2 | 96.0 | 0.427 |
| MO | 56 | Crawls down 12-15 steps | 91.4 | 94.2 | 0.246 |
| MO | 57 | Walks down 1-11 steps | 85.0 | 87.9 | 0.375 |
| MO | 58 | Walks down 12-15 steps with difficulty | 80.5 | 85.7 | 0.133 |
| MO | 59 | * Walks down 12-15 steps without difficulty | 70.3 | 82.1 | 0.002 |

## B. Age and sample differences on Mobility single items

Also with the mobility items, there may be interesting discrepancies between results at the sub-domain and the single-item level. The five items of the subdomain Indoor Locomotion - Pulls/Carries Objects (MO33 through MO37, cf. figure 36 above) give an example of this.

Plots in figure 36 below show the percentage mastering the item within each age group. And again disregarding measurement assumptions, ANOVAs on binary scores were performed to gain an initial impression of the age and sample effects.

Results are instructive. All subjects in both samples mastered the first item (MO33). Consequently, the figure makes no sense, and is not shown. And, obviously, neither age nor sample differences exist. The following three items (MO34 through MO36) are mastered by all but the youngest group. While this makes understandable figures, it yields no age effects. There also is no sample effect with item MO34, but items MO35 and MO36 do show one. The graphs show, however, that this "general" effect is due to differences within one or two age groups only.

The fifth item in this subdomain (MO37: Carries fragile or spillable objects), displays a more familiar pattern. Here, there is a clear age effect as well as a sample difference.

However, all these five items were used to form one subdomain score (Indoor Locomotion - Pulls /Carries Objects, cf. figure 30 and table 29 above). And, unfortunately, ANOVA of this combined score indicate sample as well as age effects for the subdomain.

This subdomain, therefore, is a case of misleading grouping of different tendencies. Lumping four items without age differences with one case containing such differences, we obtain summed scores suggesting that age differences are important throughout the entire domain. Clearly, results may look different, depending on the level of analysis.


Figure 36: Per cent mastering the four last items of the Indoor Locomotion - Pulls /Carries Objects subdomain, in two samples with ten age groups

## C. Sample differences of item difficulty

## Mobility functional skill items



Figure 37: Mobility item difficulty scores in the two normative samples

Items are not very far from the regression line, suggesting that their relative placement is not very different in the two samples.

To indicate the content of interesting items, some texts have been added. Some items are more difficult to the American sample (Gets on/off toilet not needing arms, Moves in car, Sits supported in tub), while others are easier (Crawls up 1-11 steps, Climbs on/off low chair).

Also here, the regression line passes through the Y axis well below its zero point. Hence, a regression equation attempting to predict the Norwegian scores from their American counterparts will include some negative constant. In simpler terms, this implies that item difficulty scores are generally higher in the American than in the Norwegian sample.

## D. DIF-tests of Mobility item difficulty differences

In figure 38, the item difficulty scores from the two normative samples are plotted. Please cf. table 35 for viewing the content of the different item numbers.

Also here, many items have rather similar scores in the two samples, falling close to the dotted straight regression line. Quite a few items, however, have appreciably different scores in the two samples. They fall outside the $95 \%$ confidence interval. Examples of this are, e.g., item 11 (Moves in car) and item 44 (Moves 150+ feet without difficulty).


Figure 38: DIF analysis of Mobility items in the two normative samples
The numbers in table 36 confirm that the differences between the samples are substantial, listing the items displaying t -values $>2$.

It is worth observing that differences are relatively numerous, and go both ways. Also, they generally correspond fairly well to the differences mapped in table 35 , including items related to walking outdoor or up/down steps.

Table 36: Mobility items with significant sample differences

| Norwegian <br> Item <br> \# |  | Item name | DIF <br> $t$-value <br> $>2$ | Item <br> \# | Item name |
| :---: | :--- | :---: | ---: | :--- | :---: |
| 11 | Moves in car | 6.86 | 15 | DIF <br> $t$-value <br> $>2$ |  |
| 18 | Gets in/out of own bed | 5.79 | 54 | Walks up 12-15 <br> stepsw.o. diff. | 5.07 |
| 19 | Gets in/out of bed not <br> needing arms | 5.70 | 37 | Carries fragile /spillable | 4.79 |
| 17 | Sits and lies down at <br> edge of bed | 5.61 | 44 | Moves 150+ feet w.o. <br> diff. | 4.74 |
| 14 | Manages seat belt <br> /restraint | 4.89 | 59 | Walks down 12-15 steps <br> w.o. diff. | 4.17 |
| 22 | Climbs in/out of tub | 3.54 | 43 | Moves 150+ feet with <br> difficulty | 3.28 |
| 12 | Gets in/out of car | 2.65 | 9 | Gets on/off adult chair | 2.70 |
|  |  | 42 | Moves 100-150 feet <br> outdoor | 2.27 |  |
|  |  | 53 | Walks up 12-15 steps <br> with diff. | 2.08 |  |

## 3. Social function

### 3.1 Social function domain

With the Social functions scale (Max. score = 65), the differences between the US and the Norwegian materials appear even smaller, and clearly less consistent.


