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Abstract Alzheimer’s disease (AD) is a neurode-

generative disorder presenting one of the biggest

healthcare challenges in developed countries. No

effective treatment exists. In recent years the main

focus of AD research has been on the amyloid

hypothesis, which postulates that extracellular precip-

itates of beta amyloid (Ab) derived from amyloid

precursor protein (APP) are responsible for the

cognitive impairment seen in AD. Treatment

strategies have been to reduce Ab production through

inhibition of enzymes responsible for its formation, or

to promote resolution of existing cerebral Ab plaques.

However, these approaches have failed to demonstrate

significant cognitive improvements. Intracellular

rather than extracellular events may be fundamental

in AD pathogenesis. Selenate is a potent inhibitor of

tau hyperphosphorylation, a critical step in the

formation of neurofibrillary tangles. Some selenium

(Se) compounds e.g. selenoprotein P also appear to

protect APP against excessive copper and iron
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deposition. Selenoproteins show anti-inflammatory

properties, and protect microtubules in the neuronal

cytoskeleton. Optimal function of these selenoenzymes

requires higher Se intake than what is common in

Europe and also higher intake than traditionally

recommended. Supplementary treatment with

N-acetylcysteine increases levels of the antioxidative

cofactor glutathione and can mediate adjuvant protec-

tion. The present review discusses the role of Se in AD

treatment and suggests strategies for AD prevention by

optimizing selenium intake, in accordance with the

metal dysregulation hypothesis. This includes in par-

ticular secondary prevention by selenium supplemen-

tation to elderly with mild cognitive impairment.

Keywords Alzheimer’s disease � Copper � Iron �
Neuroinflammation � Transmitters � Selenium

Introduction

Alzheimer’s disease (AD) is a neurodegenerative dis-

order prevalent in old age. In developed countries 13 %

of people over 65 suffer from AD according to the

Alzheimer’s Association. Projected AD prevalence

indicate 100 million patients globally by 2050 (Alzhei-

mer’s 2015), leading to considerable economic burden

for society and suffering for patients and caregivers. AD

is classified as genetic or sporadic. Genetic AD is an

early-onset hereditary disease representing 1–2 % of

diagnosed cases (Campion et al. 1999). In genetic AD

mutated genes coding for amyloid precursor protein

(APP; chromosome 21) are found, and presenilin 1

(PS1; chromosome 14) and presenilin 2 (PS2; chromo-

some 1), promote amyloid beta (Ab) formation. The

vast majority of patients suffer from sporadic AD.

Many sporadic AD patients are carriers of the e4

allele of the ApoE gene (apolipoprotein E; chromo-

some 19). The mechanism whereby ApoE e4 allele

increases AD risk is largely unknown (Hardy and

Selkoe 2002). Recent research has unmasked minor

mutations which mediate an intermediate AD risk.

Most genes associated with AD roughly cluster within

three metabolic pathways: lipid metabolism, inflam-

matory response, and endocytosis (Giri et al. 2016).

Aging is considered the principal risk factor for

sporadic AD, followed by hypertension, dyslipidemia,

metabolic syndrome and diabetes (Drachman 2014).

In the present paper, we first discuss treatment

strategies based on traditional hypotheses of AD

pathogenesis: (a) the transmitter hypothesis, (b) the

metabolic hypothesis, (c) the tau protein hypothesis,

and (d) the amyloid cascade hypothesis. Then we

address the metal-based hypothesis of neuroinflam-

mation which opens new therapeutic possibilities

(Ward et al. 2014). Oxidative stress from copper

(Cu) and iron (Fe) toxicity is implicated in the metal

hypothesis of AD pathogenesis. In this context we

discuss a putative therapeutic or preventive role of

selenium (Se) supplementation, evoked by a Swedish

study reporting improved vitality and reduced signs of

inflammation and oxidative stress after Se yeast and

coenzyme Q10 intervention in an elderly population

(Alehagen et al. 2013).

