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Abstract 

Establishment and survival of plants in low-alpine ecosystems depend strongly on local environmental 

conditions, as for example nutrient availability and especially temperature. Some of these conditions 

are rather unpredictable in high-elevation environments, due to short and irregular growing seasons. 

To restore such harsh ecosystems is therefore most difficult. During the last two decades, the 

transplanting of whole vegetation turfs has been more frequently used in restoration of low-alpine 

ecosystems to facilitate vegetation recovery. This is due to ecological and functional advantages 

compared to seeding or fertilizing, which traditionally have been used to facilitate recovery in 

restoration. Few studies, however, did focus on the factors which are actually relevant for recovery 

around the turfs. The aim of this study is to find out how turf attributes contribute to vegetation recovery 

and which environmental factors at the turf receptor site are influencing the vegetation recovery in a 

low-alpine environment in the Dovrefjell mountain range, Norway. The study is part of Norway’s 

largest nature restoration project so far, Hjerkinn PRO, with the restoration of a former military training 

area. Several turf attributes and environmental factors were tested, to ascertain the reasons for 

successful recovery around the turfs. In a multivariate approach LMM, GLMM and ANOVA have 

been used to analyze the data. Time is the most important factor for vegetation recovery, closely 

followed by conditions of the receptor site. Organic matter in the soil and a small grain size are very 

important to facilitate recovery around the turfs. Species richness of study plots at the turf receptor 

sites and of the turfs (as donor sites) were nearly equal after 14 years. Differences in species 

composition between donor and receptor site, as observed in several other experiments, were found 

only to a very low degree here. Neither turfs size nor distance to the next closest turf or species richness 

and vegetation cover of the turfs, seem to be important factors for vegetation recovery at the turf 

receptor site. The results of this study indicate that it is very important to prepare the receptor site 

thorough before turf transplantation, to achieve successful vegetation recovery around the turfs. As 

time is the most important factor, this should be communicated to project owners and to the public to 

adjust for different expectations on recovery rates. 
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Sammendrag  

Etablering og overlevelse av arter og vegetasjon i lavalpine områder er sterkt påvirket av lokale 

miljøforhold, som for eksempel tilgjengelige næringsstoff og temperatur. Noe av disse forholdene er 

ganske uforutsigelig i slike miljøer, på grunn av korte og variable vekstsesonger. Dersom slike 

økosystemer eller områder blir forstyrret eller ødelagt vil det være vanskelig å gjenopprette dem. I 

løpet av de siste to tiår har transplantasjoner av hele vegetasjons-tuer vært brukt i restaurering av 

vegetasjon etter forstyrrelse i lavalpine økosystemer. Dette er en metode som har økologiske og 

funksjonelle fordeler sammenlignet med såing eller gjødsling, som tradisjonelt har vært brukt til å 

gjenopprette vegetasjon. Men få studier fokuserer på hvilke faktorene er avgjørende for å få vellykket 

gjenvekst rundt tuer. Formålet med denne studien er å finne ut hvordan egenskaper ved selve tuene 

bidrar til gjenvekst og hvilke miljøfaktorer på det stedet tuene plasseres som påvirker gjenvekst i et 

lavalpin område på Dovrefjell, Norge. Flere egenskaper av tuer og miljøfaktorer ble testet, for å finne 

ut årsakene til vellykket gjenvekst rundt tuer. LMM, GLMM og ANOVA ble bruket for å analysere 

dataene. Tid er den viktigste faktoren for gjenvekst, tett fulgt av tilstand av forholdene der tuene 

plasseres. Høyere innhold av organisk materiale i jord og liten kornstørrelse er svært viktige faktorer 

for å bedre gjenvekst rundt tuer. Etter 14 år er artsmangfoldet i tuene og i de analyserte rutene rundt 

tuene omtrent likt. Forskjeller i artssammensetning mellom tuene og rutene rundt tuene, som er 

observert i flere andre eksperimenter, ble i svært liten grad observert i denne studien. Hverken størrelse 

av tuer, eller avstand til nærmeste andre tuer eller artsmangfold og dekning av tuene er tilsynelatende 

viktige faktorer for å bedre gjenvekst rundt tuer. Resultatene av denne studie tyder på at det er svært 

viktig å klargjøre det stedet der tuene skal plasseres grundig før transplanteringen, for å oppnå vellykket 

gjenvekst rundt tuene. Ettersom tiden er den viktigste faktoren, bør dette gjøres klart for prosjekteiere 

og offentlige instanser slik at disse får realistiske forventninger om hvor sakte gjenveksten vil skje. 
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1. Introduction 

Degradation and destruction of ecosystems by humans are increasing with a growing world population. 

To maintain and restore biodiversity in ecosystems, effective ecological restoration becomes more 

important than ever (Hobbs & Norton 1996). Ecological restoration aims to recover a degraded 

ecosystem to a degree of a natural stage. This is with respect to its health, intactness and long-term 

sustainability by preparing the ground for improved natural recovery and/or establishing or re-

introducing flora and fauna (Hobbs & Norton 1996; Young, Petersen & Clary 2005; Falk, Palmer & 

Zedler 2006; Perring et al. 2015). 

The establishment and survival of plants is highly depending on resources (radiant energy, CO2, O2, 

mineral nutrients) available at the potential growing site and direct physical or chemical effects as 

extreme temperatures and disturbance (e.g. toxins, water stress, removal of vegetation cover and soil) 

(Fitter & Hay 2002). Additional important factors are species traits as the ability to deal with limitations 

and variability in these abiotic factors (Hagen & Skrindo 2010; Kempel et al. 2013). As a first step for 

establishment, the seed germination is a vital process for some plants to establish. To germinate, seeds 

need basic resources as water, oxygen, light and suitable temperatures, as well as safe sites, which are 

also decisive to a successful germination process. In these safe sites, the seeds can be trapped and get 

shelter from adverse environmental conditions until, with the factors already mentioned, they are 

eventually able to germinate (Fitter & Hay 2002; Urbanska & Chambers 2002; Finch-Savage & 

Leubner-Metzger 2006).  

Alpine and low-alpine ecosystems have shorter growing seasons, lower temperatures and often less 

water and nutrient availability compared with lower-altitude ecosystems, which makes it difficult for 

many plants to establishment and survive (Urbanska & Chambers 2002; Bay & Ebersole 2006; 

Krautzer, Uhlig & Wittmann 2012; Hagen & Evju 2013). Additional challenges in alpine and low 

alpine ecosystems are frequently strong winds, extensive snow cover during winters and a with the 

altitude increasing light intensity (Urbanska & Chambers 2002; Krautzer, Uhlig & Wittmann 2012; 

Hagen & Evju 2013). Furthermore, the diaspore production and the germination process of plants in 

high-altitude ecosystems is strongly depending on local environmental conditions as e.g. temperature, 

which are rather unpredictable due to the short and irregular growing seasons (Fitter & Hay 2002; 

Urbanska & Chambers 2002; Cooper et al. 2004; Bay & Ebersole 2006). Therefore, most plants in 

high-altitude ecosystems use both seeds and clonal growth as dispersal technics, to increase the chance 

of distribution and survival (Urbanska & Chambers 2002).  

The restoration of harsh alpine ecosystems is most difficult, due to the above mentioned factors and 

the limited number of species adapted to the given conditions (Urbanska & Chambers 2002; Bay & 

Ebersole 2006; Krautzer, Uhlig & Wittmann 2012). Typical measures for restoration of vegetation in 
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general are 1) restoring soil conditions, 2) adding nutrients, 3) seeding and 4) transplanting (Conlin & 

Ebersole 2001; Hagen & Evju 2013), and all of them have over time been tried out in several projects 

in alpine ecosystems with varying success.  

Particularly, the transplanting of individuals of plant species or whole vegetation turfs has been applied 

more frequently during the last two decades, to protect communities, re-introduce species and for 

restoration in general (Bruelheide & Flintrop 2000; Kiehl et al. 2010; Aradottir 2012). Vegetation turfs, 

or turf transplants, are pieces of the upper layer of soil, extracted with all plant material growing in it, 

including parts of the root-system. Turf transplantation is believed to facilitate vegetation recovery. 