Figure 39: Age means for Social function domain raw score in two samples
This impression is confirmed by the ANOVA, showing no significant difference between the two national samples. The magnitude of the significant age group effect, however, appears to be comparable to that of the first two scales.

Table 37: ANOVA of Social Function raw score in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:Social functions summed raw score

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $100388.565^{\text {a }}$ | 19 | 5283.609 | 184.005 | .000 |
| Intercept | 1065101.009 | 1 | 1065101.009 | 37092.716 | .000 |
| group | 89073.990 | 9 | 9897.110 | 344.672 | .000 |
| Nation | 36.676 | 1 | 36.676 | 1.277 | .259 |
| group * Nation | 258.892 | 9 | 28.766 | 1.002 | .437 |
| Error | 14845.427 | 517 | 28.715 |  |  |
| Total | 1251710.000 | 537 |  |  |  |
| Corrected Total | 115233.993 | 536 |  |  |  |

a. R Squared $=.871$ (Adjusted R Squared $=.866$ )

### 3.2 Social subdomains

## A. Comprehension of Word Meanings ( 5 items)

Norwegian sample scores higher.


Figure 40: Age means for Comprehension of Word Meanings subdomain in two samples

Table 38: ANOVA of Comprehension of Word Meanings subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOA

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $196.986^{\mathrm{a}}$ | 19 | 10.368 | 47.836 | .000 |
| Intercept | 10458.114 | 1 | 10458.114 | 48252.677 | .000 |
| Nation | .848 | 1 | .848 | 3.914 | .048 |
| group | 166.338 | 9 | 18.482 | 85.274 | .000 |
| Nation * group | .907 | 9 | .101 | .465 | .898 |
| Error | 112.053 | 517 | .217 |  |  |
| Total | 11414.000 | 537 |  |  |  |
| Corrected Total | 309.039 | 536 |  |  |  |

a. R Squared $=.637$ (Adjusted R Squared $=.624$ )

## B. Comprehension of Sentence Complexity (5 items)

US sample scores higher.


Figure 41: Age means for Comprehension of Sentence Complexity subdomain in two samples

Table 39: ANOVA of Comprehension of Sentence Complexity subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOB

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $628.860^{\circ}$ | 19 | 33.098 | 70.296 | .000 |
| Intercept | 8889.631 | 1 | 8889.631 | 18880.495 | .000 |
| Nation | 4.871 | 1 | 4.871 | 10.346 | .001 |
| group | 559.798 | 9 | 62.200 | 132.105 | .000 |
| Nation * group | 4.494 | 9 | .499 | 1.061 | .391 |
| Error | 243.423 | 517 | .471 |  |  |
| Total | 10468.000 | 537 |  |  |  |
| Corrected Total | 872.283 | 536 |  |  |  |

a. R Squared $=.721$ (Adjusted R Squared $=.711$ )

## C. Functional Use of Communication (5 items)

US sample scores higher.


Figure 42: Age means for Functional Use of Communication subdomain in two samples

Table 40: ANOVA of Functional Use of Communication subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOC

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $776.108^{\mathrm{a}}$ | 19 | 40.848 | 74.694 | .000 |
| Intercept | 8723.326 | 1 | 8723.326 | 15951.460 | .000 |
| Nation | 3.732 | 1 | 3.732 | 6.825 | .009 |
| group | 709.638 | 9 | 78.849 | 144.183 | .000 |
| Nation * group | 5.196 | 9 | .577 | 1.056 | .394 |
| Error | 282.730 | 517 | .547 |  |  |
| Total | 10436.000 | 537 |  |  |  |
| Corrected Total | 1058.838 | 536 |  |  |  |

a. R Squared $=.733$ (Adjusted R Squared $=.723$ )

## D. Complexity of Expressive Communication (5 items)

No significant difference between the two samples.