Traditional hypotheses

The transmitter hypothesis

Cholinergic neurons projecting to the hippocampus in

the temporal lobe are affected early in AD. Deficient

spatial memory in rodents has been mapped to grid

cells that collect sensory signals in the entorhinal

cortex (Hafting et al. 2005). The language problems

and declining verbal recall characterizing AD patients

are presumed to arise from dysfunction in hippocam-

pal regions (Lim et al. 2012), and these cells are

influenced by cholinergic modulation (Konishi et al.

2015). Loss of cholinergic inputs to the hippocampus

is a well characterized abnormality in AD. Decreased

acetylcholine release combined with reductions in

nicotinic and muscarinic receptors in the cortex and

hippocampus of AD brains examined post-mortem has

been seen (Tata et al. 2014). Acetylcholinesterase

inhibitors used in AD treatment act by increasing

acetylcholine bioavailability at synaptic loci. Unfor-

tunately, these enzyme inhibitors are not capable of

reversing AD, nor slowing disease progression (Wal-

lace and Bertrand 2013). Memantine acts on the

N-methyl-D-aspartate (NMDA) receptors blocking

glutamate activity (Parsons et al. 2007). A dysfunction

of glutamatergic transmission has been hypothesized

to be involved in the neurodegeneration in AD.

Memantine appears to improve this dysfunction, and

has been associated with a moderate decrease in

clinical deterioration, with a small positive effect on

828 Biometals (2016) 29:827–839

123



cognition (Areosa et al. 2005). However, although

transmitter dysfunction is seen in AD, it can be

suspected that the initial biochemical lesions involve

structural and functional impairment of vital proteins

responsible for transmitter transport and neuronal

integrity.

The metabolic hypothesis

Clinical studies suggest that the metabolic syndrome,

including hypertension, obesity, and insulin resistance

or type 2 diabetes (T2DM), is a significant risk factor

for AD development (Kivipelto et al. 2005). Disturbed

hippocampal insulin signalling is likely present in AD

(Hokama et al. 2014). Increased insulin resistance and

oxidative stress with elevated levels of advanced

glycation end products (AGE) are proposed mecha-

nisms by which metabolic syndrome may increase the

risk of AD (Li et al. 2012). A recent study in mice

indicated an association between amount of hypotha-

lamic beta-amyloid fragments, neuroinflammation

and peripheral glucose intolerance (Clarke et al.

2015). Reactive oxygen species (ROS) and tumor

necrosis factor alpha also contribute to this intriguing

syndrome combination (Lourenco et al. 2013). As the

molecular mechanisms in AD and in insulin resistance

seem related, it is tempting to assume that drugs used

for T2DM treatment e.g. the glitazones could be

protective also in AD. A phase II trial with rosiglita-

zone for 6 months reported improvements in memory

and attention in patients who did not possess an e4

allele of the ApoE gene (Risner et al. 2006), but a

phase III rosiglitazone trial failed (Gold et al. 2010).

However, insulin resistance is associated with

increased AGE formation, decreased protection

against oxygen radicals (Aaseth and Stoa-Birketvedt

2000) and raised levels of methylglyoxal (MGA)

(Thornalley et al. 1999). These substances are all

neurotoxic and possess high reactivity toward thiol

(SH) groups such as the numerous microtubule SH

groups in the neuronal cytoskeleton. Increased MGA

concentrations in cerebrospinal fluid have been

reported in AD (Kuhla et al. 2005), and may contribute

to tau disintegration and tangle formation.

The tau hyperphosphorylation hypothesis

Tau is a neuronal, microtubulus-associated protein,

which in healthy brains regulates microtubuli dynamics

(Yuraszeck et al. 2010). Derangements of microtubuli

and of the neuronal cytoskeleton provide clues to the

understanding of AD pathogenesis. Intact microtubuli

are involved in transport of essential substances from

neuronal bodies to synaptic structures. Phosphorylation

regulates tau protein binding to microtubuli. Under

physiological conditions the tau protein remains sol-

uble, but hyperphosphorylation compromises its normal

functions (Mehta et al. 2015), and leads to formation of

insoluble neurofibrillary tangles, which are bundles of

paired helical protein filaments. Such excessive phos-

phorylation in AD must result from an imbalance

between phosphorylating kinases and de-phosphorylat-

ing phosphatases. Increased expression of active

kinases adjacent to neurofibrillary tangles has been

described in AD (Hochgrafe et al. 2015). One of these

kinases and a potential drug target is cyclin-dependent

kinase 5 (CDK5). Increased intracellular calcium in AD

brains is associated with CDK5 activation (Shukla et al.

