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Abbreviations and Glossary 

Abbreviations: 

 AC: Adenyl cyclase  

 AI: Artificial insemination  

 AIJ: Ampullary-isthmus junction  

 AO: Acridine orange  

 AR: Acrosome reaction  

 ATP: Adenosine triphosphate  

 BP: Band pass  

 BOECs: Bovine oviduct epithelial cells  

 BSA: Bovine serum albumin  

 BSP: Bovine seminal plasma  

 cAMP: Cyclic adenosine monophosphate  

 CASA: Computer-assisted sperm analyser  

 CL: Corpus luteum  

 CTC: Chlortetracycline  

 DFI: DNA fragmentation index  

 DNA: Deoxyribonucleic acid  

 EDTA: Ethylene diamine tetra acetate  

 EV: Electronic volume  

 FBS: fetal bovine serum  

 FSH: Follicle stimulating hormone  

 GnRH: Gonadotrophin releasing hormone  

 hCG: Human chorionic gonadotropin  

 HUC: Hedmark University College  

 kDa: kiloDalton  

 LH: Luteinizing hormone  

 NRR: Non return rate  
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 NRF: Norwegian red cattle  

 OVGP-1: Oviductal glycoprotein 1  

 PBS: Phosphate buffered saline  

 PDC-190: Protein with N terminal aspartic acid and carboxyl terminus cysteine, 

containing 109 amino acids 

 PFA: Paraformaldehyd 

 PI: Propidium iodide  

 PKA: Protein kinase A  

 PNA: Peanut agglutinin   

 PSA: Pisum sativum agglutinin  

 PTK: Protein tyrosine kinase  

 ROS: Reactive oxygen species 

 SCSA: Sperm chromatin structure  

 Sp -TALP: Sperm tyrode albumin lactate pyruvate  

 SS: Side scatter  

 TdT: Terminal deoxynucleotidyl transferase 

 Tm: Melting temperature 

 TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling  

 UTJ: Utero-tubal junction  

 ZP: Zona pellucida  

 

 Glosary 

 

 Acrosome: membrane enclosed structure covering the anterior part of sperm nucleus and 

contains powerful hydrolyzing enzymes  

 

 Acrosome reaction: Exocytosis of the acrosomal matrix upon stimulation with certain 

agents, which is an important step that enables the sperm penetrate the egg  

 

 Ca2+ : Free calcium ions 

 

 Capacitation: Membranous and intracellular biochemical transformations on sperm cells 

that confer the spermatozoa the ability to fertilize the egg  

 

 Cell monolayer: a single, closely packed layer of cells  

 

 Diploid: Term referring to cells that contain two sets of chromosome (one from each 

parent) as opposed to haploid cells that have only one set  
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 Dominant follicle: A single follicle with a maturing oocyte in it that is much larger than 

all the other follicles that started to develop in a cycle. It eventually raptures to release the 

oocyte.  

 

 Oestrus: The period in the sexual cycle of female mammals during which they are in heat 

or ready to accept a male for mating  

 

 Explant: A living tissue removed from the natural site of growth and placed in a medium 

for culture  

 

 Epithelial cells: Make up body tissue known as epithelium, which helps to enclose and 

protect organs and internal surfaces that have direct contact with outside elements.  

 

 Follicular phase: The phase in estrous cycle (like in cow) during which follicles in the 

ovary mature, and ends with ovulation, estrogen concentration is high.  

 

 Immunostaining: a technique in biochemistry that applies the use of an antibody-based 

method to detect a specific protein in a sample  

 

 Leydig cells: Cells found adjacent to the seminiferous tubules, they produce testosterone 

upon luteinizing hormone activation to increase sperm production  

 

 Luteal phase: The earlier phase of the estrous cycle in (example in cows). It begins with 

the formation of the corpus luteum and ends when the corpus luteum regresses, 

progesterone is high  

 

 Meiosis: The process of cell division in sexually reproducing organisms that reduces the 

number of chromosomes in reproductive cells from diploid to haploid, leading to the 

production of gametes in animals  

 

 Mesenchymal cells: Cells that differentiate into a variety of cell types  

 

 Mitosis: A type of cell division in which a cell separates the chromosomes in its nucleus 

into two genetically identical sets, in two separate nuclei  

 

 Phosphorylation: Addition of a phosphate group to a protein or other organic molecule. 

It is catalyzed by enzymes and is important in post translational modification of proteins  

 

 Polyspermy: A description when an egg is penetrated by more than one egg  

 

 Sertoli cells: The somatic cells of the testis that facilitate the progression of germ cells to 

spermatozoa via direct contact and by controlling the environment milieu within the 

seminiferous tubules  

 

 Spermiation: a process in spermatogenesis by which mature spermatids are released from 

Sertoli cells into the seminiferous tubule lumen prior to their passage to the epididymis  

 

 Spermiogenesis: The process in spermatogenesis in which spherical spermatids are 

differentiated in into matured spermatozoa  
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 Zona Pellucida: is a glycoprotein membrane that surrounds the plasma membrane of an 

oocyte. It binds spermatozoa and triggers acrosome reaction during the sperm-oocyte 

interaction  
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Abstract 

In mammalian, fertilization is the origin to life. Researchers have found that the oviduct is the 

site in the female reproductive tract where capacitation of spermatozoa, fertilization and early 

embryonic development occurs. Fertilization-competent sperm cells that manage to reach the 

oviduct will interact with the oviduct epithelial cells, forming a sperm reservoir, and release 

themself at ovulation. An in vitro cell model system is needed to adopt increased knowledge 

about this interaction. In this study the main aim was to establish an in vitro bovine oviduct 

epithelial cell (BOEC) culture system that mimics the in vivo conditions in the oviduct. 

Therefore, BOECs were cultivated on membrane support and the cells were characterized by 

immunostaining of cell specific marker proteins and real time PCR (RT-PCR) analysis of 

OVGP1 gene expression. The cultivated BOECs were further used to evaluate sperm binding 

capacity in semen from high and low fertile NRF bulls. The statement that capacitated sperm 

cells are unable to bind BOECs, led to the adoption of a flow cytometry Ca
2+

 analysis 

protocol, as capacitated cells have a high level of Ca
2+

. Additionally, the semen used in the 

sperm binding capacity assay was evaluated for viability, acrosomal integrity, capacitation 

and DNA fragmentation. Results revealed that cultivated BOECs were a pure oviduct 

epithelial cell line. They grew in an increased cell height, had the ability to stay viable 5 days 

post-confluence and were able to bind spermatozoa. However, the OVGP1 gene expression 

was lost during cultivation time. The sperm binding capacity results did not show any 

significant differences between the bulls with high and low fertility. These findings show that 

the cultivation of BOECs on membrane was successfully achieved and the cells mimic the in 

vivo to a greater extent than BOECs on plastic. However, further optimization of the sperm 

binding assay is needed. The adopted protocol for Ca
2+ 

analysis revealed a significant higher 

Ca
2+ 

level in bulls with high fertility than the low fertility group. From this result it can be 

speculated that capacitation ability of sperm cells may have an effect on the oviduct-sperm 

release capacity and thus fertilization competence. 
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1. Background 

1.1 Origins of the project 

This master thesis is the second of its type related to the RFF1 (Regionalt Forskningsfond 

Innlandet) project, named Successful fertilization. The RFF1 project is conducted at Hedmark 

university collage (HUC) in collaboration with Geno SA, and the University of Oslo (UiO). 

The main aim of the project is to identify biomarkers for sperm oviduct interaction, and 

ultimately to establish a new male fertility test. That will be of great benefit for breeding 

companies, since a low fertile bull can then be excluded early from the breeding program. The 

most reliable fertility measurement is the non-return rate (NRR), which is an expensive and 

time consuming parameter and thus a new and easier male fertility test will be very beneficial. 

As a first step in achieving this, it is important to develop an in vitro model for sperm oviduct 

interaction which was done by Teklu Zeremichael, (Zeremichael, 2013). The second step is to 

optimize the model with respect to the bovine ovidut epithelial cells, their storability and use, 

which is the main aim of this thesis. 
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2. Introduction 

2.1 Norwegian Red Cattle -NRF 

Norwegian Red cattle, the Norwegian dairy breed, acount for almost 95 % of all dairy cows in 

Norway. NRF is bred from many different breeds which properties satisfy the breeding goal 

of NRF cattle. The breeding goal is very wide, including many properties such as milk ability, 

fertility etc. and it reduces inbreeding risk. Almost 90 % of all calves born in Norway is a 

result of artificial insemination (AI) with semen from elite NRF bulls. The bulls are selected 

carefully and the semen is further evaluated for concentration, motility and morphology 

before it is cryopreserved. The semen is further quarantined for 30 days to ensure that it is 

free from infections prior to distribution to farmers (Geno). 

 

2.2 Male reproductive tract in bovine 

The testis, epididymis, vasa deferensia, accessory sex glands, and penis make together the 

reproductive tract in bulls ( Figure 1), which produce and transfer the spermatozoa from the 

testis to the site of deposition, the cows reproductive tract (Turman, 1914; Glover et al., 

1999). The testicles are the male gonads which are located in the scrotum, outside the body 

cavity since normal sperm cell formation occurs at a temperature below normal body 

temperature of the bull. Scrotum protects the testicles from cold and hot temperatures to 

maintain normal sperm cell development (Turman, 1914; Senger, 2003). The testis produce 

spermatozoa, hormones like testosterone and estradiol, and proteins important for 

spermatozoal function (Senger, 2003).  
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Figure 1: Detailed illustration of the bovine male reproductive tract. The 

bovine male reproductive  tract consists of the testis, epididymis, vasa 

deferensia, penis and accessory sex glands. Modified from Senger (Senger, 

2003). 

 

2.2.1 Spermatogenesis 

Sperm production is referred to as spermatogenesis (Gilbert, 2000). Semen are formed and 

matured in the long tiny seminiferous tubules in the testis (Senger, 2003) (Figure 2 A). The 

first stage consists of the meiotic division of spermatogonia which are the primitive male 

germ cell. Spermatogonia proliferate into different types of spermatogonia, A and B 

spermatogonia. Stem cell renewal is also found in the proliferation phase and it is important 

for development of new spermatogonia. Loss of intracellular bridges under proliferation is 

responsible for a few spermatogonia to revert to stem cells. When B spermatogonia divides to 

primary spermatocytes, meiosis begins, giving rise to secondary spermatocytes which have 

undergone DNA replication and cross over guarantying genetic diversity (Figure 2 B). 

Secondary spermatocytes continue with meiosis II producing haploid spermatids (Figure 2 B). 

These spermatids undergo differentiation, hereby called differentiation phase. In this phase 
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spherical undifferentiated spermatids undergo a series of transformations. The nucleus 

becomes extremely condensed, formation of the acrosome occurs and the cell becomes motile 

(Senger, 2003) .  

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2: Illustration of spermatogenesis. A) A magnified cross section of the seminiferous tubule shows the 

different stages of spermatogenesis. B) Primary spermatocytes enter meiosis I and give rise to the secondary 

spermatocytes, which again enter meiosis II. After completing meiosis II, spermatids differentiate into mature 

spermatozoa. Modified from Senger  (Senger, 2003) and University of Arizona (University of Arizona ,s.a). 

 

From the first proliferation the cells immigrate from the basement membrane in the 

seminiferous tubules and into the lumen (Figure 2 A). This release of sperm around the Sertoli 

cells into the lumen of the seminiferous tubule is referred to as spermiation, and occurs 

continuously throughout the testis (Senger, 2003). 

Approximately 12 tubules (rete tubules) from seminiferous tubules pass out of the testicle and 

into the head of epididymis. Epididymis store and mature the spermatozoa (Turman, 1914). 

Actually sperm are stored within the epididymis tail ( Figure 1). Here they are functionally 

inactive and immotile (Evans et al., 2002). 

B 

A

B 
B

A

B 
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The control of the spermatogenesis is endocrine and controlled by hypothalamus (Senger, 

2003). Seminiferous tubules are surrounded with loose connective tissue and the specialized 

interstitial cells of Leydig (Turman, 1914). The hypothalamus discharge GnRH in frequent 

irregular episodes and as a response luteinizing hormone (LH) and  follicle stimulating 

hormone (FSH) discharges immediately after in a pulsatile pattern. LH acts on the Leydig 

cells in the testis since they contain membrane bound LH receptors. FSH binds to the sertoli 

cells (Figure 2 A) which then secrete inhibin that exerts a negative feedback to suppress FSH 

secretion. Leydig cells synthesize progesterone which converts to testosterone after LH binds 

to the receptors. Leydig cells secrete the testosterone which is transported into the sertoli cells 

and here it is converted to estradiol and dihydrotestisterone.  Both testosterone and estradiol 

are transported through the blood to the hypothalamus where they exert a negative feedback 

on the Gonadotropin releasing hormone (GnRH) neurons (Senger, 2003; Gordon, 2003). 

 

2.2.2 Bull spermatozoa 

Spermatozoa’s characteristics in mammals are quite similar except from differences in the 

head within each species (Senger, 2003). The bull sperm head contains of a combination of 

highly condensed chromatin and small proteins called protamines.  
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Figure 3: Head of bull spermatozoa. It consist of the 

acrosome, nucleus and is surrounded of the plasma 

membrane. Modified from Senger (Senger, 2003). 

 

Protamines are arginine-rich nuclear proteins thought to be important for DNA condensation, 

since sulfhydryl groups form disulfide bonds that stands for nuclear condensation. This results 

in a highly compact and stable nucleus that basically forms the sperm head (Figure 3). 

illustrate the bull sperm head and its composition. The nucleus found in the head has a haploid 

set of a total 30 chromosomes. Half of the sperm have an X chromosome and the other half 

have a Y chromosome (Cupps, 1991). This determines the offspring`s sex as sperm bearing Y 

chromosome will lead to a male calf, while an X chromosome will lead to a female calf. 

The sperm heads anterior is covered by the acrosome that forms a membrane-bound lysosome 

(Senger, 2003) containing a specific lipoprotein complex and enzymes such as hyaluronidase, 

acrosin, zona lysine, esterases and acid hydrolases. These enzymes play a role in the 

penetration through the zona pellucida of the egg (Cupps, 1991). 

The sperm tail is composed of the capitulum, the middle piece, the principle piece and the 

terminal piece (Figure 4). A depression in the posterior head, called implantation sack makes 

room for the capitulum to fit, connecting head and tail. Just below the capitulum, the 

laminated columns are to be found around the distal centriole. The laminated columns give 

the neck region flexibility, so the tail can move during flagellar beat (Senger, 2003). The tails 

central core originates from the distal centriole and consists of 9 pairs of microtubules 

arranged radially around 2 central fibers, together called the axoneme.  
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Figure 4: Detailed illustration of bull spermatozoa’s tail. The tail is divided in three parts: 

The middle piece, the principle piece and the terminal piece. The tail is responsible for the 

flagellar movement of the spermatozoa. Modified from Senger (Senger 2003) 

 

Each of the nine microtubules consists of two subunits, one which is a complete cylinder and 

the other an incomplete cylinder located directly above each other. The axoneme is 

surrounded by 9 coarse fibers. The first part of the tail has a mitochondrial sheath arranged in 

a helical pattern surrounding the outer coarse fibers. The neck and the mitochondrial sheath 

contribute to the middle piece. Annulus is an electron dense ringed structure that separates the 

middle piece from the principle piece of the tail (Hunnicutt, 2007). A Study by Hunnicutt 

(Hunnicutt, 2007) has shown that sperm lacking the annulus could not swim and could not 

undergo protein tyrosine phosphorylation. 
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The principal piece consists of the axenome and two longitudinal elements. It is covered by a 

fibrous helix sheath along the whole tail, until the terminal piece where only the microtubules 

end (Cupps, 1991). The entire spermatozoon is covered with a plasma membrane which is 

required for the survival and function of spermatozoa (Senger, 2003). 

 

 

2.2.3 Capacitation 

Capacitation is defined as physiological changes undergone by spermatozoa in the female 

reproductive tract that enables them to penetrate and fertilize an egg (Landim-Alvarenga et 

al., 2004; Harrison et al., 1993; Yanagimachi 1994). These changes are undergone during pre-

incubation in the female reproductive tract (Harrison et al,. 1993). It includes destabilization 

of the plasma membrane, alterations of intracellular ion concentrations and protein 

phosphorylation (Vadnais et al., 2007). It is however reported that no morphological changes 

occur to the spermatozoon during capacitation (Vadnais et al., 2007).  

                                                                 

Figure 5: Epididymal spermatozoa has surface 

molecules (proteins and carbohydrates)bound to the 

plasma membrane (illustrated as T‘s). When 

ejaculated, the surface molecules become coated 

with seminal plasma proteins (orange halos). 

Ejaculated sperm that gets exposed to the female 

tract environment go through the removal of coated 

surface molecules, thus exposing surface molecules 

that can bind to the zona pellucida (ZP) of the 

oocyte. Modified from Senger (Senger, 2003). 

 

 

 

The sperm surface has bound proteins from the epididymis and the seminal plasma. These 

proteins are known as de-capacitation factors (DF) (Baldi et al., 2000). It is believed that once 

DF attach to the sperm surface it activates intracellular calcium ATPase maintaining low 

intracellular free calcium (Ca2+) (Adeoya and Fraser, 1996). Capacitation occurs when the 

DF are removed (Machaty et al., 2012) (Figure 5). A decrease of cholesterol in the membrane 
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follows, resulting in increased membrane fluidity. This starts a cascade action of signals and 

reactions ending in capacitated spermatozoa ( 

Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Schematic figure of reported events that lead to sperm cell capacitation and 

hyperactivation. Sperm membrane phospholipid (PL) remodeling and activation of 
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phospholilases affect the construction of the membrane. Loss of cholesterol leads to changes 

in plasma membrane fluidity, permitting Ca
2+

 and HCO
3-

 influx. This again leads to 

activation of protein kinase A (PKA) and adenyl cyclase (AC) which   increases the 

generation of cAMP. Active PKA activates protein tyrosine kinase (PTK) which 

phosphorylates proteins leading to capacitation and hyperactivation. Other reported events 

are the involvement of Reactive oxygen species (ROS), Nitrogen oxide (NO) and mitogen- 

activated protein kinase (MAPK). Figure taken from Baldi et al.  (Baldi et al., 2000). 

 

Sperm membrane phospholipids (PL) remodels and activate phospholipases (PLA2 and 

PLCy1) which changes the architecture and composition of the plasma membrane even 

further. Intracellular Ca
2+

 concentration increases, even though Ca
2+

 enters the spermatozoa in 

a biphasic manner (Clapham, 2007). Ca
2+ 

activates cyclic nucleotide phosphodiesterase (PDE) 

which is responsible for converting cAMP to 5ÀMP. Increased influx of Ca
2+

 and bicarbonate 

(HCO
3-)

 activates adenyl cyclase (AC), generating cAMP which activate protein kinase A 

(PKA). Protein tyrosine kinase (PTK) is activated by PKA activation resulting in tyrosine 

phosphorylation (Baldi et al., 2000). In general tyrosine phosporylastion is characterized by 

the addition of a phosphate group (PO3
4-

) to the amino acid tyrosine in a protein. This 

phosphate group is transferred from ATP because of the TK enzyme activity (Hunter, 1998).  

Reactive oxygen (ROS) and nitric acide (NO) generated from the spermatozoa or leucocytes 

present in the ejaculate may act as physiological modulators of tyrosine phosphorylation 

(Baldi, 2000).  

 

Motility pattern changes are also associated with sperm capacitation (Cupps, 1991). A change 

in the motility pattern where semen’s motility is enhanced is referred to as hyperactivation 

and is important for spermatozoa’s migration through the female`s oviduct and up to the 

ampulla where fertilization occurs. Once hyperactivated, spermatozoa pump their tail harder, 

asymmetrically and with large movements (Suarez, 2008) ( Figure 7). Hyperactivated sperm 

cells use massive amount of energy and thus they are short-lived (Cupps, 1991). 

 

 Figure 7: Difference between tail movement in a non-

hyperactive and hyperactive sperm cell. A) Non 

hyperactive spermatozoa swim with small and fast tail 

movements. B) Hyperactive spermatozoa pump their tails 

harder with larger movements. This motion allows them 

B 

A 

B 
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to reach and penetrate the oocyte. Modified from (Shen, 2011) 

 

 

 

2.2.4 Acrosome reaction and fertilization 

Acrosome reaction occurs after capacitation and it is characterized by advanced break-down 

of the plasma membrane and outer acrosomal membrane of the sperm cell (Cupps, 1991) 

(Figure 8). A sperm specific glycolipid in the plasma membrane called Seminolipid prevents 

the acrosome reaction. It translocate and destabilizes the membrane making it able to fuse 

with and only upon attachment to zona pellucida (ZP) (Machaty et al., 2012) (Figure 8). Zona 

pellucida is the membrane surrounding the plasma membrane of the oocyte and it is 

composed of the glycoproteins zona pellucida 1 (ZP1), zona pellucida 2 (ZP2) and zona 

pellucida 3 (ZP3) (Conner et al., 2005). The Zona pellucida prevents poly-spermy and 

protects the developing embryo prior to implantation (Conner et al., 2005).  