Figure 43: Age means for Complexity of Expressive Communication subdomain in two samples

Table 41: ANOVA of Complexity of Expressive Communication subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOD

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $585.619^{\mathrm{a}}$ | 19 | 30.822 | 90.669 | .000 |
| Intercept | 8989.897 | 1 | 8989.897 | 26445.639 | .000 |
| Nation | .384 | 1 | .384 | 1.130 | .288 |
| group | 535.890 | 9 | 59.543 | 175.159 | .000 |
| Nation * group | 4.135 | 9 | .459 | 1.352 | .207 |
| Error | 175.748 | 517 | .340 |  |  |
| Total | 10374.000 | 537 |  |  |  |
| Corrected Total | 761.367 | 536 |  |  |  |

[^0]
## E. Problem Resolution (5 items)

No significant difference between the two samples.


Figure 44: Age means for Problem Resolution subdomain in two samples

Table 42: ANOVA of Problem Resolution subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOE

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $628.631^{\mathrm{a}}$ | 19 | 33.086 | 44.031 | .000 |
| Intercept | 6507.260 | 1 | 6507.260 | 8659.902 | .000 |
| Nation | .889 | 1 | .889 | 1.183 | .277 |
| group | 544.894 | 9 | 60.544 | 80.572 | .000 |
| Nation * group | 7.579 | 9 | .842 | 1.121 | .346 |
| Error | 388.486 | 517 | .751 |  |  |
| Total | 7968.000 | 537 |  |  |  |
| Corrected Total | 1017.117 | 536 |  |  |  |

a. R Squared $=.618($ Adjusted R Squared $=.604)$

## F. Social Interactive Play (5 items)

The US sample scores higher in some age groups, the Norwegian sample in others.


Figure 45: Age means for Social Interactive Play subdomain in two samples

Table 43: ANOVA of Social Interactive Play subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOF

| Source | Type III Sum of <br> Squares | df |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Mean Square | F | Sig. |  |  |  |
| Corrected Model | $306.054^{\mathrm{a}}$ | 19 | 16.108 | 41.807 | .000 |
| Intercept | 9680.838 | 1 | 9680.838 | 25125.347 | .000 |
| Nation | 1.029 | 1 | 1.029 | 2.672 | .103 |
| group | 251.738 | 9 | 27.971 | 72.595 | .000 |
| Nation * group | 7.951 | 9 | .883 | 2.293 | .016 |
| Error | 199.201 | 517 | .385 |  |  |
| Total | 10763.000 | 537 |  |  |  |
| Corrected Total | 505.255 | 536 |  |  |  |

a. R Squared $=.606($ Adjusted R Squared $=.591)$

## G. Peer Interaction (5 items)

No significant difference between the two samples.


Figure 46: Age means for Peer Interaction subdomain in two samples

Table 44: ANOVA of Peer Interaction subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SOG

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $733.227^{\mathrm{a}}$ | 19 | 38.591 | 82.435 | .000 |
| Intercept | 6633.166 | 1 | 6633.166 | 14169.222 | .000 |
| Nation | .146 | 1 | .146 | .312 | .577 |
| group | 675.543 | 9 | 75.060 | 160.338 | .000 |
| Nation * group | .782 | 9 | .087 | .186 | .996 |
| Error | 242.028 | 517 | .468 |  |  |
| Total | 8049.000 | 537 |  |  |  |
| Corrected Total | 975.255 | 536 |  |  |  |

a. R Squared $=.752$ (Adjusted R Squared $=.743$ )

## H. Play with Objects ( 5 items)

No significant difference between the two samples.


Figure 47: Age means for Play with Objects subdomain in two samples

Table 45: ANOVA of Play with Objects subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOH

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $560.562^{\mathrm{a}}$ | 19 | 29.503 | 66.492 | .000 |
| Intercept | 7528.651 | 1 | 7528.651 | 16967.545 | .000 |
| Nation | .030 | 1 | .030 | .068 | .794 |
| group | 478.984 | 9 | 53.220 | 119.944 | .000 |
| Nation * group | 3.734 | 9 | .415 | .935 | .494 |
| Error | 229.398 | 517 | .444 |  |  |
| Total | 8777.000 | 537 |  |  |  |
| Corrected Total | 789.959 | 536 |  |  |  |

a. R Squared $=.710$ (Adjusted R Squared $=.699$ )

## I. Self -Information (5 items)

Norwegian sample scores higher.