2012). CDK5 inhibitors have demonstrated neuropro-

tective properties in in vitro and in vivo AD models

(Zimmer et al. 2012). Sodium selenate also reduces tau

phosphorylation, both in cell cultures and in AD mouse

models (Corcoran et al. 2010b). Administration of

selenate to rodents produces cognitive improvements

and reduced neurodegeneration (van Eersel et al. 2010).

In these models selenate is presumably converted to

specific selenoproteins including glutathione peroxi-

dases (Fig. 1), which may attenuate the intracellular

burden of ROS and thereby protect microtubuli in the

cytoskeleton.

The amyloid cascade hypothesis

The amyloid precursor protein (APP) is a glycosylated

protein that is uniformly found in cell membranes,

most abundant in the brain. A hypothesis claims that

the membrane bound protein APP acts as a Cu

chaperone, thereby exerting cytoprotective functions

(Prohaska and Gybina 2004). Apparently, APP is

involved in synaptic repair and in cell signaling

(Priller et al. 2006). Substances synthesized in the cell

bodies of neurons must be transported outward to the

distal synapses. It has been found that APP can

mediate interactions that facilitate this transport

(Jonsson et al. 2012). A mutation in APP makes the

protein more resistant against degradation and protects

against cognitive decline (Jonsson 2013). APP is
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degraded into several peptides by the three intracel-

lular enzymes: a-, b-, and c-secretases. Soluble

cleavage products might also have cytoprotective

effects on synaptic structures. Several isoforms of the

Ab-peptide degradation product exist (Mawuenyega

et al. 2013). In dominant genetic forms of AD, the

disease is thought to be due to over production of Ab,

or an increase in Ab42 to Ab40 ratio (Kumar-Singh

et al. 2006). The Ab-peptide with 42 amino acids, Ab
(1–42), usually called Ab, is an insoluble variant that

is prevalent in both sporadic and genetic AD, and

constitutes the amyloid core in the precipitated

plaques (Gaggelli et al. 2006).

Active immunization (vaccination) with either Ab
(1–42) or smaller Ab fragments has been evaluated

in transgenic mouse models of AD. Such vaccina-

tion will generally activate the phagocytotic capacity

of microglia. The early human tests using a full-

length Ab with an added adjuvant resulted in serious

adverse events including aseptic meningoencephali-

tis (Gilman et al. 2005). Later vaccines were

composed from a shorter Ab fragment in an attempt

to avoid side effects. A vaccine denoted CAD106

has reached the clinical phases of development

(Wiessner et al. 2011), showing specific antibody

response in a majority of treated patients without

serious adverse reactions, but without significant

therapeutic effect. Other vaccines are in preclinical

stages (Panza et al. 2014).

Passive immunization involves i.v. administration

of antibodies directed specifically against Ab. Studies

in transgenic animals have shown that passive immu-

nization reduces cerebral amyloid load. Bap-

ineuzumab and solanezumab are monoclonal

antibodies against Ab fragments (Tayeb et al. 2013).

Both drugs have reached advanced stages of clinical

development (Salloway et al. 2014), but without

producing significant clinical improvement in humans

(Tayeb et al. 2013). So far, immunotherapy has not

proven successful in arresting the cognitive decline in

AD patients. Since APP and its physiological degra-

dation products exert cytoprotective functions,

immunotherapy is not expected to become a treatment

of choice.

