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Abstract 

The recent discipline of ecophysiology investigates physiological adaptations of organisms to 

their environment. This opens for testing new research questions, such as more thorough 

investigations of the link between environmental stressors and physiological responses, or the 

role of stress as a biomarker of health and fitness. Many studies support the cort-fitness 

hypothesis, which predicts a negative relationship between stress and fitness, but they also 

show that this relationship is not linear. Animals need stress to keep themselves alert for 

hazards, but detrimental effects can occur at high release levels or in chronic situations. This 

review focuses on causes, mechanisms and consequences of stress on large herbivores, both 

for individual fitness and population dynamics. 

Stress is a multidimensional physiological response that challenges internal stability, and can 

be measured through “stress hormones”. These however fluctuate depending on a range of 

factors, and can be measured in different ways, depending on the research question. Therefore, 

caution should be taken when interpreting results. Stress can be described based on duration 

(acute or chronic) and type of stressor (physical or psychological). Chronic stress inhibits the 

body from returning to homeostasis, and can have a range of physiological consequences 

ultimately affecting fecundity, offspring survival and immunity. Although studies on the 

ecophysiology of wild animals, and especially large herbivores, are scarce, there is evidence 

that individual effects of stress can scale up to population dynamics. 

Rangifer, due to its peculiar ecology, is particularly sensitive to the rapidly increasing human 

disturbance. Although so far only few studies provided physiological measures of stress 

hormones, these documented the occurrence of nutritional stress, and succeeded in 

establishing a causal link between human disturbance and physiological stress. 

This review shows that there is reasons to believe that stress does matter, both at an individual 

and population level. There is an urgent need for more interdisciplinary studies to establish 

the link between different type of stressors and stress responses, and to better understand the 

relationship between stress, individual fitness and population dynamics. In particular, there is 

a need for studies on wild species that seem particularly sensitive to stress, such as Rangifer, 

in order to plan sound management and conservation strategies. 

Keywords: Glucocorticoids, chronic stress, multiple- stressor context, HPA axis, population 

dynamics, large herbivores, Rangifer 
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1. Introduction 

Ecologists and physiologists have conducted studies on organisms for decades, both in 

laboratories and in the wild. However, only recently, by merging the two fields together, the 

study of ecophysiology has been developed. The relatively new discipline seeks to clarify the 

role and importance of physiological processes in the ecological relations of species in their 

natural habitat. The approach allows scientists to investigate important ecological questions, 

such as the role of a range of stressors on individual stress and, ultimately, population 

dynamics (e.g. Bradshaw 2003). 

In recent years, both physiologists and ecologists have raised awareness of the role of stress 

as a biomarker for health and fitness (Fefferman & Romero 2013; Cattet et al. 2014). A 

milestone in stress studies is the cort-fitness hypothesis (Bonier et al. 2009b), which predicts 

that as the number of environmental challenges increases, the level of glucocorticoids - the 

primary stress hormones - increases, and negatively affects fitness (Bonier et al. 2009a). 

However, the relationship between stress and fitness is not linear, as first assumed (Bonier et 

al. 2009a; Busch & Hayward 2009). Stress responses are needed to keep animals alert and safe 

from predator attacks and other potential hazards (Wingfield et al. 1998; Arnemo & Caulkett 

2007). Therefore, while short-term stress responses tend to be adaptive, a stress response 

activated for a prolonged period has the potential to be detrimental to the animal (McEwen & 

Wingfield 2003; McEwen & Wingfield 2010). An increasing amount of studies is therefore 

shifting focus from short-term effects of stress, to a long-term fitness perspective (Weinstock 

2008; Sheriff 2015). 

Studies investigating long-term consequences of stress at the individual level raise concern for 

potential impacts not only on individual level, but also on population dynamics and 

conservation. However, while there is relatively good understanding of stress effects on 

individual fitness in controlled conditions (lab animals; e.g. Saul et al. 2012), not much is 

known yet on fitness effects of stress on wild individuals, nor on whether individual effects 

scale up at the population level. Here I focus on the mechanisms of stress from an ecological 

perspective, and review available evidence of stress consequences for individual fitness and 

population viability in the wild. The review focusses on large herbivores and, in particular, on 

Rangifer which, due to its peculiar ecology, seem to be particularly sensitive to stress related 

to predation, hunting and increasing human disturbance across their circumpolar range (e.g. 

Whittington et al. 2011; Panzacchi et al. 2013). 
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2. What is stress? 