The size and the shape of turfs vary greatly, depending on the purpose of application (Good et al. 1999; 

Bruelheide & Flintrop 2000; Conlin & Ebersole 2001; Krautzer, Uhlig & Wittmann 2012; Hagen & 

Evju 2013). Vegetation turfs in general can act as source for both diaspores and clonal growth organs, 

as well as seed traps and safe sites for plant dispersal and establishment (Conlin & Ebersole 2001; 

Urbanska & Chambers 2002; Klimeš et al. 2010; Krautzer, Uhlig & Wittmann 2012; Hagen & Evju 

2013). The soil-seedbank may also work as a long-term seed source (Urbanska & Chambers 2002; 

Krautzer, Uhlig & Wittmann 2012), though according to  Klimeš et al. (2010) at least the short-term 

effect is negligible. Mycorrhiza and soil biota on the other hand, also transferred within the soil of 

turfs, may support establishment of target plant species, by maintaining the soil conditions the plants 

are accustomed to (Conlin & Ebersole 2001; Klimeš et al. 2010). 

There are several ecological advantages of using turfs for restoration instead of seeding with either 

commercial seed mixtures or seeds gained from local plants. Seeding might be a cheaper and easier 

applied method for revegetation in general (Kiehl et al. 2010), but has some ecological and functional 

disadvantages. Seeding can function very well to establish a vegetation cover in short time, also in 

alpine ecosystems, though the success in the latter can be limited due to strong winds and erosion in 

exposed landscapes (Bay & Ebersole 2006; Krautzer, Uhlig & Wittmann 2012). Furthermore, species 

used for seeding are often grasses, in some extant non-native, which can be very successful on freshly 

prepared soil and establish very fast. However, this can lead to a lower species diversity and less native 

species over time, as less species might be able to colonize the community due to an extensive grass 

cover (Aradottir & Oskarsdottir 2013; Hagen & Evju 2013; Hagen et al. 2014). For smaller-scale 

restoration, turfs can be considered as a highly relevant restoration method, which promotes 

establishment of a diverse native plant community (Hagen & Evju 2013).  

Transplanting turfs with native species provides greater advantages on ecological level compared to 

transplants with non-native species (Conlin & Ebersole 2001; Urbanska & Chambers 2002; Bochet, 

Tormo & García‐Fayos 2010; Klimeš et al. 2010; Krautzer, Uhlig & Wittmann 2012; Aradottir & 

Oskarsdottir 2013). First, native species are adapted to grow in the given conditions, so they can 

establish and preserve local plant communities and thus biodiversity of the area (Conlin & Ebersole 
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2001; Bochet, Tormo & García‐Fayos 2010; Kiehl et al. 2010; Aradottir 2012; Krautzer, Uhlig & 

Wittmann 2012; Aradottir & Oskarsdottir 2013; Hagen & Evju 2013). Furthermore, a decrease in local 

genetic diversity, which might occur when using non-native plants, is prevented through the use of 

native species, carrying native genotypes (Klimeš et al. 2010). Moreover, native animals do also 

benefit of a suitable habitat created by native vegetation, which in turn can be an improvement for the 

establishment of a well-working ecosystem (Bochet, Tormo & García‐Fayos 2010).  

So far, the transplantation of turfs in restoration has been to a greater or lesser extent successful 

(Bullock 1998; Bruelheide & Flintrop 2000; Bay & Ebersole 2006; Kiehl et al. 2010; Aradottir 2012; 

Krautzer, Uhlig & Wittmann 2012; Aradottir & Oskarsdottir 2013; Hagen & Evju 2013). The turf size 

might be of importance and, for a successful transplantation, turf size is depending on the vegetation 

of the donor site, the growth form, size and abundance of target species as well as on the conditions of 

the receptor site (Bullock 1998; Aradottir 2012; Krautzer, Uhlig & Wittmann 2012; Aradottir & 

Oskarsdottir 2013). Success can be measured as for example, sufficient protection against erosion 

(Krautzer, Uhlig & Wittmann 2012), difference in total cover and species richness between donor and 

receptor site, and difference in occurrence of rare species between donor and receptor site (Conlin & 

Ebersole 2001; Bay & Ebersole 2006; Klimeš et al. 2010; Aradottir 2012; Aradottir & Oskarsdottir 

2013; Mudrák et al. 2017).  

However, few studies did focus on the factors which are actually responsible for the success of the 

recovery around the turf transplants. Therefore it is highly important that the methods of turf 

transplantation for restoration and the reasons of their success or failure are studied more detailed 

(Aradottir 2012; Krautzer, Uhlig & Wittmann 2012; Hagen & Evju 2013).  

This master project is part of Norway’s largest nature restoration project so far, Hjerkinn PRO, with 

the restoration of a former military training area in Hjerkinn, Dovrefjell, in alpine-central Norway, led 

by the Norwegian Defence Estates Agency (NDEA) in cooperation with Norwegian Institute for Nature 

Research (NINA) (Norwegian Defence Estates Agency 2017). The goal of the project is to “Restore 

the ecosystem to original state and for future nature conservation (National park)” by using only native 

plant material of adjacent, undisturbed sites and hence promoting natural recovery of the native 

vegetation (Fig. 2) (Norwegian Defence Estates Agency 2017). Turf transplants have been used on 

former roads in the military area, to facilitate recovery of the vegetation. (Hagen & Evju 2013; Hagen 

& Evju 2014).  

The aim of this study is to find out how turf attributes contribute to vegetation recovery and which 

environmental factors at the turf receptor site are influencing the vegetation recovery. 

In order to achieve this, I will test if 1) vegetation cover of the receptor site is influenced by turf size 

and total vegetation cover of the turfs, by environmental conditions at the receptor site or a combination 



 
9 

of those, and 2) species richness of the receptor site is influenced by turf size and species richness of 

the turfs, and by environmental conditions at the receptor site. Environmental conditions at the receptor 

site were represented by the following variables: distance to the next turf, distance to intact vegetation, 

organic matter in the soil, and soil grain size. 
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2. Methods 

2.1 Study area 

The study area is located north-west of Hjerkinn in the Dovrefjell mountain range in central Norway 

(62°14’59” N, 9°27’48” E; 1070 m a.s.l.) and is situated within a former military training area 

(Hjerkinn firing range) and surrounded by the Dovrefjell-Sunndalsfjella National Park (Fig. 1).  

The surrounding national park has a high level of biodiversity and is the last high mountain area in 

Europe where for example populations of wild reindeer, musk ox, wolverine, mountain fox and golden 

eagle can be found living in the same area. It also sustains a highly divers mountain flora (Norwegian 

Environment Agency 2013).  

 

Figure 1. (A) Position of the study area (star) in central Norway. (B) The study sites (stars) in the Hjerkinn 

firing range in the Dovrefjell mountain range, surrounded by national parks (green color). P1 = Pilot I, 

P2 = Pilot II, T = Tverfjellvegen, H1 = Haukberget I, H2 = Haukberget II. Map material © Google 2017. 

Hjerkinn firing range is 165 km2 and was actively used as military training area from 1923 – 2005. The 

decision to restore the area to its natural state was made by the Norwegian Parliament in 1999. All 

infrastructure should be removed and the area be prepared for nature restoration (Hagen & Evju 2013; 

Norwegian Defence Estates Agency 2017). According to a plan for restoration, the overall goal of the 

project is to “Restore the ecosystem to original state and for future nature conservation (National 

park)”. This broad formulation was narrowed down over specific targets and ecological attributes to 

actions (Fig. 2). In 2002 a pilot study was started to test different vegetation restoration treatments 

(Hagen & Evju 2013). The full large scale restoration project started in 2009 and is planned to be 

finished in 2020 with removing over 100 buildings, butts, gravel pits and 90 km of roads (Norwegian 

Defence Estates Agency 2017).  

A B 
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The mean annual temperature (1961-1999) at the closest weather station (Fokstugu, 973 m a.s.l.) is 

0.8° C with a mean annual precipitation of 450 mm (Norwegian Meteorological Institute 2017; 

Norwegian Meteorological Institute & Norwegian Broadcasting Corporation 2017). The bedrock is 

primarily metamorphic rock covered mostly with till (Norwegian Geological Institute 2017). The 

vegetation at the study sites is of dry and medium dry alpine heathland, partly with tall herbaceous 

vegetation and mire (Norwegian Institute of Bioeconomy Research (NIBIO) 2017). 

 

Figure 2. The link between the overall goal, specific targets, ecological attributes, and the actions in the 

plan for restoration. The overall goal for HjerkinnPRO is narrowed down into specific targets, ecological 

attributes and action(s). Ecological attributes are measureable surrogates for each of the specific 

targets. Figure based on Hagen and Evju (2013). 

 

2.2 Study design 

2.2.1 Study sites 

The study was conducted at five study sites within the study area, with different years of restoration, 

and different numbers of roads (Table 1). 