Figure 48: Age means for Self Information subdomain in two samples

Table 46: ANOVA of Self Information subdomain in two samples and ten age groups
Tests of Between-Subjects Effects
Dependent Variable:SOI

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $1437.556^{\mathrm{a}}$ | 19 | 75.661 | 128.456 | .000 |
| Intercept | 4243.548 | 1 | 4243.548 | 7204.622 | .000 |
| Nation | 12.774 | 1 | 12.774 | 21.687 | .000 |
| group | 1305.098 | 9 | 145.011 | 246.197 | .000 |
| Nation * group | 4.295 | 9 | .477 | .810 | .607 |
| Error | 304.515 | 517 | .589 |  |  |
| Total | 6216.000 | 537 |  |  |  |
| Corrected Total | 1742.071 | 536 |  |  |  |

a. R Squared $=.825($ Adjusted R Squared $=.819)$

## J. Time Orientation (5 items)

US sample scores higher, mainly with older age groups.


Figure 49: Age means for Time Orientation subdomain in two samples

Table 47: ANOVA of Time Orientation subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOJ

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $917.842^{\mathrm{a}}$ | 19 | 48.307 | 59.513 | .000 |
| Intercept | 2853.155 | 1 | 2853.155 | 3514.954 | .000 |
| Nation | 14.223 | 1 | 14.223 | 17.522 | .000 |
| Group | 798.960 | 9 | 88.773 | 109.365 | .000 |
| Nation * group | 20.050 | 9 | 2.228 | 2.744 | .004 |
| Error | 419.659 | 517 | .812 |  |  |
| Total | 4446.000 | 537 |  |  |  |
| Corrected Total | 1337.501 | 536 |  |  |  |

a. R Squared $=.686($ Adjusted R Squared $=.675)$

## K. Household Chores (5 items)

US sample scores higher, mainly with older age groups.


Figure 50: Age means for Household Chores subdomain in two samples

Table 48: ANOVA of Household Chores subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOK

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $751.583^{\mathrm{a}}$ | 19 | 39.557 | 47.059 | .000 |
| Intercept | 4685.323 | 1 | 4685.323 | 5573.859 | .000 |
| Nation | 18.185 | 1 | 18.185 | 21.634 | .000 |
| group | 630.275 | 9 | 70.031 | 83.311 | .000 |
| Nation * group | 18.474 | 9 | 2.053 | 2.442 | .010 |
| Error | 434.584 | 517 | .841 |  |  |
| Total | 6256.000 | 537 |  |  |  |
| Corrected Total | 1186.168 | 536 |  |  |  |

a. R Squared $=.634($ Adjusted R Squared $=.620)$

## L. Self-Protection (5 items)

US sample scores higher, mainly with older age groups.


Figure 51: Age means for Self Protection subdomain in two samples

Table 49: ANOVA of Self Protection subdomain in two samples and ten age groups Tests of Between-Subjects Effects
Dependent Variable:SOL

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $545.157^{\mathrm{a}}$ | 19 | 28.692 | 46.580 | .000 |
| Intercept | 2675.800 | 1 | 2675.800 | 4343.954 | .000 |
| Nation | 19.089 | 1 | 19.089 | 30.990 | .000 |
| group | 439.719 | 9 | 48.858 | 79.317 | .000 |
| Nation * group | 23.477 | 9 | 2.609 | 4.235 | .000 |
| Error | 318.463 | 517 | .616 |  |  |
| Total | 3764.000 | 537 |  |  |  |
| Corrected Total | 863.620 | 536 |  |  |  |

a. R Squared $=.631$ (Adjusted R Squared $=.618$ )

## M. Community Function (5 items)

Norwegian sample scores higher.


Figure 52: Age means for Community Function subdomain in two samples

Table 50: ANOVA of Community Function subdomain in two samples and ten age groups

Tests of Between-Subjects Effects
Dependent Variable:SOM

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $600.939^{\mathrm{a}}$ | 19 | 31.628 | 58.258 | .000 |
| Intercept | 3753.750 | 1 | 3753.750 | 6914.210 | .000 |
| Nation | 50.368 | 1 | 50.368 | 92.775 | .000 |
| Group | 463.211 | 9 | 51.468 | 94.801 | .000 |
| Nation * group | 3.245 | 9 | .361 | .664 | .742 |
| Error | 280.681 | 517 | .543 |  |  |
| Total | 4727.000 | 537 |  |  |  |
| Corrected Total | 881.620 | 536 |  |  |  |

a. R Squared $=.682($ Adjusted R Squared $=.670)$

### 3.3 Social Function items

## A. All-over sample differences in Social Function capability

The single items of the Social Function scale are next. Again, sample differences go both ways. Out of the 65 items, 24 yield significant differences between the two samples. Nineteen of these differences mean that items are easier for the Norwegian sample. These items are marked with an asterisk. As we have seen previously, however, there is no significant sample difference for the total summed Social Function scale.