2.1 Definitions 

Stress is difficult to define (Romero 2004). Dantzer et al. (2014) define a “stressor” as a 

predictable or unpredictable environmental perturbation that causes “stress”, which is defined 

as a multidimensional physiological response that challenges internal stability. Animals can 

cope with stress through “stress responses”, which imply both physiological changes (such as 

secretion of glucocorticoids; e.g. Sapolsky, Romero & Munck 2000) and behavioral changes 

(such as fight- or flight response; e.g. Romero 2004; Wikelski & Cooke 2006; Stankowich 

2008). 

When a stressful event occurs, the body unconsciously activates physiological responses. As 

this response cannot last for long periods, the body brings back the physiological conditions 

to stability in a process called homeostasis (Davis 2006). Homeostasis keeps set-points that 

are essential for life, such as pH, body temperature, glucose levels and oxygen tension (Lupien 

et al. 2006). Homeostasis can be achieved through a process called allostasis, which is the 

process of achieving stability through physiological or behavioral change (McEwen & 

Wingfield 2003). Allostasis allows modification of the above-mentioned set-points through 

changes of intrinsic (such as age, body condition, reproductive status) and extrinsic (e.g. 

exposure to weather, predation risk) factors, in order to maintain the body in stable conditions 

during physical, psychological and environmental challenges (Sterling & Eyer 1988; 

Karlamangla et al. 2002; McEwen 2002; Dantzer et al. 2014). Further, the “allostatic load” is 

the daily or monthly amount of energy an individual need to have available to fulfill normal 

life history tasks, such as breeding. When the environment no longer provides the required 

energetic input, the individual goes into “allostatic overload”. Indeed, several authors (e.g. 

McEwen 2002; Arnemo & Caulkett 2007) distinguish between “good stress” (eustress), and 

“bad stress” (distress); while the former can be adaptive, the latter refers to the allostatic 

overload which serves no useful purpose and may trigger health consequences (McEwen & 

Wingfield 2003; McEwen 2005). This review focusses on distress, hereafter named “stress”. 
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2.2 Acute and chronic stress 

Stressors and stress responses can be either short- or long- term or, in other words, acute or 

chronic. In case of acute stressors, such as a one-time predator attack (Boonstra 2013; Clinchy, 

Sheriff & Zanette 2013), GCs may increase temporarily (acute response) (Dantzer et al. 2014). 

However, when a stressor operates over longer periods, such as recurrent anthropogenic 

disturbance (Cabezas et al. 2007), the animal may manifest chronic stress responses (Dantzer 

et al. 2014), as the body may not be able to bring back the physiological conditions to 

homeostasis between recurring stressors. 

2.3 Physical and psychological stress 

In some cases, it is useful to characterize stress based on the types of stressor triggering it. 

However, as the number of stressors is virtually countless and varies across species, 

individuals, life-stages and conditions (see chapter 3), it is unrealistic to attempt compiling a 

clear-cut and comprehensive list across species. Broadly speaking, animals can show stress 

responses when they perceive risk for their well-being or that of related individuals (e.g. 

predation risk, hunting, capture, human disturbance), and when the environmental conditions 

are sub-optimal (e.g. poor trophic resources, inadequate temperatures). Literature provides an 

array of papers using the term “stress” to indicate different types of stressors triggering it. 

Here, following Wasser et al. (2011), we separate between physical and psychological stress. 

Physical stress refers to stress caused by “external” triggers, such as lack of food (nutritional 

stress; Bastille‐Rousseau et al. 2015), direct disturbance (e.g. capture-related stress; Omsjoe 

et al. 2009) or temperature (e.g. thermal stress; Shrestha et al. 2014 - see chapter 4.1). On the 

contrary, psychological stress refers to stress triggered by the animals’ “inner” perception of 

the “landscape of fear” (Laundré, Hernández & Ripple 2010 - see chapter 4.2). 
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3. How to measure stress 

Glucocorticoids (GCs) are a class of corticosteroids known as the “stress hormones”, as they 

are involved in the primary hormonal response during both acute and chronic stress (Möstl & 

Palme 2002; Romero 2004; Love et al. 2005; Arnemo & Caulkett 2007). However, only at 

high release levels are these associated with stress, as the primary role of the hormone is basic 

energy regulation (Busch & Hayward 2009). Still, GC concentrations are widely used in 

ecological studies as proxies of stress (e.g. Millspaugh et al. 2001; Millspaugh et al. 2002; 

Ashley et al. 2011), and have been suggested as “early warning sign” in conservation studies 

(Dantzer et al. 2014). 

The GCs can be measured in different ways, and provide us with information at different time 

scales. A detailed description of methodological approaches for measuring GCs in wildlife is 

provided by a number of reviews (e.g. Keay et al. 2006; Sheriff et al. 2011; Dantzer et al. 