Haukberget I: This site was restored in 2013. The turfs for this road were extracted both from the 

edge of the roadside before road removal and from adjacent mire vegetation. The extraction was done 

with a remotely controlled digger due to updated security regulations set from the Defense Estate 

Agency. From this road system, I included four roads and a total of 40 turfs (Table 1). The site is 

dominated by heath-mire vegetation. 
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Haukberget II: This site was restored in 2010. The turfs for this road were extracted both from the 

edge of the roadside before road removal and from adjacent mire vegetation. The extraction was done 

with a remotely controlled digger due to updated security regulations set from the Defense Estate 

Agency. From this road system, I included four roads and a total of 40 turfs (Table 1). The site is 

dominated by heath-birch vegetation. 

Tverfjellvegen: This site was restored in 2009. The turfs were extracted from the edge of the roadside 

before road removal. The extraction was done with a remotely controlled digger due to updated security 

regulations set from the Defense Estate Agency. From this road system, I included two road sections 

and a total of 20 turfs (Table 1). The site is dominated by willow vegetation. 

Pilot I: This site was restored in 2002. The turfs were extracted from the ridge at the roadside by 

regular diggers, before the road was removed. From this road system, I included one road sections and 

a total of five turfs (Table 1). Because large parts of this road had other treatment as well, only a short 

section was available for the study design of this experiment. The site is dominated by heath-willow 

vegetation. 

Pilot II: This site was restored in 2002. The turfs were extracted from the ridge at the roadside by 

regular diggers, before the road was removed. From this road system, I included one road sections and 

a total of four turfs (Table 1). Because large parts of this road had other treatment as well, only a short 

section was available for the study design of this experiment. The site is dominated by heath-willow 

vegetation. 

Pilot I and Pilot II were confounded in the analysis, as the number of turfs was low in both sites and 

they have been restored in the same year. 

Table 1. Study sites with the average length in meter of each of the roads in the study site, year of 

restoration, the number of roads per study site and the number of turfs per study site. 

Study site 
Average length of the 

roads (m) 
Year of restoration Number of roads Number of turfs 

Haukberget I ~ 138 2013 4 40 

Haukberget II ~ 129 2010 4 40 

Tverfjellveg ~ 157 2009 2 20 

Pilots I ~ 50 2002 1 5 

Pilot II ~ 40 2002 1 4 

Total  / 12 109 

 

2.2.2 Study design 

During the restoration measure in 2009-2014 the predefined turf size for transplanting was 1 m2. This 

had been difficult to achieve in field, so the turf sizes upon completion of the transplantation ranged 
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between 0.35 and 5.76 m2. The planting distance of the turf transplants varied between and within roads 

and sites due to logistic and available turfs. 

All restored roads for this experiment in 2016 were selected from the sections restored during 2009 – 

2012, plus the roads from the pilot-study restored in 2002.  

On each road, turfs were systematically selected. Starting at the beginning of the road, 10 m were 

measured and a line was drawn across the road (Fig. 3). From there the closest turf was selected and 

checked for meeting the following requirements 1) area surrounding the turf should not be too wet (no 

puddles), 2) minimum distance of 110 cm between turfs and between turf and intact vegetation 

(requirement was neglected for some roads), 3) clear definable outline of the single turf. If not all the 

requirements were met, I continued to the next closest turf and so on.  

A total of 109 turfs have been selected and all turf positions were marked with Global Positioning 

System (Garmin GPSmap 62s).  

 

Figure 3. Study design: (A) Road with turfs (squares) and intact vegetation on the sides. (B) Turf (large 

square) with compass in the center (circle) and the three plots around (small squares). 

 

A B 
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2.3 Data collection 

2.3.1 General for turfs and plots 

The fieldwork was carried out from the 27.06.16 – 17.07.16. The nomenclature of all vascular plants 

is according to the “Gyldendals store nordiske Flora” (Mossberg & Stenberg 2014), which was also 

used for plant identification. 

All vascular plants in each of the selected turfs and plots were identified to species level, if possible. 

If identification was not possible in the field, a sample was taken for later identification. Moss and 

lichens were only identified to species group. 

2.3.2 Turfs 

For every vascular plant species and for moss and lichens the cover was recorded, using a slightly 

altered Braun-Blanquet scale (Table 2) for better use in data processing software. The total vegetation 

cover and the cover of dead vegetation of the turf were estimated. The distance to intact vegetation 

(roadside) left and right of the turf, as well as length and breadth of the turf were measured. To have 

an overview about the surrounding vegetation types, a reference vegetation stating the dominant 

vegetation type of the intact vegetation to each site of the turfs (Table 3) was roughly judged by eye. 

Table 2. Braun-Blanquet cover scale (left), and slightly modified Braun-Blanquet cover scale (right). 

Scale Cover Scale Cover 

0.1 Less than 1 % 1 Less than 1 % 

1 1-5 % 2 1-5 % 

2 6-25 % 3 6-25 % 

3 26-50 % 4 26-50 % 

4 51-75 % 5 51-75 % 

5 76-100 % 6 76-100 % 

 

 

Table 3. Vegetation types of the reference vegetation around the turfs. Willow, birch and juniper were 

only present in the growth form of shrubs and bushes. 

Vegetation type 

mire 

mire-willow 

heath 

heath-mire 

heath-birch 

heath-willow 

birch 

birch-juniper 

willow 

willow-birch 
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2.3.3 Plots 

To record the vegetation around the turf I did a vegetation analysis in three plots (each 50 x 50 cm) 

surrounding each turf (Fig. 3) and did a subplot frequency analysis using 16 subplots within each plot 

(Fig. 4).  

 

Figure 4. Turf with three plastic sticks at the angular degrees (0°, 120°, 240°) and the vegetation survey 

frame (bottom right corner) with the 16 subplots. 

The positions of the three plots were determined by using the angular degrees 0°, 120° and 240° from 

the center of the turf using a compass. At each of these angular degrees, I measured 30 cm away from 

the edge of the turf and marked that point (Fig. 3). At these points, the frame was placed always with 

the same alignment (right upper corner to the stick, always left of the stick) (Fig. 4). 

Abundance of species was recorded as presence/absence of each species in each of the 16 subplots in 

the 50 x 50 cm frame beginning in the upper left corner continuing in reading direction. Only plants 

rooted in the subplots were recorded. Furthermore, total vegetation cover within the frame (including 

overhanging vegetation), grain size and the occurrence of organic matter in the soil were recorded. 

Animal presence was recorded in terms of tracks, feces and grazing. Finally, I measured the distance 
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to the next turf and to the closest intact vegetation (Table 4). The grain size was recorded according to 

the “Natur i Norge (NiN)” identification system (Halvorsen et al. 2015) (Table 5).  

Table 4. Variables recorded in each plot with the scale and unit they were recorded. 

Variable Scale  Unit 

total vegetation cover ordinal % 

grain size ordinal  

organic matter binary 0/1 

animal presence/absence binary 0/1 

distance to closest other turf ordinal cm 

distance to closest intact vegetation ordinal cm 

 

 

Table 5. Grainsize scale after the “Natur i Norge” identification system (Halvorsen et al. 2015). 

Scale Explanation 

c cobbles 

d coarse pebbles 

e fine and medium pebbles 

f coarse sand 

g fine and medium sand 

h silt-dominated 

 

2.4 Data analysis 

2.4.1 Species richness 

The species richness for the turfs and for the plots were calculated using the package “vegan” (Oksanen 

et al. 2017) in the software R (R Core Team 2016). 

2.4.2 Statistical analysis vegetation recovery 

The statistical analysis was conducted in two parts, as vegetation recovery was measured as 1) “total 

vegetation cover of plots” and 2) “species richness of plots”. Linear mixed effects models (LMM) have 

been used to analyze the data of part 1) with “total vegetation cover” as response. Generalized linear 

mixed effects models (GLMM) with a Poisson error distribution have been used to analyze the data of 

part 2) with “species richness” as response.  

To select the random component structure for the models (both analysis parts), I started with a model 

that in the fixed component contained all explanatory variables, called the beyond optimal model. With 

this model I tested different random component structures. These nested models were run with 

restricted maximum likelihood estimation (REML) and compared by using the Akaike information 

criterion (AIC) (Zuur et al. 2009).  

For the random structure of both analysis parts, turf nested in road nested in site, turf nested in road 

and turf alone were tested. Additionally a model with site in the fixed structure and turf nested in road 
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was tested (Table C + D appendix). Study site and years since restoration are confounded in the dataset. 

The best fitting model for the random structure for both analysis parts was turf nested in road with site 

in the fixed structure (Fig. 5). 

       

Figure 5. Best fitting random structure for both analysis parts. 

As explanatory variables for the fixed structure for part 1) I selected distance to next turf, distance to 

intact vegetation, organic matter in the soil, soil grain size, and cover of turf, turf size and years since 

restoration. The same explanatory variables were selected for part 2), only cover of turf was replaced 

by species richness of turf.  

