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Sammendrag 
 

Sosial organisering er av stor betydning for å kunne forstå enkeltindividers områdebruk i tid 

og rom, men også demografiske, fitnessrelaterte, og overordnede populasjonsdynamiske 

prosseser. Den grunnleggende sosiale enheten hos ulv består av det monogame 

revirmarkerende paret med en lederhann og en ledertispe, og sammen med deres avkom utgjør 

de en familegruppe, eller det som ofte betegnes som en ulveflokk. Familiegruppens 

flokksamhold og forflyningsmønster i reviret avhenger av ulvenes årssyklus. I denne studien 

presenterer jeg 14 år med unike GPS-data fra 11 familiegrupper av ulv i den rekoloniserende 

skandinaviske ulvebestanden. Jeg undersøkte det romlige og tidsmessige flokksamholdet 

mellom lederhann og ledertispe, mellom valper og lederdyr, og mellom valper og andre 

kullsøsken fra 1. januar til 1. juli eller frem til valpenes utvandringstidspunkt. Jeg standardiserte 

parkonstellasjonene på firetimersintervaller for totalt 30 forskjellige merkede valper, og 21 

lederdyr. Jeg undersøkte avstanden mellom individene som et mål på flokksamhold ved å 

benytte en ikke-lineær regressiv tidsserieanalyse (GAMM) med justerte referansenivåer og 

interaksjon på tid. Samholdet var sterkest tidlig på vinteren, men avtagende over tid, preget av 

at valpene ble stadig mer uavhengige fra resten av familiegruppen før de fleste valper (n = 22, 

76%) utvandret fra hjemreviret på våren før 14 måneders alder.  Før spredning identifiserte jeg 

utforskende forflytninger hos 12 (54%) utvandrende valper, men aldri for hjemmeværende 

valper som ikke vandret ut. Lederparet forflyttet seg nesten utelukkende sammen før 

fødselsperioden, og den eneste gangen avstanden mellom lederhannen og -tispa var signifikant 

forskjellig fra null var rundt fødsel. Avstanden mellom valper og lederdyr og valper og andre 

kullsøsken ble signifikant forskjellig fra avstanden mellom de to lederulvene i paringsperioden, 

og dette vedvarte til etter fødsel av neste valpekull. Avstanden mellom valper og lederdyr og 

par av valper var ikke signifikant forskjellige fra hverandre, noe som tyder på at valpene blir 

uavhengige fra sine foreldre og andre kullsøsken mer eller mindre samtidig før utvandring. 

Mine resultater står i sterk kontrast til myten om at medlemmer av en ulveflokk angivelig går 

sammen til enhver tid. Mine funn kan ha betydning for overvåkningsprogrammer som har til 

målsetning å beregne antall ulver og eller antall ynglinger, men også for planlegging samt 

gjennomføring av en effektiv jakt på familiegrupper av ulv i fremtiden. 

 

Nøkkelord: Canis lupus, sosial organisering, ulv, utvandring, flokksamhold. 
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Abstract 
 

Studying the social organization in animal populations is of primary importance for 

understanding individual spatial distribution, demography, fitness, and population dynamics. 

The basic social unit in wolves consists of the monogamous territory-marking pair, and 

together with their offspring from the contemporary and/or previous litters they form a family 

group, commonly referred to as the wolf pack. The pack’s grouping behavior and movement 

pattern depends on the wolves' annual cycle. In this study, I present 14 years of unique GPS 

data of 11 wolf family groups from the recolonizing Scandinavian wolf population. 

Specifically, I investigated spatial and temporal cohesion between the adult breeding male and 

female, pairs of pups, and between pups and adult breeders from January 1 to July 1, or until 

the pup dispersed. I derived simultaneous positions at four-hourly intervals from a total of 30 

marked pups and 21 adult breeders. I investigated the paired inter-individual distances as a 

measure of cohesion by utilizing a regressive non-linear time series analysis (GAMM) with 

added interaction term on time and adjusted reference levels. The cohesion was strongest in 

early winter but declining over time, characterized by wolf pups becoming increasingly 

independent from the rest of their family group, before most pups (n =22, 76%) eventually 

dispersed in the spring before 14 months of age. Prior to dispersal, extraterritorial movements 

were identified in 12 (54%) dispersing pups, but not for philopatric pups, and these movements 

were concentrated prior to the birth of the next litter. Adult breeding pairs moved almost 

exclusively together before denning and the only time the adult breeding pair’s cohesion was 

significantly different from zero was around the time of birth. The cohesion of pups to adult 

breeders and pairs of pups became significantly different from the cohesion between the adult 

breeders during the mating season and this effect persisted to past the time of birth of the next 

litter. The cohesion of pups to adult breeders and pairs of pups was not significantly different 

from each other, suggesting that pups became independent from their parents and rest of the 

family group more or less simultaneously before dispersal. My results are in strong contrast to 

the common belief that members of a wolf pack allegedly operate as a strictly synchronized 

unit. This may have implications for wolf monitoring programs in terms of calculating the 

number of wolves and reproductions, and for the planning and implementation of effective 

culling on wolf family groups in the future. 

 

Keywords: Canis lupus, Cohesion, Dispersal, Spatial, Social organization, Temporal, Wolf. 



6 
 

1 Introduction 
 

Kin selection theory (Hamilton 1964) describes how altruism in group-living animal species is 

potentially beneficial, highlighting the importance of relatedness in evolution (Smith 2014). 

Kin selection, also known as inclusive fitness theory, demonstrates how altruistic (i.e. 

seemingly selfless) behaviors can increase in frequency within a population if the costs to the 

individual are compensated by increased fitness of related individuals (Eberhard 1975; 

Gardner, West & Wild 2011). Although affiliation among kin is common in social groups of 

animals, kinship does not safeguard from negative effects of social competition (Clutton-Brock 

& Parker 1995; Mock & Parker 1998). In fact, in social groups, the closest competitor is often 

kin (West, Pen & Griffin 2002; Smith 2014).  

The study of social interactions is of primary importance for understanding individuals’ 

temporal space use, gene flow, demography and, resource acquisition as well as population 

dynamics (Singleton & Hay 1983; Morin et al. 1994). Group living can provide several 

potential direct fitness benefits such as cooperative hunting, resource defense, increased 

foraging efficiency, predator vigilance, or allo-parental care (Macdonald 1983; Packer & 

Ruttan 1988; Patterson & Messier 2001; Sparkman et al. 2011a). These benefits are trade-offs 

against direct disadvantages related to social competition, disease transmission and increased 

exposure to parasites (Alexander 1974; Altizer et al. 2003; Fuchs et al. 2016). The balance 

between social tolerance, i.e., withholding social aggression, and competition among kin is 

affected by resource distribution and individuals’ spatiotemporal proximity (Alexander 1974; 