2014), and falls outside the scope of this thesis. Most commonly, GCs are measured in the 

blood, saliva, excreta (feces and urine) and integumentary structures (hair and feathers). It is 

crucial to underline that while blood and saliva samples provide real-time levels of GC 

(Sheriff, Krebs & Boonstra 2010a), hair and feather samples are an increasingly used method 

to provide data on long-term GC release, during the entire hair growth period (Bortolotti et al. 

2008; Russell et al. 2012; Macbeth 2013). Therefore, the choice of appropriate samples is 

crucial to answer different ecological questions, related to acute or chronic responses. It is also 

important to notice that not only different methodological approaches yield different results, 

but also the baseline glucocorticoids and stress response depends on a range of factors such as 

species, individuals, sex, age class, reproductive status, season and ecological context (Huber, 

Palme & Arnold 2003; Keay et al. 2006; Bonier et al. 2009a; Jaatinen et al. 2013). Therefore, 

an increasing amount of papers highlight the importance of planning carefully stress-studies 

based on specific methodological approaches targeted towards precise and testable 

hypotheses, and call for caution when interpreting study results and making generalizations 

(e.g. Millspaugh & Washburn 2004; Touma & Palme 2005; Madliger & Love 2014).  

3.1 How to discriminate between different types of stress 

A given individual can elicit similar GC releases in response to different types of stressors 

(such as fear, exercise, starvation, infection, anesthesia, pain, restraint, social interactions, 
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mating; Colborn et al. 1991; Arnemo & Caulkett 2007; Koolhaas et al. 2011). Therefore, in 

wildlife populations it is challenging to trace back from the stress response to the stressor 

causing it, relying only on GC measurements. However, by adding ecophysiology data, 

multivariate analytical approaches can be conducted to answer questions in a multiple-stressor 

context (e.g. Wasser et al. 2011). The number of studies establishing a link between 

physiological responses and multiple stressors is however still very limited. 

Broadly speaking, it is possible to investigate the link between physiological stress response 

and stressors by: 1) monitoring a range of physiological parameters (e.g. heart rate) in addition 

to GCs; 2) by performing interdisciplinary studies including physiological, environmental 

(e.g. temperature) and behavioral parameters (e.g. space use). 

3.1.1 Combining physiological measurements 

The choice of physiological parameters to monitor depends on the hypothesis to be tested, and 

on the choice/feasibility of the methodological approach (e.g. invasive vs. non-invasive 

techniques). 

For example, during a capture event a range of physiological measurements allow monitoring 

capture-related stress to approach the complex series of hormonal events of stress responses 

(Arnemo & Caulkett 2007). In addition to the GC levels in the blood samples, temperature, 

heart rate and respiratory rates are frequently sampled to monitor vital signs and physiological 

responses to stress (Lian et al. 2017). 

Nutritional stress can be measured by the modified amino acid triiodothyronine (T3) and 

thyroxine (T4) from the thyroid gland in the feces; T3 appears to be the more informative 

hormone to measure (Greco 2006; Wasser et al. 2010). Studies done on mammals, birds and 

teleost fish show that the thyroid hormones can be affected by both acute and chronic changes 

in nutrient intake (Eales 1988). As both GCs and T3 can be measured in the feces (Wasser et 

al. 2000; Wasser et al. 2010), multiple information can be extracted from the same sample, 

and allow to test for hypotheses related to both psychological and nutritional stress (Wasser et 

al. 2011; Ayres et al. 2012). In particular, several authors found that levels of T3 decrease 

when an animal is exposed to nutritional stress (Flier, Harris & Hollenberg 2000; Douyon & 

Schteingart 2002) but are unaffected by psychological stress (Kitaysky et al. 2005; Walpita et 

al. 2007), whereas GC level increase in both nutritional and psychological stress (Hayward et 

al. 2011). 
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Similarly, thermal stress causes an increase in GC levels and a decrease of both T3 and T4 

(Marai & Haeeb 2010; Sejian, Maurya & Naqvi 2010). However, one should keep in mind 

that thermal stress is closely related to depression of food intake, and thus will be shown as a 

decrease of thyroid hormones (Pereira, Duarte & Negrão 2006; Sejian, Maurya & Naqvi 

2010). While several studies on thermal stress have been conducted on domesticated animals 

(Alvarez & Johnson 1973; Borges et al. 2004; Sejian, Maurya & Naqvi 2010), studies on wild 

animals are underrepresented, likely due to logistic difficulties with obtaining such 

measurements in the wild (e.g. Washburn & Millspaugh 2002; Huber, Palme & Arnold 2003; 

Romero & Reed 2005; Johnstone, Reina & Lill 2012). 