A true acrosome reaction will only occur in live, membrane intact sperm when they approach 

the zona pellucida of the oocyte (Landim-Alvarenga et al., 2004). The interaction of the 

spermatozoon`s outer acrosome membrane with the ZP3 on the oocyte permits exposal of the 

enzymes and surface antigens in the acrosome and allowing breakage through the oocyte 

barrier and thus fertilization occurs (Yanigamachi, 1994) (Figure 8). A study by O‘Toole 

suggest that Ca
2+

 influx is initiated by ZP3 and responsible for semen to acrosome react 

(O'Toole et al., 2000). Intracellular Ca
2+

 concentration has an initial small elevation during 

capacitation compared to the Ca
2+

 influx that occurs at the time of acrosome reaction 

(Florman, 1994; O‘Toole et al., 2000).  
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Figure 8: Fertilization of the oocyte. To penetrate zona 

pellucida, the sperm acrosome exposes all acrosomal 

enzymes. Once through the zona pellucida, the sperm cell 

membrane fuses with the egg membrane and nucleus of the 

sperm enter the cellular cytoplasma. Image taken from 

Alberts et al. (Alberts et al,. 2002) 

 

2.2.5 Cryopreservation of semen 

Generally cryopreservation is a process involving preservation by cooling to sub-zero 

temperatures to avoid damage caused by chemical reactivity and time. Any chemical activity 

or enzymatic activity is effectively stopped at very low temperatures. Usually preservation 

occurs in liquid nitrogen tanks with temperature at -197 ° C.   

 

Semen cryopreservation was successfully reported in 1949 by Polge (Polge et al., 1949), 

where human semen was frozen in presence of glycerol. Glycerol has cryoprotective action 

and is the most commonly used cryoprotectant for spermatozoa until now (Curry, 2000). Even 

though glycerol is a good cryoprotectant, not all cryopreserved semen equally tolerate the 

treatment. For example bull spermatozoa head morphometry is significantly lower after 

cryopreservation (Gravance et al., 1998). Upon post-thawing a percent of sperm cells will 

capacitate (Collin et al., 2000; Cormier and Bailey, 2003; Pommer et al., 2003) thus becoming 

unable to fertilize (Medeiro et al., 2002; Watson, 1995). Furthermore, a decrease in sperm cell 

motility (Watson, 1995) and viability (Garner et al., 1997) is also observed as a consequence 

of sperm cryopreservation in bulls. Cryopreservation also has a large effect on the post-thaw 

acrosomal status (Thomas et al., 1998). Cryopreserved semen is used in cattle breeding by 
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artificial insemination (AI) and since sperm quality is directly related to fertility (Elliot, 

1978), development of approaches to evaluate post thaw sperm-quality has become essential. 

 

 

2.3 Female reproductive physiology and reproductive tract in 

bovine 

2.3.1  The bovine oestrus cycle 

Oestrous cycle is a set of physiological and behavioral changes induced by reproductive 

hormones and in this period the cow is sexually receptive. Approximately 10-12 hours after 

the heat ends ovulation usually occurs. The whole oestrous cycle averages 21 days in cows 

with a range of 18-24 days (Gordon, 2003). The stages of oestrus in cows can be mainly be 

divided in 2 stages, the follicular and the luteal phase. The follicular phase consists of the 

proestrus and oestrus stages, while the luteal phase consist of the metoestrus and diestrus 

stages. 
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Figure 9: The follicular phase is characterized by high levels of estradiol (oestradiol-

produced by developing follicles) and the LH- surge which is responsible for 

ovulation. The luteal phase is marked by an increasing level of progesterone and ends 

with degeneration of the corpus luteum, thus descending levels of progesterone. 

Modified from Peter and Lamming (Peters and Lamming 1983). 

 

Estradiol synthesized in the ovaries acts on receptor cells in the hypothalamus and gives 

impact on the behavioral symptoms of oestrus. Oestrus is induced once estradiol reaches a 

threshold concentration, and this requires coordinated activities of follicle-stimulating 

hormone (FSH), luteinizing hormone (LH), granulosa cells and thecal cells. The thecal cells 

produce androgen which is increased only by LH and the androgen is converted to estradiol in 

the granulosa cells under FSH influence. In the follicular phase, gonadotropins (LH, FSH and 

prolactin) induce the final maturation of the preovulatory follicle (proestrus) resulting in high 

estradiol levels (Figure 9). Progesterone is absent in this stage making the estradiol to act on 

the hypothalamus and to trigger the release of LH (oestrus). When this LH-surge is present, 

ovulation occurs and formation of Corpus luteum (CL) begins (Gordon, 2003) (Figure 9). The 

Corpus luteum is a differentiated follicle and it is composed of the granulosa and the theca 

cells which differentiate and give rise to the small and large luteal cells (Fields and Fields, 

1996). The large cells secrete oxytocin and progesterone and they are responsive to 

prostaglandin. The small cells secrete progesterone and are responsive to LH (Gordon, 2003).  

Corpus luteum (CL) grows rapidly in the first part of the cycle but degrades after 

approximately day 16 in the cycle (Figure 10). 2-4 days after CL formation (metoestrus) the 

luteal phase begins. Progesterone is now detectable in the circulation and it will dominate the 
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majority of the cycle. Around day 8 of the cycle the progesterone reaches a threshold 

concentration and remains at the same level until CL starts degrading and progesterone levels 

decrease dramatically (dioestrus), signalizing the cycle end (Gordon, 2003). 

Corpus luteum changes in morphology during the oestrus cycle, making it possible to detect 

the cow’s oestrus stage (Ireland et al., 1980) .The follicular stage starts at day 21-0 of the 

oestrus cycle (Figure 10). In the follicular phase the ovary will have two main structures, the 

mature follicle and an old CL. The mature follicle is a big fluid filled membrane containing 

the oocyte. The CL is developed from an earlier follicle during the luteal phase of the oestrus 

cycle. At ovulation the mature follicle ruptures and ovum is caught by the infundibulum. The 

ruptured follicle starts developing a new CL. If pregnancy occurs, the CL will remain on the 

ovary. If pregnancy does not occur, the new developed CL will degrade after approximately 

16 days while a new follicle will develop and a new cycle will start. At the follicular phase the 

mature follicle will dominate the ovary surface exceeding 10 mm in diameter, while the old 

regressed CL will be smaller in size (Figure 10).   

 

 

Figure 10: The changes occurring on the ovary during a typical 21-day estrous cycle where 

pregnancy does not occur. The development and regression of the corpus luteum and of the 

follicles are continuous processes. Image from Whittier  (Whittier, 1993).  

 

 

 

2.3.2 Female bovine 

reproductive tract 

The reproductive system of the cow is 

composed of two ovaries, two 

oviducts, two uterine horns, a uterine 

body, cervix, vagina and vulva 

(Prange and Duby, 2011) ( 
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Figure 11). The vulva is the external opening to the reproductive tract (Dejarnette and Nebel, 

2013). The rectum is located above the reproductive tract allowing rectal palpation of the 

tract. Rectal palpation is a rectal examination to examine or diagnose the ovarian status of the 

cow (Senger, 2003). The bladder lies below the reproductive tract and is connected to the 

urethral opening on the vaginal floor (Dejarnette and Nebel, 2013).  

 

Figure 11: Anatomy of the cows’ 

reproductive tract. The reproductive tract is 

composed of two ovaries, two oviducts, two 

uterine horns, a uterine body, cervix, vagina 

and vulva. Modified from Dejarnette and 

Nebel (Dejarnette and Nebel, 2013). 

 

 

 

 

 

The vulva serves as the birth channel, the passage of urine and as the opening for mating. 

During natural mating the semen from the bull is deposited in the vagina. The connection 

between the vagina and the uterus is called cervix and it is a thick walled organ composed of 

connective tissue and muscle. Main function of cervix is facilitated by three to four folds 

which protect the uterus from the external environment. In turn the uterine body serves as a 

connection between the cervix and the two uterine horns (Figure 12) The uterine horns consist 

of three layers of muscle and a network of blood vessels allowing them to contract 

rhythmically to aid in sperm transport to the oviducts. This is influenced by hormones like 

estrogen and oxytocin (Dejarnette and Nebel, 2013). The embryo develops in one of the 

uterine horns until birth. 
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Figure 12: Side view and front view of the cervix, uterine body and uterine horns. At 

time of gestation, the fetus will stay in one of the uterine horns until birth. Modified 

from Dejarnette and Nebel (Dejarnette and Nebel, 2013). 

 

The ovaries are the primary sex organs in the female reproductive tract which produce 

oocytes and hormones like estrogen and progesterone through the estrous cycle (2.3.1). On 

the ovaries surface there are two different types of structure, the follicles and or the corpus 

luteum. Follicles are fluid filled cavities containing the oocyte while corpus luteum is the 

differentiated follicle (2.3.1) where ovulation occurred during the previous cycle (Ireland et 

al., 1980)  

 

2.3.2 The Oviduct  

The oviduct is approximately 25-28 cm long (Prange and Duby, 2011) and it has several 

utilities in its different  regions. It is essential for sperm capacitation, fertilization and early 

embryonic development (Killian, 2004). Anatomically the oviduct is divided in four  sections: 

uterotubal junction, isthmus, ampulla and infundibulum (Menezo and Guerin, 1997) (Figure 

13). The connection between the uterus and the beginning of the oviduct is called uterotubal 

junction (UTJ). 
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Figure 13: The partition of the oviduct in cow. The uterotubal junction serves as selective barrier 

allowing only healthy sperm to enter the isthmus where they form a reservoir. After sperm release 

they continue to the ampulla were fertilization occur. Modified from Dejarnette and Nebel (Dejarnette 

and Nebel, 2013). 

 

The UTJ regulates the movement of embryos into the uterus by hormonal influence. High 

estradiol impacts the UTJ by forming a kink, blocking movement of embryos, while low 

concentration of estradiol straighten out the kink and allowing embryos to easily enter the 

uterine lumen (Senger, 2003). The UJT also functions as a filter of abnormal sperm in that the 

UTJ allows healthy sperm to swim into the isthmus where they form a reservoir (Bosch and 

Wright, 2005; Hunter, 1981; Pollard et al., 1991). Ampulla is the upper region of the oviduct 

and it is the site of fertilization. The inner part of ampulla consists of mucosal folds with 

ciliated epithelium (Senger, 2003). On the open end of the oviduct a large funnel shaped 

structure called infundibulum is located. Infundibulum is responsible for catching the oocyte 

after its release from the ovary and guides it into the ampulla. The oviduct wall is comprised 

of an external serosa layer, a double layered muscularis  and an internal submucosa and 

mucosa (Bosch and Wright, 2005; Senger, 2003). The serosa layer is a thin membrane that 

encloses the oviducts contents. Smooth muscle layers are found in the muscularis of the 

oviduct wall, and their primary function is to transport both sperm and newly ovulated 

oocytes to ampulla, for fertilization (Senger, 2003). The submucosa is a layer of connective 

tissue between muscularis and mucosa. The mucosa of the oviduct is called oviductal mucosa 

and it consists of one layer of columinar epithelial cells. It secretes substances that are 

necessary to provide an optimum environment for the unfertilized egg and it maintains 
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spermatozoal function until fertilization occurs. Furthermore, it provides a suitable 

environment for early embryonic development (Senger, 2003). 

2.3.3 Bovine Oviduct Epithelium Cells 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Epithelial cell structure with all cell junctions. Apical region faces the lumen while 

basal region is connected to connective tissue. Modified from Wikipedia (Source criticism, s.a)  

 

As despited in figure 14 the epithelium in bovine oviduct consists of a single layer of 

columnar cells standing side by side anchored to the submucosa. The side attached to the 

submucosa is called the basal side and the opposite side which faces the lumen is the apical 

side (Joshi, 1988)  

On the apical side the cells are covered by extracellular fluid or by their own secrete (Alberts, 

2008). Epithelial cells form a barrier with its ciliated and non-ciliated cells (Bosch and 

Wright, 2005). In the oviduct the ciliated cells are essential in gamete transport, while the 

non-ciliated cells are responsible for synthesizing and releasing secretory products (Abe, 

1996; Rottmayer et al., 2006). 
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Epithelial cells are sealed together by tight junctions known as Zonula Occludens proteins. 

These protein junctions seal the gaps between each epithelial cell making the cell layer 

impermeable, thus molecules cannot leak spontaneously across the cell layer (Alberts, 2008). 

Epithelial cells are also connected by desmosomes which connects the intermediate filaments 

of the cytoskeletons of one cell to the neighboring cell and thus provide strength to the tissue 

(Figure 15). While desmosomes connect intermediate filaments, adherens junctions connect 

actin filaments. In epithelia, adherens junctions form a continuous adhension belt, zonula 

adherens, just below the apical face of the epithelium (Figure 14). Signals and stimuli 

response through the epithelia are very important and gap junctions are responsible for these 

communication approaches. Gap junction`s form pores (connexons) between adjacent cells 

forming hydrophilic channels which provide connection and passage of small molecules and 

electrical signals ( 

 

Figure 15). On the basolateral domain actin filaments and intermediate filaments in cells are 

anchored with cell matrix anchoring junctions (Alberts, 2008).  

 

 

Figure 15:The three different cell junctions between epithelial cells. A) Tight junctions function as barriers. B) 

Desmososmes connects the epithelial cell together. C) Gap junctions provide communication. Modified from  

University of Arizona (University of Arizona , 2002) 

 

A B C 
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Intermediate filaments in epithelium contain a cell specific cytoplasmic protein called 

cytokeratin and thus it is used as a marker to identify epithelial cells (Franke et al., 1979).  A 

type III intermediate filament protein called vimentin is expressed in fibroblasts and cells of 

mesenchymal origin (Alberts, 2008). During cell division both cytokeratin and vimentin 

undergo rapid reorganization (Alberts, 2008). A study by Abe and Hoshi (Abe and Hoshi, 

1997) reported that bovine oviductal epithelial cells (BOECs) co-express both cytokeratin and 

vimentin. Perezmartines reported same results as Abe and Hoshi,   however vimentin was 

expressed in less than 10% of the cells (Perezmartinez, 2001). 

 

2.3.4 Oviductal specific glycoprotein 1 

Oviduct specific glycoprotein is expressed by the OVGP1 gene, in different mammalian 

species. In bovine this protein is located on chromosome 3 and is 95 kDa large (Sendai et al., 

1994). The OVGP1 has been reported to play an important role in fertilization by acting 

positively on sperm motility and sperm-ovum interaction. It has also been indicated that the 

OVGP1 may have a possible role preventing polyspermy (Killian, 2004; Satoh et al., 1995). 

This protein is secreted from non-ciliated oviductal epithelial cells and protein secretion 

occurs during late follicular development and until early cleavage-stage during embryonic 

development if gestation occurs (Lapensée et al., 1997). Several studies have suggested that 

ovarian steroids are responsible for the OVGP1 expression and secretion in the bovine oviduct 

(Boice et al., 1990; Malayer et al., 1988; Sendai et al., 1994). A study showed that it is 

synthesized from the oviductal epithelial cells and secreted into the oviductal lumen during 

oestrogen dominance in human (Bhatt et al., 2004). On the other hand Sun et al. (Sun et al., 

1997) have reported that human chorion gonadotropin (HCG) acting as a replacer for 

luteinising hormone (LH) can increase the OVGP1 synthesis and that estradiol had no effect 

on OVGP1 gene expression. 

OVGP1 is used as a marker gene in bovine oviduct epithelial culture systems to evaluate 

differentiation as a result of proliferation in vitro (Bai, 2011; Rottmayer et al., 2006). A study 

by Bauersachs et al. (Bauersachs et al., 2004) shows that OVGP1 is the highest expressed 

gene in the bovine oviduct epithelium at oestrus compared with other identified genes, 
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indicating that OVGP1 is a marker gene for BOECs at oestrus. However, the expression level 

decreases when BOECs are cultured in monolayers (Reischl et al., 1999). 

2.3.5 Sperm reservoir  

Healthy sperm that manage to go through the UTJ form a reservoir in the isthmus (Hunter, 

1981; Pollard et al., 1991; Bosch and Wright 2005; Hunter, 2011; Hung and Suarez 2012), 

more concrete the sperm bind to the ciliated oviductal epithelial cells (Lefebvre et al., 1995; 

Abe, 1996). The reservoir is found in several different species like pigs (Hunter, 1981), cattle 

(Lefebvre et al., 1995), sheep (Hunter and Nichol, 1983) and humans (Baiillie et al., 1997). 

The sperm reservoir ensures that an appropriate number of viable, potentially fertile 

spermatozoa are available for fertilization. It is suggested that the sperm reservoir is created 

for polyspermy control (Bosch and Wright, 2005; Hunter, 1995; Ignotz et al., 2007; Pollard et 

al., 1994) because the sperm cells are released in limited numbers at the time of ovulation 

(Hunter, 2005). Upon binding to the epithelial cells, motility of the sperm cells are suppressed 

(Hunter, 2005), and viability is maintained by interactions with oviductal secretory fluid (Abe, 

Sendai et al.  1995). Only non-capacitated sperm cells have the capacity to interact with the 

oviductal epithelium (Petrunkina et al., 2001). Upon ovulation capacitation leads to sperm 

release and progresses of sperm cells toward the ampulla where the ovulated oocyte is found 

and fertilized (Talevi and Gualtieri, 2010).  
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Figure 16: Illustration of sperm-oviduct binding in bovine. A) PDC-109 is 

bound to the spermatozoa upon ejaculation. B) PDC-109 proteins bind to 

fucose-carbohydrate on the oviductal epithelium, forming the sperm 

reservoir. C) When ovulation occur sperm cells from the reservoir is 

released and the journey to the oocyte begins. Modified from  Boch and 

Wright (Boch and Wright, 2005). 

 

The sperm reservoir is formed as sperm cells get physically trapped in the oviductal mucus 

and bind to the epithelium. The mucosal secretions from the oviductal epithelium have a 

suppression effect on the motility of sperm cells (Bosch and Wright, 2005; Lefebvre et al., 

1995; Suarez et al., 1998), until ovulation when a specific signal induces sperm release 

(Talevi and Gualtieri, 2010). Many theories have been reported regarding sperm-oviduct 
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binding. Some believe the binding is mediated by interaction of Ca
2+

 dependent lectin on the 

sperm head surface and fucose present on the apical membrane of oviductal epithelial cells 

(Suarez et al., 1998). Others believe that molecules exposed on the sperm head surface are 

capable to bind to the oviductal cell surface in a species specific way (Ignotz et al., 2001). 

It is suggested that a heparin binding protein of bovine seminal plasma (BSP), PDC-

which is secreted by the seminal vesicles, bind through its phospholipid-binding domain 

(Desnoyers and Manjunath, 1992; Hung and Suarez, 2012) to the sperm plasma 

membrane upon ejaculation. The PDC-109 has been identified as a fucose binding 

protein that mediates binding to the fucose carbohydrates on the oviductal epithelial 

cells apical side (Gwathmey et al., 2003) ( 

 

 

 

 

 

Figure 16). In cattle, a receptor for the bull sperm cell is suggested to a fucose carbohydrate, 

known as Lewis-a trisaccharide (Suarez et al., 1998). BSP-A3 and BSP-30-kDa are proteins 

belonging to the BSP family which also enable sperm binding, indicating that a reproductive 

success is achieved by involvement of a redundancy of oviduct binding proteins in the 

epithelial cells forming the sperm reservoir (Gwathmey et al., 2006). On the oviductal ciliated 

epithelium apical plasma membrane, annexins have been suggested as candidates for sperm 

plasma membrane proteins (BSPs) receptors. ANXA1, ANXA2, ANXA4 and ANXA5 have 

been identified to bind BSP (Ignotz et al., 2007). Annexins (ANXAs) contain fucose and thus 

have a high binding affinity to BSPs and heparin. Ignotz et al., (Ignotz et al., 2007) reported 

that addition of antibodies to each of the annexins resulted in blocking of sperm binding, 

indicating that ANXAs are the receptors on the oviductal epithelium that bind sperms BSPs. 
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2.4 Techniques and instrumentation  

2.4.1 Cell Cultivation of BOECs 

Different culture systems and culture media have its effects on BOECs growth and 

morphology. A perfusion culture system which is based on a constant flow of culture media 

over the cells, have shown to maintain the cells morphology better than standard static culture 

system (Reischl et al., 1999). Gualtieri et al. (Gualtieri et al., 2012) reported that the Gray`s 

medium was the best medium of choice for BOECs cultivation, since Gray`s media promoted 

cell polarity and ciliation.    

BOECs cultivated on permeable support such as polyester or polycarbonate membranes 

mimic the in vivo conditions in a greater extent than the non-permeable support such as plastic 

and glass (Cox and Leese, 1997). In vitro cell culture systems should mimic the in vivo 

condition as closely as possible (Reischl et al., 1999), by maintaining their morphological 

structure and functions (2.3.3). Reischl et al. (Reischl et al., 1999) cultivated BOECs on non-

permeable and permeable cell supports and cell attachment rates were high for both cell 

cultivation supports. In the permeable cultivation method, the apical and basal side of the cells 

is in contact with the medium allowing the cells to maintain a more polar structure (Gualtieri 

et al., 2012). Confluent BOECs monolayer cultured on permeable membrane are capable of 

transporting medium components through the cell layer (Cox and Leese, 1997). Longer 

viability and lower differentiation has also been reported for BOECs cultured on permeable 

supports (Gualtieri et al., 2012).  

Some investigators have used explants (DePauw et al., 2002) while others have used 

monolayers (Gualtieri et al., 2013; Rottmayer et al., 2006) in their research with BOECs. 

Explants maintain their morphological and functional structure very well. However, this is 

only for a short time and it starts differentiation within a day of culture. Monolayers can be 

used for a longer time, and by cultivation on permeable support the monolayers can be used 

several days post confluence (Gualtieri et al., 2012). 
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2.4.2 Microscopy 

The microscope is used in almost every aspect in research and diagnostics, visualizing 

everything the naked eye cannot see. There are different types of microscopes. The simplest 

type is the optical or light microscope that allow visible light pass through a sample or 

reflected from a sample through one or several lenses visualizing the sample at a magnified 

view. The electron microscope (EM) uses an electron beam to illuminate a sample and 

produce a magnified image. EM can reveal structures of very small objects because 

wavelengths of electrons are approximately 100 000 times shorter than visible light photons 

and thus gives high resolution images. A brand of microscopy called Scanning probe 

microscopy (SPM) forms images of surfaces by physically scanning the sample using a probe 

at an atomic scale (Bottomley, 1998). 