Table 51: Social Function items; proportion mastering items in two samples (US=313, Norw=224)

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Scale | No |  |  |  |  |
|  |  | US | NO | Fisher's p |  |
| SF | 1 | Orients to sound | 99.7 | 100.0 | 1.000 |
| SF | 2 | Responds to "No" | 99.7 | 99.6 | 1.000 |
| SF | 3 | Understands 10 words | 96.5 | 98.9 | 0.170 |
| SF | 4 | *Understands talk about relationships | 87.2 | 93.8 | $\mathbf{0 . 0 1 3}$ |
| SF | 5 | *Understands talk about time and sequence | 63.6 | 74.1 | $\mathbf{0 . 0 1 1}$ |
| SF | 6 | Understands short sentences | 97.8 | 98.7 | 0.533 |
| SF | 7 | Understands 1-step commands | 94.6 | 93.8 | 0.711 |
| SF | 8 | Understands directions with "where" | 86.9 | 87.0 | 0.793 |
| SF | 9 | Understands 2-step commands | 76.4 | 72.8 | 0.365 |
| SF | 10 | Understands two sentences in different forms | 65.8 | 71.4 | 0.189 |
| SF | 11 | Names things | 97.8 | 92.9 | $\mathbf{0 . 0 0 8}$ |
| SF | 12 | Direct or requests | 92.0 | 96.0 | 0.073 |
| SF | 13 | Seeks information | 82.4 | 82.6 | 1.000 |
| SF | 14 | Describes object or action | 74.8 | 79.0 | 0.258 |
| SF | 15 | Tells about feelings/thoughts | 68.7 | 70.5 | 0.704 |
| SF | 16 | Gestures with meaning | 98.7 | 98.7 | 1.000 |
| SF | 17 | Single word with meaning | 96.8 | 96.4 | 0.813 |
| SF | 18 | Two words with meaning | 87.5 | 88.8 | 0.687 |
| SF | 19 | 4-5 word sentences | 74.8 | 79.9 | 0.178 |
| SF | 20 | Connects two thoughts in story | 59.4 | 67.4 | 0.070 |
| SF | 21 | Tries to show problem | 97.1 | 99.1 | 0.132 |
| SF | 22 | *Tackles only immediate help | 84.0 | 95.5 | $\mathbf{0 . 0 0 0}$ |
| SF | 23 | Seeks help, tackles short delay | 70.3 | 69.6 | 0.924 |
| SF | 24 | Describes problem/feeling | 58.5 | 62.5 | 0.372 |
| SF | 25 | Joins adult in solving problem | 44.7 | 40.2 | 0.331 |
| SF | 26 | Awareness and interest in others | 100.0 | 100.0 | - |
| SF | 27 | *Initiates a familiar play routine | 94.2 | 99.1 | $\mathbf{0 . 0 0 2}$ |
| SF | 28 | * Takes turn when cued | 88.8 | 95.1 | $\mathbf{0 . 0 1 2}$ |
| SF | 29 | *Attempts to imitate adult's action | 85.9 | 92.9 | $\mathbf{0 . 0 1 2}$ |
| SF | 30 | Suggest new steps/ideas | 57.5 | 84.7 | 0.107 |
| SF | 31 | Notices presence of other children | 100.0 | 100.0 | - |
| SF | 32 | Interacts with other children | 94.6 | 97.3 | 0.135 |
| SF | 33 | *Tries to work out simple plans for play | 64.5 | 75.4 | $\mathbf{0 . 0 0 8}$ |
| SF | 34 | Plans and carries out cooperative activity | 54.6 | 60.7 | 0.185 |
| SF | 35 | Plays activities or games with rules | 40.9 | 41.1 | 1.000 |
| SF | 36 | Intentional manipulation of things | 86.7 | 100.0 | 0.144 |
|  |  |  |  |  |  |