Foster, Wenseleers & Ratnieks 2006). Critical determinants of group formation are diet and 

the dispersion of food resources (Gittleman 1989). The resource dispersion hypothesis (RDH) 

suggests that if resources are heterogeneous in time or space, group living is potentially 

beneficial (Macdonald 1983). If resources are sufficiently patchily distributed in time and space 

and exceed a critical level of richness, the use of these patches will sustain exploitation by more 

than just a primary group of occupants. However, secondary occupants could experience 

lowered food security by exceeding the limits of feeding constraints and social competition 

(Caraco & Wolf 1975; Nudds 1978; Carr & Macdonald 1986; Bacon, Ball & Blackwell 1991; 

Johnson et al. 2002). Accordingly, the abundance, quality, and distribution of resources can 

modulate animal movements and behavior, consequently influencing group size and grouping 

behavior, both spatially and temporally (Macdonald 1983; von Schantz 1984; Carr & 

Macdonald 1986; Powell 2012). 
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The wolf (Canis lupus) is a good model species for illustrating socio-spatial organization 

among kin. Wolves follow a relatively rare monogamous mating system (Kleiman 1977; 

Clutton-Brock 1989) with lifelong breeding exclusivity. The fundamental social unit in wolves 

consists of the territory-marking pair, and together with their offspring from the contemporary 

and/or previous litters they form a single family group, commonly referred to as the wolf pack 

(Mech 1970; Boitani & Ciucci 1995). The pack occupies an exclusive territory to ensure 

resource security, analogous to their home range (Burt 1943). The cohesion and movement 

pattern depends on the wolves'  annual cycle and climatic factors such as snow conditions 

(Mech & Peterson 2003). Wolf pups are generally born in late April and early May, preceding 

or overlapping with the calving periods of their ungulate prey (Jordan, Shelton & Allen 1967; 

Packard 2003). By fall and early winter, the pups join their parents nomadically, and during 

this time they reach the size and biomass consumption of adult wolves (Mech 1970; Mech & 

Boitani 2003; Packard 2003). Wolves’ prey menu can be diverse, although the main prey are 

generally large ungulate species, that in turn are potentially dangerous and hard to catch (Mech 

& Peterson 2003; Barber-Meyer et al. 2016). Young wolves are not particularly successful 

predators or noteworthy contributors to a pack’s kill rate on large prey (Mech & Peterson 2003; 

Sand et al. 2006; Zimmermann et al. 2015). Ungulates have a heterogeneous, patchy 

distribution, and combined with a relatively slow turnover rate they represent a substantial 

amount of resource per unit effort to share between the pack members (Mech & Boitani 2003). 

All critical components favoring group living and improving food acquisition (Kleiman 1967; 

Macdonald 1983; Schmidt & Mech 1997), this may in turn favour larger pack size in wolves 

(Fuller, Mech & Cochrane 2003; Mech & Peterson 2003). Intrinsically, pack size is regulated 

by recruitment, mortality, and dispersal rates (Packard & Mech 1980), the latter often 

negatively related to population size (Murie 1944; Mech 1970). Apart from human-caused 

mortality (Liberg et al. 2012b; Rich et al. 2012), the ultimate extrinsic factor that seems to 

regulate pack size is resource abundance, (Boitani & Ciucci 1995; Fuller, Mech & Cochrane 

2003), which in turn can be regulated by wolf population density through intra-specific 

competition (Peterson & Page 1988).  

The maintenance of family structure in socially monogamous species can have direct and 

indirect fitness consequences (Lukas & Clutton-Brock 2013). Almost exclusively, all wolves 

will disperse, however the dilemma young wolves face early in life is whether to undergo 

immediate or delayed dispersal. The ultimate factor for leaving familiar conspecifics is 

assumed to be the individual’s attempt to maximize their reproductive fitness (Lidicker Jr 1962; 
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Murray 1967). However, this may increase individual mortality risks (Bekoff 1977; Messier 

1985). Wolves normally disperse solitarily, as a continuation of single, short departures from 

the natal pack (Mech & Boitani 2003; Wabakken et al. 2007) and dispersal can occur at various 

ages, some as early as five months, while others may stay with their natal pack until three years 

of age or longer (Gese & Mech 1991; Ballard et al. 1997). Similarly individuals differ 

considerably in reproductive development, where some may give birth at two years of age 

(Rausch 1967; Peterson, Woolington & Bailey 1984; Fuller 1989) whereas others do not reach 

physical and reproductive maturation until three years of age (Mech & Seal 1987).  

Wolves are dominant intra-guild competitors, often aggressive to other wolves, including kin 

(Jordan, Shelton & Allen 1967; Fox 1972; Zimen 1976; Packard, Mech & Seal 1983), and the 

primary motivation for aggression and social avoidance through natural selection are 

competition (Brown 1964). In spring, social aggression increases related to reproductive 

development, mating, parental nurturing of the infant litter, and accumulation of reproductive 

fat storage (Rabb, Woolpy & Ginsburg 1967; Zimen 1976; Sands & Creel 2004). In fact, pups 

that disperse from the natal pack the first year typically leave their natal territory between 

January and May, coinciding with the time at which hormones, maturation, and social resource 

competition will be the most pronounced (Rabb, Woolpy & Ginsburg 1967; Fuller 1989; Gese 

& Mech 1991). 

In the wolf pack, the new litter receives parental priority above previous years’ offspring 

according to their nurturing needs, while social control by the breeding pair suspends 

reproduction in adult offspring (Packard, Mech & Seal 1983; Creel 2005). Nevertheless, both 

wolf parents and offspring may benefit from philopatry (Sparkman et al. 2011a; Sparkman et 

al. 2011b), given that the resource availability supports more than the needs of the subsequent 

litter and the breeding pair (Kleiman 1977; Rodman 1981; Harrington, Mech & Fritts 1983). 

Prior years’ offspring may bear the disadvantage of delayed reproduction by staying in their 

natal territory, but they may also get the advantage of extended access to secure food sources 

and increased physical development and knowledge-based experience, which may in turn 

increase survival during subsequent dispersal (Howard 1960; Schmidt & Mech 1997; Mech & 

Boitani 2003; Sparkman et al. 2011b). Similarly, intensified social competition through 

increased group size and temporally varying resource availability can affect the relative costs 

of natal dispersal versus philopatry. Small group sizes could also be unfavorable because of  

incomplete use of resources, that may subsidize scavengers (Rodman 1981; Vucetich, Peterson 

& Waite 2004). However, if wolf kills are exploited by inter-specific competitors, scavenging 
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may also alter the wolves’ kill rate (Stahler, Heinrich & Smith 2002; Kaczensky, Hayes & 

Promberger 2005; Ordiz et al. 2015; Tallian et al. 2017). Given sufficient resources, philopatric 

tolerance by parents may facilitate offspring survival and future potential for reproduction, 

potentially improving the inclusive fitness of both parents and offspring despite delayed onset 

of reproduction (Rodman 1981; Moehlman 1987; Waser 1996; Mech & Boitani 2003). On the 

contrary, early individual independence and permanent natal dispersal (Howard 1960; 

Greenwood 1980) may also be advantageous to offspring and parents if the chances of finding 

a breeding partner and settling in a new breeding territory are high (Bekoff 1977; Moehlman 

1987). Thus, resource abundance and potential of population colonization are likely to 

influence the benefits and rate of early natal dispersal (Fritts & Mech 1981; Kochetkov 2015).  