 

 

 

 

 

 

 

 

 

Figure 17: Illustration of the construction of a fluorescence 

microscope. A light source send in light, and an excitation 

filter allows only the desired light to go through. A dichroic 

mirror reflects the light to the specimen. The specimen emits 

fluorescence which can be visualized. Modified from The 

Nobel Foundation (The Nobel Foundation, 2008). 

 

Fluorescence microscope is a type of optical microscope ( 
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Figure 17). Instead of, or in addition to reflection and absorption, fluorescence and 

phosphorescence is used to study properties of organic and inorganic substances (Spring and 

Davidson, 2008). The setup can be simple or more complicated like the confocal microscope. 

The confocal microscope is capable of getting better resolution of the fluorescent image by 

using optical sectioning.  A light source is responsible for the fluorescence excitation in the 

sample. Between the light source and the rest of the light path an excitation filter is inserted. 

Wavelength that passes by the excitation filter, hereby the excitation light is reflected from the 

dichroic mirror through the microscope objective and to the sample. If the sample has 

fluorescence, the objective gathers the emitted light and it passes back through the dichroic 

mirror. The emitted light is consequently filtered by an emission filter which blocks unwanted 

excitation and only the emitted light form the sample creates the image (Spring and Davidson, 

2008). The image shows the fluorescing areas shining out against a dark background with 

high contrast. 

 

2.4.3 Flow Cytometry 

Flow cytometry is a method that is capable of rapidly analyzing large numbers of cells 

individually. Single cells or particles pass through a laser beam in a direct fluid stream. The 

laser beam interacts with the cells giving information about their absorption, fluorescence, 

scattering and size. This information is correlated with different cell characteristics and cell 

components (Rieseberg et al., 2001).  The flow cytometer consists of five operating units; 

Laser or mercury lamp, the flow cell, optical filter units, photodiodes and an operating unit 

which is usually a computer (Figure 18). The fluidic system is comprised by the sample and 

sheat fluid. The flow cell is injected by a cell suspension where the cells pass one by one 

across the laser beam that is orthogonally positioned to the flow. Hydrodynamic focusing is 

the method responsible for the single cell flow through the flow cell. The cell suspension is 

injected in an enclosed channel surrounded by a sheat fluid which has a faster stream than the 

cell suspension. At a time before reaching the laser, the sheat fluid and cell suspension will 

come together making a single cell suspension possible because of the difference in velocity 

(Rieseberg et al., 2001). Once a cell or particle intersects the central area of a laser beam, 

properties as fluorescence and light scatter are measured (Cram, 2002). Light scattered 
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forwardly is detected by the forward scatter channel (FSC) (Figure 18) and provides 

information about the cells or particles size. 

 

 It has been shown that forward scatter is inaccurate in its size measurements because it was 

not able to give true volumetric measurements (Ormerod et al., 1995).  Another size 

measurement available in the Beckman Coulter Cell lab Quanta SC flow cytometer is 

electrical volume (EV) (Song et al., 2006). When a cell pass through the flow cell it will 

repress a volume of fluid corresponding the cells volume (Song et al., 2006).When the flow 

cytometer maintain a current constant, small cells will register small impedances and large 

cells higher impedance changes (Song et al 2006). EV measurement is not affected by color 

or cellular shape making it accurate and reliable (Krishan and Cabana, 2004). Light scattered 

at a 90° angle is detected by the side scatter channel (SSC) (Figure 18) and provides 

information about the granular content of the cell (Rahman, 2006), and morphology 

(Rieseberg et al., 2001). 

 

 

 

 

 

 

 

 

 

Figure 18: Construction of a flow cytometer. The laser beam hits the cell 

which will emit light scatter and fluorescence. The fluorescence light and 

the forward and side scattered light will be detected in the different 

detectors. The detectors send the information to a computer that visualizes 

the different data on a screen. Modified from Rahman (Rahman, 2006). 
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Most applications in flow cytometry include fluorescent monitoring. For this, a staining 

procedure is required before the cells can be analyzed. Different fluorochromes with different 

excitation and emission wavelength are commercially available giving rise to the multiple 

staining analyses on the flow cytometer. If a cell is stained by a fluorochrom it will emit a 

fluorescent signal when interacting with the laser. This fluorescent light will be sent at a 90° 

angle (Figure 18) and it will either be blocked or detected or transmitted (Rahman, 2006). 

Different optical filters decide which light is to be blocked and which to pass through. There 

are three different types of filter; long pass, short pass and band pass filter. Long pass filters 

allow light with wavelength above a cut-off wavelength to pass through. Short pass filter 

permit light below a cut-off wavelength to pass through and band pass filter transmit light 

within a specified narrow range of wavelengths. Blocking of light occurs by absorption. A 

dichroic filter/mirror filter placed at a 45° angle to the fluorescent light) passes specified 

wavelengths in the forward direction and deflects the blocked light a 90° angle. The light is 

then passed through a filter and detected by a fluorescence (FL) channel. Detectors of choice 

are either photodiodes or photomultiplier tubes (PMT) (Snow, 2003). PMT are ideal for 

scattering and fluorescence measurements (Rahman, 2006), because of its low noise gain and 

high sensitivity (Snow, 2003). The detector converts the fluorescence signal to an electronic 

signal by an analog to digital converter and then it is amplified, analyzed and stored in the 

computer (Cram, 2002). 

 

2.4.5 Real Time –Polymerase Chain Reaction (RT-PCR) 

Real time-PCR (RT-PCR) or quantitative-PCR (q-PCR) is an improvement of general PCR. 

General PCR amplifies short DNA sequences and gives result at the procedures end. RT-PCR 

is used for gene expression analysis by reverse-transcription (VanGuilder et al., 2008), giving 

a determination of amount target gene in a sample throughout the PCR process (VanGuilder 

et al., 2008). RT-PCR quantifies relative levels of mRNA by first reverse transcribing to 

cDNA. TaqMan or SYBRGreen can be used to monitor the RT-PCR reaction. SYBR Green 

binds to dsDNA and emits fluorescent when bound to dsDNA. Thereby, higher fluorescence 

intensity reflects more DNA product. SYBR Green also binds to primer dimers and thus 

interfering analysis results. To trust the results when using SYBR Green a melting curve 

analysis is necessary. SYBR Green is reported to be toxic (Ohta et al., 2001) and therefor 
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EvaGreen, an environment friendly dye is better to use. The Taqman method uses a probe 

designed against specific sequences on target DNA. The probe contains a fluorochrome at the 

5‘ end and at the 3‘ end a quencher. The probe binds to target sequence without emitting any 

fluoresces because of the fluorochrome and quenchers close proximity. The primers extend 

and the 5‘-3‘ exonuclease activity of Taq  DNA polymerase enzyme hydrolyses the probe into 

nucleotides distinguishing the fluorochrome and the quencher. This allows fluorochrome 

signals to be detected after excitation. Increase in the product target will result in an increase 

in fluorescence signal (Cao et al., 2007). As a control for nonspecific PCR product such as 

primer dimers or contamination, melting curve analysis is usually added to the RT-PCR run. 

The DNA melting curve analysis is given by plotting fluorescence as a function of 

temperature as the thermal cycler heats through the dissociation. The DNA strands separate 

into single strands providing a measurement of the melting temperature or Tm (Ririe et al., 

1997). This method can distinguish amplification products separated by less than 2°C in 

melting point (Ririe et al., 1997). 

Data obtained from RT-PCR analysis need to be analysed. Usually, choice of analysis 

method, stand between two common used methods. These are absolute quantification and 

relative quantification analysis methods (Livak and Schmittgen, 2001). In situations where it 

is necessary to determine the absolute transcript copy number, absolute quantification method 

is used. It relates the PCR signal to a standard curve, determining the input copy number of 

the target transcript. When relative change in gene expression will be sufficient, relative 

quantification is the method to be used. In relative quantification, the PCR signal of a target 

transcript in  a treatment group is related to another sample such as a house keeping gene 

(Livak and Schmittgen, 2001).  

 

 

2.5 Sperm evaluation using flow cytometry   

For its capacity to analyze each cell individually, rapidly and reliably, flow cytometry has 

become a widely used tool in analysis of fertility-related spermatozoal characteristics in 

semen (Evenson et al., 1980; Karabinus et al., 1990; Thomas and Garner, 1994).  
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2.5.1 Viability 

Viability in semen has been reported to be of significance in relationship to fertility in bulls 

(Januskauskas et al., 2001). Even though a later article do not find correlation between these 

parameters (Waterhouse et al., 2006) it is still commonly used as a semen quality parameter.  

In order to evaluate viability in semen, approaches evaluate if the plasma membrane is  intact 

or degenerated (Waterhouse et al., 2006). It is difficult to determine the quantity of viable 

cells in the microscope and hence flowcytometer is applied (Garner et al., 1997).There are 

many fluorochromes used in viability testes. Propidium iodide (PI) is a membrane –

impermeable nucleic acid stain, which identify dead spermatozoa by penetrating their 

damaged membrane (Gillian et al., 2005; Graham et al., 1990) and bind to the DNA in the 

nucleus. For PI fluorescence excitation maximum is 536 nm and emission maximum is 

617 nm, when bound to nucleic acids. 

 

Another widely used DNA fluorochrome is SYBER-14 which label viable cells with 

functional ion pumps (Gillian et al., 2005). These two fluorochromes can also be combined, 

giving the live cells nucli a green fluorescence (SYBR-14) and  the dead cells which have lost 

their membrane integrity stain red (PI) (Gillian et al., 2005). When staining for viability it is 

also possible to stain the sperm cell for other properties such as mitochondrial function and 

acrosomal integrity. 

 

2.5.2 Acrosome integrity 

Only live acrosome intact sperm cells have the ability to fertilize an oocyte and therefor the 

numbers of live acrosome intact sperm cells in an AI dose are of high importance. There are 

several lectins that can be used to assess acrosomal integrity, but the most commonly used are 

Peanut agglutinin (PNA) and Pisum sativum agglutinin (PSA) (Gillian, Evans et al. 2005). 

PNA is a lectin from the peanut plant, and it is usually conjugated with the fluorochrome 

(FITC) or Alexa 488 when analyzed by the flow cytometry. FITC has an excitation at 490 and 

emission at 530nm. Alexa 488 has an emission maximum at 495 nm and excitation maximum 

at 519. PNA binds only to glycoproteins in acrosome reacted spermatozoa (Nagy et al., 2003; 

Waterhouse et al., 2006). PSA is another lectin when conjugated with FITC it label the 
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acrosome reacted sperm cells and stains them green (Graham et al., 1990). The acrosome 

integrity of bull’s sperm cells has not been related to fertility (Kjaestad et al., 1993), however 

it is often used for evaluation of semen quality. 

 

2.5.3 DNA integrity  

DNA integrity is evaluated by different assays. The most commonly used assay is sperm 

chromatin structure assay (SCSA) (Evenson, 2013). SCSA detects the degree of DNA 

package in sperm nuclei using flow cytometry based on acridine orange (AO) staining. 

(Evenson, 2013). There are no reparation mechanisms in sperm DNA when formed in 

spermatogenesis. Detection of many ssDNAs, by the SCSA method indicate poor DNA 

packing and thus higher probability for DNA damage. The sperm cells get a 30 second low 

pH-treatment followed by AO staining and then fluorescence is detected by flow cytometry 

(Waterhouse et al., 2006). AO fluoresces green (excitation maximum: 502 nm; emission 

maximum: 525 nm) when bound to double stranded (ds) DNA and fluorescence red 

(excitation maximum: 460 nm; emission maximum: 650 nm) when bound to single stranded 

(ss) DNA. The ratio of red to total fluorescence provides an index of normality/abnormality 

giving the DNA fragmentation index (DFI) (Evenson et al., 1994; Rybar et al., 2004). DNA 

integrity and field fertility has been shown to have a strong correlation (Rybar et al., 2004; 

Waterhouse et al., 2006) indicating that the lower the DFI is the better fertility.  

 

2.5.4 Capacitation status and Calcium influx    

Calcium ions (Ca
2+

) impact nearly every aspect of cellular life for the reason that they serve 

as signalizing messengers (Clapham, 2007). Cells usually have a low Ca
2+ 

concentration in 

the cytoplasm (intracellular) because Ca
2+

 binds water loosely and precipitates phosphate. 

Therefore, cells have evolved a way to use Ca
2+ 

binding energy for signal transduction 

(Clapham, 2007). In sperm cells Ca
2+

 plays a role in capacitation where it is specially 

associated with motility and hyperactivation (Baldi et al., 2000; Publicover et al., 2008). 

Without extracellular Ca
2+

 sperm cells are able to swim even though there is clear evidence 

that Ca
2+

 regulates flagellar shape (Carlson et al., 2003; Qi et al., 2007). This knowledge 
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about Ca
2+ 

and its relation to capacitation has led to a relatively new assay on the flow 

cytometer, to evaluate capacitation status of sperm cells. 

 

There are many fluorescent Ca
2+

 indicators (Takahashi et al., 1999), but a fluorochrome called 

Fluo-4 has been reported to be the best fluorochrome of choice when applied in flow 

cytometer approaches (Gee et al., 2000). Fluo-4 is an acetoxymetyl ester that binds to Ca
2+

 

and thereby exhibits an increase in fluorescence. It fluorescence with an excitation maxima at 

494 nm and emission maxima at 516 nm. Fluo-4 is an improvement of Fluo-3 which has been 

widely used since 1989 (Minta et al., 1989). Fluo-3 has an excitation at 485nm and emission 

at 503nm. Changes in structure of Fluo-3 where two chlorine atoms are replaced by fluorines 

give rise to the new Fluo-4. Fluo-4 has improved excitation efficiency, meaning that lower 

concentration and shorter incubation time give the same effect as Fluo-3 (Invitrogen probes, 

2012). Only few attempts have been made to investigate Ca
2+

 influx assessment in relation to 

capacitation in bull spermatozoa (Landim-Alvarenga et al., 2004) contrary to for example 

boar spermatozoa (Ded et al., 2010; Henning et al., 2012; Landim-Alvarenga et al., 2004). 

There is an agreement in literature that capacitated sperm cells contain a high level of Ca
2+

, 

while uncapacitated sperm cells contain low Ca
2+

 levels (Harrison et al., 1993; Henning et al., 

2012; Hossain et al., 2011). When head and middle piece of the spermatozoon is stained with 

Fluo-4 it is characterized as high in Ca
2+

 concentration, and low in Ca
2+

 concentration when 

only the middle piece is stained (Harrison et al., 1993). The middle piece consist of 

mitochondria which its function is regulated by Ca
2+

 (Clapham, 2007). Ca
2+

 diffuses easily in 

the mitochondrial outer membrane through large pores and crosses the inner mitochondrial 

membrane via ion channels and transporters (Clapham, 2007). Consequently, the middlepiece 

of sperm cells will always be stained with the fluorochrome that binds Ca
2+.

 

High intracellular Ca
2+

 levels in sperm cells for extended periodes cause death if fertilization 

does not occur (Cups, 1991). Therefore a combination of Fluo-4 (staining Ca
2+

) and PI that 

stains dead cells is the optimal procedure when quantifying live and capacitated sperm cells in 

a sample by flow cytometry.       

A more common method for identification of capacitation status of spermatozoa is the 

Chlortetracycline (CTC) assay. CTC is a fluorescent antibiotic that binds to the sperm plasma 

membrane where Ca
2+ 

is present above a certain threshold concentration (Silva and Gadella, 

2006). CTC becomes negatively charged when entering intracellular parts in the sperm cell 
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which contains Ca
2+

 (Gillian et al., 2005). A complex of CTC and Ca
2+

 will form fluorescence 

in different regions in the sperm cell, dependent of capacitation status. Fluorescence 

distributed on the whole sperm head is referred to as F-pattern indicating an intact non 

capacitated sperm cell (Silva and Gadella, 2006). Capacitated acrosome intact sperm cells 

have a decreased staining in the posterior area of the sperm head and a brighter staining of the 

apical area of the sperm head. This pattern is called B-pattern (Ward and Storey, 1984). AR-

pattern is found in acrosome reacted sperm cells and is characterized by loss of staining in the 

head and an evident staining in the equatorial part (Mattioli et al., 1996). This method is not 

suitable to assess on flow cytometry because the different staining patterns do not differ 

enough in fluorescence intensity. 

 

2.6 Binding capacity of semen to bovine oviduct epithelial cells 

The mammalian oviduct is responsible for several crucial reproductive events like the sperm 

capacitation, fertilization and early embryo development (Killian, 2004). In bovine females, 

ovulation occurs several hours or days after oestrus start (2.3.1) (Gordon, 2003). At mating 

the sperm is bound to the epithelial cells in the isthmus (Hunter et al., 1991), forming a sperm 

reservoir where the sperm cells will maintain their fertilization ability until ovulation (2.3.5) 

(Gualtieri and Talevi, 2000). 

Regarding the release of bound spermatozoa, it is suggested that the changes in bound 

spermatozoa surface cause the release from the epithelial cells (Smith and Yanagimachi, 

1991). The changes are caused by oviductal fluid molecules, such as sulphated 

glycoconjugates and disulfide-reductants, by reducing the sperm surface proteins disulfides to 

sulfhydryls (Gualtieri et al., 2010)(2.2.3). 

Many different in vitro cell culture systems have been developed for study of the sperm-

oviduct interaction. BOECs have been cultured in cell culture dishes (Chian and Sirard, 

1995), in plastic wells (Gualtieri et al., 2010; Pollard et al., 1991), on permeable supports such 

as cellulose nitrate (Reischl et al., 1999), polycarbonate and polyester membranes (Gualtieri et 

al., 2012; Gualtieri et al., 2013). Explants of BOECs have also been used in sperm oviduct 

interaction experiments (Gualtieri et al., 2010; Lefebvre et al., 1995). 
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Gualtieri et al. (Gualtieri et al., 2012) revealed that BOECs monolayers cultured on 

polycarbonate membranes bound spermatozoa significantly better than BOECs cultured on 

plastic support. 

An in vitro sperm-oviduct interaction assay has been used to investigate differences in fertility 

of porcine (Waberski et al., 2005). The study suggests that the sperm binding to oviductal 

epithelium is a potential predictor of fertility. De Pauw et al. (DePauw et al., 2002) 

investigated the sperm binding capacity to bovine oviduct explants and found a positive 

correlation to field fertility. 

 

 

2.7 Aims of the study  

The sperm oviduct interaction is complex and one way to understand the mechanism behind 

this process is to establish an in vitro model that mimics the condition in vivo. Epithelial cells 

in the oviduct have certain characteristics that are crucial for sperm binding. In the in vitro 

model the cells need to be as close as possible to the in vivo condition. The sperm cells that 

bind to the oviductal epithelium have to be live, acrosome intact (Thomas et al., 1994) and 

uncapacitated (Petrunkina et al., 2001) At HUC procedures for viability, acrosomal integrity 

and DFI are established at the flow cytometer. However, establishment of a flow cytometry 

assay for evaluation of capacitation status is required. Therefore the objectives are:  

- Establish a new sperm capacitation evaluation method in terms of calcium influx 

analysis on the flow cytometer  

- Cultivate BOECs on permeable membrane support to achieve cell epithelium which 

closely mimics in vivo conditions. 

- Investigate the BOECs for differentiation by immunostaining and gene expression 

analysis. 

- Evaluate the binding capacity of sperm to BOECs cultivated on membrane. 

- Evaluate the release capacity of sperm cells bound to BOECs upon heparin stimulation 
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- Compare binding capacity and release of semen added to BOECs cultivated on 

permeable membrane support and impermeable plastic support.  
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3. Materials and Methods 

All experiments performed in this project were performed at Hedmark University Collage, 

Campus Hamar, Institute of Natural Science and Technology, Biohus. All media and 

buffers were purchased from Sigma Aldrich (Oslo, Norway) unless otherwise indicated. 

3.1 Experimental plan. 

 

Figure 19: Workflow diagram showing the different procedures adopted and context for the 

experiments. 

 

Figure 19 shows methods used in this experiment.  BOECs were isolated from oviduct 

collected from slaughtered cows. Further the cells were cultured on membrane inserts and 

RNA was isolated to quantify the OVGP1 expression by RT-PCR. Cells were immunostained 



  

50 

 

by cytokeratin, vimentin and zonula occludens in order verify BOECs. Sperm samples from 

NRF bulls were induced for capacitation, stained with the Ca
2+

 binding dye Fluo-4 and 

analyzed by microscopy and on flow cytometry to determine capacitation status. As a control 

CTC staining in addition to analysis of viability and acrosomal integrity were performed on 

capacitation induced sperm cells. Semen from 6 different bulls belonging to either good 

fertility or low fertility groups were analysed using a sperm binding BOECs assay. By 

counting amount initially added spermcells and then the unbound sperm cells, it was possible 

to calculate the sperm binding capacity to BOECs. Analysis of sperm quality parameters such 

as viability, acrosomal integrity, DNA integrity and capacitation status were also conducted 

on the high and low fertility bull semen.  

 

 

3.2 Animal Material 

Bovine oviduct epithelial cells were collected from slaughtered cows. Sperm cells used in this 

project were from Norwegian red cattle (NRF). 

3.2.1 Bovine oviduct epithelial cells 

Bovine oviducts from slaughtered cows were collected at a local abattoir (Nortura, Ringsaker, 

Norway). It was preferred to collect oviducts from cows which were in the follicular phase of 

the oestrus cycle. Charachterization of the follicular phase was determined from the 

appearance of the corpus luteum (CL) by the help of a veterinanry. Unfortunately very few 

animals were determined to be in the follicular phase when slaughtered and therefore the 

supply of material was limited. 