In the attempt to circumvent the problem, several studies inferred thermal stress indirectly, by 

relying only on behavioural responses, such as changes in habitat selection during the warmest 

periods and selection for thermal shelter (Sargeant, Eberhardt & Peek 1994; Dussault et al. 

2004; Bjørneraas et al. 2011; Chapperon & Seuront 2011; Broders, Coombs & McCarron 

2012; van Beest, Van Moorter & Milner 2012). 

3.1.2 Combining physiological, behavioral and environmental 
information  

Both purely physiological studies and purely behavioural studies are limited in their ability to 

establish the link between responses and triggers of stress. Recently, a few studies adopted 

interdisciplinary approaches relying on the integration between several physiological, 

behavioural and environmental information, thereby advancing the recent disciplines of 

ecophysiology (Ellis, McWhorter & Maron 2012; Tarszisz, Dickman & Munn 2014; Madliger 

& Love 2015). By integrating behavioral and physiological parameters, Hayward et al. (2011) 

and Ayres et al. (2012) established a link between anthropogenic disturbance and stress for 

killer whales and northern spotted owls, respectively. Using georeferenced fecal samples of 

woodland caribou and moose, Wasser et al. (2011) was able to test hypotheses related to the 

influence of predation, habitat quality and anthropogenic disturbance on either psychological 

or nutritional stress. 

In addition to traditional physiological measures, advanced technology such as biologgers and 

biotelemetry, can provide additional information of an animal’s state and external environment 

(Owen-Smith, Fryxell & Merrill 2010; Wilmers et al. 2015). Remote monitoring allows 

scientists to study physiology, behavior and ecology of wild, cryptic and wide-ranging animals 



 11 

that previously have been difficult to study (Wilmers et al. 2015; Lennox et al. 2016). 

Therefore, by performing, for example, spatially-explicit analyses in a multiple stressor 

context, it is possible to answer the question “what is stressing the animal?” instead of “is the 

animal stressed?”. This approach gives a wider understanding of the potential threats the 

particular species is currently fronting, and improves our ability to predict how it likely will 

respond to future perturbations (Jachowski & Singh 2015). 
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4. Triggers and behavioural responses to stress  

4.1 Physical stress 

Broadly speaking, physical stress can be caused by factors like weather (temperature and 

precipitation; e.g. Shrestha et al. 2014), predation (natural predators and direct human 

disturbance; e.g. Stankowich 2008), parasites (e.g. Goldstein et al. 2005) and lack of food (e.g. 

Bastille‐Rousseau et al. 2015). 

Environmental temperature is an essential abiotic factor effecting an animal’s space use and 

behaviour. Large herbivores can be sensitive to heat (van Beest, Van Moorter & Milner 2012; 

McCann, Moen & Harris 2013; van Beest & Milner 2013), and water availability (Rosenmann 

& Morrison 1967), especially for herbivores in arid- and semi-arid areas at lower latitudes 

where drought years might be more frequent and more severe (Simard 1997; Easterling et al. 

2000; Duncan et al. 2012; Shrestha et al. 2014). As a behavioral response, they tend to seek 

for water and thermal shelter to reduce heat stress and dehydration (Cain III et al. 2006; van 

Beest, Van Moorter & Milner 2012). On the contrary, extreme or prolonged wet and cold 

periods can lead to increased stress of thermoregulation and in the worst case, decrease 

survival (Parker & Robbins 1985; Forchhammer & Boertmann 1993; Putman, Langbein & 

Sharma 1996; Gaillard et al. 2000; Hebblewhite 2005). In addition to change of weather 

patterns and altered temperatures, changed precipitation due to climate change is one of the 

major concerns today (e.g. Weladji et al. 2002; Hansen et al. 2011; Angelier & Wingfield 

2013). Changed precipitation patterns at higher latitudes can lead to higher frequency of e.g. 

icing events and changes in snow cover (Klein 1999), which can increase the energy for 

digging for food and locomotion (Parker, Robbins & Hanley 1984; Forchhammer & 

Boertmann 1993; Kumpula & Colpaert 2003; Mysterud & Østbye 2006; Hansen et al. 2011), 

increase nutritional stress due to reduced access to forage, and ultimately affect population 

dynamics (Hansen et al. 2013). 

Both predation from wild predators, hunting, and a range of other human activities can cause 

stress, and induce behavioral responses such as the fight-or-flight response (Stankowich 

2008). Capturing wild animals for research or management purposes is a common practice. 

While capture and handling is definitively a source of stress for animals, a number of 

guidelines and protocols instruct on how to monitor and minimize capture-related stress (e.g. 