Cohesion within wolf packs varies, with individual pack members changing between splitting 

into minor groups, spending time alone or even temporarily leaving the territory on 

extraterritorial forays (Stenlund 1955; Mech & Frenzel 1971; Haber 1977; Fritts & Mech 1981; 

Liberg et al. 2012a). Spatial and temporal dissociation from the primary social unit is an 

essential factor for dispersal (Bekoff 1977; Harris & White 1992; Isbell & Van Vuren 1996). 

Individuals with low fidelity to their social group develop weakened social bonds and are likely 

to leave their natal territory first (Bekoff 1977; Fuller 1989; Gese, Ruff & Crabtree 1996). 

In the Scandinavian wolf population, where predominantly the latest cohort of moose calves is 

the main prey year round (Sand et al. 2008; Zimmermann et al. 2015), the largest recorded 

pack size is 11 individuals, with an average of 5.7 individuals per pack during winter 

(Supplementary, S3), and an average litter size of 4.8 pups counted, at the den site approx. 3 

weeks after birth  (Chapron et al. 2016). Compared to the review by Fuller, Mech and Cochrane 

(2003) on pack size across wolf-moose systems, the Scandinavian mean and maximum pack 

sizes are substantially smaller. Moreover, the studies compiled by Fuller, Mech and Cochrane 

(2003) reported that most packs consisted of more than 50% of adult or yearling wolves, and 

the annual dispersal rate across populations ranged 10-40%, with large variation due to 

irregular dispersal of wolves older than 1 year. Observations in Scandinavia based on long-

term series of GPS data and DNA identification from the National Monitoring Program show 

that packs mainly consist of a breeding pair, the current litter and occasionally yearlings 

(SKANDULV, unpublished data). This indicates high dispersal rates for pups and yearlings in 

Scandinavia, similar to those reported by Gese and Mech (1991); Kojola et al. (2006), were 

most wolves dispersed at 11-12 months of age. 
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Although the wolf is one of the most studied species worldwide (Amori & Gippoliti 2000; 

Brooke et al. 2014; Zimmermann 2014), social behaviour studied simultaneously of several 

individuals within the same pack are still rare (Miller 2012; Barber-Meyer & Mech 2015). 

However, advances in global positioning system (GPS) technology have given unique 

opportunities for following rare, wide-ranging and elusive species (Cagnacci et al. 2010). 

Pioneering studies on social cohesion in wild wolves have recently emerged indicating that 

wolf pack cohesion is flexible in summer and strong during winter (Metz et al. 2011; Barber-

Meyer & Mech 2015; Benson & Patterson 2015). This casts doubts on the common views that 

wolf packs operate as a synchronous unit with strong social cohesion.   

In this study, by examining simultaneous paired inter-individual distances between wolves 

(hereafter used synonymously with cohesion). I aim to quantify the timing of pack dissolution 

events i.e. extraterritorial movements and dispersal by pups from their natal territories, as well 

as cohesion among pack members using 14 years of unique long-term GPS data from the 

transborder recolonizing Scandinavian wolf population. 

Predictions 

 

I predict that P1) most pups disperse solitarily before 14 months of age and that P2) dispersal 

coincides with the birth of the subsequent litter in association with social competition and 

parental priority. Since dispersal is regarded as a solitary departure from the natal territory, I 

predict that P3) extraterritorial movements occur primarily as a solitary pre-dispersal phase, 

before the birth of the new litter. Moreover, I predict that P4) the breeding pair cohesion is 

predominantly strong, with the pair moving together most of the time except during and after 

the time of birth to the new litter. Since I expect most pups to disperse solitarily within their 

first year, I predict P5) the highest parent-pup cohesion in early winter, with gradually 

increasing independence and decreasing cohesion towards the time of dispersal. Since pups are 

competitors of a common resource provided by the parents, it would be beneficial for pups to 

associate more with their parents than with litter siblings. Lastly, I therefore predict P6) a 

gradual increase in pup-sibling cohesion, but lower pup-sibling cohesion than parent-pup 

cohesion. 
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2 Methods 

 

2.1 Study area 
 

The study was conducted in the core breeding area of the Scandinavian wolf population in the 

south-central parts of the Scandinavian Peninsula, a trans-boundary area including Sweden and 

Norway (59º - 62 ºN, 11º - 19 ºE; Figure 1). The landscape is dominated by boreal coniferous 

forest of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) interspersed with bogs, 

lakes and deciduous trees of birch (Betula pendula and B. pubescens), aspen (Populus tremula), 

alder (Alnus incana and A. glutinosa), willow (Salix spp.) and rowan (Sorbus aucuparia). 

Extensive forestry practices have generated a vast network of forest gravel roads encompassing 

the whole region with a density of 0.88 km/km2 inside wolf territories (Sand et al. 2008; 

Zimmermann et al. 2014). Public paved road density is approximately four times lower than 

the density of gravel roads (Zimmermann et al. 2014; Milleret et al. 2017). The climate is 

intercontinental, characterized by cold and dry winters, with 3-6 months of snow cover, mainly 

between November and April (Zimmermann et al. 2015; Milleret et al. 2017). While the 

average human density in Scandinavia is 16 inhabitants per km2, it is <1 habitant pr. km2 in 

vast areas within the wolf population breeding range (Wabakken et al. 2001; Mattisson et al. 

2013). House density within the wolf territories is on average 3 pr. km2, and urbanized and 

agricultural land covers < 5% of the study area (Zimmermann et al. 2014; Milleret et al. 2017). 

Moose (Alces alces) is the main prey species for wolves in Scandinavia, and densities are 

relatively high (average 1-3 per km 2; range 0.7 – 3.3, Zimmermann et al. 2014). Smaller cervid 

species such as red deer (Cervus elaphus), roe deer (Capreolus capreolus), and fallow deer 

(Dama dama) are available at low to intermediate densities in restricted parts of the area 

(Zimmermann et al. 2015). The majority of cervid populations undertake seasonal migrations 

annually imposed by temperature and snow depth (Gundersen 2003; Bischof et al. 2012). In 

winter, generally from November onwards, moose migrate towards valley bottoms and forested 

lowlands to avoid increasing snow depths and subsequent feeding constraints (Gundersen, 

Andreassen & Storaas 2004; Storaas et al. 2005). This results in a heterogeneous, patchily 

aggregated distribution of moose during most of the winter period. The spring migration starts 

in April to May, and the moose ascend to summer habitats at higher altitudes (Gundersen 2003). 