Fig. 1 Biotransformation of selenite and seleno-amino acids to

selenide, selenoproteins and excretable metabolites. The reduc-

tion of selenite is facilitated by GSH, glutaredoxins, glutathione

reductase and/or thioredoxin (Trx) and TrxR. It consumes

reducing equivalents, NADPH. Selenate that is transported into

cells by an anion transport mechanism (Jager et al. 2016), is also

reduced to selenide, but the intracellular reduction of selenate to

selenite is less efficient and not fully understood. Hydrogen

selenide (HSe-) and methyl selenide (MeSe-) react with

oxygen and thiols and complete the redox-cycle. Selenium can

be incorporated specifically into selenoproteins via pathways

from selenide and the synthesis of selenophosphate. Selenome-

thioneine can be converted to MeSe- or to selenocysteine via

the transsulfuration pathway or unspecifically replace its sulfur

analogue in proteins. Among excretory metabolites are seleno-

sugars and at high doses dimethylselenide and trimethyl

selenonium ion (TMSe?) (Alexander 2014)
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The neuroinflammation hypothesis

As discussed above, the insoluble APP derivative Ab
appears to be responsible for plaque formation

(Castello and Soriano 2014), and Ab may induce

oxidative stress and microinflammation. An early

hypothesis was that suppressing of inflammation could

arrest precipitation of Ab and cognitive decline. This

therapeutic exploration began with the observation

that several nonsteroidal anti-inflammatory drugs

(NSAIDs) decreased Ab levels in animal models.

Ibuprofen, sulindac and flurbiprofen were considered

as promising drugs (Du et al. 2014b). The mechanism

of action of NSAIDs was ascribed to their inhibition of

cyclooxygenases leading to reduced inflammation and

thus reduced Ab precipitation. Yet ibuprofen was

ineffective for AD treatment in clinical trials (Pasqua-

letti et al. 2009), and independent research has failed

to show positive results of treatment with NSAIDs in

AD. Interestingly however, some NSAIDs possess

copper-chelating properties (Puranik et al. 2016) and

further research on possible therapeutic effects of

selected NSAIDs in relation to the metal hypothesis of

neuroinflammation is justified. Also the key role of

microglia in neuroinflammatory processes deserves

further attention (Xiang et al. 2006). It has been found

that microglia surrounds Ab plaques (ElAli and Rivest

2016). Furthermore, it has been reported that Se

abrogates stress-induced microglial cell migration

(Dalla Puppa et al. 2007). Further research is neces-

sary to explore if Se attenuates the inflammatory

cascade associated with cognitive decline in AD.

The metal-based hypothesis of neuroinflammation

Copper and iron dysregulation in AD

It has been reported that Fe and Cu accumulate in AD

plaques, and this deposition appears to promote the

progression of the Ab cascade (Altamura and Muck-

enthaler 2009). Inside of neurons Fe and Cu binding to

hyperphosphorylated tau protein precede the forma-

tion of intracellular tangles (Barnham and Bush 2014).

The presence of free Fe(II) or Cu(I) species will induce

deleterious Fenton reactions with ROS generation and

microinflammation (Ward et al. 2015).

Experiments indicate that ceruloplasmin (CP), a Cu

containing enzyme with ferroxidase activity, protects

CNS from Fe(II)-mediated injury (Patel et al. 2002).

Torsdottir et al. (2011) found that the CP ferroxidase

activity was lower in mild cognitive impairment (MCI)

patients than in controls although CP concentrations

were similar in both groups (Torsdottir et al. 2011).

They explained the discrepancy by a deficient CP Cu

incorporation, while the synthesis of apo-CP was

unaffected. Brewer et al. (2010) found that CP activity

but not amount of CP was lower in AD patients than in

controls (Brewer et al. 2010). Here, it is pertinent to

recapitulate clinical and neuropathological findings in

aceruloplasminemia, a rare hereditary disorder caused

by mutation in the CP gene and characterized by absent

serum CP activity with Fe deposition in the brain

leading to neuropsychiatric symptoms (Kono 2013).

Although aceruloplasminemia patients presented five

to ten times higher brain tissue Fe concentrations than

controls (Morita et al. 1995), no brain amyloid or tau

protein precipitation was seen (Gonzalez-Cuyar et al.

2008; Kaneko et al. 2012). Cognitive symptoms in

aceruloplasminemia patients include executive dys-

function suggesting fronto-striatal involvement, rather

than hippocampal impairment (Kono 2013).