To select the fixed component structure for the models, I used a forward selection and then compared 

competing models with analysis of variance (ANOVA) (Zuur et al. 2009). For part 1) I first tested each 

of the explanatory variables alone and selected the ones with the highest t-value (Table E appendix). 

Further, I built another model with these explanatory variables. Finally, I compared these candidate 

models with ANOVA (Table F appendix). The models were run with maximum likelihood estimation 

(ML) and the best fitting model is presented with REML. Model validation for linear mixed effect 

models was performed and the assumptions for normal distribution of residuals and homoscedasticity 

were met. For part 2) I first tested each of the explanatory variables and then selected the ones with the 

lowest p-value (Table G appendix). Further, I built other models with these explanatory variables and 

compared these candidate models using ANOVA (Table H appendix). The models were run with 

maximum likelihood estimation (ML).  Model validation for generalized linear mixed effect models 

was performed and the assumptions were met, there was no over-dispersion. 

Only the most parsimonious models are shown. All analyses were conducted in R (R Core Team 2016), 

using the package “lme4” (Bates et al. 2015). 

 

year + (1|road/turf)
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3. Results 

3.1 Species and cover 

In total 120 vascular plant species were found, of these 104 were identified to species level, 13 to genus 

and one to family. Seedlings were identified as dicotyledonous and monocotyledonous plants. Moss 

and lichens were identified to species groups, unidentifiable very small grasses as well (Table A 

appendix).  

Nineteen species were solely found in the plots, whereas 25 species were solely found in the turfs 

(Table B appendix). Furthermore, one red-list species (Comastoma tenellum) was recorded in the turfs, 

but none in the plots. One species (Deschampsia cespitosa), non-native for the vegetation type of alpine 

heath vegetation was recorded, both in turfs and plots. Deschampsia cespitosa was found in 187 plots 

and 70 turfs and is thereby one of the most abundant species (Table A appendix). 

Both mean species richness and mean total vegetation cover of the plots were increasing over the 

different years since restoration (Table 6). A similar trend could be shown for the turfs, though species 

richness and cover decreased slightly after six respectively seven years and increased again afterwards 

(Table 6). 

Table 6. Recorded species richness and total vegetation cover of plots and turfs over the different years 

of restoration, mean with standard deviation. 

Years since 

restoration 

Mean species 

richness plots 

Mean species 

richness turfs 

Mean total vegetation 

cover plots 

Mean total vegetation 

cover turfs 

3 5.53±0.21 15.98±0.49 4.18±0.62 85.71±1.13 

6 5.37±0.21 11.86±0.32 21.18±1.87 94.49±0.86 

7 9.14±0.83 14.90±0.54 38.54±2.99 91.61±1.10 

14 11.89±0.50 12.22±0.84 47.41±4.36 97.78±0.68 

 

3.2 Vegetation recovery 

3.2.1 Total vegetation cover 

The model fitting the “total vegetation cover” data best included organic matter in the soil, soil grain 

size and years since restoration as explanatory variables (Table 7, fig. 6, Table E appendix). Total 

vegetation cover was higher when there was organic matter in the soil and the soil grain size was small 

(Fig. 7). Furthermore, the more years since restoration, the higher was the total vegetation cover (Fig. 

7). 

Turf size, total vegetation cover of the turfs, distance to the next turf and distance to intact vegetation 

had no significant effect on the total vegetation cover (Table E appendix, fig. A appendix). 
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Table 7. Coefficients of the best fitting model for analysis part 1) “Total vegetation cover”, parameter 

estimates for random effects are not shown. 

Model:    
lmer(total.cover ~ org.soil + grain size + year +  (1|road.x/turf.x), data = fulldata, REML = TRUE) 

                     Estimate Std. Error t value 

(Intercept) 1.078 3.482 0.310 

Organic material present 12.340 1.841 6.704 

Fine and medium coarse pebbles -6.768 2.878 -2.351 

Coarse pebbles -1.579 2.769 -0.570 

Coarse sand -1.999 2.373 -0.843 

Silt-dominated 20.951 4.416 4.745 

Cobbles 0.320 4.831 0.066 

Years since restoration 6 14.633 3.986 3.671 

Years since restoration 14 40.858 5.442 7.508 

Years since restoration 7 37.412 4.872 7.679 

 

3.2.2 Species richness 

The model fitting the “species richness” data best included organic matter in the soil and years since 

restoration as explanatory variables (Table 8, fig. 6, Table G appendix). Species richness was higher, 

when there was organic matter in the soil (Fig. 8). Furthermore, the more years since restoration had 

passed, the higher was the species richness (Fig. 8). The alternative models 10 and 12 showed that 

species richness was significantly lower with large soil grain size and that there is a tendency that a 

shorter distance to intact vegetation increases species richness (Table G appendix, fig. B appendix).  

Turf size, species richness of the turf and distance to the next turf had no significant effect on the 

species richness (Table G appendix, fig. A appendix). 

Table 8. Coefficients of the best fitting model for analysis part 2) “Species richness”, parameter 

estimates for random effects are not shown. 

Model:     

glmer(SR.ruter ~ org.soil + year + (1|road.x/turf.x), data = fulldata, family = poisson()) 
 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.653 0.065 25.515 < 0.001 

Organic material present 0.138 0.049 2.796 0.005 

Years since restoration 6 -0.063 0.089 -0.710 0.478 

Years since restoration 14 0.741 0.114 6.515 < 0.001 

Years since restoration 7 0.504 0.102 4.928 < 0.001 
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Figure 6. (A) Estimates of fixed effects of the best fitting model for analysis part 1) “Total vegetation 

cover” and (B) estimates of fixed effects of the best fitting model for analysis part 2) “Species richness”. 

On the y-axis the model parameters are shown, on the x-axis the estimates for the parameters. See 

table 5 for the grain size scale. 

 

 

 

Figure 7. Parameters effecting total vegetation cover of the plots. (A) Effect of organic matter in the soil 

on total vegetation cover, (B) effect of years since restoration on vegetation cover, (C) effect of soil grain 

size on total vegetation cover, grain size is shown from smallest to largest. 

A B 

A B 

C 
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Figure 8. Parameters effecting species richness of the plots. (A) Effect of organic matter in the soil on 

species richness, (B) effect of years since restoration on species richness. 

A B 
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4. Discussion 

4.1 Vegetation recovery 

After fourteen years since restoration the species richness of the plots nearly matches the species 

richness of the turfs. Thus, if I consider the turfs as “original vegetation” or reference vegetation, my 

results indicate that species richness is restored after fourteen years, although the species composition 

differs slightly between plots and turfs. Both species richness and total vegetation cover of the plots 

increased over the years since restoration. In the turfs, however both parameters decreased slightly 

after six to seven years, but had increased again after fourteen years since restoration. The slight decline 

could be explained by difficulties in surviving the transplantation.  

One of the most abundant species in both plots and turfs was Deschampsia cespitosa. This species is 

native to Norway and rather common in disturbed high-altitude ecosystems. But it is non-native to the 

alpine heath vegetation which we find in Hjerkinn. This grass species is a strong competitor and has 

the undesirable characteristics of invasive species, traditionally used when seeding for restoration 

(Aradottir & Oskarsdottir 2013; Hagen & Evju 2013; Hagen et al. 2014). Thus Deschampsia cespitosa 

is undesirable in this restoration project.  

My results show that time is the factor that matters most for the recovery of the vegetation around the 

transplanted turfs. The most significant development of total vegetation cover and species richness was 

observed over time. Both total vegetation cover and species richness of the plots surrounding the turfs 

increased over the years since restoration. These findings are consistent with  Hagen and Evju (2013), 

who observed a similar effect. This development is comprehensible, as in low-alpine vegetation the 

environmental conditions are harsher than in lower-altitude ecosystems. Shorter growing seasons, 

lower temperatures, strong winds and furthermore, often less resource availability lead to a more 

difficult germination and establishment process and hence the vegetation needs longer to recover 

(Urbanska & Chambers 2002; Bay & Ebersole 2006; Krautzer, Uhlig & Wittmann 2012; Hagen & 

Evju 2013). But the turfs seem to promote a quicker establishment of a vegetation cover in their 

surroundings, than it would have been without (Bay & Ebersole 2006; Klimeš et al. 2010; Aradottir & 

Oskarsdottir 2013; Hagen & Evju 2013; Mudrák et al. 2017). Thus, my findings show that the turfs 

and their surroundings offer the conditions needed for vegetation recovery, otherwise the recovery 

process would not have started or it would have been too slow to be crucial after this short time frame 

of 14 years. 