| SF | 37 | Uses objects to pretend | 92.7 | 96.4 | 0.090 |
| :--- | :--- | :--- | :---: | :---: | :---: |
| SF | 38 | *Makes things from materials | 82.1 | 90.2 | $\mathbf{0 . 0 0 9}$ |
| SF | 39 | *Extended pretend play | 62.9 | 71.4 | $\mathbf{0 . 0 4 2}$ |
| SF | 40 | Elaborate pretend sequences | 41.2 | 38.8 | 0.593 |
| SF | 41 | States first name | 79.9 | 85.3 | 0.111 |
| SF | 42 | States first and last name | 63.3 | 66.5 | 0.465 |
| SF | 43 | *Provides name and family information | 63.3 | 80.8 | $\mathbf{0 . 0 0 0}$ |
| SF | 44 | States full home address | 32.6 | 37.5 | 0.270 |
| SF | 45 | *Directs an adult to help return home | 23.6 | 54.9 | $\mathbf{0 . 0 0 0}$ |
| SF | 46 | *General awareness of daily routines | 83.7 | 92.4 | $\mathbf{0 . 0 0 4}$ |
| SF | 47 | Some awareness of weekly events | 55.3 | 58.9 | 0.427 |
| SF | 48 | Simple time concept | 55.0 | 48.2 | 0.137 |
| SF | 49 | Associates time with actions/events | 38.3 | 33.9 | 0.318 |
| SF | 50 | Regularly checks clock/time | 12.5 | 1.3 | $\mathbf{0 . 0 0 0}$ |
| SF | 51 | Helping to care for belongings | 92.0 | 92.0 | 1.000 |
| SF | 52 | *Helping with simple household chores | 79.9 | 87.1 | $\mathbf{0 . 0 3 6}$ |
| SF | 53 | Initiates care for belongings | 64.2 | 57.6 | 0.127 |
| SF | 54 | Initiates simple household chores | 49.2 | 57.6 | 0.066 |
| SF | 55 | Consistently performs household task | 27.5 | 5.4 | $\mathbf{0 . 0 0 0}$ |
| SF | 56 | *Shows caution around stairs | 84.0 | 91.5 | $\mathbf{0 . 0 1 3}$ |
| SF | 57 | *Shows caution around hot or sharp objects | 76.7 | 85.3 | $\mathbf{0 . 0 1 5}$ |
| SF | 58 | Crossing the street without safety prompting | 39.9 | 21.4 | $\mathbf{0 . 0 0 0}$ |
| SF | 59 | Not accepting rides, food or money from strangers | 37.1 | 21.0 | $\mathbf{0 . 0 0 0}$ |
| SF | 60 | Crosses busy street safety without an adult | 2.6 | 2.2 | 1.000 |
| SF | 61 | Plays safety without const. watch | 90.1 | 94.6 | 0.075 |
| SF | 62 | *Plays outside of home, periodic monitoring only | 72.5 | 90.2 | $\mathbf{0 . 0 0 0}$ |
| SF | 63 | *Follows school/community guidelines | 50.8 | 82.1 | $\mathbf{0 . 0 0 0}$ |
| SF | 64 | * Functions in community without supervision | 15.7 | 39.7 | $\mathbf{0 . 0 0 0}$ |
| SF | 65 | *Makes store transaction without assistance | 3.5 | 9.8 | $\mathbf{0 . 0 0 3}$ |

## B. Age and sample differences on single Social Function items

To illustrate the complex relations between a Social Function subdomain and its single scores, consider the subdomain of Time orientation (items SF46 through SF50, cf. figure 49). Here, the summed subdomain score is highest in the US sample, especially in the older age groups. On the level of single items, however, things look partly different (cf. figure 53).

With the first item (SF46: General awareness of mealtimes/routines), Norwegians do slightly better in the younger groups. But then all respondents master the item from age of 312 years ( 42 months), suggesting that this item does not distinguish between older children.

The next two items (SF47: Awareness of weekly events; and SF48: Simple time concept) yield patterns similar to that of the summed subdomain score: Americans do better with the older age groups. Item SF49 (Associates time with actions/events) seems not to be relevant to the three youngest groups, but then the Americans do better from the age of $2^{1 ⁄ 2}$ years ( 30 months) and onwards.

The last item (SF50: Regularly checks clock/time) may not be suitable for the Norwegian sample. The American children begin handling this challenge from the age of $41 / 2$ ( 54 months), while only a small minority among the Norwegians catches on to it.

Although not directly misleading, the summed subdomain score thus hides interesting facts.


Figure 53: Per cent mastering the five items of the Time orientation subdomain, in two samples with ten age groups

## C. Sample differences of item difficulty

## Social functional skill items



Figure 54: Social function item difficulty scores in the two normative samples

Items are fairly close to the regression line, suggesting that their relative placement is largely similar in the two samples.