Sparks and Schreurs (2003) reported that minor

(0.12 mg/L) Cu excess in drinking water together with

cholesterol in the chow for 10 weeks accelerated the

formation of amyloid deposits around cerebral vessels

and induced learning deficits in a rabbit model (Sparks

and Schreurs 2003). Subsequently, Squitti et al. (2011)

argued that the level of free serum Cu in AD patients

has a predictive value in assessing disease progression

(Squitti et al. 2011). When discussing the Cu hypoth-

esis for AD, some characteristics of Wilson disease

(WD) may be relevant (Brewer et al. 2010). In WD, Cu

levels in the brain are increased by a factor of 5–10

(Horoupian et al. 1988), but the characteristic AD

pathology is not present (Meenakshi-Sundaram et al.

2008). Cognitive testing in WD reveals deficit in the

executive domain rather than in episodic memory

(Iwanski et al. 2015). Together with the findings in

aceruloplasminemia, this absence of AD pathology in

WD brains suggests that an overall elevation of Cu and

Fe concentrations in CNS is not sufficient to initiate

Ab and tau precipitation. Thus, the initiation of Ab and

tau related pathology must be caused by other stimuli,

e.g. by long-term exposure to ROS or AGE, although

trapping of Cu and Fe may enhance the progression.

Surprisingly, the brains of AD patients are not

characterized by increased overall Cu concentrations
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(Exley et al. 2012; Schrag et al. 2011). However, a

hypothesis claims that Cu is removed from various

regions of the brain and trapped by Ab in the

pathological plaques. Consistent with this, Maynard

et al. (2002) reported that overexpression of the

carboxyl-terminal fragment of APP with copper-

binding Ab-fragment in a transgenic mouse model

resulted in a redistribution of Cu in the brain and

progression of amyloid precipitation (Maynard et al.

2002). Total Cu remains unchanged in serum or

cerebrum in AD patients when compared to healthy

subjects (Bucossi et al. 2011), but its intracerebral

distribution appears to be deranged.

Metal chelation as a therapeutic strategy

Dyshomeostasis of Cu and Fe in AD brains with

accumulation of these metals in plaques and tangles

may be accompanied by increased generation of ROS

and progression of tissue damage. An early study

showed that Fe chelation with deferoxamine (125 mg

i.m. twice daily/5 days/week for 24 months) resulted

in a significant reduction in the rate of decline of daily

living skills in 48 AD patients, but not in AD patients

receiving placebo (McLachlan et al. 1993). Since then,

only few chelating agents have been examined in

clinical trials for the treatment of AD, viz. clioquinol

(iodochlorhydroxyquin) and PBT2 (5,7-dichloro-2-

(dimethylamino)-methyl)-8-hydroxyquinoline). Both

agents bind local excesses of Cu and Fe in the brain,

thereby presumably retarding the amyloid plaque

progression (Bush 2002; Lannfelt et al. 2008; Ritchie

et al. 2003). Although none of these studies showed

clear clinical effect of chelation therapy in AD, post

hoc analyses appeared promising (Barnham and Bush

2014; Faux et al. 2010), and indicated that the

hydroxyquinoline derivatives act as chaperone-

mimetic agents (Ayton et al. 2015). However, long-

term use of hydroxyquinolines may give rise to serious

side effects, and the search for less toxic agents is

encouraged (Meade 1975).

Selenium as a protective and chelating agent

Selenium is a trace element crucial to cerebral functions.

During Se depletion brain Se is maintained at the

expense of other tissues whereas severe Se deficiency

causes irreversible brain injury (Burk and Hill 2009).

The circulating Se transporter, selenoprotein P (SEPP),

appears to have a special role in the delivery of Se to the

brain and neurons by entering via the multifunctional

apolipoprotein E receptor 2 (ApoER2), a member of the

lipoprotein-receptor family that is expressed in neurons

in the brain (Burk et al. 2014). In the brain SEPP is

primarily provided by synthesis in the astroglial cells.

Mice without the machinery for SEPP synthesis under

Se deficient conditions develop spasticity, abnormal

movements, and seizures (Schweizer et al. 2004). While

SEPP is the important extracellular selenoprotein,

glutathione peroxidases (GPx1 acting on soluble

cytosolic peroxides and GPx4 acting on membrane

bound phospholipid peroxides) are important intracel-

lular antioxidants in neurons and glia (Mitozo et al.