As further suggested, both total vegetation cover and species richness are to a great extend depending 

on conditions of the receptor site. The presence of organic matter in the soil and a small soil grain size 

were very important parameters for a higher total vegetation cover and a higher species richness in the 
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plots. Soil grain size, however, was less important for the species richness than it was for the total 

vegetation cover. Both factors provide ecological advantages for plant establishment. Soil with organic 

matter contains more nutrients than soil without and a small grain size can keep the water better, so 

both factors might provide the plants with better growing conditions during establishment. 

Furthermore, the plants have better possibilities to fasten small root in the soil when the grain size is 

smaller. Thus, as suggested among others, e.g. Kiehl et al. (2010) and Aradottir (2012) it is very 

important for a successful turf transplantation and also vegetation recovery of the surroundings, that 

the preparation of the receptor site should be done thoroughly (e.g. remove gravel, stir topsoil). Both 

studies mentioned above, stress the importance of a well prepared receptor site, specific to the needs 

of the target vegetation and hence support my results concerning the importance of the conditions at 

the receptor site.  

The distance to the next turf did not influence the species richness significantly, as observed by Hagen 

and Evju (2013). However, I observed a tendency of increasing species richness with shorter distance 

to intact vegetation. Differences between my results and the monitoring data of another study of the 

Pilot-roads (Hagen & Evju 2013) might occur due to differences in study design. The plots in the pilot-

monitoring-study were placed randomly, with randomly varying distances to the turfs, while they were 

placed systematically around the turfs in my experiment, so that all plots were always in close 

proximity to a turf. As in the pilot-study the monitoring plots were randomly dispersed, the closeness 

to a turf might have been less frequent and hence more important for a higher species richness than in 

my study. Another explanation could be that, in most occasions, the next turf was too far away to 

contribute to species richness of a plot and that most plants dispersed and colonized from the turf 

belonging to the plot and not from the next closest turf. The dispersal distance and colonization of 

plants in alpine ecosystems can vary to a great degree temporal and spatial but is believed to be rather 

short, which could explain this (Stöcklin & Bäumler 1996; Urbanska & Chambers 2002). On the other 

hand, as the distance to intact vegetation shows the tendency to increase species richness, and the intact 

vegetation in my study was mostly further away from the plots than the next closest turf, the dispersal 

distance might have been longer than expected. Following this, as the influence of distance to both 

next turf and intact vegetation on species richness of the surroundings of transplanted turfs is still not 

clear, I stress the need for more detailed studies to clarify this point. 

Furthermore, neither total vegetation cover of the turfs nor species richness of the turfs have a 

significant influence on total vegetation cover and species richness of the plots. The reason for this 

could as well be associated with complications in dispersal distance and colonization of the plants 

(Stöcklin & Bäumler 1996; Urbanska & Chambers 2002) or by the same suggestion as for the last 

point, that the influence of the intact vegetation is greater than that of the next closest turf. But as the 

species richness of the plots and the turfs were nearly equal after 14 years since restoration, I assume 
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that there have been events of dispersal, also from the turfs into the surroundings. Though, it is possible 

that total vegetation cover and species richness of the turfs are just not the most important factors to 

vegetation recovery around the transplants, but that the distance to intact vegetation is more important. 

This might especially be relevant as the roads in my study are quite narrow. In an experiment on a 

larger area, the vegetation recovery might depend much more on the turfs. 

Based on the facts that I observed a good recovery, in terms of an increasing total vegetation cover and 

species richness over the years since restoration, I assume that the turfs did serve as seed source and/or 

safe sites for their proximate surroundings. Several other studies demonstrated the function of turfs as 

seed source for near surroundings or as safe sites where seeds are able to establish in the immediate 

vicinity of turfs (Klimeš et al. 2010; Hagen & Evju 2013) and these studies are therefore supporting 

my results. 

Differences in species composition between donor and receptor sites have been observed in several 

turf transplantation experiments (Bullock 1998; Klimeš et al. 2010; Aradottir & Oskarsdottir 2013). 

With this study, I cannot confirm nor reject this, as it was not part of the study to survey the reference 

vegetation in detail. The turfs in my study, however, can be seen to represent the donor site at least to 

some extent, as they have been taken from the close intact vegetation along the roads. As most of the 

vascular plants (76 species, table A appendix) were found both in the turfs and in the plots, I assume 

that the species composition did not differ much between receptor site and original vegetation.  

The turf size was not significant for the recovery of the vegetation around the transplants in my study. 

However, Aradottir (2012) states that the turf size is important for survival of transplantation, at least 

for some functional groups of plants. The optimal turf size is depending on growth form and abundance 

of the target species, and is decreasing in size in line with the size of the species. According to that, 

dwarf-shrubs need larger turfs (20-30 cm diameter) to survive the transplantation than e.g. grasses and 

mosses (Aradottir 2012). One explanation why the turf size was not important in my study could be 

that there is a tipping point when turfs are large enough to transfer “enough” species with the ability to 

survive and to contribute to vegetation recovery around the turfs, and that this is the case in my study. 

Compared to Aradottir (2012), who used smaller turfs (up to 30 cm diameter), the turfs in my study 

were mostly larger (between 0.35 and 5.76 m2).  

4.2 Management implications 

The results of my study indicate that, whenever there is a restoration project where turfs are going to 

be used, it is highly important to prepare the receptor site thoroughly. The significant importance of 

the presence of organic matter in the soil and a small soil grain size in my study show this clearly. 

Thorough preparations of the receptor site include removing of all crushed stones, gravel and other 
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materials all the way down to the original terrain surface. Furthermore, if the surface is very 

compressed, the soil top layer should be stirred down to ~20 cm, so that it is easier for the plants to 

root (Hagen & Evju 2013). Afterwards, with organic matter in the soil and a small soil grain size, it 

will be much easier for plants to establish themselves and grow in the new environment (Urbanska & 

Chambers 2002). My results further indicate that, in such narrow disturbed areas as these roads, the 

size and placing (distance between turf transplants) is not too crucial. Nevertheless, the most important 

factor for vegetation recovery, in this case, is time. This should be considered in planning and 

implication of this kind of restoration measures and could also be helpful to communicate to project 

owners and the public to adjust for different expectations on recovery rates, which might seem slow to 

non-specialists. 

When extracting turfs, it is very important not to destroy other communities and ecosystems (Kiehl et 

al. 2010; Aradottir 2012; Aradottir & Oskarsdottir 2013; Hagen & Evju 2013). This can be easy to 

some degree in cases where work is in progress, because here the turfs can be taken from the 

construction site, or were turfs are available due to other reasons (Bay & Ebersole 2006; Kiehl et al. 

2010; Aradottir & Oskarsdottir 2013; Mudrák et al. 2017). But when it comes to restoration or 

preservation of a site where turfs are not easily accessible, it is very important to extract turfs with no 

or little native vegetation disturbed (Krautzer, Uhlig & Wittmann 2012; Aradottir & Oskarsdottir 2013) 

and with greatest care and biological knowledge (Hagen & Evju 2013). 

4.3 Conclusion 

In conclusion, I can say that the use of turfs as a restoration measure insured a quick establishment of 

vegetation cover and the introduction of native species on the former roads. A process which, without 

facilitation with turfs, would have taken much longer, particularly in a low-alpine environment. 

Therefore, and in agreement with previous published studies, I can recommend the use of turfs to 

facilitate recovery in restoration, in this case in low-alpine environment. There are still several factors, 

for example the influence of distance to turf and intact vegetation on vegetation recovery, which need 

to be studied further to ensure an even better implication of turfs for restoration.  
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Appendix 

Table A. Species found, the number of plots and turfs they were found in and their mean abundance 

with standard deviation for plots and turfs. The abundance scales differ between turfs and plots. For the 

turfs a slightly altered Braun-Blanquet (BB) cover scale has been used, while the abundance in the plots 

was recorded as presence/absence (p/a) of each species in each subplot. 