And again, some items are not equally difficult in the two samples. More difficult to the American sample is, e.g., Making store transaction without assistance, while Consistently performs household task yields a higher difficulty score with the Norwegians.

Also here, the regression line suggests that as a whole, the items are more difficult to the Norwegians.

## D. DIF-tests of Social Function item difficulty differences

The item difficulty scores from the two normative samples are plotted in figure 55. For the text/content corresponding to the item numbers, please cf. table 51.

Several items have rather similar scores in the two samples, thus falling close to the dotted straight regression line. However, many items clearly yield different scores in the two samples. They fall outside the $95 \%$ confidence interval, which is indicated by the "funnel" formed by heavy black lines. Among these are, e.g., item 55 (Consistently performs household task) and item 63 (Follows school/community guidelines).


Figure 55: DIF analysis of Social Function items in the two normative samples

Also for this domain, table 52 confirms that the differences between the samples are substantial. Items with significant t -values ( $\mathrm{t}>2.0$ ) are listed.

Again, differences are relatively numerous and go both ways. They also have a great deal in common with the differences mapped in table 51. While the American children perform better on a large number of tasks, Norwegian children apparently score higher on independent behavior outside their home.

Table 52: Social Function items with significant sample differences

| Norwegian |  |  | American |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Item } \\ & \# \end{aligned}$ | Item name | DIF <br> $t$-value <br> $>2$ | $\begin{aligned} & \text { Item } \\ & \# \end{aligned}$ | Item name | DIF <br> $t$-value <br> $>2$ |
| 55 | Consistently performs househ. task | 6.82 | 45 | Directs adult to give help return home | 10.49 |
| 58 | Crossing street w.o. prompting | 5.90 | 63 | Follows school/cty uidelines | 9.75 |
| 11 | Names things | 5.44 | 64 | Functions in c.ty without supervision | 9.22 |
| 53 | Initiates care for belongings | 5.30 | 62 | Plays outside home, per. monitoring | 5.21 |
| 9 | Understands 2-step commands | 4.77 | 65 | Makes store transaction w.o. assist.ce | 4.46 |
| 59 | Not accepting (things) from strangers | 4.61 | 22 | Tackles only immediate help | 3.97 |
| 50 | Regularly checks clock/time | 4.13 | 46 | General awareness of daily routines | 2.14 |
| 48 | Simple time concept | 4.01 |  |  |  |
| 23 | Seeks help, tackles short delay | 3.40 |  |  |  |
| 13 | Seeks information | 2.84 |  |  |  |
| 7 | Understands 1-step commands | 2.58 |  |  |  |
| 15 | Tells about feelings /thoughts | 2.34 |  |  |  |
| 17 | Single word with meaning | 2.22 |  |  |  |
| 51 | Helping to care for belongings | 2.20 |  |  |  |
| 25 | Joins adult in solving problem | 2.09 |  |  |  |

## 4. Concluding comments

The purpose of our present analyses has simply been to show through examples that norms based on the American sample are not likely to be suitable for Norwegian children.

Detailed comparisons show a number of significant differences between the original normative sample of the PEDI and a comparable Norwegian sample. The finding perhaps most important to our concerns is that the two samples have different scores on Self-Care as well as the Mobility domain scores. Consequently, Norwegian standards are clearly needed for the Self-care and Mobility domains.

But all is not well with the Social Functions domain, either, even if the summed domain scores show no difference between the two samples. Within all three domains, subdomain scores show sample differences, and give a more detailed picture than the all-over domain scores. Frequently, the subdomain difference between the samples changes across age groups. Sample-by-age differences, therefore, may give interesting suggestions for diagnostic purposes.

In addition, interesting (and complex) sample differences are found with a large number of single items. These are partly independent of the domain and subdomain differences. A few examples are offered, to make it clear that also single-item sample differences should be expected vary across age groups. The selected examples may serve as reminders that sample and age differences with individual items may have implications for the diagnostic use of the PEDI. A full documentation of sample and age differences for all items is beyond the scope of the present paper, however.

The generally high " $R$ squared" values obtained in our ANOVAs are also worth noting. They suggest that the multiple regression model implicit in each analysis of variance explains a large proportion of the variance; i.e. age group as well as nation are powerful predictors of many PEDI scores. And clearly, accounting for the age variance is needed to be able to properly assess the sample (national) differences.