2011; Zhang et al. 2010). Also thioredoxin reductases

are abundantly expressed in neurons and glia (Godoy

et al. 2011). These selenoproteins contain Se in the form

of amino acid selenocysteine (SeCys) which differs

from cysteine by a single atom (Se vs. S), conferring a

lower pKa (5.2 vs. 8.3) and higher reactivity to its

functional selenol group. GPx contains only one SeCys

residue, whereas SEPP contains 10 SeCys residues

conferring a high chelator affinity to Cu(I) (Aaseth et al.

2016). In vitro SEPP has been shown to inhibit Cu

induced Ab aggregation (Du et al. 2014b).

Evidence from human studies suggests a role for Se

and selenoproteins in protection against cognitive

decline. In the InCHIANTI cohort study of 1012 Italian

participants aged 65 years or older, 59 performance-

based assessment scores of coordination as well as the

MMSE-score were significantly reduced in partici-

pants with low plasma Se (\66.7 lg/L) compared to

those with higher ([82.3 lg/L) concentrations (Shahar

et al. 2010). In the French EVA cohort of 1166 people

aged 60–70 years (Berr et al. 2000) a 58 % increased

odds ratio of cognitive decline was recorded over four

years in participants with a Se concentration in the 1st

quartile (\75.8 lg/L) at baseline, as compared to a

mean baseline plasma Se level of 86.9 lg/L. Further-

more, cognitive decline was significantly associated

with the magnitude of plasma Se decrease over nine

years, which attained a decrease of 0.35 lg/L in one of

the subgroups (Akbaraly et al. 2007). In a cross-

sectional survey of 2000 rural Chinese adults aged

65 years or older, low nail Se concentration was

significantly associated with low cognitive scores in

four of five tests, with a dose-response effect across Se

quintiles (Gao et al. 2007). From Spain Gonzalez-

Domınguez et al. (2014) in a cross sectional study
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found lower Se levels in serum from AD patients

(121 lg/L) in comparison to elderly MCI subjects

(127 lg/L) (Gonzalez-Dominguez et al. 2014). Also in

patients with very mild AD (MMSE score [ 20) Se

levels in plasma were reported to be lower (82.2 vs.

93.2 lg/L) compared to healthy age-matched elderly

subjects in a Dutch cross-sectional study (Olde Rikkert

et al. 2014).

In several European countries the daily Se intake is

too low to obtain optimal function of important

selenoenzymes (Fig. 2). The European data on

increased cognitive decline at low Se status are in

agreement with cross-sectional studies from Brazil

and Turkey (Cardoso et al. 2010; Vural et al. 2010).

On the other hand a study from India did not find low

Se concentrations (174 vs. 188 lg/kg) in patients with

AD compared with healthy controls, but their Se levels

were higher than the European levels (Krishnan and

Rani 2014). Supplementation with compounds con-

taining Se has shown potential for stimulating cogni-

tive improvement (Kesse-Guyot et al. 2011; Scheltens

et al. 2010). Cardoso et al. (2015) reported that the

daily supplement with one Brazilian nut, correspond-

ing to about 280 lg Se/day, over 6 months was

associated with cognitive performance improvement

when given to patients with mild cognitive impairment

(Cardoso et al. 2015).

Animal models and in vitro Se studies are in

accordance with the observations from human sur-

veys. Sodium selenate treatment reduced tau phos-

phorylation, by activation of protein phosphatase 2A

(PP2A), both in cell cultures and tau transgenic animal

models (Corcoran et al. 2010b; van Eersel et al. 2010).

This treatment prevented and reversed memory and

motor deficits; neurofibrillary tangles formation and

neurodegeneration in transgenic animals (Ishrat et al.

2009; van Eersel et al. 2010) at a dose of 1 mg/kg bw

selenate (van Eersel et al. 2010). Treatment of

transgenic AD mice with selenomethionine resulted

in reduced total and phosphorylated tau, lower

inflammatory biomarkers and improvement in cogni-

tion (Song et al. 2014).

A hypothesis for protection by selenoproteins

High extracellular SEPP levels of have been found in

the brain (Bellinger et al. 2008; Steinbrenner and Sies

2013; Takemoto et al. 2010). All regions of mouse

Fig. 2 Average daily selenium intake in various countries.