Arnemo, Kreeger & Soveri 2003; Arnemo et al. 2006; West, Heard & Caulkett 2014). Still, 
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during handling both physical stress (such as trauma, surgery, intense heat/cold) and chemical 

stress (such as reduced oxygen supply, acid-base imbalance and anesthetic drugs) may be of 

concern (Arnemo & Caulkett 2007).  

Parasite load vary with season and weather events, and can be a source of stress for large 

herbivores (e.g. Goldstein et al. 2005), which in turn can lead to change of fitness. For 

example, in Rangifer the increased insect harassment during warm periods (Gunn & Skogland 

1997; Mörschel & Klein 1997; Hagemoen & Reimers 2002; Colman et al. 2003) can lead to 

changes in space use (Ion & Kershaw 1989; Watson, Davison & French 1994; Vistnes et al. 

2008), decreased feeding rate (Colman et al. 2003), reduced body weight (Weladji & Holand 

2003), and in extreme cases, can lead to death (Helle & Tarvainen 1984). 

Nutritional stress caused by intraspecific competition for resources may affect herbivores at 

high population densities (Portier et al. 1998; Nellemann et al. 2000; Sinclair et al. 2007; 

White 2008; Simard et al. 2010). Also, while in some cases global warming is expected to 

increase the availability of trophic resources (Klein 1999; Tews, Ferguson & Fahrig 2007; 

Tyler 2010), in others it is expected to decrease it. The degradation of resources can thus 

potentially trigger nutritional stress, with possible consequences on increased predation risk 

(Leblond, Dussault & Ouellet 2013; Bastille‐Rousseau et al. 2015). Habitat fragmentation can 

have similar effects, as it prevents access to important resources, and may confine animals to 

areas with lower nutritional quality (e.g. Panzacchi et al. 2015). 

4.2 Psychological stress  

Fear, which may be triggered by the actual or perceived threat posed by a predator, can in 

different degree affect the behavior of prey in the landscape (Brown 1999; Laundré, 

Hernández & Altendorf 2001; Holmes & Laundré 2006). The “landscape of fear” (Laundré, 

Hernández & Altendorf 2001; Laundré, Hernández & Ripple 2010) not only affects behavior, 

but also the stress levels of prey (Brown 1999; Laundré, Hernández & Altendorf 2001; 

Gobush, Mutayoba & Wasser 2008). For example, in habitat or features perceived as risky, 

prey tend to increase vigilance (often at the expenses of feeding rates; Caro 2005; Morrison 

2011), change space use (often to sub-optimal habitat; Hernández & Laundré 2005; Laundré, 

Hernández & Ripple 2010), and increase stress levels (Gobush, Mutayoba & Wasser 2008). 

The predator has the ability to maintain and change a landscape of fear (Ripple & Beschta 

2004), by e.g. reestablishing in an area (Laundré, Hernández & Altendorf 2001). Therefore, 
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the degree of fear a prey associates with a certain habitat or features, is usually not permanent. 

In fact, the fear of being attacked keeps the animals alert, and increases their chance of survival 

in dangerous situations (Boissy 1995; Brown 1999). 

Natural predators, such as wolves, are the basis of the fear-driven landscape (Ciuti et al. 2012). 

However, prey - especially from heavily hunted populations - tend to react to humans and non-

lethal human activities in a similar way as natural predators (Frid & Dill 2002; Crosmary et 

al. 2012). Therefore, several species tend to avoid proximity to humans, human-dominated 

areas and sometimes also infrastructures such as roads, powerlines or trails (e.g. Panzacchi et 

al. 2015; Panzacchi et al. 2016) which in turn can lead to changed movement patterns, both at 

a short-term (e.g. Andersen, Linnell & Langvatn 1996) and long-term (e.g. Panzacchi, Van 

Moorter & Strand 2013) scale. Not only can stress levels increase when animals are directly 

exposed to human disturbance (Pereira, Duarte & Negrão 2006), but also when they use areas 

perceived as risky, such as areas with historically high poaching risk (Gobush, Mutayoba & 

Wasser 2008) or linear features with no human activity (Wasser et al. 2011). In response to 

human disturbance animals tend to increase vigilance (Wang et al. 2011; Ciuti et al. 2012). 

The prey faces a trade-off between vigilance and foraging (Brown 1999; Fortin et al. 2004; 

Caro 2005) where time spent feeding determines the level of nutritional stress (Creel, Winnie 

& Christianson 2009; Creel, Schuette & Christianson 2014). However, when some cases the 

prey’s fear of human activity can exceed the fear of natural predators (Ciuti et al. 2012), others 

use human disturbed areas as shelter to reduce predation risk by natural predators (Shannon et 

al. 2014). 
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5. Physiological consequences of stress 

The stress physiology is complex and has been described in detail in a range of papers (e.g. 