 

3.2.2 Sperm cells 

Cryopreserved semen from NRF bulls were kindly donated by Geno SA and used in all 

experiments. Each semen straw had a concentration of 12 x 10
6
 sperm cells per 250µl 

cryopreservation extender, and was stored in liquid nitrogen prior to experimental testing. 
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The semen straw was thawed in a water bath at 37°C for 1 minute before its content was 

transferred to a tube. Depending on what the semen should be used for, different preparation 

methods were conducted.  

 

 

3.3 Cultivation of bovine oviduct epithelial cells on permeable 

support  

3.3.1 Collection and isolation of cells  

Approximately right after cows were slaughtered, the reproductive tract was collected in a 

plastic bag on ice, and brought from the slaughter house to the laboratory. All materials used 

were cleaned in 70% ethanol. Organs with oviducts in correct oestrus phase (follicular phase) 

were selected (3.2.1). The uterus with the ovaries, uterine horns and oviducts were dissected 

from the vagina. The correct oviducts were separated from the uterus at the uteran junction 

site and sealed with a plastic clip. The oviduct with the ovary were placed on ice cold 

phosphate saline buffer (PBS) (137 mM NaCl , 2.7 mM KCl , 8.1 mM Na2HPO4*2H2O, 1.76 

mM KH2PO4, pH 7.4, sterilized and stored at 4°C ) supplemented with 50 µg/ml gentamycin 

(Gibco 15710). Within one hour in PBS with 50 µg/ml gentamycin the oviduct was pinned 

out on a dissection tray and all connective tissues and lymphatic vessels off the oviduct were 

dissected. Around 7 cm of the oviduct from the isthmus region and up to the ovary was 

dissected and washed briefly in PBS with 50 µg/ml gentamycin. Using a tweezers, the 

dissected region from the ovary end was held upon a sterile petri dish. A microscope slide was 

used to mechanically squeeze out the cells by gently pushing the microscope slide on the 

oviduct (Walter, 1995). For RT-PCR, a 0-time sample was collected directly using a sterile 

cell spreader. The cells were then further preceded to cell lysis for RNA extraction. 

 

3.3.2 Cultivation of BOECs on transwell polyester membrane inserts 

The epithelial cells were washed in 5 ml PBS with 50 µg/ml gentamycin. During washing the 

cell suspension were pipetted up and down to assist cell separation. The cell suspension was 
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further transferred to a 15 ml falcon conical centrifuge tube (BD Falcon) and centrifuged at 

300 x g for 10 minutes at room temperature. The remaining cell work was conducted in a 

sterile work bench (Nuaire
TM

) to avoid contamination. The supernatant was taken off and the 

pellet was resuspended in 5 ml preheated (37°C) PBS with 50 µg/ml gentamycin and 

centrifuged at same conditions as described above. The supernatant was taken off and the 

pellet was resuspended in 13 ml warm (37°C) Dulbecco’s modified eagle’s media (DMEM) 

(Sigma, D5671) with 4500 mg glucose/l, supplemented with 2 mM L-glutamine (Gibco, 

25030), 50µg/ml gentamycin and 10% fetal bovine serum (Gibco, 26140), pH 7.4. The cells 

were seeded out into 12 mm, 0.4 μm pore polyester membrane inserts (Corning® Transwell® 

polyester) (Figure 20 ) in 12- well culture plate, with 1.12 cm
2
 growth area. Cells from 1 

oviduct were seeded into 24 membrane inserts.  

 

 

Figure 20: Construction of transwell membrane inserts and well. The polyester membrane contained 0.4 

µm pores allowing cells to get nutrition from the apical and basal side. Modified from Postgoerd et a. 

(Postgoerd et al., 2002) 

 

An optimization step was conducted before seeding the cells by adding 1.5 ml DMEM to each 

well with membrane insert, approximately one hour before addition of cells. Further, 0.5 ml 

of the epithelial cell suspension was added to the inside compartment of each insert.  Cells 

were grown for monolayer formation at 39°C in a 95% humidified and 5% CO2 incubator 

(NuaireTM). Media was changed every 48 hours until use in different experiments. 
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3.3.3 Relative growth rate of BOECs cultivated on polyester membrane 

To estimate the relative growth rate of BOECs seeded on polyester membrane, 3 different 

concentrations were tested. 3x10
4
 cells /ml, 6x10

4 
cells /ml and 10x10

4 
cells /ml. The cells 

were seeded out on polyester membrane inserts (3.3.1) and they were monitored for 

proliferation every day using light microscope (Leica microsystems, Germany). The polyester 

inserts featured a microscopically transparent membrane allowing confluence observations.  

 

 

3.4 Cultivation of BOECs on plastic and glass support 

BOECs were seeded out in a 24 well plastic cell culture plate (Falcon
®
 353847) with and 

without glass coverslips. 0.5 ml of the cell suspension described in 3.3.2 was added to each 

well prior to addition of 0.5 ml DMEM growth. Same growth conditions was used for these 

cells as for the cells grown on polyester membrane inserts (3.3.2). Cells cultivated on plastic 

support and glass coverslips were assessed by light microscopy for evaluation of growth 

Immunostaining and fluorescence microscopy for evaluation of cytokeratin and vimentin 

expression. The results were compared with cells cultured on membrane inserts. 

 

3.5  Immunostaining of cultivated BOECs  

3.5.1 Vimentin and cytokeratin staining 

BOECs cultivated on polyester membrane in a 12 well plate (3.3.2) or on glass coveerslips in 

a 24 well plate (3.4) were immunostained against cytokeratin and vimentin. Prior to 

immunostaining all culture media were removed and the cells were washed. For BOECs 

cultured on membrane inserts, 600µl of preheated (37°C) PBS was added to the bottom of the 

well (Figure 20) and 500 µl of PBS were added to the membrane insert slowly and then 

aspired. This washing step was repeated twice. For fixation 500 µl 4% PFA was added to the 
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cells before incubation at room temperature for 15 minutes. PFA was then aspired and the 

cells were washed 3 times with PBS for 5 minutes. For BOECs cultivated on coverslips, same 

method was conducted except that 300 µl 4% PFA was used instead. In order to permeabilize 

the cells, 500 µl 0.5% Triton X-100 (Sigma, T8787) was added and the cells were incubated 

for 15 minutes at room temperature. A washing step for 3 minutes with 600µl washing 

solution (PBS with 0.1 % Tween 20) (Sigma, P5927) was performed 3 times.  To avoid 

unspecific binding, cells were incubated in 600 µl blocking solution (PBS with 2% BSA in 

0.1% Tween 20) for 30 minutes and then aspired. The primary antibody, mouse anti-human 

cytokeratin (cloneAE1/AE3, Dako, M3525) was diluted 1:100 in blocking solution and 100 µl 

solution was added to the cells before incubation for 45 minutes in a water chamber. After 

incubation, the antibody solution was aspired and the cells were washed 3 times for 3 minutes 

each with 500 µl wash solution. The secondary antibody, Alexa Fluor 555 goat anti-mouse 

antibody (Invitrogen, A21422) and the nucleus stain Hoechst 33258 (Sigma, 14530) were 

diluted 1:100 in blocking solution. These antibodies are light sensitive and were shielded from 

light by covering the tubes with aluminium-foil. 100 µl secondary antibody solution with 

Hoechst were added to the cells. The cells were covered with aluminium-foil for protection of 

light and incubated for 35 minutes at room temperature, in a water chamber. Furthermore, 3 

times washing for 3 minutes with wash solution was performed. The membrane inserts 

containing cells for vimentin staining were washed for 10 minutes  

with 600 µl blocking solution. For cells on coverslips same procedure was performed but with 

400 µl of each solution During the staining protocol cells without vimentin labelling were 

incubated with 600 µl blocking solution. The vimentin staining was carried out with a direct 

staining method which included the primary antibody mouse anti-vimentin (Sigma,V6630) 

conjugated with Alexa Fluor 488(Invitrogen, A20181). Like the other antibodies, the Alexa 

Fluor 488 conjugated mouse anti-vimentin IgG antibody was diluted 1:100 with blocking 

solution and 100 µl was added to the cells followed by an incubation period of 45 minutes at 

room temperature in the water chamber. The staining solution was aspired after the incubation 

time, and the membrane inserts and coverslips were washed 2 times for 5 minutes with 600 µl 

wash solution. Finally a washing step with 800 µl PBS was required before the membrane 

insert were taken out from the well and left for dry at a 45° angle in a dark place over night. 

The next day, the membrane inserts were excised with a scalpel and each membrane was 

placed on a wet microscope slide (VWR, 631-1550) by help of a forceps. Microscopic 
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examination was executed immediately after. Nikon ECLIPCE Ti-U fluorescent microscope 

(Nikon corporation, Japan) was used to analyse the cells. The program Nikon NIS-Elements 

Basic Research (B.R) version 3.00 was used to capture images and fluorescence was detected 

by different filter-blocks shown in Feil! Fant ikke referansekilden. 

 

Table 1: Overview of fluorochromes and corresponding filter blocks in the Nikon ECLIPSE Ti-U 

microscope used for evaluation of immunostained BOECs. 

 

 

3.5.2 Zonula occludens staining  

Immunostaining against the tight junctions proteins, Zonula occludens (ZO), were performed 

with BOECs cultured on membrane inserts. Staining and analysis procedure was the same as 

for the cytokeratin staining (3.5.1). Rabbit anti-ZO-1 polyclonal antibody (Bioside, HP9043) 

was used as primary antibody with a dilution of 1:100 in blocking solution. Alexa Fluor 488 

goat anti-rabbit IgG (Invitrogen A11008) diluted 1:100 with blocking solution was used as 

secondary antibody.    

 

 

3.6 Real Time PCR analysis for OVGP1 gene expression 

Time point samples from BOECs cultured on polyester transwell membrane inserts were 

taken to quantify the OVGP1 expression level during cultivation over time. Two different 

Fluorochrome 

name 

Fluorochrome 

excitation/ 

emmission 

maxima (nm) 

Filter name on 

Nikon 

microscope 

Excitation 

wavelength 

of filter 

Emission 

wavelength 

of filter 

(nm) 

Fluorescent 

colour 

Alexa Fluor 555 555/565 TRITC 540/25 605/55 Red 

Alexa Fluor 488 495/519 FITC 465-495 515-555 Green 

Hoechst (33258) 345/460 DAPI 340-380 435-485 Blue 
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oviducts in follicular phase of the oestrus cycle were used for collection of BOECs, one for 

cell cultivation at membrane (3.3.2) and one for cultivation at plastic (3.4). The first sample 

was taken immediately after cell isolation, then after 2, 3, 6, 8, 10 and 13 days after cell 

collection and start of cultivation.   

3.6.1 Trypsination of BOECs 

Trypsination of the BOECs were performed prior to cell lysis. The media was aspirated from 

the well bottom first and then from the membrane insert. The media from the insert was 

transferred to a 1.5 ml eppendorf tube (Eppendorf Safe-Lock 1.5 Tube ) for collection of cells 

not attached to the membrane. The well and insert was further washed with PBS by adding 

1.5 ml PBS to the well and 500 µl PBS to the insert to remove all traces of serum which 

contains trypsin inhibitors. 600 µl 0.25% Trypsin-EDTA (1X, Phenol Red)  (Invitrogen 

Gibco® Trypsin) was added to each well of the plate and 250 µl 0.25% Trypsin-EDTA was 

added directly to the membrane insert. The cells were incubated with trypsin at 39°C and 5% 

CO2 for 10 minutes. After completed incubation time, the cells were checked under light 

microscope (Leica microsystems, Germany) to confirm cell detachment. The cell suspension 

was collected from the insert and transferred to the eppendorf tube containing media 

supplemented with serum which will inactivate the trypsin. To confirm that all cells were 

detached, each insert was inspected under light microscope (Leica microsystems, Germany) 

and if large numbers of cells remained on the membrane another PBS wash followed by 

trypsination was performed. For BOECs cultivated on plastic 200µl 0.25% Trypsin-EDTA 

was added to each well and the cells were incubated for 20 minutes at 39°C and 5% CO2. 

 

3.6.2 RNA isolation 

After trypsination, the cells were centrifuged for 3 minutes at 1300 x g. The supernatant was 

discarded and the cell pellet lysed in 0.5 ml Buffer RLT containing 10 µl β-Mercaptoethanol/ 

ml. The cells were vortexed to ensure that the cell pellet was completely resuspended. All 

lysate was transferred to an QIAshredder spin column with 2 ml collection tube (QIAshredder 
 

TM 
796-54) and centrifuged at 10 000 x g for 2 minutes. Furthermore 0,5 ml of 70% ethanol 

was added to the lysate and the suspension was mixed well before it was transferred to an 
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RNeasy spin column with 2 ml collection tube and centrifuged at 8000 x g for 15 seconds. 

After centrifugation 0.7 ml Buffer RW1 was added to the spin column  and centrifugation at  

8000 x g for 15 seconds was repeated. This step was done to wash the spin column. Another 

wash step required addition of 0.5 ml buffer RPE (Buffer RPE with addition of 4 volumes of 

96% ethanol) to the spin column and centrifugation at 8000 x g for 15 seconds. This step was 

performed once more, however the centrifugation was carried out at 8000 x g for 2 minutes to 

dry the spin column membrane. Further, 0.5 ml 96% ethanol was added to the spin column 

and centrifuged at 10 000 x g for 2 minutes. The RNeasy spin column was then placed in a 

new, empty 2 ml collection tube and centrifuged at 9000 x g for 2 minutes. This was done to 

ensure a dry membrane and an ethanol free elution. Finally, the RNAeasy spin column was 

transferred to 1.5 ml collection tube and RNA elution was performed by adding 40 µl RNase 

free sterile water (65ºC) to the spin column membrane, incubation for 4 minutes and 

centrifugation at 9000 x g for 1 minute. Immediately after centrifugation, the RNA elutions 

were placed on ice before proceeding RNA quality assessment and cDNA synthesis. 

NanoDrop ND-1000 Spectrophotometer (Saveen Werner) was used for quality measurement 

of the RNA. 

 

3.6.3 cDNA- synthesis 

Instantly after RNA quality assessment, first strand cDNA synthesis was performed using 

SuperScrip®III Reverse Transcriptase (Invitrogen 18080-044) and random primer 

hexadeoxyribonucleotide mixture pd(N)6 . The RNA samples were DNase treated by adding 

1 µl 10X DNase I Reaction Buffer and 1 µl DNase I to 8 µl total RNA containing 

approximately 1µg RNA. The samples were incubated at room temperature for 15 minutes. 

To stop the reaction, 1 µl 25 mM EDTA was added to each sample followed by 10 minutes 

incubation at 65°C before cooling on ice. Furthermore 1 µl 250 ng/µl random primers and 1 

µl 10mM dNTPs were added to each sample followed by incubation at 65 °C for 5 minutes 

and cooling on ice for at least 1 minute. The following was then added to each sample: 4 µl 

5X First-Strand Buffer, 1 µl 0.1 M DTT, 1µl SuperScript™ III RT (200 U/µl) and 1 µl 

RNaseOUT™ Recombinant RNase Inhibitor (40 U/µl, 10777-019). Samples were kept in 

room temperature for 5 minutes before reverse transcription were conducted in a PCR 

machine with the following settings: 50°C for 50 minutes to activate the SuperScript® II RT, 
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then inactivation of the enzyme at 70°C for 15 minutes and finally cooling of the sample to 

12°C before storage at -20°C for later use as a template in the RT-PCR reaction.  

 

3.6.4 OVGP1 quantifiqation using Real Time PCR 

As mentioned above (3.6.3) the reverse transcribed cDNA was used as template in the RT-

PCR reaction after all time point samples were cDNA synthesised. The cDNA were diluted 

1:10 before addition to the RT-PCR reaction. To monitor dsDNA, EvaGreen dye was used. 

The PCR reaction with a total volume of 20 µl contained: 4 µl of  a ready to use qPCR mix 

called 5x Hot Fire  HOT FIREPol® EvaGreen® qPCR Mix Plus (ROX) (Solis Biodyne),  0.2 

µl (10µM) of  each gene specific sense and antisense primers, 14.6 µl PCR water and 1µl 

cDNA. The 5x Hot Fire HOT FIREPol® EvaGreen® qPCR Mix Plus ( ROX) comprises HOT 

FIREPol® DNA Polymerase, ultrapure dNTPs, MgCl2 and EvaGreen® dye.   The primers 

used has been designed and previously tested by Bai (Bai, 2011) (Table 2) . In each run, 

negative controls were included containing the same reaction. However, cDNA was omitted. 

18S ribosomal RNA was used as the reference gene. This reference gene is recommended as 

internal standards for mRNA quantification studies (Thellin et al., 1999). A 100 µl optical 96-

well plate was used to retain the samples before it was run at the RT-PCR machine (7500 

RealTime System, Applied Biosystems). The cyclic conditions were 50°C for 2 minutes 

followed by a denaturation step at 95°C for 15 minutes. 40 cycles were run for each sample 

starting with a denaturation step at 95°C for 15 seconds, followed by an annealing step at 

60°C for 15 seconds and finally an elongation step a 72°C for 40 seconds. After amplification, 

a dissociation stage was added which were 95°C for 15 second, 60°C for 1 minute, 95°C for 

15 seconds and lastly 60°C for 15 seconds. 
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Table 2: List of oligunocleotide primers used in RT-PCR  for analysis of OVGP1 and 18S expression. These 

OVGP1 primers had best specificity according to Bai (Bai, 2011). 

 

 

Data from the RT-PCR run were transferred to LinRegPCR program for further analysis.  

LinRegPCR is a computer program that determines the target mRNA quantity in addition to 

the PCR efficiency (Ramakers et al., 2003). Having the mean PCR efficiency (Emean), the 

fluorescence threshold (Nq) and the Ct-value (number of cycles needed to reach Nq) it was 

possible to calculate starting concentration per sample (Ramakers et al., 2003). Relative gene 

expression is then expressed as NO (target gene)/NO (reference gene).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer 

Name  

Forward Primer: 

5‘-3‘ 

Reverse Primer: 

 5‘-3‘ 

Product 

length 

Melting 

temperature   

OVGP1   TTGGCACCGTGAGGTTCAC CCAGACCATCAAAGCCATGTG 105 bp 84.7°C 

18S  GAGAAACGGCTACCACATCCAA GACACTCAGCTAAGAGCATCGA 337 bp 87.5°C 
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3.7 The flow cytometer instrument setup  

All sperm quality parameters were investigated using the Beckman coulter Cell Lab Quanta
TM 

SC flow cytometer (Figure 21) which can measure three fluorescence colours in three 

different channels (table 3) in addition to electronic volume (EV) and side scatter (SS).  

 

 

Figure 21:Schematic overview of the Cell Lab Quanta SC flow cytometer composition and filter 

settings. Modified  from Beckman Coulter (Song et al., 2006). 

 

Beckman coulter flow cytometer has two different light sources, a 488nm argon laser and a 

Mercury Arc lamp. The mercury lamp is used when UV light is to be detected. 
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Table 3: Fluorochromes used in the sperm quality measurements by flow cytometry and  their corresponding  

filters. 

 

 

In all sperm quality parameter analysis, the cell sample was triggered on EV. In the EV 

diagram sperm cells were gated from channel 200-600 (Figure 22A). This represents cells 

from 0.5 µm
3
 to 1.5 µm

3
. A cytogram with EV vs SSC was used to enhance identification of 

the sperm cells, where a polygon gate was included as gate identifying the sperm cells with 

SSC around 20-200 (Figure 22B).The EV was expressed in linear scale, while all other 

parameters were in logarithmic scale. Data obtained from the flow cytometry was analysed by 

Kaluza version 1.2 analysis program 

 

 

 

 

 

 

 

Fluorochrome name Fluorochrome 

excitation/ 

emission maxima (nm) 

Fluorescence 

collected by filter  

Fluorescent 

colour 

Detected in 

channel 

Peanut agglutinin 

(PNA) conjugated 

with Alexa Fluor 

488  

 495/ 519 525/25 Band pass 

filter 

Green FL1 

Fluo-4 485/520 525/25 Band pass 

filter 

Green FL1 

Acredine orange 

bound to single 

stranded DNA 

460 /650 670 Long pass filter Red FL3 

Acredine orange 

bound to double 

stranded DNA 

502/525  525/25 Band pass 

filter 

Green FL1 

Propidium iodide 

(PI) 

536/617 670 Long pass filter Red FL3 
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Figure 22: Sperm cells are identified upon size (EV) and morphology (SS). Sperm cells are triggered on 

electronic volume (EV). The data are collected from 10 000 cells A)In the EV histogram a  gate representing 

sperm cells is included. B) Cytogram showing side scatter (SS) plotted against EV. The gates identify sperm 

cells and exclude debris/noise (smaller particles) and agglutinations (larger particles). 

 

 

3.8 Evaluation of sperm capacitation by CTC and Fluo-4 staining 

Evaluation of capacitation status in bull sperm cells, by analysing the level of Ca
2+

 influx, was 

performed using the Ca2+ binding dye, Fluo-4 (2.5.5) in combination with flow cytometry. 

Several attempts to capacitate bull cryopreserved sperm cells were conducted and different 

concentrations of Fluo-4 staining were tested. After induction of capacitation, sperm cells 

were CTC stained (2.5.5) to verify capacitation status by microscopy. Capacitated sperm cells 

were also stained with Fluo-4 and examined under the microscope to verify the different 

staining patterns.  