Data are from Birgisdottir et al. (2013), Ellingsen et al. (2009),

Fairweather-Tait et al. (2011), Vanderlelie and Perkins (2011);

Rayman (2005), Maihara et al. (2004), Stoffaneller and Morse

(2015). Because of import of wheat, Norway is slightly higher in

Se intake than Denmark and Sweden. Optimization of seleno-

protein P requires a daily intake of about 105 lg (Hurst et al.

2010), indicated by a dotted line
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brain appear to be dependent on SEPP for maintenance

of proper functions (Nakayama et al. 2007). Knock-

out of SEPP or ApoER2 in mice resulted in neurolog-

ical dysfunction, particularly when fed a low Se diet,

and it appears that under low Se supply these two

proteins are necessary to maintain Se in the brain and

prevent neuron degeneration (Burk et al. 2014; Caito

et al. 2011; Steinbrenner and Sies 2013; Valentine

et al. 2008). Regional progression of neurodegenera-

tion in the brain of the SEPP knock-out mice has been

studied in order to map neuronal cell death, and

evaluate neuronal structural changes within the hip-

pocampus (Caito et al. 2011). Neurodegeneration was

found to be present in all studied brain regions in the

knock-out animals fed the Se-deficient diet (Caito

et al. 2011). The neurodegeneration was predomi-

nantly axonal, however neuronal bodies in the

somatosensory cortex and lateral striatum appeared

also to be severely deteriorated. Morphological anal-

ysis of the hippocampus revealed decreased dendritic

length, density and functionally. A defect in the long

term potentiation of the hippocampus, essential for

memory imprinting, was also noted. These findings are

in line with the hypothesis that Se deficiency con-

tributes to functional deficits seen in AD (Caito et al.

2011; Peters et al. 2006).

The expression of SEPP in postmortem tissue from

individuals with the hallmark lesions of AD and

individuals without these lesions has been examined

(Bellinger et al. 2008). SEPP immunoreactivity was

co-localized with Ab plaques and neurofibrillary

tangles (Bellinger et al. 2008). These observations

suggest some form of interaction between SEPP and

Ab, leading to complex formation. Like SEPP, Ab is

also a strong metal chelator, binding for instance Cu

(2016; Ma et al. 2006; Myhre et al. 2013; Syme et al.

2004), and Fe (Myhre et al. 2013). Ternary complexes

can be formed between metal cations, Ab and SEPP

and such complexes are presumably less toxic than

Ab-metal complexes alone. Since Cu is one of the

metals abundant in Ab (Myhre et al. 2013) and Cu(I)

binds very strongly to Se atoms, a ternary complex

between Cu(I), Ab and SEPP can explain the co-

localization of SEPP with Ab in AD (Aaseth et al.

2016). SEPP also contains two His-rich regions that

contribute to its affinity for Cu and Fe.

Thus SEPP chelation blocks metal-mediated Ab-

aggregation and ROS generation [110]. The trapping

of SEPP by Ab-plaques may reduce its availability for

the synthesis of intracellular selenoproteins including

thioredoxin reductase (TrxR) and GPx. Together with

glutathione (GSH) these intra-neuronal selenoen-

zymes operate as intracellular antioxidants, thereby

inhibiting tau aggregation (Du et al. 2014a). Selenium

treatment has been reported to reduce tau phosphory-

lation in transgenic rats (Yim et al. 2009). In healthy

brains the microtubule-associated tau protein regu-

lates microtubule dynamics (Yuraszeck et al. 2010).

The exact role of GPx and its cofactor GSH for

protection of microtubules has yet not been fully

elucidated. It should be emphasized here that micro-

tubules are essential parts of the cytoskeleton, thereby

maintaining the three-dimensional structure of the

neurons. Microtubules play crucial roles in a variety of

cellular events, including axonal and dendritic trans-

port and neuronal growth and differentiation (Lasek

1981). Each tubulin monomer has at least 13 free SH

groups, and it presumably needs protection against

oxidative derangement by the GPx-GSH-system

(Fig. 3). The intracellular protector GSH (reduced

form) can be optimized by N-acetylcysteine supple-

mentation. A study on AD patients supplemented with

N-acetylcysteine over a six month period reported

improved performance on memory tests (Adair et al.