The effect of the age variable is not necessarily consistent over its entire scale, however. A clear example of this is the observed "ceiling effects" (Graziano \& Raulin, 1989; Shadish, Cook, \& Campbell, 2002). In domains, subdomains as well as single items, differences between the older groups are often limited, indicating that most children master the challenges implied. In practical terms, it means that tests results from older children should be used cautiously. But also cases of "floor effects" are evident, with very few children succeeding. Here, differences between the younger children may go unnoticed.

For the clinical use of the PEDI, then, a fairly complex relationship between age and item difficulty should be noted. Some items - and also certain subdomains - are only applicable within a limited age span. Within a few age classes, the children proceed from mastering nothing to mastering it all. Outside this limited age period, the items are really not applicable. Unfortunately, this "applicability window" may appear at different ages in the American and the Norwegian normative samples.

Several analyses including gender have also been done, showing that the girls in both samples rather consistently do better than the boys. While this naturally is no surprise, it suggests that the PEDI may need gender-specific norms. The Norwegian sample is too small, however, to support two different sets of norms. The US sample probably also is. To keep things manageable, therefore, this potentially important topic has been left out of our discussion.

The present working paper does not fully describe or explain all differences between American and Norwegian children. Such an endeavor, of course, is far beyond the scope of our present efforts. The examples given should suffice, however, to support our claim that Norwegian norms should be preferred when testing Norwegian children.

## 5. References

Berg, M., Dolva, A.-S., Kleiven, J., \& Krumlinde-Sundholm, L. Are national test norm values needed? Experiences from the development of Norwegian norms of the PEDI (in preparation).
Berg, M., Frey Frøislie, K., \& Hussain, A. (2003). Applicability of Pediatric Evaluation of Disability Inventory (PEDI) in Norway. Scandinavian Journal of Occupational Therapy, 10, 118-126.
Berg, M., Aamodt, G., Stanghelle, J., Krumlinde-Sundholm, L., \& Hussain, A. (2008). Cross-cultural variation of the Pediatric Evaluation of Disability Inventory (PEDI) norms in a randomized Norwegian population. Scandinavian Journal of Occupational Therapy, 15(3), 143-152.
Bond, T. G., \& Fox, C. M. (2007). Applying the Rasch Model. Fundamental Measurement in the Human Sciences. New York: Routledge.
Graziano, A. M., \& Raulin, M. L. (1989). Research Methods: A Process of Inquiry. New York: Harper \& Row.
Haley, S. M., Coster, W. J., Dumas, H. M., Fragala-Pinkham, M. A., \& Moed, R. (2012). PEDI-CAT 1.3.6 Development, standardization and administration. Boston, Massachusetts, USA CREcare, LLC.
Haley, S. M., Coster, W. J., Ludlow, L. H., Haltiwanger, J. T., \& Andrellos, P. J. (1992). Pediatric Evaluation of Disability Inventory (PEDI). Development, Standardization and Administration Manual. Boston: New England Medical Centre Hospitals
Linacre, J. M. (2010). A User's Guide to Winsteps \& Ministep: Rasch-Model Computer Programs. Chicago: John M. Linacre.
Shadish, W. R., Cook, T. D., \& Campbell, D. T. (2002). Experimental and QuasiExperimental Designs for Generalized Causel Inference. Boston: Houghton Mifflin Co.
Tennant, A., \& Pallant, J. (2007). DIF matters: A practical approach to test if Differential Item Functioning makes a difference. Rasch Measurement Transactions, 20(4), 1082-1084.


Postboks 194, 2601 Lillehammer. Tlf. 61287410 Besøksadresse: Gudbrandsdalsvn. 350. Mail: mjosbok@sopp.no

Mjøsbok er SOPPs fagbokhandel på Lillehammer. Mjøsboks hovedoppgave er å betjene hele høgskolemiljøet med faglitteratur. Hvis du har spesielle behov innen faglitteratur, vil vi hjelpe deg så langt det er mulig.

Mjøsbok er Lillehammers største innen faglitteratur, og har også et stort utvalg i skjønnlitteratur.

Vi anbefaler alle å oppleve Mjøsbok «live».

For bestilling av bøker, send e-post til: mjosbok@sopp.no

Høgskolen i Lillehammer / Lillehammer University College Postboks/P. O. Box 952, 2604 Lillehammer, Norway Telefon/phone: (+47) 61288000


[^0]:    a. R Squared $=.769($ Adjusted R Squared $=.761)$