 

3.8.1 Induction of capacitation 

Different capacitation methods were used to induce capacitation in cryopreserved semen. As a 

first attempt semen were incubated in modified Tyrode‘s albumin lactate pyruvate medium 

A B 
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(SP-TALP) (Parrish et al., 1988) with capacitation provoking agents as bicarbonate (Gadella 

and van Gestel, 2004; Harrison, 1996) and heparin (Sigma Aldrich, Norway, H3393) (Parrish 

et al., 1988; Prathalingam et al., 2007). The SP-TALP capacitation media comprised 100 mM 

NaCl, 31 mM KCL, 4 mM MgCl2, 3 mM NaH2PO4 x H2O, 100mM Hepes (Amresco, 0511-

250G), 20 mM CaCl2 x 2H2O, 1 mM sodium puruvate, 21.6 mM sodium lactate, 6 mg/ml 

BSA, fraction V (A9647-50G, Sigma), 10µg/ml heparin and 250 mM NaHCO3. After mixing 

the ingredients, the medium was warmed to 37°C, then pH was adjusted to 7.4 using pH 

meter (InoLab pH 720) and osmolality was adjusted to 290-295 mOsmol/kg using cryoscopic 

osmometer (OSMOMAT
®

 030). The SP-TALP was filtered through a 0.25µm filter 

(Whatman® FP 30/0,25 Ca-S) before use. Fresh SP-TALP was prepared prior to each 

experiment. 20µl semen and 80µl capacitation media was added to an eppendorf tube and 

incubated at different incubation conditions: 1) incubation at 37°C for 30 minutes and 2) 

incubation for  39°C for 30 minutes. Same samples were in addition to heat incubation, 

shaken: 1) incubation at 37°C with shake at 300rpm for 30 minutes and 2) incubation at 37°C 

with shake at 500 rpm for 30 minutes. Another method to induce capacitation was 

centrifugation. Semen with capacitation media was centrifuged at different speeds including 

800 g, 1000 g and 1500 g. Negative control was included each time, by adding 20 µl semen 

and 80 µl SP-TALP without bicarbonate and heparin. The sperm cells that underwent the 

induction of capacitation were measured for their viability and acrosome integrity by flow 

cytometry. Microscopic evaluation using phase contrast mode was also conducted. 

 

3.8.2 CTC staining  

In vitro capacitated sperm cells were CTC stained for evaluation of capacitation status. 

(3.8.2). An easy and short procedure of CTC staining was applied, according to Dapino 

(Dapino et al., 2006). A CTC buffer containing 130 mM NaCl and 20 mM Tris was first 

prepare and stored at 4°C. On the same day of experiment, CTC staining solution was 

prepared by the addition of 750 μM CTC (Sigma Aldrich, C4881) and 5 mM D,L-Cysteine 

(Calbiochem, 2430) to the CTC buffer. pH was adjusted to 7.8 with 0.2 M HCl and the 

solution was filtrated through a 0.2 µM sterile filter. After induction of capacitation (3.8.1), 

sperm cells were centrifuged at 800 g for 5 minutes and the cell pellet was resuspended in 

fresh SP-TALP. Equal amount of semen sample and CTC staining solution were added in a 
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new tube. 4% PFA was added to the tube as fixative in equal amount as the sample. 10µl of 

stained sperm cells were placed on a microscope slide and mixed with 5µl 0.22 M 1,4 –

diazabicyclo (2, 2, 2) octane (DABCO) (Sigma) dissolved in glycerol:PBS (9:1). A 10 x 3 cm 

coverslip was placed on the sampleand the microscope slides were stored in dark at 4°C. Cells 

were analysed and visualized using same fluorescence microscope and software as described 

in section 3.5.1. For detection of CTC fluorescence, a blue-violet filter was used giving 

excitation light between 400-440 nm and collecting emission light with wavelengths longer 

than 470 nm (470 LP). Approximately 50-100 sperm cells were counted in each slide. 

 

3.8.3 Fluo-4 staining  

In vitro capacitated (3.8.2) sperm cells were Fluo-4 stained for evaluation of Fluo-4 staining 

patterns. A 250 µM Fluo-4 working solution was prepared by diluting Fluo-4 (Molecular 

Probes, Invitrogen, F14201) stock solution with 20% Pluronic F127 (Molecular Probes, 

Invitrogen, P3000MP) in a 1:1 condition. Pluronic® F-127 is a nonionic, surfactant polyol 

that facilitate the solubilisation of the water-insoluble dyes Fluo-4(Molecular Probes- 

Invitrogen, 2008). The solution was further diluted in PBS to give desired Fluo-4 

concentration. The dilution in PBS was made at the experiment day and kept in dark. Sperm 

cells were stained with different Fluo-4 concentrations in a titration experiment to find the 

optimal Fluo-4 concentration. In parallels, semen were stained with 0.060µM, 0.125µM, 

0.250 µM, 0.375 µM 0.430 µM, 0.500 µM, 0.600µM, 1µM, 2µM, 5µM and 10µM Fluo-4. 

Samples with Fluo-4 dye were incubated at 37°C for 30 minutes before centrifugation at 800 

g for 10 minutes. For microscopy evaluation, the cell pellet was resuspended in 20 µl PBS 

containing 5µM probenecid (Molecular Probes, Invitrogen P36400) and incubated in dark for 

30 min. Probenecid has an inhibit action on organic- aninon transporters in the cell 

membrane, thus ions will remain inside the cell (Molecular Probes- Invitrogen, 2008). 

Following incubation, 5 µl sample was placed on a microscope slide and covered with 

coverglass. The cells were analysed directly after preparation using same fluorescence 

microscope as described in section 3.5.1 (Table 1). For flow cytometry analysis, the cell pellet 

was resuspended in 980µl PBS containing 5µM probenecid and incubated in dark for 30 min. 

Final cell concentration in all flow cytometry samples was 2x10
6
 cells/ml. 
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3.8.4 Flow cytometry analysis of  Fluo-4 stained semen 

Fluo- 4 stained sperm cells were analysed in the flow cytometer as described in 3.7 and the 

sperm population was selected as shown in figure 22. Fluo-4 fluorescence was detected in 

FL1 using a 525/25 nm band pass filter. First, a negative control sample containing unstained 

sperm cells were analysed in the flow cytometer to ensure appearance of a “negative” peak in 

the first quadrant of FL1. Samples containing the different concentrations with Fluo-4 dye 

(3.8.4) were thereafter analysed. The PMT value was adjusted in relation to the negative 

control. Gates were included between the low in calcium peaks (sperm cells with low Ca
2+

 

levels) and the high in calcium peak (sperm cells with low Ca
2+

 levels) appearing in FL1, 

based on CTC-results and Fluo-4 results.  

 

 

3.9 Approaches to improve the BOEC- sperm bindig assay 

3.9.1 Sperm counting using flow cytometer 

A dilution series of sperm cells were prepared with PBS as diluent. Concentrations were as 

follows: 3x10
4
,
 
5x10

4
, 1x10

5
, 3x10

5
, 5x10

5
, 1x10

6
 and 2x10

6
 sperm cells/ml. Changes in the 

flow cytometer run-settings were necessary to obtain reliable counting measurements. In the 

run settings, counting time was set to 20 seconds in contrast to the normal which was 10 

seconds. Counting was set to start after 10 seconds cell sampling. This ensured that the first 

aspiration of the sample was not included in the measurements. The sperm cells were 

triggered on EV as described in section 3.7. The samples were prepared in eppendorf tubes 

and analysed in the flow cytometer. 

 

3.9.2 Percoll gradient centrifugation 

A 95% percoll (Percoll
®

 Sigma P1644) solution were prepared by diluting percoll with SP-

TALP (3.8.1) and 45% percoll were prepared by diluting 90% percoll 1:1 with SP-TALP. pH 

was adjusted to 7.4 and osmolality was adjusted to 290-295 mosmol/kg. All solutions were 

filtered through a 0.45 µm filter (Whatman
®
 FP 30/0,34- 10462100). 1ml 45% percoll was 
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added on top of a 1 ml 95% percoll layer in a 15 ml falcon tube. 250µl frozen-thawed semen 

was expelled on top of the 45% percoll layer and centrifuged at 700 g for 20 minutes at room 

temperature. The supernatant was aspired and cell pellet was washed with 5 ml SP-TALP and 

centrifuged again at 700g for 5 minutes at room temperature. The cell pellet was resuspended 

in 200 µl SP-TALP. 5µl of this sperm cell solution was added to a microscope slide and 

covered by a coverslip before observation under a light microscope. Fluo-4 staining was also 

conducted on sperm cells that received percoll centrifugation treatment. 

 

 

3.10 Sperm binding assay with BOECs cultures on membrane 

Semen from 6 different NRF bulls belonging to high and low fertility groups, estimated by 

Geno from non-return rate (NRR) (2.5) data, were added to bovine oviduct epithelial cells 

(BOECs) grown on polyester membrane (3.3.2). The NRR- 56 value is measured by the 

percentage inseminated cows not returning to oestrus specific within a period of 56 days. This 

was performed in order to examine their binding capacity to the BOECs. Heparin stimulation 

for induction of sperm release was also investigated. Information about sperm motility and 

NRR-56 day’s data (Feil! Fant ikke referansekilden.) were obtained from Geno SA after the 

experiment had been performed. 
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Table 4: Non-return rate (NRR) and motility data for the bulls investigated for oviduct sperm 

binding capacity and release.Based on NRR evaluated 56 days after the cow was inseminated, 

bull 1, 2 and 3 are categorized in the high fertility group, while bull nr 4, 5 and 6 belong to 

the low fertility group. Data was obtained from Geno SA. 

 

 

 

 

3.10.1 Preparation of cryopreserved semen used in BOECs sperm binding   

assay 

After thawing as described in section 3.8.1, semen from each bull was transferred to a 15 ml 

falcon tube. For later DFI analysis, 45 µl from each semen sample was transferred to a 

separate eppendorf tube and frozen at -80°. 5 ml prewarmed (37°C) SP-TALP (3.8.2) was 

added to the remaining semen and centrifuged at 400 g for 5 minutes at room temperature. 

The supernatant was discarded and the washing step was repeated. Finally, cell pellets were 

resuspended in 300µl warm (37°) SP-TALP. This sperm sample solution was used in all 

sperm quality parameter measurements and for the binding capacity assay conducted at the 

same time. 

 

3.10.2 BOECs sperm binding and release assay 

The BOECs sperm binding and release assay was performed tree times with four samples of 

each bull in each experiment. The first and second time, BOECs monolayers cultured on 

polyester membrane inserts (3.3.2) were used when 100% confluent. The third time BOECs 

monolayer cultured on polyester membrane insert were used 5 days post-confluence The 

growth media in the well and in the inner compartment of the insert was removed by 

aspiration with a pipette slowly without touching the monolayer surface. The monolayers 

Bull nr NRR- 56 days (%) Motility (%) 

1 74.74 60 

2 74.85 55 

3 76.68 55 

4 62.09 55 

5 62.38 50 

6 66.39 55 
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were washed with 500 µl PBS (37°C) and 1 ml PBS was added to the well followed by 

immediately aspiration. This washing step was repeated three times and in the last washing 

step, the monolayers were left in the SP-TALP for maximum 1 hour in the incubator (39°C, 

5% CO2) until sperm addition. The sperm cell samples prepared in section 3.9.1 were diluted 

by adding 30 µl sperm cells to 470µl SP-TALP making a 500 µl final solution containing 

about 0.5 x 10
6 

sperm cells. 4 samples for each bull was prepared and added to the BOECs 

monolayers. Prior to addition of sperm cells to the monolayers, SP-TALP covering the 

monolayers was aspired. SP-TALP in the well was aspired and 500 µl fresh SP-TALP was 

added to the well. BOECs monolayers were incubated with sperm cells at 39°C, 5% CO2
 
and 

in air under humid conditions (incubator) for 1 hour. Post-incubation, suspension containing 

semen was gently pipetted up and down twice before transferring suspension from each well 

to individual eppendorf tubes and kept for later counting of unbound spermatozoa. The 

BOECs monolayers on membrane inserts were washed 5 times with 500µl warm (37°C) PBS 

and wells were washed with 1 ml PSB. This was followed by addition of 500 µl of SP-TALP 

with 50µg/ml heparin to both monolayers on the membrane inserts and to the wells. For 

negative control 500 µl SP-TALP without heparin was added to associating monolayers and 

wells. Monolayers were again incubated for 30 minutes and after incubation, suspension was 

transferred from each well to individual eppendorf tubes. Each suspension was counted for 

spermatozoa released upon heparin stimulation.  

Bürker counting chamber was used to count sperm cells in suspension, as described in Bai 

(Bai, 2011), from the different stages mentioned above which were 1) spermatozoa added to 

monolayers, 2) unbound spermatozoa and 3) heparin released sperm. Only live spermatozoa 

were considered in the calculations of spermatozoa added to BOECs monolayers and therefor 

the numbers of viable sperm cells in each sample were obtained by the viability 

measurements on the flow cytometer. Number bound spermatozoa was obtained by 

subtracting the number unbound spermatozoa from the number initially added. Bound 

spermatozoa value is represented as percentage of live sperm cells (Table 7) added and 

heparin released sperm cells are expressed as percent of total bound spermatozoa. 
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3.11 Analysis of sperm quality parameters  

In conjunction with the BOECs binding and release assay (3.9), all sperm samples were 

quality tested by measuring the sperm quality parameters viability, acrosome integrity and 

DNA integrity. In addition, the new adopted quality parameter, Ca
2+

 
 
influx assessed by Fluo-

4 staining (3.8.4) was evaluated. All these parameters were measured using the Beckman 

coulter flow cytometer (3.7).   

 

3.11.1 Vability and acrosome integrety assay 

Semen from each bull was analysed for viability and acrosome integrity immediately after 

sperm cell preparation, described in section 3.9.1. Parallels for each sperm cell sample were 

prepared by transferring 20µl sperm cells to eppendorf tubes and then adding 980µl of 

labelling solution with PI (2.6.1) and PNA (2.6.2). Labelling solution contained PBS with 0.6 

µg/ml PNA conjugated with Alexa Fluor ® 488 (PNA-Alexa488) (Molecular probes, 

Invitrogen L-21409) and 0.48 µM PI (Sigma P4864). Samples were incubated in dark for 10 

minutes at room temperature before analysis at the flow cytometer. 
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Figure 23: Representative diagrams from flow cytometric evaluation of sperm viability and acrosome 

integrity. A) Cells were triggered on electric volume (EV) and a representative EV cytogram 

including a sperm gate is presented. B) FL1 histogram showing fluorescence signals from acrosome 

reacted cells stained with Alexa Fluor 488 conjugated peanut agglutinin (PNA). C) FL3 histogram 

showing propidium iodide (PI) signals from dead cells. D) Cytogram showing the four 

subpopulations in a semen sample when stained with both PI and PNA. The subpopulations are: AIL 

(Acrosoem intact live), AID (acrosome intact dead), ARD (acrosome reacted dead) and ARL 

(acrosome reacted live). Data was obtained from 10 000 cells. 

 

In the flow cytometer sperm cells were triggered on EV(Figure 23 A), and the sperm 

population was selected in an EV-SS cytogram as described in 3.7. The light source used was 

a 488nm laser and a total of 10 000 cells were analysed. Detection of green fluorescence from 

PNA-Aleexa488 was captured in FL1 using a 525 nm band pass filter (Figure 23 B). Red PI 

B A B 

C D 
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fluorescence was captured in FL3 using a 675 long pass filter (Figure 23 C). PNA and PI 

fluorescence were combined in a cytogram for classification of subpopulations shown in the 

four quadrates of the cytogram (Figure 23 D). The subpopulations were: acrosome intact live 

(AIL), acrosome reacted live (ARL), acrosome intact dead (AID) and acrosome reacted dead 

(ARD). 

 

3.11.2 DNA integrity 

Sperm chromatin structure assay (SCSA) method was applied to investigate the DNA 

integrity of sperm cells in bulls tested in BOECs sperm binding assay. The SCSA method 

includes the Acridine Orange (AO) dye that gives green fluorescence when bound to dsDNA 

and red fluorescence when bound to denatured ssDNA (Evenson et al., 2002). 20 µl of thawed 

semen (3.2.2) was transferred diluted in 180 µl sodium chlorid-tris-EDTA buffer (STE) (0.01 

M Tris-HCl, 0.1 M NaCl and 0.001 M EDTA in distilled water, pH 7.0-8.8). For induction of 

denaturation, 400µl of ice cold acid denaturation solution (0.15 M NaCl, 0.08 M HCl and 

0.1% Triton X-100 in distilled water, pH 1.2) was added to the sample for induction of 

denaturation. A timer was set at 3 minutes and after exactly 30 seconds, 1.2 ml of acridine 

orange (AO) staining solution (6µg/ml AO, 0.037 M citric acid, 0.126 M Na2PO4, 0.0011mM 

EDTA and 0.15 M NaCl in distilled water, pH-6) was added to the sample. At this point the 

final sperm cell concentration in the sample was about 1 x10
6
 sperm cells/ml. The sample was 

incubated in dark in the flow cytometer where it was run in a setup mode until 3 minutes was 

reached. After the 3 minutes new data was collected upon 5000 analyzed cells. To stabilize 

measurements on the flow cytometer before running any of the 6 bull semen samples, an AO 

equilibration solution was run through the flow system for 5 minutes. The AO equilibration 

solution contained 1.2 ml AO staining solution and 400μl acid detergent solution. A fresh 

cryopreserved reference bull sample was then used to adjust the mean values for green and 

red fluorescence to 425±5 and 125±5, respectively. This procedure was performed whenever 

the DFI% (2.5.3) between two parallels differed by more than 1.5%.  The green fluorescence 

was detected in FL1 by a 525 nm band pass filter, while the red fluorescence was detected in 

FL3 by a 670 nm Long Pass Filter. A bivariate cyogram with FL3 vs FL1 was used to 

determine the DFI % (Figure 24). The red fluorescence was divided by the total fluorescence 

(green and red) determining the percent DFI for each sample (Waterhouse et al., 2006). 
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Figure 24: A Bivariateflow cytometry cytogram used to 

determine the DFI value. Double stranded DNA 

fluorescence is detected in FL1 and fluorescence from 

fragmented single stranded DNA is detected in 

FL3.Plotting FL1 vs FL3 give rise to the bivariate 

cytogram including gates for the total fluorescence 

(green and red) and for the red fluorescence 

(denatured ss DNA). The ratio between red and total 

fluorescence, express percent DFI. 

 

 

 

 

3.11.3 Capasitation status by means of calsium influx. 

Semen used in the BOECs binding assay was also evaluated for capacitation status by Fluo-4 

staining as described in section 3.8.4, with 1 µM Fluo-4 as final concentration. The samples 

were analysed in the flow cytometer (3.8.5) with a PMT value of 4.58 in FL1. 

 

 

3.12 Statistical analysis   

The statistical analysis was conducted using the R-program (version 2.15.1), and excel Data 

from the BOEC sperm binding assay was analysed by the two way analysis of variance 

(ANOVA) test, after conducting a t-test to verify that data was normally distributed in R 

program. Confidence interval plots and t-test were conducted for the high and low fertility 

groups (3.10) in excel.  
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4. Results 

4.1 Adaption of a protocoll for analysis of calcium influx in bull 

spermatozoa 

Semen processing ahead of artificial insemination may cause some sperm cells in the AI dose 

to pre-capacitate and thereby becoming unable to bind to oviductal epithelium  and thus 

unable to fertilize (Medeiro et al., 2002; Watson, 1995). During capacitation intracellular Ca
2+

 

levels will increase (Baldi et al., 2000). Therefor it is of interest to adopt a reliably method to 

monitor this Ca
2+

 influx in the project. Fluorescent dyes that bind to Ca
2+

 can give staining 

patterns that identify the capacitation status of spermatozoa and Fluo-4 was used in the project 

for this purpose. During optimisation of a procedure for Fluo-4 and further analysis (3.8.4), 

sperm cells in semen from NRF bull was in vitro capacitated (3.8.1) and used as a positive 

control. Fluo-4 stained sperm cells were evaluated by fluorescence microscopy and flow 

cytometry. CTC staining followed by fluorescence microscopy analysis was performed on 

capacitation induced sperm cells as a control for evaluation of capacitation status.  

 

4.1.1 Induction of capacitaion  

It has been reported that high centrifugation rates can induce capacitation of sperm cells 

(Landim-Alvarenga et al., 2004). Therefore, to induce capacitation, centrifugation of semen 

was performed at 800 g, 1000 g and 1500 g as described in section 3.8.1. Sperm cells were 

then CTC (3.8.2) and Fluo-4 stained (3.8.3). CTC stained sperm cells observed under the 

fluorescence microscope revealed very few capacitated cells (B-pattern) (2.5.4), indicating 

that induction of capacitation in vitro by centrifugation was not successful. The Fluo-4 

staining showed also very few sperm cells with high levels of Ca
2+

. Another attempt to induce 

capacitation was to incubate semen in SP-TALP with heparin (Parrish et al., 1989) and 

bicarbonate at different incubation conditions as described in section 3.8.2. Induction of 

capacitation was successful only when sperm cells were incubated at 37°C with shaking at 

500 rpm for 30 minutes. Results from this method of induction showed capacitated sperm 

cells in the microscope in both CTC (2.5.4) and Fluo-4 stained samples, respectively. 
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Viability (PI staining) and acrosome integrity (PNA conjugated with Alexa Fluor 488 

staining) flow cytometry analysis (3.10.1) were performed on the in vitro capacitation induced 

sperm cell samples with satisfying results. In the capacitation induced semen sample, 40.77% 

of the sperm cells belonged to the acrosome intact live (AIL) sperm population compared to 

42.55% in the untreated sample. There were also no expressively differences between the 

other sperm populations detected during this flow cytometry analysis (3.11.1). 

 

4.1.2 CTC- staining of  in vitro capacitated sperm cells 

Sperm cells induced for capacitation was CTC-stained as described in section 3.8.3, to verify 

capacitation status. Three different patterns were observed, identical to patterns previously 

reported in sperm cells from bull and boar (Bucci, 2012; Fraser, 1995).  Capacitated sperm 

cells were stained in the posterior area of the head with a decreased staining in the lower area 

of the head (B-pattern). Uncapacitated sperm cells were stained over the whole head (F-

pattern) and acrosome reacted sperm cells showed a dull staining over the whole head, except 

for a bright fluorescence band in the equatorial segment (AR-pattern). In the negative control 

sample, uncapacitated sperm cells with F-pattern dominated in the slide. In the in vitro 

capacitated sample B staining pattern and F staining pattern were both present, indicating 

capacitated acrosome intact cells and uncapacitated acrosome intact cells, respectively. 