The recolonizing Scandinavian wolf population was founded by two long-dispersing wolves 

from the Finnish-Russian source population in the late 1970s. The functionally isolated 

Scandinavian wolf population suffers severe inbreeding depression (Wabakken et al. 2001; 
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Vilà et al. 2003; Liberg et al. 2005), but see Åkesson et al. (2016). In 2017-2018 the 

Scandinavian wolf population counted 41 family groups and was estimated to 410 (95% CI 

324-533) individuals (Wabakken et al. 2018). The population distribution is managed in a 

geographically differentiated management zone trans-bordering Norway and Sweden, with a 

low, non-saturated wolf density and mostly large territory sizes (Wabakken et al. 2001; 

Mattisson et al. 2013; Chapron et al. 2014).  

2.2 Study animals 
 

Wolves were captured with a CO2-powered dart gun from a helicopter and equipped with GPS 

neck collars (Simplex TM ; Televilt / Followit Positioning AB, Lindesberg, Sweden or GPS – 

plus ; Vectronic Aerospace, Berlin, Germany) following detailed, standardized biomedical 

procedures for animal anaesthesia and handling techniques (Arnemo, Ahlqvist & Segerström 

2004; Arnemo & Evans 2017) described in detail in Sand et al. (2006); Eriksen et al. (2011). 

All captures were approved by the Norwegian Animal Research Authority (FSA), the 

Norwegian Food Safety Authority, the Norwegian Environmental Agency and the Swedish 

Committee of Animal Welfare. In this study, a total of 59 wolf captures were conducted, on 51 

unique individuals over a 15-year period from 2002 to 2017 (Supplementary Table S1).  

During captures all individuals were aged based on reproductive development, tooth wear, and 

epiphyseal growth zones according to Von Pfeil and DeCamp (2009). I experienced however 

that morphological and demographic parameters provided from captures were not always 

correct, and age based on tooth wear was sometimes overestimated, similar to the findings by 

Gipson et al. (2000). I therefore used the data on DNA provided by the wolf monitoring 

program (ROVBASE 2018) i.e., the first time an individual was detected in its natal territory 

to enhance the accuracy of age determination of the marked individuals, and validated this with 

the DNA obtained at captures and/-or from den survey samples on 3-4-weeks-old neonatal wolf 

pups (H. Sand et.al. unpublished data). Hence, I was able to reveal full-kinship and specify the 

age of all offspring, i.e., pups of the year, and yearlings (Supplement Table S1).  

2.3 Identifying wolf territories, natality, extraterritorial and dispersal movements 
 

Scandinavian wolf territories have an average size of approximately 1000 km2, and to calculate 

sufficiently accurate territory boundaries, a minimum of nine months of position data with > 5 

positions in each month is needed (Mattisson et al. 2013) (Supplementary Table S2). I therefore 

defined the study period for territory years from movements by the resident breeding adult or 
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pair from 1 October to 30 September of each year, using the 100% minimum convex polygon 

(MCP) method (Mohr 1947) in ArcGIS, ArcMap 10.5.1 (ESRI 2017) to create annual wolf 

territories. I only retained wolf territories that met requirements by Mattisson et al. (2013). 

I used data from n = 14 territory years with ≥2 simultaneously marked wolves to determine 

movement classes (Supplementary, Table S1). For each territory year I plotted all positions for 

a given offspring and defined all pup positions within the territory as natal movements. 

Moreover, I defined extraterritorial pup movements as a sequence of positions outside the 

territory boundaries, followed by ≥1 subsequent position inside the territory boundaries. When 

pups stayed close to the territory borders, many positions were seemingly outside the territory, 

resulting in a disproportionally large amount of short extraterritorial movements. This may be 

influenced by several factors such as points of interests in close vicinity to territory boundaries, 

e.g. carcass remains (Figure 1B), methodological errors such as missing GPS positions from 

the adults, small delays in positioning or inaccurate positioning. To account for this, I extended 

the territory borders with a buffer whose width was derived from the adults’ movement 

behavior. I calculated the distances between all consecutive 4-hourly positions of the breeder 

wolves and divided this number by two, i.e. estimating the distance the adult breeder could 

reach outside their MCP-defined territory boundary, but still be able to return inside territory 

boundary before next position was acquired. Due to the right-skewed distribution of this 

parameter, I conservatively chose the 75% inter-quantile, instead of the mean, as an additional 

unique buffer for each territory (Supplementary Table S2). Hence, I reclassified pup movement 

within the buffer as natal movement. I defined dispersal as a sequence of positions outside the 

territory boundaries with no subsequent position within the territory or buffer. Thus, I used the 

first position outside the territory buffer from the dispersal trajectory to classify the timing of 

dispersal. If the pup remained in the territory after 1 July i.e.  >14 months of age, as yearlings 

they were classified as philopatric.  
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Figure 1.  A) Minimum convex polygon (MCP) in white with black outlines of the 14 territory years in 

Norway (left) and Sweden (right) where minimum one adult breeder individual and ≥ 1 pups were 

equipped with GPS neck collars in the same year. Asterix (*) represents the example territory Julussa 

2014 in figure B), the dashed black line indicates the additional territory buffer around the MCP 

extracted from adult breeder individuals’ movement distances. The black lines with dots and arrow 

head show the dispersal trajectories of two male pups: both emigrated to Sweden where one was culled 

during dispersal (M1406) while the other settled across the Finnish-Russian border (M1408). The black 

line without arrow head shows the extraterritorial trajectory of a philopatric sibling female (M1407) 

in the following spring. She later settled in the eastern-most area of Figure 1B and gave birth to pups 

before she and her partner were confirmed illegally shot in 2017/18. Hollow circles show positions of 

all three pups while in the natal territory. The partitioned square in the bottom right corner magnifies 

the pup positions along the north-western territory border and within the additional buffer-zone. Black 

crosses are confirmed wolf-killed moose (n=3 approx. nine-month-old moose calves and n=1 yearling 

male moose, 27.03.14 – 19.04.14) (Nordli & Rogstad 2016).  

2.4 Extracting intra-territory inter-individual spatial relationships 

 

I paired all individuals with all their marked pack members and standardized positions into 4-

hourly positioning intervals. This provided six regular positions per day at 03:00, 07:00, 11:00, 

15:00, 19:00, 23:00 (GMT). Furthermore, I derived positions from the position schedule with 

≤ 5 minutes deviation, similar to Benson and Patterson (2015), to extract positions acquired 

simultaneously (Figure 2B). I calculated the Euclidean distance between simultaneous 

positions from adult breeders, pup to adult breeder, and pup to pup. Since I had data from only 

2 marked yearlings I removed them from the analyses. Preliminary analyses showed that the 

A B 
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adult breeding pair almost exclusively traveled together during winter. Therefore, I could use 

data of one adult breeder as a proxy for both adult breeders, allowing me to include territory 

years where only one adult breeder had a functioning GPS-collar. To avoid pseudoreplication 

(Hurlbert 1984) in the analyses of pup-adult cohesion, I randomly selected one of the adults in 

cases where both adult breeders had a functioning collar. Moreover, since captures may have 

a disruptive influence on the wolves’ movement patterns (Teräväinen 2016), I excluded 

positions that potentially may have been affected by the captures. To find an adequate time 

threshold after capture for positions to be included, I calculated all inter-individual distances 

of the adult breeding pair and employed a capture-effect matrix on days after capture after any 

capture event on the adult breeding pair inter-individual distance in a given territory year. This 

led me to exclude all positions of all collared pack members by one week (7 days) after capture 

event of any pack member (Figure 2A, Supplementary, Figure S4).  