2001).

Apparently, optimal function of GPx and SEPP is

necessary for protection against the cognitive decline

characterizing AD. Optimal function requires higher

intakes of Se than officially recommended in Nordic

and other European countries. Selenium intake in

Fig. 3 Intracellular detoxification by GPx and GSH. Toxic

peroxides (R–OOH) are reduced to non-toxic R–OH by the

action of the selenoenzymes glutathione peroxidases (A) in the

presence of adequate amounts of the co-factor GSH found

intracellularly, in contrast to the negligible GSH-levels found

extracellularly. GSH is oxidized to its disulphide GSSG in this

reaction. The reduced form GSH is regenerated by intracellular

glutathione reductase (B) in the presence of NADPH2. This

same co-factor, GSH, can also detoxify the compounds glyoxal

and methylglyoxal which are neurotoxic byproducts of glucose

metabolism, particularly in cases of insulin resistance. The latter

reaction requires the presence of the glyoxalase enzyme

system (Aaseth et al. 2016)

834 Biometals (2016) 29:827–839

123



North-America and some other regions of the world

are considerably higher than in Europe (Fig. 2), which

might contribute to inconsistencies in the clinical

evidence as to the role of Se supplementation (Du et al.

2016; Loef et al. 2011). Results from a Swedish study

published in 2015 indicated improved vitality and

overall score of health related quality-of-life as a result

of intervention with Se and coenzyme Q10 to an

elderly population with mean baseline plasma Se of

67 lg/L (Johansson et al. 2015). The same interven-

tion study also demonstrated a decreased inflamma-

tory activity as registered by the biomarkers sP-

selectin and hs-CRP (Alehagen et al. 2015). The Se

supplement dose in this latter study was 200 lg/day,

given as selenized yeast. Another intervention that is

in progress is the PREADVISE study carried out in the

same regions of America as the SELECT study. Thus,

the population under investigation has a baseline Se

intake that is substantially higher than European

intakes (Fig. 3). Participants included in PREADVISE

had reported memory complaints at inclusion. The

design was double-blind, placebo controlled and

randomized, transformed into an observational cohort

after discontinuation of supplementation in the

SELECT parent trial. PREADVISE participants were

assessed at 130 local clinical study sites in the United

States, Canada, and Puerto Rico during the controlled

trial phase, with a followed up by telephone from a

centralized location during the observational phase

(Kryscio et al. 2013). Unfortunately, results from this

American study cannot be generalized to European

populations with lower Se levels.

Concluding remarks

Accumulated evidence indicates that AD neuropathol-

ogy involves multiple biological pathways. The amy-

loid cascade hypothesis has dominated the field for

over 20 years, resulting in a large number of studies

with focus on approaches to inhibit formation of and

remove Ab from senile plaques. Yet these trials have

failed to demonstrate significant cognitive improve-

ments in patients. Thus novel pharmacotherapies

should not be limited to the postulate of the amyloid

cascade hypothesis alone, since events occurring

intracellularly may prove to be more important for

an understanding of the pathology of AD.

Selenate can act as potent inhibitor of tau hyper-

phosphorylation, presumably by optimizing the func-

tions of antioxidative selenoenzymes that protect the

neuronal cytoskeleton. Several nutritional and life-

style factors may be involved in AD progression and

prevention and the preventive roles of intracellular

selenoenzymes against derangement of microtubules

and neuronal integrity in the hippocampal area are

emphasized in this review. A prophylactic role of

optimized Se intake is suggested. Primary prevention

should aim at an adequate nutritional intake of Se

securing optimal expression of selenoproteins.

A secondary prevention trial using Se supplemen-

tation at higher doses, e.g. 200 lg/day, to overcome

extracellular Se trapping by Ab in the brain, is of

particular importance. Selenized yeast has been used

in several clinical trials, although selenate, the primary

species used in animal models, is also well tolerated

and passes the blood brain barrier (Corcoran et al.

2010a). The intervention should be directed towards

elderly with diagnosed MCI. in European regions with

low baseline Se intake (Fig. 2), i.e. in Sweden and

Norway.
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