Approximately 40% of these cells were calculated to be capacitated. Only few acrosome 

reacted cells (AR-pattern) were observed. Figure 25 shows the different staining patterns. 
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Figure 25: Fluorescence microscopy of CTC- stained sperm cells. A) In vitro capacitated sperm 

cells stained with CTC. Capacitated cells have a B-pattern staining where the anterior part of the 

head is stained. Uncapacitated cells have an F-pattern staining which include staining in the whole 

head. AR pattern belongs to the acrosome reacted sperm cells and is characterized by a thin linear 

staining in the equatorial segment of sperm head. B) B-pattern stained cell. C) AR-pattern stained 

cell. D) F-pattern stained cell. White bar represent 50µm. 

 

4.1.3 Fluo-4 staining of in vitro capacitated sperm cells 

In vitro capacitated cells were Fluo-4 stained as described in section 3.8.3. A titration 

experiment of different Fluo-4 concentrations (0.060µM, 0.125µM, 0.250 µM, 0.375 µM 

0.430 µM, 0.500 µM, 0.600µM, 1µM, 2µM, 5µM and 10µM) was performed to find the 

optimal Fluo-4 concentration. Sperm cells stained with Fluo-4 was both examined under a 

fluorescence microscope and by flow cytometry. For microscopic analysis of the sperm cells, 

10 µM Fluo-4 was found to give the best images, however 1µM final concentration of Fluo-4 

was also detectable in the fluorescence microscope. Microscope images of Fluo-4 stained 

sperm cells revealed 4 different staining patterns as shown in Figure 26 (C-F). The different 

F-pattern 

AR-Pattern  

A 

C B D 

F-Pattern 

AR-Pattern 
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patterns were: 1) dashed staining of middle piece, 2) whole middle piece is stained, 3) staining 

of anterior part of the head and middle piece with weak staining in the lower part of the head, 

4) Staining over the whole head and middle piece. The sperm cell with pattern number 4 

(Figure 28F) is categorized to have a high level of CA
2+

 (high intensity of Fluo-4 staining) 

and thus defined as capacitated. Cells the other patterns (Figure 28 C,D and E) are categorized 

to have a low level of Ca
2+

 and thus defined as uncapasitated. 

 

 

Figure 26: Fluorescence microscopy of Fluo-4 stained sperm cells. Fluo-4 stained sperm cells show 

4 different staining patterns. A) Negative control sample were sperm cells only have Fluo-4 staining 

in the middle piece (uncapacitated). B) In vitro capacitated sperm cells stained with Fluo-4. In 

sperm cells with low Ca
2+

 level only the middle piece is stained (image C and D) and the cells are 

defined as uncapacitated. Cell s with Fluo-4 staining in the anterior part of the head and the middle 

piece (image E) are also defined as uncapacitated. Strong Fluo-4 staining in the whole head and in 

the middle piece (image F) indicates a high level of 
 
Ca

2+
 and the cells are defined to be 

capacitated. 

 

Flow cytometer analysis for Fluo-4 stained cells (3.8.4) was performed immediately after 

finishing the staining protocol. The PMT value was set on 4.58 and fluo-4 stained sperm cells 

were detected in FL1. The titration experiment (3.8.3) revealed that high Fluo-4 concentration 

gave peaks with stronger intensity (right side of the histogram), while low Fluo-4 

B 
A 

C D E F 

B 
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concentration gave peaks in the lower intensity area (left side of the histogram). 1 µM Fluo-4 

was used as final concentration in the staining procedure as it gave peaks in the mid intensity 

area. The capacitation induced semen samples, stained with Fluo-4 and analysed at the flow 

cytometer, showed a wide range of intensity with 3 peaks (Figure 27). 

 

 

Figure 27: Flow cytometer analysis of Fluo-4 stained sperm cells. Sperm cells with low fluorescence 

intensity have a low Ca
2+

 level (low in calcium) and represents uncapacitated sperm cells. Cells with high 

fluorescence intensity have a high Ca
2+

 level and represents capacitated sperm cells. A) Histogram of an 

untreated sperm sample stained with Fluo-4. B) Histogram of in vitro capacitated sperm sample stained 

with Fluo-4. The histogram shows three different peaks whereas the last peak represents the capacitated 

sperm cell population (high in calcium). 

 

The sample analysed on the flow cytometer was only stained with Fluo-4 and still signals in 

FL3 were detected simultaneous with Fluo-4 detection in FL1. This indicated that 

fluorescence emission which only should have been detected in FL1 are bleeding through into 

FL3. In the titration experiment of Fluo-4, the lowest concentration was 0.060 µM and the 

highest concentration was 10 µM and both gave signals in FL1 and FL3. As a result of this 

high degree of fluorescence bleed-through, compensation was not suitable in an assay where 

Fluo-4 is combined with PI (detected in FL3), for discrimination of dead sperm cells. 

A 

A B 
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Figure 30 shows FL1 and FL3 histograms of sperm cells stained with only 0.5 µM Fluo-4 

where PMT value was set to 4.00 for FL1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Histograms from flow cytometer analysis of Fluo-4 stained sperm cells. The semen sample 

was stained with 0.5 µM Fluo-4 and PMT was set on 4.00. A) Fluo-4 fluorescence detected in FL1. B) 

Fluo-4 fluorescence from same semen sample shows signals in FL3. According to the literature and 

Beckman coulter, FL3 with a 670nm LP emission filter should not detect any fluorescence from Fluo-4.  

 

 

4.2 Characterization of BOECs cultured on polyester membrane 

inserts 

It has been reported that BOECs seeded on membrane inserts show better viability and 

polarization (Gualtieri et al., 2012) and thus a cultivation method for BOECs on membrane 

was assessed in this project. BOECs were immediately after seeding examined under a light 

microscope that reviled single and aggregated cells. Some of the aggregated cells spun around 

themselves, indicating cilia activity which also later proved to have increased difficulties in 

the attachment process to the membrane. After 24 hours, cells started to attach to the 
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membrane and proliferation was observed after 48 hours of seeding. The cells grew with an 

increased cell height on membrane compared to plastic, reflecting the columinar cell structure 

reported for epithelial cells (2.3.3). BOECs cultivated on plastic support formed colonies 

during proliferation. The cells had polygonal structure with different sizes. When confluence 

was reached a clear dense BOECs monolayer with cell structures such as cell membranes and 

nuclei was observed.  Attachment of BOECs to the polyester membrane was very loose. 

When changing media, even if aspiration and addition of media was performed very slowly 

and without touching the membrane, cells tend to detach from the membrane. After 

confluence, BOECs on membrane kept its viability, however floating cells were observed in 

all wells. Also for the BOECs used 5 days post confluence, no sign of death was observed 

among the membrane bound cells. However a great amount of floating cells in the wells were 

observed. 

 

4.2.1 Relativ growth rate for BOECs in culture 

Different BOECs concentrations, 3x10
4 

cells/ml, 6x10
4 

cells/ml and 10x10
4 

cells/ml of 

BOECs were seeded on polyester membrane inserts with a cell growth area of 1.12 cm
2 

(3.3.2), to test their growth rate. The BOECs grew confluent within 5-6 days ( 

Table 5).  The concentration, 6x10
4
cells/ml BOECs were also grown on plastic support and 

coverslips. On plastic BOECs grew confluent around day 8 after seeding while BOECs 

seeded on coverslips (glass) used longest time to reach confluence, using 12 days. 

 

Table 5:  Growth rates of different concentrations of BOECs and their timeframe to grow 100% 

confluent. BOECs cultured on membrane grow faster that BOECS cultured on plastic and glass 

coverslips.  

 

BOEC 

concentration 

(cells/ml) 

Time to reach 

confluence for BOECs 

on membrane (days) 

Time to reach confluence 

for BOECs on plastic 

(days) 

Time to reach 

confluence for BOECs 

on glass (days) 

10x10
4
 5 8 12 

6x10
4
 5 --- --- 

3x10
4
 6 --- --- 
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4.2.2 Immunostaining of BOECs 

In order to characterize BOECs cultured on polyester membrane inserts, confluent cells (5 

days after seeding) were immunostained with specific antibodies against the epithelial cells 

marker protein, cytokeratin (3.5). In addition, simultaneously the cells were stained for 

vimetin, which is a protein reported to be specifically expressed in endothelial cells and 

fibroblasts (3.5). Immunostained cells were analyzed by a conventional fluorescence 

microscope. Images of immunostained BOECs are shown in Figure 29 revealing that the cells 

stained positively for cytokeratin (Figure 29 C, red staining) and negatively for vimentin 

(Figure 29 D). BOECs from the same cell sample as BOECs cultured on membrane 

(described above) were also cultured on coverslips. They were immunostained for cytokeratin 

and vimentin, 5 days after seeding (simultaneously as BOECs on membrane) under not 

confluente conditions and  13days after seeding when 100 % confluent.  

BOECs grown on glass coverslips, which were not confluent when immunostained showed 

only positive staining for cytokeratin (Figure 29 E). However, 100% confluent BOECs on 

coverslips stained positively for both cytokeratin and vimentin (Figure 29F, red and green 

staining, respectively). In this experiment the nucleus in all cells were stained with Hoecht, a 

blue DNA binding dye for increased visualization of the cells.  

Zonula occludens or tight junction staining did not give the desired result and no images were 

satisfying enough to include. A Confocal microscope may have given better images, however 

HUC do not possess a confocal microscope.  Because of shortage of time and lack of BOECs, 

it was not possible to conduct several experiments regarding the tight junction staining of 

BOECs.   
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Figure 29:Phase contrast and fluorescence images of BOECs cultured on membrane and 

glass coverslips in plastic wells. A) Phase contrast image of BOECs cultured on membrane. 

The white ring surrounds 3 BOECs with sharp cell structure. The lighting white dots are the 

membrane pores. B) Hoechst stained BOECs cultured on membrane. C) 100 % confluent 

BOECs cultured on membrane which stained positively only for cytokeratin (red). D) Image 

of vimentin negative BOECs detected by direct immunostaining. E) 40% confluent BOECs 

cultured on coverslips stained positively only for cytokeratin (red). F) 100% confluent 

BOECs cultured on coverslips stained positively for both cytokeratin (red) and vimentin 

(green.)White bars represent 50µm. 
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4.2.3 OVGP1 relative gene expression 

It has been reported that the expression of OVGP1 (2.3.4) level decreases when BOECs are 

cultured in monolayers (Reischl et al., 1999). Therefor an attempt to detect differences in 

OVGP1 relative gene expression in BOECs cultivated on membrane inserts and plastic 

support was performed by real time PCR (RT-PCR). 18S were used as housekeeping gene for 

all samples each time. BOECs form cows in follicular phase and luteal phase in oestrus 

(2.3.1) were analysed. The first samples were taken at the same day as the cells were 

harvested (day 1) and then on day 2, 3, 6, 8, 10 and 13 after cell collection. The RT-PCR 

analysis was performed as described in 3.6 and the data from RT-PCR analysis was further 

analyzed using LinReg PCR (3.6.4). BOECs from cows in luteal phase in oestrus showed 

negative OVGP1 gene expression in relation to 18S housekeeping gene (results not shown). 

BOECs from cyclic cows showed a high relative gene expression of OVGP1 at the day of cell 

harvest with a sharp drop the next day and a descending pattern for each time point sample for 

both cultivation methods (Figure 30). After day 3 OVGP1 was no longer expressed in relation 

to the day of cell harvest. No difference in OVGP1 expression was observed between BOECs 

cultured on polyester membrane inserts and on plastic. The experiment was performed once, 

with duplicates for each time point sample. 
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Figure 30: Relative gene expression of OVGP1 in BOECs 

cultured on polyester membrane and plastic support over time. 

The gene expression was evaluated by RT-PCR analysis. Day 1 

represented the day of harvest, 2 is day 2 after cell collection, etc.  

Relative expression was calculated with 18S gene as reference. 

The histogram shows a decline in the relative OVGP1 expression 

with time. Immediately after cell harvest OVGP1 expression is 

relative high, but it drops down considerably after 1 day of culture 

in both membrane and plastic cultivation methods. After day 3 

OVGP1 expressions is lost compared to in cells on the day of 

harvest. Results represent one experiment with duplicates for each 

time point sample 

 

4.3 Approches to improve BOEC- sperm bindig assay 

4.3.1Sperm cell counting 

Counting of sperm cells in Bürker counting chamber, when conducting the BOECs sperm 

binding assay (3.10.2), was very time consuming and challenging because of several samples 

and sperm cell motility. An attempt to automate the counting method was examined by use of 

the flow cytometer. Sperm cell suspensions with different concentrations were counted on the 

flow cytometer (3.12.1) as well as in Bürker counting chamber. Results gave virtually 
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matching concentrations to the dilutions (Table 6), and thus the method was adapted to count 

sperm cells in the BOECs sperm binding assay for the 6 bulls evaluated later in the project. 

 

 

Table 6: Sperm cell concentration in a dilution series counted in Bürker counting chamber and by 

flow cytometry. Results are mean values of two individual experiments.   

 

 

4.3.2 Percoll gradient centrifugation 

Cryopreservation of bull semen will to some degree cause cell death (Thomas et al., 1998) 

and the percentage of dead cells in a semen straw can vary both between bulls within 

ejaculates from the same bull. It is reported that only live cells will bind to BOECs (Thomas 

et al., 1994) When analysing sperm binding capacity to BOECs, it is of interest to compare 

the binding capacity in samples with equal number of live sperm cells. Therefore, to avoid 

correction for the number of live spermatozoa added in a BOECs sperm binding assay after 

the experiment has been performed. A percoll gradient centrifugation procedure was tested for 

selection of live sperm cells in a semen sample. Percoll gradient centrifugation with 45 %/90 

% combination was performed on frozen thawed sperm cells (3.9.2). Observations from the 

light microscope showed highly motile sperm cells, however the amount of sperm cells were 

much less than originally added to the percoll layers. The same cells were Fluo-4 stained and 

analyzed on the flow cytometer. Results revealed that 21.60% of the sperm cells were 

Dilution (cells/ml) Counting with Bürker chamber 

(cells/ml) 

Counting with flow cytometer 

 (cells/ml) 

3x10
4
 31 000 27 223 

5x10
4
 56 000 50 943 

1x10
5
 99 000 110 276 

3x10
5
 288 000 301 057 

5x10
5
 454 000 410 198 

1x10
6
 1 235 000 1 101 011 

2x10
6
 1 986 000 2 017 000 
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capacitated after percoll gradient centrifugation. While the negative control had 11.00 % 

capacitated sperm cells. 

 

 

4.4 Binding capacity of sperm cells to BOECs cultured on 

permeable support 

Semen from 6 NRF bulls were prepared as described in section 3.10.1 and the sperm cells 

were added to BOECs cultured on polyester membrane inserts as outlined in section 3.10.2.  

This assay was implemented in order to test sperm binding capacity to BOECs cultivated on 

polyester membrane inserts compared to BOECs cultivated on plastic, and to test sperm 

release capacity upon heparin stimulation. As mentioned in 3.10.2. Only live spermatozoa 

were considered in the calculations of spermatozoa added to BOECs. The viability results 

obtained from measurements on the flow cytometer are presented in table 7. 

 

Table 7: Viability results from flow cytometry for the 6 bulls used in the BOEC-sperm binding assay. 

Results represent mean value of duplikates analysed  three times. Numbers in parenthesis are standard 

error of mean. 

  

Bull number 1 2 3 4 5 6 

% Viability  64.22
(3.1)

 60.33
(0.8)

 78.93
(1.4)

  40.40
(2.4)

 39.46
(1.8)

 42.23
(3.6)

 

 

 For the comparison of sperm binding capacity to BOECs grown on membrane versus grown 

on plastic, two of the bulls used in this study was also used in a similar study using BOECs 

grown on plastic. Results from that study is used here as comparison, since that study was 

done in the same lab and approximately at the same time (Zeremichael, 2013). The 6 bulls 

had different Non Return Rate (NRR) data which is directly related to field fertility (Table 4). 

Two of the bulls were used in an equal study with BOECs cultured on plastic, and data for the 

two bulls is taken from that experiment (Zeremichael, 2013). It is worth mentioning that the 
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method used for the BOEC sperm binding assay was originally created for BOECs cultured 

on plastic support (Zeremichael, 2013). 

 

4.4.1 Characteristics of sperm binding to BOECs 

As mentioned in section 4.1 BOECs cultivated on membrane are growing with an increased 

cell height when cultivated on polyester membranes compared to plastic. This makes them 

hard to be visualized and focused on in a conventional microscope. However, due to lack of a 

confocal microscope or electron microscope a conventional light microscope was used to 

examine the binding feature of sperm cells to BOECs after addition of sperm cells to the 

BOECs monolayer. When sperm cells were added to BOECs, some sperm cells swam down 

between the cells with the head facing towards the vertical sides of the BOECs while others 

tried to bind to the apical surface of the epithelial cells. Nucleus staining of the semen with 

Hoechst 33342 was used to reveal the binding pattern of sperm cells on BOECs monolayers 

cultivated on polyester membrane inserts. 

 

  

 

 

 

 

 

 

Figure 31: Hoechst stained sperm cells bound to BOECs monolayer on polyester membrane 

inserts. A) Sperm cells are spread around the monolayer, while other areas of the monolayer have 

no bound sperm. B) Dense binding of sperm cells to BOECs monolayer at specific area. Both scale 

bars represent 50µm. 

 

 

 

A B 



  

87 

 

Results from fluorescence microscopy evaluation of this experiment showed that the sperm 

cells preferred certain areas on the monolayer for binding. Some areas had sperm cells bound 

densely (Figure 31A) while other areas had few or were free of sperm cells (Figure 31B). 

The sperm cells also seemed to bind at the periphery of the apical surface of the epithelial 

cells and not toward the centre of each epithelial cell.  

 

4.4.2 Sperm binding capacity  

Semen from 6 NRF bulls were evaluated based on sperm binding capacity to BOECs 

cultivated on membrane (3.10.2). The NRR and motility values for the 6 bulls are listed in 

table 4. The sperm binding capacity is presented as mean values which are based on results 

from 4 replicates of each semen sample tested in 3 individual experiments (Figure 32). The 

two first experiments were performed when BOECs monolayer were 100% confluent. The 

third experiment was performed on BOECs 5 days post confluence, with no difference in 

binding capacity (results not shown). Statistical analysis showed no significant difference 

(ANOVA F5,3=0.23, P > 0.05) in sperm binding capacity between the bulls. 
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Figure 32: Sperm binding capacity to BOECs in semen from 6 NRF bulls categorized in an 

high fertility and low fertility group based on NRR values. Mean values from 4 samples in 

each experiment (3 individual experiments) represent % bound spermatozoa for each bull. 

Bull number 1, 2 and 3 belongs to the high fertility group, while 4, 5 and 6 belongs to the low 

fertility group. Viability analysis has been performed for each semen sample by flow 

cytometry and based on these data binding capacity is expressed as present of the total living 

cells added to BOECs. Bars represent standard error of mean.  

 

In a similar experiment performed by Teklu T. Zeremichael (Zeremichael, 2013), 6 bulls 

including bull number 1 and bull number 4 were analyzed for their binding capacity to 

BOECs cultivated on plastic support. According to Zeremichael, bull number 1 had a binding 

capacity at approximately 70% and bull number 4 had a binding capacity at approximately 

75%. Figure 32 shows the binding capacity for bull nr 1 and 4 on BOECs cultured on 

membrane in the present study, which in compare to the plastic study, shows a 15% increase 

for bull nr 1 and a 15% decrease for bull nr 4.  

Sperm cell concentrations in samples initially added to BOECs obtained by the counting 

method on the flow cytometer gave good results, but the flow cytometer gave higher cell 

concentrations for samples containing sperm cells after addition to BOECs (not bound sperm) 

than sperm cells initially added to BOECs. EV was very wide in rage and did not show the 

normal distribution of sperm cells (3.7). To investigate this result, samples were observed 
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under light microscope which revealed that the sample, in addition to sperm cells also 

contained BOECs. 

All sperm cell suspensions was counted using Bürker counting chamber (3.10.2). The initially 

added amount spermatozoa to the BOECs should have been about 1 million sperm cells. 

Counting in the Bürker counting chamber and by using flow cytometry to give an exact sperm 

concentration in the sample, it was shown that the initially added sperm concentration 

stretched from 3x105 to 1.3x106 for all bulls, this due to the preparation method (3.10.1). 

 

4.4.3 Sperm release from BOECs 

Bound spermatozoa were not able to release itself from the BOECs monolayer when 

stimulated by 50 µg/ml heparin (3.9.2). Light microscope observations revealed that few 

sperm cells tried to detach from BOECs by flagellar movement of the sperm tail. It was also 

observed areas without BOECs on the membrane, indicating that BOECs were detached from 

the membrane after the intense wash prior to heparin addition (3.10.2) 

 

 

4.5 Flow cytometric evaluation of sperm quality parameters 

The semen from the 6 bulls used in the binding capacity assay (4.4.2) was also investigated by 

flow cytometry for their viability, acrosome integrity, capacitation status (through Ca
2+

 influx) 

and DNA integrity (3.11). An ANOVA test was performed for all parameters to determine if 

there is any significant difference between the bulls.  
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Table 8: Sperm quality parameters for 6 NRF bulls tested for sperm binding capacity. Viability and 

acrosomal integrity (combined in the acrosome intact live (AIL) parameter), DNA fragmentation index 

(DFI) and intracellular Ca
2+

 level were analyzed by flow cytometry. Values represent mean of 

duplicates analyzed three times. Numbers in parenthesis are standard error of mean.  