 

Figure 2.  A) The distance between adult breeding pairs in relation to days after capture event on all 

capture efforts in a specific territory. The leftmost shaded grey area with vertical dashed line 

demonstrates the range of days after capture removed from all subsequent analysis. Black dots 

represent observed means, and error bars are ±2 SE. B) The distance between adult breeder pairs in 

relation to delay in minutes between position fixation, the solid black line from a simple linear 

regression expose the bias in the distance relative to the deviation between each pair position fixation. 

2.5 Changepoint analyses on time of reproduction 

 

I used the software R (R Development Core Team 2017) with the integrated development 

environment R-Studio (RStudio Team 2016) for all statistical analyses. Wolves generally give 

birth from late April to early May (Jordan, Shelton & Allen 1967), with the lowest daily 
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movement distances around the time of birth and nurturing of neonatal pups (Boyd et al. 1993; 

Jedrzejewski et al. 2001; Eggermann et al. 2009). Detailed GPS data allowed me to quantify 

the timing of these demographic events specific to my study animals. Thus, I estimated the 

time of birth and mating season by extracting the four-hourly positions for each adult breeder 

from 1th April to 1st June to reflect the range of possible birth dates. However, during the time 

of denning both the breeding female and male were prone to failed position fixation <30%, 

likely due to satellite coverage and terrain ruggedness near the den site area, as previously 

reported for wolverine (Gulo gulo) and lynx (Lynx lynx) in Scandinavia (Mattisson et al. 2010). 

I calculated the daily number of positions each animal should have aquired according to the 

positioning schedule settings from the GPS collar. I quantified the number of unsuccessful 

positions and calculated the Euclidian distance for consecutive series of successful positions 

for each individual to reflect straight-line movement. I applied a pruned exact linear time 

(PELT) algorithm in both mean and variance with MBIC penalty on 95% CI from the R 

package ‘changepoint’ to detect whether, and when, a change had occurred (Killick & Eckley 

2014). Hence, I used the function cpt.meanvar and specified the segment length for change in 

mean and variance to be at least 72 hours. Consequently, each segmentation length was 

adjusted in relation to the amount of average successful positions acquired over the period for 

each individual independently (Table 2). The average kill-rate by wolves on moose calves has 

been reported to 1.42 days (1.26-1.73) in Scandinavia during summer (Sand et al. 2008), and 

3.6 - 4 days in winter (Sand et al. 2005) with time spent at moose carcasses ranging from 1-57 

hours (Zimmermann et al. 2007). Even though wolves have been shown to have drastically 

reduced movement in close vicinity to fresh moose carcasses (Kuzyk, Rohner & Schmiegelow 

2005), I considered a 72-hour minimum segmentation as sufficiently broad to segregate 

between predation events, kill site visits, and day beds versus seasonal variation linked to 

potential reproductive events. All change point analyses were conducted with the freedom of 

infinite changes to be able to derive change point lengths. I assessed autocorrelation by the 

autoregressive function ACF for each individual separately. I detected no autocorrelation in the 

full model set, with a few exceptions for n = 3 individuals with minor auto-correlated lags in 

post change periods. Moreover, to evaluate normality and residuals in model fit, I applied the 

Shapiro-Wilk normality test and One-sample Kolmorgov-Smirnov test for each segment of 

change, if any, independently. The Shapiro-Wilk normality test indicated that my response was 

not normally distributed. Thus, I reapplied the PELT algorithm with a Gamma distribution for 

improved fit and reevaluated the residuals for each model. Lastly, I pooled all estimated change 

points and extracted the earliest and latest date of change detected and established the total 



17 
 

range as the birth period for wolves in this study. Furthermore, since the gestation period of 

wolves ranges from 61-64 days (Pulliainen 1965; Mech 1970; Packard 2003) I subtracted 64 

days from the earliest and latest birth range date to establish the period of mating for the wolves 

in this study. 

2.6 Generalized Additive Mixed Model 

 

I wanted to model pack cohesion (i.e., the distances between individuals) through the course 

of winter until the beginning of summer to test whether the cohesion was significantly different 

between pups, adult breeding pairs, and pups to adult breeders. I followed the framework 

provided by Zuur, Ieno and Elphick (2010); Zuur and Ieno (2016) for data exploration and 

regression type analysis. Prior to the analysis I removed <0.5 % of positions that were either 

considered improbable or completely impossible movements. Already in the data exploration 

phase, it was apparent that the response would appear to fit a non-linear function over time. 

Therefore, I explored the utilities in the statistical software of R (R Development Core Team 

2017) to compute time series analysis in GAMs (generalized additive models) implemented in 

the R package ‘mgcv.’ (Wood 2017). GAMs are a nonlinear regression type analysis relating 

a univariate response y to one or more predictor variables xi, and compared to an ordinary linear 

model the predictors in GAMs are replaced with several flexible non-linear smooth functions 

si to capture the non-linearity in the data (Wood 2017). I evaluated various smoother functions 

(e.g., adaptive smoother, cubic regression smoothers, and thin plate regression splines) but 

could only detect minor to no differences in smoother outcome in relation to data points, 

therefore I applied a default thin plate regression spline for all smoother products (Wood 2003). 

Since I did not want my estimates to be influenced by the certainty of adult pair’s MCP 

boundaries, I selected both natal and extraterritorial positions for the analysis. I used the R 

package ‘itsadug’ in the foreground of ‘mgcv’ to handle the sensitivity of temporal 

autocorrelation, and to order reference levels for appropriate predictor variables (van Rij et al. 

2016). Due to the extended time it took to run the analysis on this comprehensive dataset, I 

used the function bam in the ‘mgcv’ package allowing sub-blocks of model matrices to be 

computed at the time, facilitating modeling complexities with datasets of tens of thousands of 

observations (Wood, Goude & Shaw 2015). Since the response was heavily tailed and unevenly 

distributed, I applied a Scaled T distribution (SCAT) for best response fit, specifically 

accounting for heavy-tailed data points, leaving me with the framework of discretized bam 

models and fREML scores (Wood 2017). Evident in the evaluation of model fit I detected rigid 

heterogeneity of variance, thus independence problems. Therefore, I used paired wolf_ID as a 
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random factor. The desired random structure was determined on the random variable based on 

a set of candidate models containing distance/cohesion (y) in relation to time (x1). I compared 

the structures of random intercept and slope, versus the optional random factor smooth 

interaction with the fs function supplied by the m=1 argument from the ‘mgcv’ package, for 

appropriate smoother penalty on paired wolf_ID for each null space, consequently causing 

pertinent shrinkage to the mean (van Rij et al. 2016). Furthermore, I compared these random 

structures with the Akaike`s information criterion (AIC) (Akaike 1998; Burnham & Anderson 

2003) and favored the model with lowest AIC. I selected the random factor smoother 

interaction structure, fs, as a fully random effect, exceeding the closest candidate structure 

containing random intercept and slope by a ΔAIC value of 1003.8. When using penalized 

regression smoothers, determining adequate k is essential, i.e., the number of knots specified 

for each parameter basis dimension. I selected basis dimensions of k by evaluating each term’s 

effective degrees of freedom from the model fREML computation and compared this to the k-

1 index score for each specified basis dimension of k with the gam.check function from ‘mgcv’. 