Species 

No. of plots 

species was 

recorded in 

No. of turfs 

species was 

recorded in 

Mean abundance (p/a) 

in the plots ± SD 

Mean abundance (BB) 

in the turfs ± SD 

Achillea multifolium 10 4 5.90 ± 3.78 1.8 ± 1.26 

Agrostis capillaris - 1 - - - 1.0 ± 1.54 

Andromeda polyfolia - 12 - - - 0.7 ± 1.09 

Antennaria dioica 24 18 3.08 ± 2.32 0.7 ± 0.54 

Anthoxanthum nipponicum 1 3 2.00 ± NA 0.4 ± 1.23 

Arctostaphylos uva-ursi 6 6 2.00 ± 1.67 1.2 ± 1.05 

Astragalus alpinus 6 8 3.67 ± 2.50 1.5 ± 0.37 

Astragalus fridigus - 3 - - - 1.7 ± 0.99 

Avenella flexuosa 17 23 1.47 ± 0.80 1.7 ± 1.36 

Bartsia alpina 13 32 2.23 ± 1.54 0.6 ± 0.42 

Betula nana 37 90 2.78 ± 2.72 2.2 ± 0.52 

Betula pubescens 4 14 1.00 ± 0.00 0.4 ± 0.69 

Bistorta vivipara 43 44 3.28 ± 3.03 1.1 ± 0.65 

Botrychium lunaria 3 2 1.00 ± 0.00 0.1 ± 0.90 

Calluna vulgaris - 11 - - - 1.3 ± 0.40 

Campanula rotundifolia 7 6 2.57 ± 1.72 0.3 ± 0.62 

Carex atrofusca 2 - 1.50 ± 0.71 - - - 

Carex bigelowii 22 33 2.95 ± 2.66 1.0 ± 0.37 

Carex brunnescens 11 3 1.91 ± 0.83 0.4 ± 0.62 

Carex capillaris - 2 - - - 0.6 ± 0.56 

Carex cf. dioica 1 6 1.00 ± NA 1.4 ± 0.42 

Carex cf. panicea - 1 - - - 1.0 ± NA 

Carex dioica - 2 - - - 3.0 ± 0.77 

Carex norvegica 4 1 1.25 ± 0.50 1.0 ± 0.52 

Carex trifidus 1 - 1.00 ± NA - - - 

Carex vaginata - 10 - - - 0.6 ± 0.95 

Cerastium alpinum 25 8 1.96 ± 1.74 0.3 ± 1.37 

Cerastium fontanum 17 1 2.29 ± 1.86 1.0 ± 0.79 

Coeloglussum virvide - 1 - - - 1.0 ± NA 

Comastoma tenellum - 1 - - - 0.1 ± 0.52 

Deschampsia cespitosa 187 70 4.13 ± 3.49 2.1 ± 1.69 

Diphasiastrum alpinum - 2 - - - 0.1 ± 0.94 

Empetrum nigrum 25 68 2.08 ± 1.26 1.9 ± 0.75 

Epilobium angustifolium 2 4 1.50 ± 0.71 0.3 ± 1.13 

Epilobium davuricum 10 - 3.00 ± 2.91 - - - 

Epilobium palustre 2 - 2.50 ± 2.12 - - - 

Equisetum arvense 14 2 7.64 ± 5.92 1.5 ± 0.88 

Equisetum cf. arvense 1 - 14.00 ± NA - - - 

Equisetum palustre 30 5 6.80 ± 5.71 1.4 ± 0.42 

Equisetum variegatum 2 1 2.50 ± 0.71 0.1 ± 0.95 

Erigeron cf. uniflorus - 2 - - - 0.1 ± 1.23 

Eriophorum angustifolium 1 5 6.00 ± NA 1.1 ± 0.56 

Eriophorum vaginatum 2 6 1.00 ± 0.00 1.2 ± 0.00 

Festuca ovina 149 93 4.26 ± 3.83 2.9 ± 1.07 

Festuca pratensis 1 - 2.00 ± NA - - - 

Festuca rubra 62 6 2.13 ± 1.60 0.7 ± 0.73 

Galium boreale 1 10 2.00 ± NA 1.8 ± 0.42 

Gentiana nivalis 2 1 1.00 ± 0.00 0.1 ± 0.00 

Geranium sylvaticum 5 15 1.60 ± 0.89 1.3 ± 0.80 
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Species 

nr of plots 

species was 

recorded in 

nr of turfs 

species was 

recorded in 

mean abundance (p/a) 

in the plots ± SD 

mean abundance (BB) 

in the turfs ± SD 

Geum rivale - 1 - - - 0.1 ± 0.76 

Gymnadenia conopsea - 1 - - - 0.1 ± 0.56 

Hieracium sek Alpina 1 15 1.00 ± NA 1.1 ± 0.91 

Juncus arcticus 61 10 2.92 ± 2.30 1.4 ± 0.66 

Juncus castaneus 19 4 4.16 ± 3.69 0.6 ± 1.11 

Juncus trifidus 7 1 3.00 ± 2.00 1.0 ± 1.00 

Juncus triglumis 13 3 3.08 ± 3.62 1.0 ± 0.72 

Juniperus communis 4 15 1.25 ± 0.50 2.2 ± NA 

Kalmia procumbens - 4 - - - 1.5 ± 0.96 

Leontodon autumnalis 5 3 2.00 ± 1.22 0.1 ± 0.46 

Loiseleuria procumbens 1 1 1.00 ± NA 2.0 ± 0.52 

Luzula multiflora 108 48 2.88 ± 2.98 0.5 ± 0.37 

Luzula spicata 44 5 2.07 ± 2.44 0.3 ± 0.00 

Melampyrum sylvaticum - 8 - - - 1.2 ± 0.85 

Minuartia stricta 1 - 4.00 ± NA - - - 

Nardus stricta 2 17 1.50 ± 0.71 1.4 ± 0.64 

Omalotheca supina 1 - 1.00 ± NA - - - 

Oxyria diguna - 1 - - - 0.1 ± 1.48 

Pedicularis lapponica 2 29 4.50 ± 4.95 0.7 ± NA 

Pedicularis oederi - 2 - - - 1.5 ± 0.79 

Phleum alpinum - 6 - - - 0.3 ± 1.47 

Phyllodoce caerulea 1 4 1.00 ± NA 0.6 ± 0.85 

Pinguicula vulgaris 30 35 5.07 ± 5.77 0.5 ± 1.34 

Poa alpina 40 19 2.15 ± 1.55 0.5 ± 0.52 

Poa pratensis 1 1 1.00 ± NA 0.1 ± NA 

Potentilla crantzii 2 1 1.00 ± 0.00 2.0 ± 0.00 

Primula stricta 1 1 7.00 ± NA 1.0 ± 0.00 

Ranunculus acris 2 4 2.50 ± 2.12 1.0 ± 0.99 

Rubus chamaemorus - 1 - - - 1.0 ± NA 

Rumex acetosa 5 3 3.40 ± 4.28 0.7 ± NA 

Rumex acetosella 3 4 11.00 ± 4.00 0.3 ± 1.47 

Sagina nivalis 30 - 4.40 ± 4.87 - - - 

Salix glauca 47 83 3.11 ± 2.79 2.4 ± 0.78 

Salix herbacea 5 3 2.40 ± 2.07 0.7 ± 1.67 

Salix myrsinifolia - 1 - - - 1.0 ± NA 

Salix phylicifolia 37 36 4.03 ± 3.62 1.8 ± 0.00 

Salix reticulata 1 8 3.00 ± NA 0.3 ± NA 

Saussurea alpina - 7 - - - 0.9 ± 0.00 

Saxifraga aizoides 6 2 2.50 ± 3.21 1.1 ± NA 

Saxifraga oppositifolia 1 - 1.00 ± NA - - - 

Saxifraga stellaris 5 - 1.40 ± 0.55 - - - 

Silene cf. dioica 1 - 1.00 ± NA - - - 

Silene dioica - 1 - - - 2.0 ± 0.71 

Solidago virgaurea 12 61 2.25 ± 2.18 1.1 ± NA 

Spergularia rubra 1 - 2.00 ± NA - - - 

Stellaria borealis 5 6 1.40 ± 0.89 0.3 ± 0.52 

Thalictrum alpinum 3 18 1.33 ± 0.58 0.7 ± 0.71 

Tofieldia pusilla 10 27 3.30 ± 3.92 0.7 ± 0.64 

Trientalis europaea 2 19 1.00 ± 0.00 1.3 ± NA 

Vaccinium myrtillus - 33 - - - 0.7 ± NA 

Vaccinium uliginosum 2 15 1.50 ± 0.71 0.6 ± NA 

Vaccinium vitis-idaea 7 57 3.29 ± 3.04 0.7 ± NA 

Viscaria alpina 10 2 1.30 ± 0.95 0.1 ± NA 

Carex sp.  50 42 1.40 ± 0.76 1.6 ± 0.44 

Epilobium sp.  1 - 15.00 ± NA - - - 

Equisetum sp.  18 2 9.28 ± 5.00 1.0 ± 0.71 

Eriophorum sp.  23 16 2.65 ± 2.48 1.2 ± NA 
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Species 

nr of plots 

species was 

recorded in 

nr of turfs 

species was 

recorded in 

mean abundance (p/A) 