 

Bull number 1 2 3 4 5 6 

AIL (%) 56.15
(1.2)

 54.20
(1.1)

 74.93
(1.9)

 35.52
(1.0)

 35.52
(0.5)

 37.27
(2.7)

 

DFI (%) 1.88
(0.0)

 4.72
(0.3)

 1.03
(0.0)

 4.42
(1.2)

 2.91
(0.1)

 5.08
(0.4)

 

High Ca
2+

(%) 30.48
(2.5)

 28.77
(2.4)

 38.30
(1.2)

 16.69
(1.9)

 19.13
(0.7)

 17.98
(1.3)

 

 

For the live acrosome intact sperm cell population in each bull, ANOVA test revealed that 

there was no significant differences between the bulls (ANOVA F5,2=0.18, P = 0.058). 

Results in table 8 are mean values of duplicates analyzed 3 times.DNA integrity for each bull 

was analyzed by the SCSA method as described in 3.11.2. Mean value of DFI from each bull 

was obtained from duplicates analyzed twice. There was no significant differences between 

the bulls (ANOVA F5,2=0.28, P= 0.06) (Table 8). ANOVA results for the Ca
2+

 influx analysis 

(3.8) showed no significant difference between the bulls (ANOVA F5,2=0.16, P =0.055). 

Values represented in table 8 for the Ca
2+

 influx assay are mean values for duplicates 

analyzed 3 times. 

 

 

4.6 Comparison of semen from bulls with high and low fertility  

For all parameters, results for the bulls belonging to the high fertility group (bull number 1, 2 

and 3) and low fertility group (bull number 4, 5 and 6) were pooled. For each group the sperm 

quality parameter mean value and was used to visualise significant difference between the 

groups by a confidence interval plot (Figure 33 A). In the confidence interval plot each group 

has a plot within a parameter. If plots from each group do not overlap within one parameter, 

significance difference is found. If plots overlap, no significance between the high and low 
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fertility group is found. The DFI analysis has its own plot (Figure 33 B). Additionally a T-test 

was performed to between the groups within a parameter to enhance the finding in the dot 

plot. 

 

 

Figure 33: Confidence interval (CI) plot for spermquality parameters of NRF bulls categorized in high and low 

fertile groups. A) High fertility (HF) and low fertility (LF) groups are compared for the sperm quality 

parameters;Acrosome intact live (AIL), high level of Ca2+ (HC)(capacitation) and binding capacity (BC). Mean 

values for AIL and HC parameters represent duplicates of semen from 3 bulls analyzed 3 times. Mean values for 

binding capacity represent results from 3 bulls with each having duplicates analyzed 4 times. B) High and low 

fertility groups are compared regarding the DNA fragmentation index parameter (DFI). Mean values for DFI is 

obtained from analysis of semen samples from 3 bulls analyzed 2 times in duplicates. 

 

For the AIL parameter there is a significant difference (p<0.05) between the high and low 

fertility group. The highest percentage of AIL sperm cells was found in the high fertility 

group, which is also clearly visualized in the dot plot (Figure 33 A).  

For the high in Ca
2+

 parameter (HC), the plot shows that the high fertility group possess a 

higher degree of high in Ca
2+

 level sperm cells, than the low fertility group (Figure 33 A). In 
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addition, the t test revealed a significant difference between these two groups for this 

parameter (p<0.05). Mean for each group within the AIL and high in Ca
2+

 parameter is 

obtained from duplicates of semen from 3 bulls analyzed 3 times  

Regarding the binding capacity parameter, the dot plot reveals that the confidence intervals 

overlap each other, meaning there is no significant difference between the groups, even if the 

high fertility group had a higher percent of bound spermatozoa to BOECs (Figure 33 A). This 

result was confirmed by a t-test whish also showed no significant difference between the two 

groups (p >0.05). Mean for each group is obtained from 3 bulls with each having duplicates 

analyzed 4 times. 

For the DFI plot there is a little overlap between the lower confidence interval for the low 

fertility group and the upper confidence interval for the high fertility group (Figure 33 B). The 

t-test determined that there was no significant difference (p>0.05) between the two groups. 

Mean values for each group is obtained from 3 bulls with duplicates analyzed twice. Bull 

number 2 which belongs to the high fertility group had a much higher DFI value (Table 8), 

giving a higher mean and wider confidence interval for the high fertility group. 
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5. Discussion 

Prediction of male fertility from a semen sample has long been sought after. Regarding the 

bulls fertility, it has not been identified a fertility test that correlates well with field fertility 

(Graham, 2005). Investigation of sperm-oviduct interaction in the female may be one step in 

the right direction when searching for new sperm parameters for prediction of male fertility.  

The RFF1 project aim is to define biomarkers for sperm oviduct interaction, which later can 

be used to establish a new male fertility test. To achieve this goal an in vitro BOEC-sperm 

binding assay needs to be established. This assay will be used as a tool to select the sperm 

cells that have high binding capacity, if the binding capacity is related to fertility. The selected 

sperm cells will then be examined for surface molecules. The BOEC- sperm binding assay 

needs investigations and optimisation before it can be applied. Previously in a master study, 

establishment of an oviductal epithelium binding assay for evaluation of sperm quality has 

been performed, with BOECs cultivated on plastic (Zeremichael, 2013). However, BOECs 

cultured on plastic show little in vivo similarities and thus the sperm-oviduct binding assay 

needs optimisation regarding the methodology. Taking this into consideration, a new BOEC-

sperm binding assay with BOECs cultured on polyester membrane has been performed in this 

study.   

In form of Ca
2+

 influx, the capacitation status has been evaluated for the sperm cells used in 

the BOEC-sperm binding assay. The Ca
2+

 influx was important to evaluate because, it has 

been reported that only non-capacitated sperm cells will bind to the oviductal epithelium 

(Petrunkina et al., 2001) 
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5.1  Adaption of a protocoll for analysis of calcium influx in  

Ca
2+

 influx is one result of the cascade action leading to capacitation in sperm cells. Along the 

rapid movement of Ca
2+

 into the spermatozoon, hyperactivation occurs (Publicover et al., 

2008). The cytosolic Ca
2+

 levels should be detectable by usage of fluorescent Ca
2+

 indicators 

such as Fluo-3, because when Ca
2+

 is bound by Fluo-3 the fluorescence is increased up to 40 

times (Minta et al., 1989). A new Ca
2+

 indicator called Fluo-4 has been developed. This Fluo-

4 is an improvement of Fluo-3 (Gee et al., 2000) (2.5.4) and therefor it has been used in the 

present study.    

In the present study, adoption of a Fluo-4 staining procedure and investigation of Ca
2+

 influx 

in bull semen by flow cytometry approaches was achieved successfully. A cryopreserved 

semen sample was in vitro capacitated by incubation with a TALP medium containing heparin 

and bicarbonate and then mechanically shaken. The TALP medium also contained BSA, 

which has been suggested to be responsible for the removal of cholesterol (Baldi et al., 2000). 

It has been reported that heparin and bicarbonate have capacitating effects on bull semen 

(Harrison et al., 1993; Parrish et al., 1988), however in the present study a 100% capacitated 

sperm cell sample was needed to provide a positive control for the flow cytometer analysis. 

Therefore, it was necessary to resort to mechanical solution, the mechanical shaking. Findings 

in the present study indicate that heparin and bicarbonate induced the capacitation and the 

shaking was used as an aiding tool to provide more capacitating cells. Sperm cells exposed to 

mechanical strain, have a risk of dying in terms of free radicals (Lampiao et al., 2010). 

Therefore in this present study, viability and acrosome integrity analysis was performed on 

the capacitation induced sperm cells sample by flow cytometery (3.11.1). Results from the 

viability and acrosomal integrity analysis for the capacitation induced semen sample were of 

high significance for the procedure, showing no difference from untreated sample. The 

capacitation status was verified by CTC-staining which revealed the 3 familiar patterns 

reported in bull. B pattern for the capacitated sperm cells, F pattern for uncapacitated sperm 

cells and AR-pattern for acrosome reacted sperm cells (Fraser, 1995). The CTC staining also 

revealed few AR-patterns stained sperm cells (Figure 27) which correspond to the viability 

and acrosome integrity results. 
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The in vitro capacitated sperm sample was also stained with Fluo-4, observed in the 

microscope and analysed by flow cytometry in order to differentiate between sperm cells low 

and high in Ca
2+

 levels. Microscope images revealed 4 different staining patterns as shown in 

Figure 26. For the cells with low Ca
2+ 

level two patterns were observed, punctate staining in 

the midpiece and whole staining in the midpiece. A sperm cell population having an 

intermediate Ca
2+

 level was observed in the microscope, were the anterior part of the head and 

the mid piece was stained. However, staining in the lower part of the head was absent. The 

sperm cell population with high Ca
2+

 level was stained intensely in the head and midpiece 

region.   

For boar sperm cells two staining patterns are reported, which is bright staining in cells with a 

high Ca
2+

 level and midpiece staining in cells with low Ca
2+

 level (Khezri, 2013). However, 

other reports for boar have reported three staining patterns (Harrison et al., 1993). Sperm cells 

with a high Ca
2+

 levels show bright staining in the midpiece and head, while sperm cells with 

a low Ca
2+

 level show dull staining in the head and midpiece. Damaged sperm cells show 

bright staining in the head and bright punctate staining in the midpiece (Harrison et al., 1993). 

Little has been done on analysis of Ca
2+

 influx for bovine sperm cells and thus the Fluo-4 

staining patterns in this thesis, to the writer’s knowledge, are the first of its kind. First of all 

the punctate staining in the midpiece with Fluo-4 cannot be identified as damaged cell as 

reported for boar (Harrison et al., 1993), since the sperm head was not stained. Previously 

studies have shown that acrosome reacted boar sperm cells incubated with Fluo-4 do not give 

any staining pattern (Khezri, 2013).Therefore the possibility is little for sperm cells that 

fluorescence in the anterior part of the head and midpiece to be acrosome reacted. An 

explanation for the different Fluo-4 staining patterns can be the entry manner of Ca
2+

 to the 

spermatozoon. Ca
2+

 enters the spermatozoa in a biphasic fashion through Ca
2+ 

ion channels 

(Florman, 1994)
 
. Therefore the punctate staining of the midpiece can possibly reflect the 

same as the completely stained midpiece. Even though probenecid was used (3.8.3), the 

punctate staining pattern can be result of intracellular Ca
2+

 efflux. The same argument can be 

used for the sperm cells stained in the anterior part of the head and middle piece and the 

sperm cell with overall fluorescence. If this is the case, maybe the incubation time with 

probenecid needs to be increased to gain a more efficient probenecid effect.  

Categorisations of the different Fluo-4 staining patterns were evaluated by the flow cytometry 

analysis (3.8.4) which divided the sperm cell population in two categories, low and high in 
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calcium (low and high Ca
2+

 level). For bull semen the viability analysis on the flow reveals a 

population between live and dead sperm cells, the dying cells. It is a possibility that the Fluo-

4 stained bull sperm cells act in the same way as in the viability analysis, creating a “about to 

capacitate” sperm population appearing in the flow analysis histogram as a peak. The flow 

cytometer analysis of Fluo-4 stained semen showed a wide rage in Fluo-4 intensity and 3 

peaks in the Fluo-4 vs Count histogram (Figure 27). The first peak is very wide and is linked 

to the sperm cells with a low Ca
2+

 level, both the punctate and whole midpiece stained cells. 

The second peak which is much more intense in fluorescence can be the sperm cell population 

with staining in the anterior part of the head and midpiece. The last peak with the highest 

fluorescence intensity was identified as the sperm cell population with a high level of Ca
2+

 

showing a bright staining in the head and midpiece. A untreated sample, not induced for 

capacitation was analysed on the flow cytometer as a negative control. This sample showed 

one wide peak, indicating few or non-high in Ca
2+

 sperm cells. Based on the negative control 

and the CTC result (4.1.2), a gate was included between peak number two and three 

differentiating between cells with a low level of Ca
2+

 and a high level of Ca
2+

 (low and high 

Ca
2+

 levels in figure 27. 

As shown in figure 28, the Fluo-4 signal detected in FL1 was also detected in FL3. Filter 

settings for FL3 should not allow Fluo-4 signals to be detected. A titration experiment was 

conducted in order to investigate if the concentration of the Fluo-4 was too high and thereby 

cause bleedthrough the fluorescence emission into FL3. Results showed that even if Fluo-4 

concentration was as low as 0.06µM, signals in FL3 were detected. The local distributer of the 

Beckman coulter flow cytometer was contacted regarding this issue without any solution of 

the problem. When an unstained sample were analysed in the flow cytometer, no signals were 

detected in the FL3. The acredine orange (AO) dye is used in the same flow cytometer and 

may cross react with the Fluo-4 giving the signals in FL3, and it is a suggestion to improve 

the washing protocol after use of the AO dye. The Fluo-4 signals detected in FL3 are very 

intense and therefore compensation was not executable.  

Signals in FL3 from Fluo-4 dye had an enormous negative effect on the efficiency of the 

protocol, since another dye could not be applied and detected in FL3. A viability staining 

together with the Fluo-4 staining would have given the desired result, the live high in Ca
2+

 

concentration sperm population reflecting live and capacitates sperm cells  
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(Landim-Alvarenga et al., 2004).  

n the present study two semen samples, the first stained with only 1µM Fluo-4 and the second 

stained with 1 µM Fluo-4 and 0.48µM PI were analysed on a different flow cytometer (Accuri 

C6, BD). Results for the first sample showed that Fluo-4 signals were not detected in FL3, 

equipped with the same FL3 filter as the flow cytometer at HUC. Results for the second 

sample showed that it was fully possible to detect the live high in Ca
2+

 concentration 

subpopulation without any interference from Fluo-4 over to FL3, indicating that the final 

concentration of 1µM Fluo-4 is an optimal concentration.   

A new fluorogenic Ca
2+

 sensitive dye, named Cal-520 has come to the market. This dye has a 

significantly better signal to noise ratio and intracellular retention compared to Fluo-4. It has 

also better retention of the dye than Fluo-4 (biomol, 2013). This property may give different 

staining patterns then those represented in this study, and therefore this dye is a good 

alternative to the Fluo-4.   

 

 

5.2 Cell culture of BOECs on polyester membrane 

In vitro cultivated oviduct epithelial cells (OECs) have been studied carefully over the years 

with the aim to establish a pure cell line (Schoen et al., 2008), to study its variation (Abe, 

1996), and to attain them undifferentiated over time (Gualtieri et al., 2012; Miessen et al., 

2011).   

In this study BOECs were cultured on polyester membrane where they grew with an increased 

cell height compared to BOECs cultivated on plastic. BOECs were not characterized as 

wished, because it was not possible to get the cells in focus when using a conventional light 

microscope (Figure 25A). A confocal microscope or a scanning electron microscope would 

have been a better choice of tool when characterizing the BOECs cultivated on membrane, 

however unfortunately HUC does not possess this kind of microscopy. 



  

98 

 

Results in this present study showed that BOECs cultivated on membrane inserts as a 

permeable support, started attachment to the membrane after 24 hours and grew confluent in 

5-6 days. Similar observations have been reported by Gualtier et al. (Gualtieri et al., 2012) 

which used Gray`s medium for cell cultivation. From the same study it was reported that 

BOECs cultivated on membrane grew confluent already within 3-5 days when using Gray`s 

medium, indicating that Gray`s medium is a better choice than the conventional DMEM used 

in this present study. In addition it is also reported that BOECs cultivated on membrane with 

Gray`s medium developed cilia and remained viable for at least 3 weeks post confluence.  

BOECs monolayers 5 days post confluence (4.1) was used to investigate the viability and 

differentiation of the BOECs grown on polyester membrane inserts (Gualtieri et al., 2012) and 

its relation to sperm binding capacity. Results did not show any different cell structures, no 

sign of crisis or extremely more floating cells in the monolayers compared to BOECs 

confluent monolayers. For the binding capacity assay performed in this study, no difference in 

binding capacity of sperm cells to BOECs monolayers 5 days post confluence was observed 

compared to binding capacity of sperm cells to BOECs monolayers at confluence (results not 

shown). This is in consistence with other reports findings (Gualtieri et al., 2012). 

The growth rate of BOECs cultivated on polyester membrane was rapid compared to BOECs 

cultivated on plastic. The start concentration of 10x10
4
 cells/ml and 6x10

4
cells/ml ( 

Table 5), seeded on membrane grew confluent at the same time. Therefore, it was possible to 

reduce the amount of cells added to each polyester membrane insert for cultivation, giving 

additional BOECs monolayers and still achieve confluence fast. Same amount of cells were 

seeded on plastic support and on coverslips (glass) and they grew confluent within 8 days and 

12 days, respectively. This indicates that proliferation is better on polyester membrane inserts. 

However, even if confluence was achieved fast, the cells did not adhere properly to the 

membrane. They detached when changing media and during washing procedures. 

An attempt to evaluate sperm cell concentration in a sample aspired from BOECs monolayer 

(membrane cultivation) (3.9.1) by flow cytometry, did not succeed. Microscopic evaluation 

revealed that the sperm cells aspired from the BOECs monolayer contained BOECs, and thus 

concentration measurements for sperm cells were not executable. This again enhances 

suspicion of that BOECs adheres poorly to the membrane. It is possible that this problem can 

be solved by collagen coating of the membrane. Collagen coating has been shown to improve 
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cell attachment and cell spreading (Nagai et al., 2002). It has also been reported that the 

polyester membranes can be coated with collagen before addition of BOECs (Gualtieri et al., 

2012).  

BOECs were characterized by immunostaining for cytokeratin and vimentin (4.1.2). The 

results showed clearly that confluent BOECs, cultivated 5 days on membrane, were only of 

epithelial cells origin. BOECs cultivated on coverslips showed same results when 

immunostained 5 days after seeding (Figure 25 E). After achieving 100% confluence, BOECs 

on coverslips showed a mixed staining pattern (Figure 29 F). Some cells expressed only 

cytokeratin, while others co-expressed cytokeratin and vimentin. It has been reported that 

primary oviductal epithelial cells express vimentin in addition to cytokeratin (Abe and Hoshi, 

1997; Rottmayer et al., 2006). It is also well known that most transformed cells will enhance 

their vimentin synthesis (Schwartz et al., 1991). The vimentin expression in the BOECs 

cultivated on coverslips, in this study, appeared only after 8 days of cultivation. An 

explanation can be that the cells have begun the differentiation process and maybe started 

acting as transformed cells and thereby enhanced their vimentin synthesis. Results from these 

reports indicate that the BOEC cultures analysed in the present study are pure epithelial cell 

lines. If any cells of mesenchymal origin had been in the cell culture they would have 

expressed vimentin when immunostained at the pre-confluence stage. Immunostaining results 

in this present study indicate that the cultivation of BOECs on membrane shows a more in 

vivo like condition compared to BOECs cultivated on plastic, by that they do not differentiate. 

Regarding the ZO staining, it was not possible to detect the tight junctions in the 

fluorescence microscope (4.1.2), because of their location. The tight junctions are found in 

epithelial cells just below the apical surface, between the cells on the plasma membrane ( 
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Figure 14). A confocal microscope could probably been used to visualize the tight junctions. 

Another suggestion is to optimise the staining protocol by performing a titration experiment 

for the primary and secondary antibody.  

Due to few slaughtered cows at the staining experiments time, it was not possible to provide 

more oviducts and therefore the staining procedure was not repeated.  

5.3 OVGP1 expression in BOECs  

In this study, OVGP1 gene expression has been used as a gene marker for BOECs in terms of 

differentiation.  

RNA was isolated from time point samples of cultivated BOECs in order to monitor OVGP1 

gene expression pattern over time and to compare the OVGP1 gene expression between 

BOECs cultivated on polyester membrane and plastic support by real time PCR. It is known 

that in cattle the sperm reservoir is formed in the cows oviduct, at oestrus (Lefebvre et al., 

1995) and the OVGP1 expression is up regulated at oestrus and almost absent at dioestrus  

(Bauersachs et al., 2004; Boice et al., 1990). To achieve in vivo similar conditions for the in 

vitro culture method, the cells need to maintain the OVGP1 expression as they do in vivo at 

oestrus. Therefore, the OVGP1 is a good marker to detect differentiation in the BOECs 

monolayers cultivated on polyester membrane in this present study. According to Rottmayer 

et al. (Rottmayer et al., 2006) no significant difference in OVGP1 expression was observed 

over a 24 hours cultivation time for OECs on plastic support, however they did not cultivate 

the BOECs longer than 24 hours. Results in the present study revealed a clearly dropdown in 

the OVGP1 gene expression after 24 hours of cultivation for both cultivation methods 

(membrane and plastic) (Figure 30). In addition, after 3 days no expression of OVGP1 was 

detectable compared to the cell harvest day for both methods. Results from the present study 

are in accordance with Reischl et al. findings (Reischl et al., 1999) which reported that 

OVGP1 mRNA levels were significantly different between freshly and cultured BOECs 

monolayers.  
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The in vitro cultivation method of BOECs (membrane) used in the present study need to 

obtain the OVGP1 expression in the BOECs for several days, until they reach confluence. To 

prolong the OVGP1 expression it is possible to stimulate the BOECs with human chorionic 

gonadotropin (HCG) as described by Sun et al. (Sun et al., 1997). This study showed that LH 

and HCG can increase the synthesis of OVGP1 by decreasing the degradation of its transcripts 

in bovine oviductal epithelial cells. The highest OVGP1 expression was observed in BOECs 

cultures 3 days with HCG  

Reports have indicated that OVGP1 plays an important role in fertilization by acting 

positively on sperm motility and sperm-ovum interaction in the oviduct (Killian, 2004). 