Furthermore, when k for each smoother term was considered adequate, I extracted deviance 

residuals from the model fit and fitted a single smooth for each term to model residuals with 

substantially increased k to informally test whether an increased k could explain the remaining 

residual pattern for each term. Setting k, sufficiently large is particularly important to reflect 

the underlying non-linear nature of the data, while simultaneously keeping k reasonably small 

for computational efficiency (Wood 2017). After running the model, residuals were examined 

for autocorrelation, and I found the data to be heavily autocorrelated. To account for residual 

autocorrelation, I refitted the model with AR1 model structure, specified with the rho parameter 

on the second lag to rationalize the degree of residuals in the current data point dictated by the 

residuals in the previous data point. GAMMs (Generalized additive mixed models) including 

ordered factor terms were fitted with an additional intercept and a smooth term. Since ordered 

factor smoothers are centered on zero, an intercept difference and a reference smoother are 

required for the ordered-fixed-effect to obtain necessary flexibility, and to fit overall 

differences without encountering centering constraints between the reference levels.  

To test the prediction of whether cohesion over time for adult breeding pairs (AA), pups to 

adult breeders  (PA) and pups to pups (PP) was significantly different from each other, I ordered 

factors with adult breeding pair (AA) cohesion as a reference level for pup to adult breeder 

(PA) and for pup-to-pup cohesion (PP), and lastly with pup to pup (PP) as a reference level for 

pup to adult breeder (PA). Since GAMMs are simply penalized GLMMs (generalized linear 
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mixed models), I validated the final model under similar principles (Zuur et al. 2009; Wood 

2017). I did this by plotting the scaled residuals from the model against the predictor and the 

fitted values. Hence, I also plotted each smooth term with overlaid residuals. Finally, I applied 

the gam.check function from ‘mgcv’, for the default diagnostic residual plots and final model 

convergence information. All model predictions were extracted by the functions 

get_predictions and get_difference in the package ‘itsadug’ and calculated with simultaneous 

instead of pointwise CI, to reflect appropriate uncertainty estimation in each smoothness 

parameter over time, similar to Bayesian credible intervals (Simpson 2016; van Rij et al. 2016). 

All plots were generated using the R package ‘ggplot2’ (Wickham 2016) together with 

dependencies from the packages ‘grid’ (R Development Core Team 2017) and ‘png’ (Urbanek 

2013). Combined plot panels were made with ‘ggplot2’ through the package ‘cowplot’ (Wilke 

2017). 

Table 1. Fixed and random factors used to model pack cohesion 

Name Description Structure Prediction Data Source 

OFStatus 

Pup to adult breeder, pup to pup, adult 

breeder to adult breeder. 

Categorical, 

ordered factor P4-6 

Collar 

fix/GSM/store on 

board 

Time  

Day in the year from 1st January to 1st 

July 

Continuous, 

numeric P4-6 

Collar 

fix/GSM/store on 

board 

PairedWolfID  Paired inter-individual distance ID 

Categorical 

(Random factor) P4-6 

Capture protocols/ 

Rovbase 3.0  

     

 

3 Results  

 

3.1 PELT algorithm changepoints on reproduction 

 

Time of reproduction was determined for all territory years with data series available from 1st 

April to 1st June (n = 12 out of 14). I always detected a changepoint for breeding females (n = 

10; Table 2), but not always for males (n = 6 out of 9; Table 2). However, for all males that 

failed to produce a reliable change point, I always had the breeding female change point 

available. Whenever I could detect change points for both female and male in the same territory 

and year (n = 4), the two change points where ≤ 28 hours apart (Table 2, Figure 3). The time 

of reproduction ranged from 22nd April to 12th May, with a median of 2nd May. Moreover, the 

mating season ranged from February 17th to March 9th, with a median of 27th February. 
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Table 2.  PELT algorithm change points in mean and variance with 95% CI indicating a change in 

movement for adult breeder males (M) and females (F), corresponding to each territory and year. The 

minimum segment length inquires a change that is consistent over a minimum of 72 hours by employing 

an average number of successful positions per day for each individual. Changepoint date denotes the 

date when the change in mean and variance became significantly different before and after point of 

change. Changepoint length denotes the duration of consistent change in days. Numbers in bold in top 

and bottom indicates the range of changepoint dates (estimated birthing period). The territory years 

Kynna (2007) and Rotna (2012) (Supplementary, Table S1) where omitted from these analyses due to 

missing data after mid-april. 

Territory  Year Sex 
Avg. # positions 

per day 
Min. seg. length  Changepoint date Changepoint length 

Graafjell 2003 M 3 9 12.05 9 days 

Graafjell 2003 F 4 12 12.05 9 days 

Graafjell 2004 M 3 9 12.05 4 days 

Ulriksberg 2004 F 2 6 4.05 > 4 days * 

Gressmark 2006 F 4 12 25.04 7 days 

Galven 2009 M 3 9 6.05 4 days 

Galven 2009 F 4 12 7.05 9 days 

Fulufjellet 2009 F 6 18 25.04 8 days 

Fulufjellet 2010 F 6 18 26.04 4 days 

Fulufjellet 2010 M 6 18 N/A N/A 

Tandsjo 2014 F 3 9 26.04 4 days 

Tandsjo 2014 M 3 9 28.04 4 days 

Rotna 2011 F 2 6 9.05 7 days 

Rotna 2011 M 5 15 N/A N/A 

Julussa 2014 F 4 12 12.05 7 days 

Julussa 2014 M 3 9 11.05 4 days 

Slettaas 2017 F 5 15 26.04 7 days 

Slettaas 2017 M 5 15 N/A N/A 

Osdalen 2017 M 4 12 22.04 6 days 

* Insufficient data-series length to detect post change 
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Figure 3.  95 % CI PELT algorithm changepoints exemplified by the movement in vertical lines by A) 

the adult breeding female and B) the adult breeding male in Graafjell 2003. Solid horizontal bold 

segments indicate the mean and variance in the movement rates before and after the changed sequence, 

while dashed bold segments indicate the date of that change (12th May), and the length of the change 

in mean and variance consistent over time. 

3.2 Cumulative dispersal and movement classes 

 

For 29 of the 30 GPS-collared pups belonging to 14 territory years I was able to determine if 

the pup dispersed or remained philopatric. The GPS-collar of 2 pups malfunctioned, but DNA 

monitoring could confirm that at least one of them remained in the natal territory as philopatric. 