in the plots ± SD 

mean abundance (BB) 

in the turfs ± SD 

Festuca sp.  1 - 1.00 ± NA - - - 

Juncus sp.  2 2 1.00 ± 0.00 1.5 ± NA 

Luzula sp.  98 3 3.60 ± 3.81 0.4 ± NA 

Lycopodium sp.  5 - 1.40 ± 0.89 - - - 

Poa sp.  - 1 - - - 0.1 ± 0.45 

Pyrola sp.  2 8 1.00 ± 0.00 0.3 ± NA 

Sagina sp.  7 - 1.57 ± 0.79 - - - 

Salix sp.  86 1 3.84 ± 3.22 0.1 ± NA 

Taraxacum sp.  1 2 2.00 ± NA 0.6 ± 0.96 

Cyperaceae 5 4 1.60 ± 0.55 0.8 ± 0.00 

fungi 21 5 1.62 ± 1.36 0.1 ± 1.18 

grass 37 - 2.19 ± 1.22 - - - 

lichens 51 69 9.61 ± 6.05 2.2 ± 1.17 

moss 262 108 10.14 ± 5.55 2.7 ± 0.45 

dicotyledonous plants 34 - 3.18 ± 2.17 - - - 

monocotyledonous plants 178 - 5.36 ± 4.56 - - - 

 

Table B. Species solely found in plots (left) and turfs (right). 

 Species solely found in plots 
 

 Species solely found in turfs 

1 Carex atrofusca 
 

1 Agrostis capillaris 

2 Carex trifidus 
 

2 Andromeda polyfolia 

3 Epilobium davuricum 
 

3 Astragalus fridigus 

4 Epilobium palustre 
 

4 Calluna vulgaris 

5 Equisetum cf. arvense 
 

5 Carex capillaris 

6 Festuca pratensis 
 

6 Carex cf. panicea 

7 Minuartia stricta 
 

7 Carex dioica 

8 Omalotheca supina 
 

8 Carex vaginata 

9 Sagina nivalis 
 

10 Comastoma tenellum 

10 Saxifraga oppositifolia 
 

11 Diphasiastrum alpinum 

11 Saxifraga stellaris 
 

12 Erigeron cf. uniflorus 

12 Silene cf. dioica 
 

13 Geum rivale 

13 Spergularia rubra 
 

14 Gymnadenia conopsea 

14 Epilobium sp.  
 

15 Kalmia procumbens 

15 Festuca sp.  
 

16 Melampyrum sylvaticum 

16 Lycopodium sp.  
 

17 Oxyria diguna 

17 Sagina sp.  
 

18 Pedicularis oederi 

18 grass 
 

19 Phleum alpinum 

19 monocotyledonous plants 
 

20 Rubus chamaemorus 

  
 

21 Salix myrsinifolia 

  
 

22 Saussurea alpina 

  
 

23 Silene dioica 

  
 

24 Vaccinium myrtillus 

  
 

25 Poa sp.  
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Table C. AIC table of random component structure selection for analysis part 1) “Total vegetation cover”, 

left column shows the different random structures tested, best fitting random structure in bold , K = 

number of parameters. 

 K AIC Delta_AIC ModelLik AICWt Res.LL Cum.Wt 

year + (1|road/turf) 18 2651 0 1.00 1.00 -1307.51 1.00 

 (1|year/road/turf) 16 2675 24 7.04E-06 7.04E-06 -1321.37 1.00 

 (1|road/turf) 15 2687 36 1.35E-08 1.35E-08 -1328.63 1.00 

 (1|turf) 14 2766 115 9.38E-26 9.38E-26 -1369.14 1.00 

 

Table D. AIC table of random component structure selection for analysis part 2) “Species richness”, left 

column shows the different random structures tested, best fitting random structure in bold , K = number 

of parameters. 

 K AIC Delta_AIC ModelLik AICWt LL Cum.Wt 

year + (1|road/turf) 17 1499 0.00 1.00 1.00 -732.71 1.00 

 (1|year/road/turf) 15 1511 11.29 0.00 0.00 -740.36 1.00 

 (1|road/turf) 14 1517 17.13 0.00 0.00 -744.28 1.00 

 (1|turf) 13 1561 62.04 3.37E-14 3.36E-14 -767.74 1.00 

 

Table E. Fixed component structure selection for analysis part 1) “total vegetation cover”, shown are 

coefficients for all tested models (single explanatory and more complex models), significant parameters 

in bold, except for “year” which is significant in every model, parameter estimates for random effects are 

not shown. 

Model 1: lmer(total.cover ~ distance.turf + year + (1|road.x/turf.x), data = fulldata, REML = FALSE) 

 Estimate Std. Error t value 

(Intercept) 4.448 3.800 1.170 

distance.turf -0.001 0.010 -0.127 

year6 16.858 4.680 3.602 

year14 43.286 6.419 6.743 

year7 35.012 5.691 6.152 

Model 2: lmer(total.cover ~ distance.veg + year + (1|road.x/turf.x), data = fulldata, REML = FALSE) 

 Estimate Std. Error t value 

(Intercept) 5.962 3.921 1.521 

distance.veg -0.005 0.006 -0.814 

year6 16.714 4.634 3.607 

year14 43.314 6.391 6.778 

year7 34.747 5.667 6.131 

Model 3: lmer(total.cover ~ org.soil + year + (1|road.x/turf.x), = fulldata, REML = FALSE) 

 Estimate Std. Error t value 

(Intercept) -0.149 2.819 -0.053 

org.soil1 13.537 1.836 7.373 

year6 14.817 3.911 3.789 

year14 40.532 5.472 7.407 

year7 35.012 4.774 7.334 
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Model 4: lmer(total.cover ~ grain size + year + (1|road.x/turf.x), data = fulldata, REML = FALSE) 

 Estimate Std. Error t value 

(Intercept) 8.377 3.398 2.465 

grain sizee -9.209 2.999 -3.071 

grain sized -6.148 2.831 -2.172 

grain sizef -3.820 2.476 -1.543 

grain sizeh 21.666 4.635 4.675 

grain sizec -6.296 5.006 -1.258 

year6 14.845 4.049 3.666 

year14 42.023 5.609 7.492 

year7 35.832 4.942 7.251 

Model 5: lmer(total.cover ~ cover.turf + year + (1|road.x/turf.x), data = fulldata, REML = FALSE 

 Estimate Std. Error t value 

(Intercept) 8.767 10.118 0.866 

cover.turf -0.053 0.112 -0.477 

year6 17.411 4.741 3.673 

year14 43.987 6.546 6.719 

year7 35.268 5.718 6.168 

Model 6: lmer(total.cover ~ tsize + year + (1|road.x/turf.x), data = fulldata, REML = FALSE) 

 Estimate Std. Error t value 

(Intercept) 5.229 3.883 1.347 

tsize -0.477 1.030 -0.463 

year6 16.970 4.506 3.766 

year14 43.046 6.304 6.829 

year7 35.245 5.553 6.347 

Model 7: lmer(total.cover ~ year + (1|road.x/turf.x), data = fulldata, REML = FALSE) 

 Estimate Std. Error t value 

(Intercept) 4.202 3.269 1.285 

year6 16.944 4.624 3.664 

year14 43.347 6.396 6.778 

year7 34.948 5.661 6.173 

Model 8: lmer(total.cover ~ org.soil + grain size + year + (1|road.x/turf.x), data = fulldata, REML = FALSE) 

  Estimate Std. Error t value 

(Intercept) 0.961 3.074 0.313 

org.soil1 12.507 1.806 6.925 

grain sizee -6.637 2.837 -2.339 

grain sized -1.563 2.729 -0.573 

grain sizef -1.994 2.338 -0.853 

grain sizeh 21.644 4.346 4.980 

grain sizec 0.554 4.751 0.117 

year6 14.609 3.289 4.441 

year14 40.771 4.674 8.723 

year7 37.427 4.017 9.318 
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Table F. ANOVA result tables of competing models from analysis part 1) “Total vegetation cover”, 

significant models in bold. 