Sapolsky, Romero & Munck 2000; Wingfield & Romero 2001; Arnemo & Caulkett 2007), 

and therefore in this review it will be summarized briefly. When a stressor operates on an 

animal, receptors in the body send signals to the hypothalamus in the brain. The hypothalamus 

further activates the sympathetic nervous system, which triggers the hypothalamus- pituitary- 

adrenal axis (HPA axis). In a stress situation the predominant hormonal response is the 

activation of the HPA axis, which is the vital regulator of adaption to stress (Reeder & Kramer 

2005; Boonstra et al. 2014). The sympathetic nervous system activates an acute adaption, 

which initiates a vigorous behavior. The physiological responses are rapid; within 3 to 5 

seconds the heart rate can be doubled and within 10 to 15 seconds the arterial blood pressure 

can increase to twice the normal levels (Arnemo & Caulkett 2007). The activation induces 

secretion of the stress hormones, primarily glucocorticoids (GCs) in form of cortisol (e.g. for 

primates, carnivores and ungulates) or corticosterone (e.g. rodents, birds and reptiles) (Romero 

2004; Touma & Palme 2005). The GC secretion causes a range of physiological and behavioral 

changes that facilitate coping with the environmental stressor. To lead the body back to 

homeostasis, GCs trigger a negative feedback mechanism that inhibit further production of the 

stress hormones (Pozzi et al. 2008). 

When the animal experiences chronic stress and the HPA axis is activated for long periods, to 

a return to homeostasis is inhibited (Boonstra 2004). Dantzer et al. (2014) characterizes 

chronically stressed individuals as having: (i) higher baseline CG levels; (Cain III et al.) higher 

frequency of acute GC increases; (Cain III et al.) increased amount of time to return GC levels 

back to baseline. Chronic stress can cause a decreased ability to cope with a stressor because 

of mechanisms named acclimation and facilitation (Romero 2004; Wingfield & Romero 

2015). If the animal is exposed to a stressor for a prolonged period of time, it may get 

acclimated, i.e. GC secretion will be reduced and the animal will no longer respond to the 

active stressor. Even though this may seem beneficial, it might actually lead to a facilitation, 

i.e. the animal will have a poorer ability to cope with a new stressor than a non-acclimated 

animal. However, in this case too it is important to remember that the ability to cope with 

stress varies among e.g. species, reproductive mode, stressor, timing and duration of stressor 

(Sheriff, Krebs & Boonstra 2010b; Love, McGowan & Sheriff 2013).  
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 The prolonged activation of the HPA axis has a range of physiological consequences, 

including the potential to suppress the immune system, growth, and trigger protein loss (Busch 

& Hayward 2009). During the vulnerable maternal and neonatal stage, the non-genetic 

maternal programming of the offspring takes place (Sheriff, Krebs & Boonstra 2010b; Love, 

McGowan & Sheriff 2013). Lab studies on mammals have shown that maternal and neonatal 

stress can have long-lasting detrimental consequences by causing changes in the programming 

and development of the offspring (Meaney, Szyf & Seckl 2007; Weinstock 2008; Mastorci et 

al. 2009) that can be detected also in adulthood (Romero 2004 - but see; ; Sheriff & Love 

2013). Studies on snowshoe hare showed that maternal stress resulted in offspring with higher 

level of plasma-free cortisol, greater sensitivity to stress and lower immunity in adulthood 

(Sheriff, Krebs & Boonstra 2010b). Offspring of lab animals exposed to maternal stress are 

prone to depression, anxiety-like behavior, alteration in brain development and HPA function 

(Abe et al. 2007; Meaney, Szyf & Seckl 2007; Kapoor, Leen & Matthews 2008). Higher GC 

levels can also affect metabolic rates and digestive processes, which possibly can lead to 

higher maintenance costs because of increasing forage time and thus decreasing resting time 

(Wingfield et al. 1998; Sapolsky, Romero & Munck 2000). Given the importance of the topic, 

Love, McGowan and Sheriff (2013) urge the need for more studies on females and the 

programming of offspring related to maternal stress. 
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6. Can physiological responses affect fitness?  

6.1 Individual level 

There is a number of laboratory studies that have investigated the cort-fitness hypothesis (e.g. 

Dallman et al. 1992; Guimont & Wynne-Edwards 2006; Saul et al. 2012). Although stress 

science is a fast-growing topic, the amount of studies linking stress to fitness in natural settings 

is still poor, and to my knowledge especially studies in large herbivores are highly limited (see 

e.g. review; Bonier et al. 2009a). The limitations are likely connected to practical difficulties 

with monitoring physiological parameters in the wild. In addition, while in lab studies the 

duration, timing and intensity of the stressor can be carefully controlled, in wild populations 

this is often not possible (e.g. Sheriff, Krebs & Boonstra 2010b). 