The earliest date of dispersal was 9th of February, and by the first week of May 50% of all 

dispersing pups had dispersed. Moreover, by the first week of July, all 22 dispersing pups (76% 

of all 29 pups) had permanently left their natal territory (Figure 4A). None of the radio-collared 

siblings dispersed together or along the same trajectory. The remaining pups (n = 7, 24 %) 

stayed philopatric at least to the upcoming winter (Figure 4A).  

I had access to 22058 positions of the pups in the time period 1st January to 1st July. Of those, 

13058 positions were classified as natal movements, 8176 as dispersal movements and   824 

as extraterritorial movements. The proportion of natal positions decreased and inversely the 

proportion of dispersal positions increased over time (Figure 4 B-C). The number of 

extraterritorial positions rapidly increased in the middle of March through April and peaked in 

the beginning of May, in week 18 (Figure 4 B-C). Among all 22 dispersing pups, 12 (54%) 

conducted extraterritorial movements prior to dispersal. None of these extraterritorial 



22 
 

trajectories were done together with a radio-collared sibling. The radio-collared philopatric 

pups did not do any extraterritorial movements (Figure 4B-C).  

 

Figure 4. A) Cumulative dispersal for 29 pups in 14 territory years in relation to week number and 

month. The dashed grey line (y = 76%) displays the time when all dispersing pups (DI, n = 22) had 

permanently left their natal territory before 14 months of age. Philopatric pups  (PH, n = 7)  that stayed 

for a minimum another year made up 24 % indicated above the grey dashed line. B) Weekly proportion 

of natal, extraterritorial, and dispersal GPS-positions of all the 29 pups relative to the number of 

positions in each category per week. C) Weekly proportion of natal, extraterritorial, and dispersal 

positions of all the 29 pups relative to the total amount of all positions per week. Dashed vertical lines 

indicate the range of birth dates from the PELT algorithm changepoint analyses, including the 

subracted gestation period of 64 days and mating period. 
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3.3 Generalized additive mixed model on pack cohesion 

 

A total of 20285 simultanous positions was extracted from n = 65 paired inter-indivdual 

distances (AA, n = 9; PA, n= 30; PP,  n =26). The adult breeding pair moved almost exclusively 

together, with a median distance of 26.5 meters. The only time when distance between the 

breeding female and male was significantly different from zero was during and after the time 

of birth (Figure 5 A-B; Table 3). Distance between pups and adult breeders was significantly 

different from zero in late February, and decreased gradually throughout the winter months 

(Figure5A; Table 3). Pup to adult breeder distance peaked during early May. Distance between 

pups significantly differed from zero in mid-late February, with a progressive increase similar 

to distances between pups and adult breeders (Figure5B; Table 3). However, from late June 

onwards, pup distance was no longer significantly different from zero (Figure 5B; Table 3) 

Table 3. Model summary from the ordered factor cohesion model (GAMM) on inter-individual 

distances between the adult breeders AA, pup and adult breeders PA, and pairs of pups PP, with 

adjusted reference levels and interaction term on time. OFstatus indicates the reference level.   

A: Parametric coefficients Estimate Std.error t-value p-value 

Intercept 1594 1112 1.434 0.151651 

OFstatusPA 6524 1726 3.78 <0.0001 

OFstatusPP 7440 2242 3.318 <0.0001 

B: Approximate smooth terms edf Ref.df F p-value 

s(time) 1.001 1.001 0.135 0.7137 

s(time):OFstatusPA 4.475 5.214 2.631 0.0207 

s(time):OFstatusPP 4.697 5.447 2.643 0.0187 

s(time,ID) 237.328 518 5.362 <0.0001 

R-sq(adj) = 0.418, deviance explained = 44.7%, fREML 21807.75. 

 



24 
 

 

Figure 5. The predicted relationship from GAMM models on A, B) adult breeder distances (AA, n = 9) 

in dark grey A) adult breeder to pup distances (PA, n = 30) in light grey, and B) pup to pup distances 

(PP, n = 26) in light grey in relation to time displayed as months and week numbers. The solid lines 

are predicted means over time, and the shaded grey areas are the 95% simultaneous CI. Dashed vertical 

lines indicate the range of birth dates from the PELT algorithm changepoint analyses, including the 

subtracted gestation period of 64 days and mating period. 

By ordering the adult pairs’ distance (AA) to the reference level I found that both pups to adults 

(PA), and pups to pups (PP) distances became significantly different from each other during 

the mating season and this effect lasted until after the birth of the next litter (Figure 6A-B; 

Table 4) Similarly, adjusting the pup to pup (PP) distance as the ordered reference level to pups 

to adults distance (PA), the predicted mean between adults and pups (PA) was lower compared 

to pup to pup (PP) although I could not detect any period of significant difference (Figure 6C; 

Table 4).  
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Figure 6. The predicted difference from GAMM model on A) pup to adult breeder distance (PA) while 

adult breeding pairs (AA) is set to zero, B) on pup to pup (PP) distance while adult breeding pairs (AA) 

is set to zero, and C) Pup to adult (PA) distance while pup to pup (PP) distance is set to zero. Grey 

shaded areas show the simultaneous 95 % CI, and dark shaded grey areas indicate, if displayed, in 

what time the cohesion is significantly different from its reference cohesion at zero. Dashed vertical 

lines indicate the range of birth dates from the PELT algorithm changepoint analyses, including the 

subtracted gestation period of 64 days and mating period. 
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4 Discussion  

 
I studied the social cohesion of 11 Scandinavian wolf packs over 14 territory years in the period 

January to June by means of movement and cohesion analysis of radio-collared pups and adult 

breeding wolves. Consistent with my first two predictions, the great majority (76%) of the wolf 

pups dispersed at about one year of age, and probably all of them dispersed solitarily, or at least 

not together with any of the other GPS-collared pups. The largest proportion of dispersal 

coincided with the birth of the subsequent litter. In accordance with prediction 3), pups that 

dispersed by the time they were 14 months old, approx. half did extraterritorial movements 

before dispersal, but never together with any of the radio-collared siblings. No philopatric pups 

however did show such explorative behaviour in the same period. My initial predictions 4) and 

5) about pack cohesion were also supported, with the adult breeders moving together almost 

all the time, except of the time during and after birth, while pups gradually weakened the 

cohesion to the breeding adults and their siblings throughout the period. Philopatric pups 

however mostly joined up with the adult breeders after birth of their new siblings, and mean 

inter-individual distance between yearlings and adults was not significant different in June. My 

last prediction 6) was not fully supported: Mean inter-individual distance between siblings was 

slightly higher than between pups and parents, but this difference was not significant. 

To my knowledge, no other study has quantified, with a sufficient sample how pack cohesion 

varies over time and among pack members. Nevertheless, to the extent that they are 

comparable, my findings on cohesion are consistent with earlier pioneer studies on the field 

(Peterson, Woolington & Bailey 1984; Fuller 1989; Metz et al. 2011; Barber-Meyer & Mech 

2015; Benson & Patterson 2015). In the following, I discuss the observed ebbing cohesion 

along the time line from mid-winter to the end of June, from strong pack bonds to dispersal or 

the decision to stay within the natal territory by philopatry.  