However, in the present study sperm cells were able to bind to BOECs (plastic and 

membrane) that do not express OVGP1. This indicates that a high expression level of OVGP1 

is not crucial for sperm binding and that it is not needed to maintain OVGP1 expression in 

BOECs for use in the sperm binding assay. OVGP1 may not be the right gene marker in 

bovine oviduct epithelial culture systems to evaluate differentiation as a result of proliferation. 

Nevertheless, this needs to be further investigated. 

The OVGP1 relative gene expression was estimated based on the 18S reference gene, which is 

expressed at a much higher level than the target gene (OVGP1). Therfore, it can be discussed 

if the 18S was the right reference gene of choice. Maybe another, slightly less expressed, 

reference gene would have showed better results. Expression of a reference gene should 

remain constant between the cells of different tissues and under different experimental 

conditions (Dheda et al., 2004). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene 

has been reported used as a housekeeping gene in bovine (Smolkina and Karus, 2004). In 

order to choose a reference gene, expression levels and normalization of the reference genes 

need to be investigated against the target gene. Reports have also stressed the importance that 

the use of a single gene for normalization may lead to relatively large errors, therefor it is 

important to use multiple control genes based on a study of potential reference genes applied 

to representative samples from specific experimental conditions (Lisowski et al., 2008). 

It is also worth mentioning that the RNA quality influence the RT-PCR results significantly 

(Dheda et al., 2004). In this study the RNA quality was of decent quality, however the RNA 

quantity was different in each sample and that may have affected the results.     
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5.4 Sperm cell counting and percoll gradient centrifugation. 

In order to simplify the sperm binding assay, two different approaches for the sperm cells 

were tested. The method used for counting sperm cells was considered difficult and thus a 

new counting technique using the flow cytometer was tested. Flow cytometry assays can 

determine cellular characteristics such as size, membrane potential, and intracellular pH, and 

the levels of cellular components such as DNA, protein, surface receptors, and Ca
2+

(Rieseberg 

et al., 2001). Based on cellular size, it is also possible to determine the concentration of sperm 

cells in a sample with some modifications in the flow cytometer settings. This was done in 

order to count sperm cells in the BOEC-sperm binding assay. Due to poor adherent of BOECs 

to membrane, the samples used on flow to count sperm also contained BOECs. Epithelial 

cells vary in size and interfered with the size parameter included to identify sperm cells. For 

this reason the flow cytometry counting method could not be used instead of Bürker counting 

chamber.  

The amount of sperm cells initially added to BOECs consisted of sperm cells with unknown 

status, and since only live spermatozoa was considered in calculations, viability 

measurements were crucial to obtain viable sperm number. By adding only live spermatozoa 

the calculation and counting would have been much simpler and therefor percoll gradient 

centrifugation of sperm cells was tested.  Percoll gradient centrifugation is a method to select 

spermatozoa with higher motility (Lessley and Garner, 1983). Results for  the percoll gradient 

centrifugation with 45%/90% percoll combination ( P45/90)  in this study, revealed a high 

percentage of motile cells after percoll gradient centrifugation which is consistent with other 

reports (Landim-Alvarenga et al., 2004). The sperm cells obtained after percoll gradient 

centrifugation were stained with Fluo-4 and analysed by flow cytometery. Results indicated 

that sperm cells obtained after percoll gradient centrifugation will have a higher percentage 

capacitated sperm cells. This results are also found in mouse (Furimsky et al., 2005) and boar 

(Matas et al., 2011). For boar it has been reported that sperm cells obtained from a P45/90 

gave higher percentage of capacitated spermatozoa measured by  tyrosine phosphorylation 
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and intracellular Ca
2+

 concentrations  (Matas et al., 2011). Based on results from the flow 

cytometer and reviewed reports, the percoll gradient centrifugation was not included in the 

BOEC-sperm binding assay.  

 

5.5 Binding capacity of sperm cells to BOECs cultured on 

permeable support 

It is now generally agreed that sperm cells form a reservoir in the isthmus region of the female 

bovine oviduct by binding to epithelial cells (Holt and Lloyd, 2010; Pollard et al., 1991). At 

ovulation the sperm cells are released in order to achieve fertilization (Pollard et al., 1991; 

Rodriguez-Martinez, 2007). This sperm- oviduct interaction has been studied by several 

investigators in vitro, using different cultivation methods for the BOECs (Chian and Sirard, 

1995; Gualtieri et al., 2012; Gualtieri and Talevi, 2003; Lefebvre et al., 1995; Pollard et al., 

1991). Gualtieri et al. (Gualtieri et al., 2012) reported that BOECs cultivated on permeable 

support had the ability to stay viable until 3 weeks post confluence. In addition it was 

observed that ciliated and non-ciliated cells were able to bind sperm and keeping them viable 

for until 4 hours post insemination.  

In this study BOECs cultivated on membrane were used in the BOEC-sperm binding assay, 

where binding capacity and release were investigated. As mentioned before satisfying 

microscopic images of BOECs cultivated on membrane was not possible to obtain (4.3.2), 

since BOECs grew with an increased cell height and therefore it was difficult to focus on the 

preparates in the microscope. However it was possible to observe that sperm cells bound to 

the epithelial cells by their rostral head region as reported by other investigators (Gualtieri et 

al., 2012; Gualtieri and Talevi, 2000). BOECs monolayer 5 days post confluence were used in 

the BOEC sperm binding assay and did not show any difference from the other BOECs 

monolayers, regarding the binding capacity of sperm cells (results not shown). This is in 

accordance with Gualtieri et al (Gualtieri et al., 2012) (5.1) which show that the BOECs 

cultivated on polyester membrane have a more in vivo like condition. It the present study, 

microscopic evaluations of sperm bound to BOECs mononolayers cultured on polyester 

membranes, revealed an uneven distribution of bound sperm. The uneven distribution has  
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also been reported for sperm bound to bovine epithelial explants (Lefebvre et al., 1995). 

Explants are known to have an undifferentiated state for a short time. Therefor the similar 

uneven distribution of bound sperm to BOECs cultivated on membrane and explants are 

evidence for the successful cultivation method on polyester membrane, indicating a more in 

vivo like condition.  

The binding capacity of sperm cells from 6 NRF bulls with contrasting NRR values, was 

investigated as described in section 3.10. Results were not unambiguous. It was expected that 

bulls with higher NRR values would have greater binding capacity than bulls with lower NRR 

values as indicated by De Pauw et al. (De Pauw et al., 2002). Statistical analysis for the 

binding capacity of the 6 bulls indicated no significant difference between the bulls. De Pauw 

et al. (DePauw et al., 2002) found a positive relation between sperm binding capacity and 

NRR based on sperm bound to BOECs explants. Using explants in this present study is not an 

alternative because of little yield of BOECs and a large number of bulls that need to be tested.  

The binding capacity results are based on very few samples and NRR data had a only 

difference ratio of approximately 15%. This difference might not be enough to differentiate 

between high and low fertility groups, when it comes to NRF. Geno rates the NRF bulls in the 

high and low fertility groups by a cut of value at 67% NRR. Bulls with a higher NRR than 

67% are considered as high fertile bulls, while lower is rated as low fertile bulls. The previous 

NRR cut off value for NRF bull was 65%, however this was changed because of few bulls 

gave lower NRR values that that cut off (Personal communication Professor Elisabeth 

Kommisrud). In general, the NRR values for NRF are higher than other breeds. For example 

in Swedish red cattle a NRR of 65% is considered as good fertility Regarding the study by De 

Pauw et al. (De Pauw et al., 2002), the bulls used were 2-yr-old Red Pied bulls with a NRR-

56 range varying from 52.8% to 69.9%. In this present study the NRR values for the NRF 

bulls varied from 62.09% to 76.68% ( 
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Table 4). There are very few NRF bulls with low NRR values, because in Geno it has been 

focused on field fertility in the breeding program for a very long time (Personal 

communication Professor Elisabeth Kommisrud) 

The growth area for the BOECs on polyester membrane inserts in the present study is 

1.12cm
2
. The addition of specific amount sperm cells will maybe be crucial for the binding 

capacity. For example if a BOECs monolayer area are capable of binding just 20% sperm 

cells and the added amount of sperm cells is much higher, the BOECs monolayer will be 

saturated. The BOECs in terms will bind 20% of the sperm cells independent of the sperm 

cells binding capacity. In this present study, the amount added sperm cells differed from each 

other as a result of the preparation method. The results from the BOEC-sperm binding assay 

did not show any association between sperm binding capacity and field fertility (NRR-56 

values). Therefore, it is possible that some BOECs monolayers were saturated with sperm 

cells, giving maximum binding capacity, and thus no difference was shown between the two 

fertility groups (high and low fertile groups). At natural mating or by AI, several million 

sperm cells are deposited in the female reproductive tract. As they traverse the reproductive 

tract, they are met by selection mechanisms and finally only a few thousand sperm cells reach 

the oviduct to form the sperm reservoir (Suarez and Pacey, 2006). Therefore, the amount 

added to the BOECs monolayer is of big importance and should be investigated more. 

In this present study a binding capacity comparison study of BOECs cultured on polyester 

membrane and plastic (Zeremichael, 2013) was performed. Results revealed that bull number 

1 (high NRR) had a 15% increase of bound spermatozoa to BOECs on membrane while bull 

number 4 (low NRR) had a 15 % decrease of bound spermatozoa to BOECs on membrane. 

This indicates that high fertile bulls will have a better binding capacity on BOECs cultivated 

in on membrane and low fertile bulls will have a lower binding capacity to BOECs cultivated 

on membrane. BOECs cultivated on membrane are well polarized and have the ability to bind 

spermatozoa significantly better than BOECs cultivated on plastic (Gualtieri et al., 2012). The 

results obtained in this comparison study are only based on two samples and the analysis was 

performed in two different experiments with BOECs from different oviducts. In addition the 
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methods used for both experiments and the person that conducted the experiment were not the 

same. The method used for binding capacity with BOECs on membrane was not optimized. 

Total added sperm cells to the BOECs on membrane were much less than sperm cells added 

to BOECs on plastic and it is also of big importance to keep in mind that the BOECs 

cultivated on membrane did not adhere properly, and suspicion of detachment was verified. 

Therefore, the comparison of these results are very speculative, however it can indicate 

interesting differences. All this taken in account, there is need for further investigation 

regarding binding capacity of sperm cells to BOECs cultivated on membrane and on plastic 

support. 

In the heparin induced release of sperm bound to BOECs assay few sperm cells were able to 

release themself from the BOECs monolayer. One explanation can be that the intense washing 

procedure had detached the BOECs from the membrane and thus sperm cells bound to 

BOECs was washed away. Some of the few remaining sperm cells showed motility signs by 

flagellar movement, while others did not. A possible explanation to that is to long washing 

time between each wash. This may have caused sperm cell damage when bound to BOECs. It 

has been reported that oviduct epithelial cells (OECs) membrane proteins bound to human 

spermatozoa, protects them from ROS-induced damages in terms of sperm motility, 

membrane integrity, DNA integrity, and intracellular ROS level. The sperm oviduct 

interaction is also capable of enhancing the antioxidant defences in spermatozoa (Huang et al., 

2013). Therefore, a long waiting phase without and liquid on top of the monolayer may have 

been the cause of sperm cell damage and eventually death. For this purpose it is very 

important to test a procedure before it is applied. In the present study it was not possible to 

test the given procedure (optimized for sperm oviduct interaction on plastic support), because 

of limited access to BOECs and time limitations. It was hard enough to find oviducts from 

cows in the follicular phase in oestrus cycle. At the time the BOEC sperm binding assay was 

performed the abattoir stopped receiving cows for slaughter.  

It is of big importance to consider the few amount tested bulls and the few replicates 

performed on the BOEC sperm binding assay. The statistical analyses were performed to give 

an indication of a binding pattern in low and high fertile bulls, although no clear binding 

pattern were observed.   
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5.6 Flow cytometric evaluation of sperm quality parameters for 

semen used in the BOEC-sperm binding assay 

From the last decade examinations of structural characteristics for semen have been 

developed and are still developing. Plasma membrane integrity evaluations, acrosomal 

integrity evaluations, investigation of DNA integrity, motility analysis, and osmotic resistance 

tests are some of the characteristics investigated (Gillan et al., 2005; Silva and Gadella 2006). 

These parameters appear to be insensitive for the fertility evaluation, but are widely used as 

sperm cell quality parameters. In this present study sperm from the 6 bulls, used in the BOEC 

sperm binding assay were evaluated for their viability, acrosomal integrity, DNA integrity and 

capacitation status upon Ca
2+

 influx with the new applied Fluo-4 protocol. These parameters 

were then compared between high and low fertility bull groups. 

The viability and acrosomal integrity results were very clear giving the high fertility group the 

highest percentage of AIL sperm subpopulation, but no significant difference was found 

between the bulls. A t-test performed for the high and low fertility group within the AIL 

parameter showed a significant difference from the low fertility group. These findings are in 

accordance to Januskauskas et al. (Januskauskas et al., 2001), although a later report did not 

find any correlation between these two parameters (Waterhouse et al., 2006). Bull number 3 

possessed the highest percent of AIL between the bulls. This may have influenced the p-value 

and thus showed a significant difference between the two groups.  

The capacitation status with respect to the Ca
2+

 influx was evaluated for each of the 6 bull 

semen right before addition to the BOECs. Results revealed that the high fertility group had 

the highest percentage of sperm cells with high Ca
2+

 level, categorized as capacitated, and this 

was found to be significant different from the low fertility group ( 

 

 

Figure 33). It is reported that the capacitated cells, even if alive will lose their binding capacity 

to BOECs (Gualtieri and Talevi, 2003b), and thus the fully capacitated cells will not bind. 
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Bull number 3 had the highest % of cells with high Ca
2+

 level (4.5) and this might be the 

explanation for the low binding capacity. The staining procedure and flow analysis were 

performed right after 2 repetitions of SP-TALP wash which included a centrifugation step at 

400 x g for 5 minutes (3.10.1). It has been reported that centrifugation might induce 

capacitation of sperm cells (Lampiao, et al., 2010). This washing procedure may have 

accelerated the capacitation step and if the cells became fully capacitated when added to 

BOECs, they would not be able to bind Ca
2+

 influx starts early in the capacitation cascade 

(Baldi et al., 2000). Therefore, another very hypothetic explanation for high Ca
2+

 levels in the 

high fertility group is that the sperm cells are not fully capacitated, but only premature 

capacitated (pre-capacitated). AI insemination is performed using cryopreserved semen, 

which will possess a degree of pre-capacitated cells (Collin et al., 2000), and still fertilization 

followed by gestation do occur. The pre-capacitated sperm cells will be higher in Ca
2+

level, 

but maybe they will maintain the binding capacity to BOECs. The release of the sperm cells 

from the BOECs at fully capacitated stage will perhaps be faster achieved for the pre-

capacitated sperm cells compared to the non-capacitated sperm cells. For bull number 3, the 

sperm cells high in Ca
2+

 concentration are 38.30% of the sample. This is compensable 

because the reaming (60%) sperm cells are not capacitated, thus they will bind and may be 

easier to release when maturely capacitated. 

The Ca
2+

 influx procedure with the Fluo-4 staining is insufficient as it lacks viability 

measurements as mentioned before. A procedure that combines Ca
2+

influx and viability will 

provide more reliable data also for the binding capacity. 

Concerning the DFI, reports have indicated that the DFI value of the SCSA method to be of 

god value to predict fertility potential (Waterhouse et al., 2006). Results obtained in the 

present study showed no significantly difference between the high and low fertile groups 

(Feil! Fant ikke referansekilden.). However, as shown in Table 8 there is a tendency of an 

increasing DFI value for the low fertility group. The ANOVA OVGP1 test did not show any 

significant difference between the bulls.  

As a final remark, it is important to take considerations of the low number of tested bulls, few 

replicates, narrow range of the NRR values and the few obtained BOECs in right cycle. All 

these factors limited the reproducibility of each experiment. 
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For all parameters discussed, the statistical analyses were performed to give an indication of 

tendency between the bulls and between the high and low fertility bulls.  

 

 

 

5.7 Further studies 

Primary BOECs were successfully cultivated on membrane and in vivo like condition was 

obtained for the BOECs. However, the in vitro OVGP1 expression was not maintained 

through the culture period. To mimic the BOECs in the follicular phase (high OVGP1 

expression), it has been reported that OVGP1 can be stimulated by HCG (Sun et al., 1997). 

Therefore, OVGP1 expression should be further investigated in HCG stimulated BOECs. 

There is need to develop an optimized BOEC-sperm binding assay for BOECs cultured on 

membrane. Results in this present study showed clearly that BOECs cultivated on polyester 

membrane adhered poorly to the membrane. Collagen coating of the membrane before cell 

cultivation has been reported to enhance cell attachment (Nagai et al., 2002). Therefore, 

during further optimization of the sperm binding assay, collagen coating of the membrane 

support should be included in the protocol. 

As seen in the present study, some sperm cells added to the BOECs in the sperm binding 

assay had a high level of Ca
2+

, especially semen samples from the high fertility group, which 

may have had a negative effect on the binding capacity. For that purpose the sperm 

preparation method should be further optimized. Regarding the sperm count method in the 

BOECs sperm binding assay, an alternatively more efficient method should be adopted 

Computed assisted sperm analysis (CASA) or flow cytometry can be optional methods to 

perform the sperm cell counting if the problem with BOECs membrane attachment is solved. 

Lastly, the release of sperm cells by heparin induction should be further studied.  

The adapted Ca
2+

 influx protocol with Fluo-4 as a Ca
2+

 binding dye needs to be further 

optimized to include discrimination of dead sperm cells. The bleeding through problem of 
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Fluo-4 fluorescence into FL3 made it impossible to combine a viability stain with Fluo-4 and 

thus determination of dead capacitated sperm cells was not possible. Therefore, if not a 

solution is found by including an extra washing of the flow cytometer, a new fluorescent Ca
2+

 

dye such as Cal-520 should be tested. 
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6. Conclusion 

This study was conducted to establish a permeable cultivation method for BOECs that mimic 

the in vivo condition. The cultivation of BOECs on membrane has been successfully achieved. 

However, the in vitro OVGP1 expression was not maintained during in vitro cultivation of 

BOECs. Compared to plastic, membrane cultivated BOECs showed a more in vivo like 

structure by that they grew with an increased cell height, maintaining their columnar shape. 

Differentiation was not observed when immunostained against cytokeratin and vimentin. 

BOECs stayed viable and they bound sperm cells 5 days post confluence. When BOECs were 

cultivated on membrane, the concentration of BOECs could be decreased compared to 

BOECs cultivated on plastic, obtaining more monolayers, and still achieve confluence within 

5 days. This feature makes it possible to test more bulls.  

Sperm cells from high and low fertile bulls were evaluated on their binding capacity to 

BOECs cultivated on membrane. Results showed that there was no significance difference 

between the high and low fertile bulls.  

A new sperm quality parameter which addresses the capacitation status was adapted in the 

study and used to evaluate the sperm cells tested in the BOECs sperm binding assay. Results 

revealed that the high fertility group possessed a high degree of capacitated sperm cells (High 

in Ca
2+

 level), which may have been a result of the preparation method. This in terms of pre-

capacitation can indicate that the easily capacitation is to be considered as a good property, 

since sperm cells bound in the sperm reservoir can capacitate and reach the ovum at ovulation 

easily.  
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8. Appendix 

Statistical analysis results for the comparison between high and low fertility bull within 

different parameters. 

1) t-Test: For the Acrosome intact live parameter 

 

     Variabel 1 Variabel 2 

Gjennomsnitt 61,7588889 36,1027778 
Varians 131,059251 1,02181204 

Observasjoner 3 3 
Gruppevarians 66,0405315 

 Antatt avvik mellom 
gjennomsnittene 0 

 fg 4 
 t-Stat 3,86661719 
 P(T<=t) ensidig 0,00902266 
 T-kritisk, ensidig 2,13184679 
 P(T<=t) tosidig 0,01804533 
 T-kritisk, tosidig 2,77644511   

 

2) t-Test: For the High in Ca
2+

 results from the Ca
2+ 

influx parameter 

 

   

  Variabel 1 Variabel 2 

Gjennomsnitt 32,5161111 17,9355556 
Varians 25,8065954 1,4920287 
Observasjoner 3 3 
Gruppevarians 13,649312 

 Antatt avvik mellom 
gjennomsnittene 0 

 fg 4 
 t-Stat 4,83352891 
 P(T<=t) ensidig 0,00421981 
 T-kritisk, ensidig 2,13184679 
 P(T<=t) tosidig 0,00843962 
 T-kritisk, tosidig 2,77644511   
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3) t-Test: For the Binding capacity parameter 

 

     Variabel 1 Variabel 2 

Gjennomsnitt 72,58861111 67,8672222 
Varians 230,3432704 82,1055933 
Observasjoner 3 3 
Gruppevarians 156,2244318 

 Antatt avvik mellom 
gjennomsnittene 0 

 fg 4 
 t-Stat 0,4626376 
 P(T<=t) ensidig 0,333835769 
 T-kritisk, ensidig 2,131846786 
 P(T<=t) tosidig 0,667671539 
 T-kritisk, tosidig 2,776445105   

 

4) t-Test: For the DFI parameter 

 

     Variabel 1 Variabel 2 

Gjennomsnitt 2,54333333 4,13333333 
Varians 3,73403333 1,22803333 
Observasjoner 3 3 
Gruppevarians 2,48103333 

 Antatt avvik mellom 
gjennomsnittene 0 

 fg 4 
 

t-Stat 
-

1,23630736 
 P(T<=t) ensidig 0,14198881 
 T-kritisk, ensidig 2,13184679 
 P(T<=t) tosidig 0,28397763 
 T-kritisk, tosidig 2,77644511   

 