In general, researchers agree that acute stress of little to moderate magnitude will likely not 

have important negative effects on survival and reproduction in wild species (Tilbrook, Turner 

& Clarke 2000; Breuner, Patterson & Hahn 2008). On the contrary, ecologists and 

physiologists found evidence that chronic stress can cause detrimental effects on fitness, thus 

supporting the cort- fitness hypothesis (Tilbrook, Turner & Clarke 2000; Cabezas et al. 2007). 

For example, maternal stress has the ability to decrease the offspring ability to cope with 

stressors, thus decreasing individual fitness (Hayward et al. 2006; Love et al. 2008; Sheriff, 

Krebs & Boonstra 2010b; Haussmann et al. 2012). Sheriff, Krebs and Boonstra (2009) showed 

that snowshoe hare mothers gave birth to stillborn, and overall fewer and smaller babies after 

being exposed to stress. 

Several studies show negative effects of stress on survival of birds (Suorsa et al. 2003; Blas et 

al. 2007; Kitaysky, Piatt & Wingfield 2007, but see; Comendant et al. 2003; Cote et al. 2006), 

lemurs (Pride 2005) and iguanas (Romero & Wikelski 2001). Also, negative effects on 

reproduction have been shown in a number of bird species (Lanctot et al. 2003; Angelier et al. 

2007; Bonier et al. 2007; Kitaysky, Piatt & Wingfield 2007; Bonier et al. 2009b) and seals 

(Lidgard et al. 2008). However, scientists emphasize that the results are not universal due to 

complex and context-dependent relationships between type of stressors, GCs and fitness. 

Therefore, scientists urge for the need to more studies to formally test the cort-fitness 

hypothesis (Bonier et al. 2009a; Busch & Hayward 2009; Crespi et al. 2013). 
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6.2 Population level 

Based on the information provided above, there is reason to believe that the physiology-fitness 

relationship can scale up from the individual to the population level. However, Madliger and 

Love (2014) pinpoint three important factors that need to be fulfilled to link GC levels to 

fitness at the population level: (i) levels must be consistent within individuals under stable 

energetic or environmental conditions; (Cain III et al.) individual GC levels must change in a 

similar (i.e. predictable) way in response to environmental changes; (Cain III et al.) levels 

must show a consistent relationship with fitness metrics within individuals. This requires 

investigations within different taxa, life stages etc., which require large datasets and long-term 

series, which only few studies have available (Madliger & Love 2015). 

In a well-known, long-term study, Sheriff, Krebs and Boonstra (2010b) showed a decline in 

free-ranging snowshoe hare population size when mothers where exposed to maternal stress, 

and other researchers have found direct evidence of maternal stress to play a critical role in 

regulating population dynamics in free ranging vertebrates (reviewed in; Sheriff 2015). Stress 

responses act through generations (not only they transfer from mothers to offspring, but also 

from their grandmothers), and can thus affect population dynamics (Kirkpatrick & Lande 

1989; Meaney 2001). Note that stress-related interferences during the maternal programming 

can also have the potential to affect the propensity of dispersal (Love, McGowan & Sheriff 

2013). 

Individual-based simulation models can be a very useful tool to explore potential effects of 

stress on population dynamics. Based on such models, Fefferman and Romero (2013) showed 

that high stress levels can alter the age structure of a population, which would rely 

preferentially on the oldest and most physically fit individuals for reproduction; this, 

ultimately would result in decreased population size. Although this is only a simulation-based 

model, it seems to explain some of the patterns found for example in a long-term study on 

snowshoe hare (Sheriff, Krebs & Boonstra 2011). If supported by other studies, these findings 

would have important conservation consequences, e.g. they indicate that anything that may 

impact (e.g. hunting) the oldest reproductive individuals would have a disproportionate effect 

on population size. 
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7. Case study: Rangifer 

Reindeer and caribou (i.e. Rangifer spp.) have a circumpolar distribution, and can be either 

wild or semi-domesticated. Wild Rangifer in North America is defined as “caribou”, and all 

other Rangifer in regions of northern Europe and Siberia, including semi-domestic animals of 

Eurasian origin in North America, are defined as “reindeer” (Bevanger 2004). 