Cohesion was strongest in early parts of the winter. In this time period, loose snow is 

accumulating. It may therefore be advantageous for pups to stay with the pack and move single-

filed behind their parents and siblings through deep snow, making their movements more 

energy-efficient (Mech 1970). Pups and young wolves are not considered successful predators, 

at least not on large and potentially dangerous prey such as moose (Mech & Peterson 2003; 

Sand et al. 2006; Barber-Meyer et al. 2016). Keeping together with the family will therefore 

increase the access to food for each family member by apportioning the food surplus from a 

large carcass among kin, instead of facilitating inter-specific competition (Vucetich, Peterson 
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& Waite 2004; Ordiz et al. 2015; Nordli & Rogstad 2016). Even though the difference was not 

significant, pups seemed to associate more with their parents than with their littermates as 

hypothesized by Barber-Meyer and Mech (2015). Perhaps the most natural explanation, also 

shown in other social group living species, is that the next to kin can also be the closest 

competitor (West, Pen & Griffin 2002; Smith 2014). Hence, associating more with the parents 

than with other litter mates may increase foraging opportunities and simultaneously avoid 

limits of social competition (Fox 1972; Zimmermann et al. 2007).  

Death of one or both parents before or during early winter may affect the movement behavior 

of pups that are left alone in the natal territory (Ballard & Stephenson 1982; Brainerd et al. 

2008). Inexperienced pups may therefore approach roads and inhabited houses in search for 

leftovers to remedy the hunger after the loss of a breadwinner. A anecdotal observations while 

writing this study, were the numerous visits during broad daylight of two wolf pups of the 

Julussa-pack that had recently lost their mother, foraging at my compost heap and birdfeeder 

over a 3-months period during early winter 2016-17 (Supplementary, Figure S5). 

The mating season was likely an important trigger for the ebbing cohesion of the pups to their 

parents and other siblings. At this time hormonally controlled social aggression and 

hierarchical dominance within the wolf pack is most pronounced (Rabb, Woolpy & Ginsburg 

1967; Zimen 1976; Sands & Creel 2004). Reproductive development (puberty) can also be a 

trigger of dispersal (Howard 1960; Mech & Boitani 2003) and pre-dispersal disruption from 

the pack bonds. A support for this is the increasing occurrence of extraterritorial movements 

from mating to mid-birth for more than half of the dispersing pups, while none of the 

philopatric pups did so.  

When the winter is on retreat, the snow is more compact caused by alternating diurnal processes 

of melting and freezing, and both pups and parents can begin to move more independently  

from each other without wasting too much energy (Mech & Peterson 2003). The pups may 

continue to exploit the food surplus made available by the parents, but now they will also utilize 

old carcasses or other food sources such as bait sites, offal from hunting, and vehicle- or winter-

killed ungulates emerging from the melting snow (Forbes & Theberge 1996; Metz et al. 2012; 

Zimmermann et al. 2015; Zimmermann et al. 2017). Benefits from solitary foraging increases 

by the supply of smaller and medium-sized prey that in turn are easier and less hazardous to 

catch than almost full-grown moose (Sand et al. 2008; Barber-Meyer et al. 2016). For the pups, 

this means that the potential prey menu is considerably wider.  
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The adult breeders moved largely together, and the only time the distance between the male 

and female was significantly different from zero was during the time of birth. As shown in 

numerous studies (Okarma et al. 1998; Mech 2000; Merrill & Mech 2003), at this point the 

male radiates back and forth from the den while the female nurses the neonate pups (Boyd et 

al. 1993; Jedrzejewski et al. 2001; Potvin, Peterson & Vucetich 2004; Demma & Mech 2009; 

Tsunoda et al. 2009). Parental priority is now given to the new pups  (Packard, Mech & Seal 

1983). At the same time, the parents switch from predominantly killing one-year-old to neonate 

moose calves (Sand et al. 2008), which in turn decreases social foraging opportunities of 

sharing available biomass surplus among former and current pups. For now, one-year-old, 

formerly pups, this leads to less attention and food surplus to retrieve from the parents, or to be 

shared between the nearly twofold sibling group. This may explain why the greatest rate of 

dispersal occurred during this period, with a sudden increase of the proportion of dispersed 

animals from 25% to 63%. The fact that the pups did not only increase mean individual distance 

to the parents, but also to their siblings, indicates that the pups become ever more solitary 

before dispersal.  

By June, most pups had dispersed, and by that time, the mean inter-individual distance of pup 

to parents and siblings was no longer significantly different from zero. This may well be a 

result of the relatively small sample size of pups, which remained beyond as philopatric 

yearlings (n= 7). It could also indicate stronger social bonds of philopatric pups compared to 

their dispersing siblings. This explanation is supported by the fact that philopatric pups and 

yearlings did not go for extraterritorial forays. Unfortunately, the small sample size of 

philopatric pups did not allow for a comparison of the cohesion patterns of dispersing and 

philopatric pups. 

The observed ebbing pack cohesion already before pups were one year old, and the successive 

dispersal matches some previous studies on wolf dispersal where the largest proportion of the 

pups left their natal territory 11-12 months of age (Gese & Mech 1991; Kojola et al. 2006). In 

the review by Fuller, Mech and Cochrane (2003) age specific dispersal rates for pups across 

populations range from 10-35%. The dispersal rate of 50% found in my study is therefore an 

order of magnitude higher than earlier reported. Because dispersal is regarded as a solitary 

expedition into an unknown landscape in search for own opportunities for establishment (Fritts 

& Mech 1981), it is not inconceivable that dispersing individuals prior to dispersal already have 

become relatively independent from the rest of the family group. 
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Management implications 

 

In strong contrast to the common belief that members of a wolf pack allegedly operate as a 

strictly synchronized unit, the wolf packs in our study displayed an ebbing cohesion of pups to 

their parents and siblings. This can lead to situations where wolf tracks from the same pack can 

be observed simultaneously in different parts of a wolf territory, giving rise to suspicion that 

wolf counts are widely underestimated, and/or that several wolf packs are occupying a given 

area. In fact, assessing pack size is challenged by the weakened pair bonds, my findings 

supports the annual monitoring of the wolf population to early parts of winter, when the chance 

that the pack travels together is higher than later in winter.  

To regulate the wolf population, culling of entire packs by license hunt has been implemented 

in Scandinavia. It may be advantageous to do such culling during mid-winter before mating, 

while the pack still travels together for most of the time. This would increase efficiency and 

minimize the risk of 1) surviving pups in the transition of becoming independent, 2) pregnant 

females being left alone in the territory, and or 3) accidental culling of non-targeted dispersing 

or extraterritorial young wolves from other packs. 

However, the outcome of hunting attempts can be unpredictable, and my results show that 

parents may sometimes be separated from pups in the natal territory also during early to mid-

winter. If hunting leads to parents being culled, pups left alone in their natal territory will be 

less independent if the hunting happens earlier. It can therefore be argued that culling in late 

winter may also be advantageous for left behind pups. 
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