                  

Models:         

Model3: total.cover ~ org.soil + year + (1 | road.x/turf.x) 

Model4: total.cover ~ grain size + year + (1 | road.x/turf.x) 

 Df AIC BIC logLik deviance Chisq Chi Df 
Pr(>Chis

q) 

Model3 8 2710 2740 -1346.80 2693.61    

Model4 12 2725 2770 -1350.51 2701.02 0 4 1 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  

     

  

 

           

Models:         
Model3: total.cover ~ org.soil + year + (1 | road.x/turf.x) 

Model8: total.cover ~ org.soil + grain size + year + (1 | road.x/turf.x) 

 Df AIC BIC logLik deviance Chisq 
Chi 

Df 
Pr(>Chisq) 

Model3 8 2710 2740 -1346.80 2693.61    

Model8 13 2683 2733 -1328.64 2657.27 36.34 5 8.13E-07*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  

     

  

 

           

Models:         
Model4: total.cover ~ grain size + year + (1 | road.x/turf.x) 

Model8: total.cover ~ org.soil + grain size + year + (1 | road.x/turf.x) 

 Df AIC BIC logLik deviance Chisq 
Chi 

Df 
Pr(>Chisq) 

Model4 12 2725 2770 -1350.51 2701.02    

Model8 13 2683 2733 -1328.64 2657.27 43.75 1 3.74E-11*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table G. Fixed component structure selection for analysis part 2) “Species richness”, shown are 

coefficients for all tested models (single explanatory and more complex models), significant parameters 

in bold, except for “year” which is significant in every model, parameter estimates for random effects are 

not shown. 

Model 9: glmer(SR.ruter ~ distance.turf.std + year + (1|road.x/turf.x), data = fulldata, family = poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.689 0.066 25.698 0.0000 

distance.turf.std 0.034 0.026 1.344 0.1789 

year6 -0.018 0.095 -0.190 0.8496 

year14 0.788 0.120 6.579 0.0000 

year7 0.487 0.108 4.499 0.0000 

Model 10: glmer(SR.ruter ~ distance.veg.std + year + (1|road.x/turf.x), data = fulldata, family = poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.702 0.069 24.527 0.0000 

distance.veg.std -0.046 0.024 -1.884 0.0595 

year6 -0.054 0.099 -0.548 0.5840 

year14 0.770 0.125 6.140 0.0000 

year7 0.494 0.115 4.303 0.0000 



 
36 

     

Model 11: glmer(SR.ruter ~ org.soil + year + (1|road.x/turf.x), data = fulldata, family = poisson()) 
 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.653 0.065 25.515 0.0000 

org.soil1 0.138 0.049 2.796 0.0052 

year6 -0.063 0.089 -0.710 0.4777 

year14 0.741 0.114 6.515 0.0000 

year7 0.504 0.102 4.928 0.0000 

Model 12: glmer(SR.ruter ~ grain size + year + (1|road.x/turf.x), data = fulldata, family = poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.827 0.083 22.003 0.0000 

grain sizee -0.035 0.078 -0.445 0.6565 

grain sized -0.199 0.081 -2.468 0.0136 

grain sizef -0.044 0.067 -0.652 0.5146 

grain sizeh 0.014 0.122 0.117 0.9068 

grain sizec -0.274 0.144 -1.909 0.0562 

year6 -0.125 0.095 -1.319 0.1872 

year14 0.695 0.120 5.813 0.0000 

year7 0.414 0.110 3.767 0.0002 

Model 13: glmer(SR.ruter ~ SR.turf.std + year + (1|road.x/turf.x), data = fulldata, family = poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.708 0.071 23.976 0.0000 

SR.turf.std -0.018 0.032 -0.554 0.5798 

year6 -0.065 0.106 -0.616 0.5379 

year14 0.761 0.125 6.093 0.0000 

year7 0.492 0.115 4.285 0.0000 

Model 14: glmer(SR.ruter ~ tsize + year + (1|road.x/turf.x), data = fulldata, family = poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.672 0.088 18.970 0.0000 

tsize 0.012 0.025 0.472 0.6368 

year6 -0.043 0.099 -0.431 0.6661 

year14 0.779 0.126 6.157 0.0000 

year7 0.497 0.116 4.276 0.0000 

Model 15: glmer(SR.ruter ~ year + (1|road.x/turf.x), data = fulldata, family = poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.697 0.068 25.037 0.0000 

year6 -0.042 0.096 -0.435 0.6638 

year14 0.771 0.123 6.284 0.0000 

year7 0.504 0.112 4.503 0.0000 

Model 16: glmer(SR.ruter ~ distance.veg.std + org.soil + year + (1|road.x/turf.x), data = fulldata, family = 

poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.660 0.066 25.032 0.0000 

distance.veg.std -0.035 0.025 -1.403 0.1605 

org.soil1 0.125 0.050 2.479 0.0132 

year6 -0.070 0.091 -0.767 0.4430 

year14 0.743 0.116 6.384 0.0000 

year7 0.497 0.105 4.733 0.0000 
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Model 17: glmer(SR.ruter ~ distance.veg.std + grain size + year + (1|road.x/turf.x), data = fulldata, family = 

poisson()) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.823 0.085 21.538 0.0000 

distance.veg.std -0.038 0.024 -1.561 0.1185 

grain sizee -0.028 0.079 -0.351 0.7256 

grain sized -0.189 0.081 -2.328 0.0199 

grain sizef -0.040 0.067 -0.592 0.5540 

grain sizeh 0.008 0.122 0.067 0.9465 

grain sizec -0.248 0.145 -1.715 0.0864 

year6 -0.130 0.098 -1.336 0.1815 

year14 0.699 0.123 5.696 0.0000 

year7 0.410 0.113 3.624 0.0003 

Model 18: glmer(SR.ruter ~ org.soil + grain size + year + (1|road.x/turf.x), data = fulldata, family = poisson(), 

control = glmerControl(optimizer= "optimx", optCtrl  = list(method="nlminb"))) 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.762 0.085 20.640 0.0000 

org.soil1 0.112 0.051 2.192 0.0284 

grain sizee -0.009 0.079 -0.110 0.9121 

grain sized -0.159 0.082 -1.931 0.0534 

grain sizef -0.028 0.067 -0.419 0.6752 

grain sizeh 0.015 0.121 0.124 0.9016 

grain sizec -0.221 0.144 -1.529 0.1262 

year6 -0.129 0.090 -1.434 0.1517 

year14 0.682 0.113 6.056 0.0000 

year7 0.426 0.103 4.134 0.0000 

     

 

Table H. ANOVA result tables of competing models from analysis part 2 “Species richness”, significant 

models in bold. 

Models:         

Model10: SR.ruter ~ distance.veg.std + year + (1 | road.x/turf.x)  

Model11: SR.ruter ~ org.soil + year + (1 | road.x/turf.x)     
 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Model10 7 1492 1519 -739.07 1478.14    

Model11 7 1488 1515 -737.06 1474.12 4.02 0 <2.20E-16*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

                

  

 

 

Models:         

Model10: SR.ruter ~ distance.veg.std + year + (1 | road.x/turf.x)  

Model12: SR.ruter ~ grain size + year + (1 | road.x/turf.x)     
 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Model10 7 1492 1519 -739.07 1478.14    

Model12 11 1495 1537 -736.54 1473.08 5.07 4 2.81E-01 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Models:         

Model11: SR.ruter ~ org.soil + year + (1 | road.x/turf.x)   

Model12: SR.ruter ~ grain size + year + (1 | road.x/turf.x)     
 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Model11 7 1488 1515 -737.06 1474.12    

Model12 11 1495 1537 -736.54 1473.08 1.05 4 9.03E-01 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

                

  

 

 

Models:         

Model11: SR.ruter ~ org.soil + year + (1 | road.x/turf.x)   

Model16: SR.ruter ~ distance.veg.std + org.soil + year + (1 | road.x/turf.x)  

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Model11 7 1488 1515 -737.06 1474.12    

Model16 8 1488 1518 -736.06 1472.11 2.01 1 0.16 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

                

  

 

 

Models:         

Model11: SR.ruter ~ org.soil + year + (1 | road.x/turf.x)   

Model17: SR.ruter ~ distance.veg.std + grain size + year + (1 | road.x/turf.x) 
 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Model11: 7 1488 1515 -737.06 1474.12    

Model17 12 1495 1540 -735.30 1470.60 3.53 5 0.62 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

                

  

 

 

Models:         

Model11: SR.ruter ~ org.soil + year + (1 | road.x/turf.x)   

Model18: SR.ruter ~ org.soil + grain size + year + (1 | road.x/turf.x)   
 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Model11 7 1488 1515 -737.06 1474.12    

Model18 12 1492 1538 -734.19 1468.37 5.75 5 0.33 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure A. Distribution of each parameter used in the analysis. On the y-axis is the count, on the x-axis 

the parameter. A-F = plot parameters, G-I = turf parameters. See table 5 for the grain size scale. 

 

Figure B. Alternative models for analysis part 2 “Species richness”. (A) Effect of soil grain size on 

species richness. (B) Parameter distance to intact vegetation, with the tendency to effect species 

richness of the plots.  
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