7.1 Triggers and effects of stress for Rangifer 

Today, Rangifer is facing a range of challenges related to the increasingly human impacted 

and climate warming world. The species is well-known for being capable of the longest 

migrations among terrestrial animals (Bevanger 2004). However, as for most of the migratory 

species, these populations are now challenged due to blocked and hampered migratory routes 

caused by development of infrastructure (Wilcove & Wikelski 2008; Vors & Boyce 2009). In 

open landscapes such as mountain or tundra ecosystems the species is also known for being 

able to form large herds as an anti-predator strategy. This, together with the fact that several 

of the wild populations are subjected to hunting contributes to make the species particularly 

wary of human disturbance. In Norway, wild reindeer tend to strongly avoid roads, railways, 

industrial development such as hydropower, and human-dominated areas including tourist 

cabins and popular hiking trails (Nellemann et al. 2000; Nellemann et al. 2010; Panzacchi, 

Van Moorter & Strand 2013; Johnson & Russell 2014; Panzacchi et al. 2015; Panzacchi et al. 

2016). 

Climate warming is especially critical for Rangifer as it increases the frequency of icing events 

(Hansen et al. 2011) and insect harassment (Hagemoen & Reimers 2002). This can further 

lead to change of habitat (Vistnes et al. 2008) and lower nutritional intake (Pettorelli et al. 

2005), which in turn can have consequences for fitness (White 1992). Finally, in some areas 

predation represents a major threat for the populations. The productive group (cows and 

calves) are especially vulnerable for disturbance during the calving season (Aastrup 2000; 

Wolfe, Griffith & Wolfe 2000), which ultimately can have negative stress effects, as described 

in chapter 6.1. An impressive load of papers has tested and reviewed the responses of Rangifer 

to these triggers of stress, however, most papers focus on the behavioral responses (e.g. 

Vistnes & Nellemann 2008; Reimers & Colman 2009; Reimers, Lund & Ergon 2011; Johnson 

& Russell 2014; Muhly et al. 2015). 
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7.2 Evidence of altered Rangifer GC levels triggered by 
stress 

Some studies have investigating altered GC levels in Rangifer (e.g. Säkkinen et al. 2004; 

Macbeth 2013), however the number of published literature is limited, especially studies 

focusing on a multiple stressor context. 

Freeman (2008) investigated how mountain caribou (Rangifer tarandus caribou) in British 

Columbia responded to motorized backcountry recreation by measuring GCs in feces. She 

found higher concentrations of fecal GCs in areas with disturbance, up to 10 km away from 

the motorized recreational areas. Wasser et al. (2011) performed a very comprehensive study 

on woodland caribou in western Canada, and monitored two physiological parameters (T3 and 

GCs) while performing a study on habitat use. They were able to test for specific hypotheses 

on the effect of human and predator disturbance on caribou stress levels, and showed that 

physiological and nutritional stress where positively affected by the degree of human 

disturbance (GCs levels decreased with distance to roads and increased with human activity; 

T3 levels the opposite effect). By including predator presence in the study, Wasser et al. (2011) 

could also show that caribou preferred safety from predation risk over nutrition. Joly, Wasser 

and Booth (2015) studied among other things nutritional stress in barren-ground caribou with 

respect to habitat quality, and their results support Wasser et al. (2011). They found a higher 

degree of nutritional stress at higher altitudes, where the quality of habitat and lichen 

abundance was lower; pregnant cows were the most affected by nutritional stress. The above 

mentioned studies sampled acute and chronic stress indicators from scats and therefore provide 

a non-invasive method to monitor population health in natural habitats. 
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8. Conclusion 

Historically, stress has been investigated in a large amount of either purely ecological or purely 

physiological studies. This review focuses on stress especially in the context of a relatively 

new and very promising field of research: ecophysiology. Despite the underrepresented 

amount of studies on wild animals - and especially large herbivores - literature provides 

evidence for a range of possible severe consequences of stress and, in particular, chronic stress. 

Stress tends to be most critical for the reproductive units, and can scale up from affecting 

individual health and fitness, to negatively affect population dynamics. 

This review shows that stress does matter, as it can affect both individuals and populations. In 

a world where the human footprint is rapidly increasing, there is urgent need for more studies 

adopting an ecophysiology approach, in order to trace back from stress responses to stressors. 

In particular, there is a need to understand the mechanisms and the consequences of stress on 

highly sensitive species, such as Rangifer, preferentially using non-invasive methods and 

multi-disciplinary approaches, especially in multiple-stressors contexts. Challenges related to 

the choice of appropriate methodological approaches and to the correct interpretation of results 

should be always kept in mind, and can be aided both by technological innovations and by the 

formulation of precise and testable hypotheses. However, understanding the link between 

triggers and consequences of stress is of crucial importance for conservation and management, 

and can facilitate human-wildlife coexistence in the future. 
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