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How to sustainably feed a growing global population is a question still without an

answer. Particularly farmers, to increase production, tend to apply more fertilizers and

pesticides, a trend especially predominant in developing countries. Another challenge is

that industrialization and other human activities produce pollutants, which accumulate in

soils or aquatic environments, contaminating them. Not only is human well-being at risk,

but also environmental health. Currently, recycling, land-filling, incineration and pyrolysis

are being used to reduce the concentration of toxic pollutants from contaminated sites,

but too have adverse effects on the environment, producing even more resistant and

highly toxic intermediate compounds. Moreover, these methods are expensive, and

are difficult to execute for soil, water, and air decontamination. Alternatively, green

technologies are currently being developed to degrade toxic pollutants. This review

provides an overview of current research on microbial inoculation as a way to either

replace or reduce the use of agrochemicals and clean environments heavily affected

by pollution. Microorganism-based inoculants that enhance nutrient uptake, promote

crop growth, or protect plants from pests and diseases can replace agrochemicals

in food production. Several examples of how biofertilizers and biopesticides enhance

crop production are discussed. Plant roots can be colonized by a variety of favorable

species and genera that promote plant growth. Microbial interventions can also be used

to clean contaminated sites from accumulated pesticides, heavy metals, polyaromatic

hydrocarbons, and other industrial effluents. The potential of and key processes used

by microorganisms for sustainable development and environmental management are

discussed in this review, followed by their future prospects.

Keywords: biopesticides, phytoremediation, pollution, mitigation strategies, soil microbes, sustainability

INTRODUCTION

Population growth and industrialization has put significant pressure on global ecosystems.
Currently, 39% of terrestrial biomes are affected by intensive land use or settlements (Ellis et al.,
2010). Urbanization often takes place on previously cultivated land and to produce more food,
farmers tend to intensify, using agrochemicals that include a variety of structurally different
compounds. This is especially predominant in developing countries (Lichtfouse et al., 2009).
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Fifty years ago, the “green revolution” was launched,
combining high-yielding cultivars, inorganic fertilizers, and
pesticides to foster food production (Shelton et al., 2012).
The impacts were great, albeit, today, to maintain healthy
environments, new technologies need to be applied, including
microbial inoculations (Garcia, 2012). These can either replace
or reduce agrochemicals, and also clean areas heavily affected
by pollution (Finley et al., 2010). Although green revolution and
industrialization generally made human life easier and improved
world’s economy, effluents from industry also affected the health
of soil, water and atmosphere leading to overall environmental
degradation. Heavy metal contamination from industries poses
deleterious effects not only on soil fertility and plant growth but
also a serious serious threat to vulnerable human health (Oves
et al., 2012). The over-use of ecosystems services is also alarming.
While the use of regulating services, such as air quality, erosion
control, and water purification as well as provisioning services,
such as pollination and genetic resources strongly increase,
their conditions steadily decrease (Carpenter et al., 2009). It is
estimated that 22 million hectares of soil are adversely affected by
chemical contamination worldwide, mostly in Europe, but also
in Asia (Bai et al., 2008). The contamination and degradation of
ecosystems by industrial pollutants is an emerging problem in the
twenty-first century. There are a number of approaches, which
can be used, on sustainable basis to meet food requirements
without compromising environmental health. Among these, use
of microbial products is pivotal to ensuring food security in
changing climate (Timmusk et al., 2017). Microbial approaches
can successfully be used for sustainable agricultural development.
These microbes can enhance plant growth by improving
nutrient availability to crop plants through various mechanisms
(Zaidi et al., 2009) thus decrease the dependence on chemical
approaches.

In this review, tradeoffs of the green revolution and potential
uses of microbial inoculation technologies for sustainable
development and environmental management are summarized.
We discussed how microbes can be used as biofertilizers and
biopesticides to reduce our dependence on agrochemicals.
Then the role of microborganisms for bioremediation of
contaminated sites, polyaromatic hydrocarbons, and other
industrial effluents is discussed. Moreover, examples on
successful use of microorganisms for healthier and cleaner
environments without compromising crop productivity and
industrialization have been included in the below sections.
Finally, future prospects of using microbes for decontamination
of pollutants are discussed.

BOON AND BANE OF THE GREEN
REVOLUTION

The demand for food by a rapidly increasing world population
can only be fulfilled through increased crop production, but
while also utilizing available resources in a sustainable way. One
of the outcomes of the green revolution was the development
and use of agrochemicals, which exponentially increased crop
productivity (Jackson-Smith, 2010; Shelton et al., 2012). Today,

agrochemicals still hold a strategic position (Lichtfouse et al.,
2009), but a very high cost has been paid by soil systems and the
environment. Agriculture has turned into a synthetic production
system, dependent upon chemical inputs. This is also the case
in many developing countries (FAO, 2013; Moharana et al.,
2014). It is evident that sustainability and maintenance of soil
productivity cannot be achieved by the use of agrochemicals
alone. McKelvey et al. (2014) found high pesticide contamination
in U.S. cities when non-experts applied pesticides to the
environment non-discriminately. Often, only 0.1% of pesticides
applied to farmlands actually reach their intended targets, the
pests. The remaining 99.9% disperses or persists in the air, water,
and soil, eventually entering our food chain (Aktar et al., 2009).
Pesticide residues have also poisoned pristine environments far
fromwhere they have been used, such as the Arctic, the Antarctic,
the Himalayas and the Great Barrier Reef as reviewed by Mullin
et al. (2015). It is more challenging in developing countries,
where large populations live in close proximity to farmland, often
leading to direct exposure and severe health issues in humans
(Watson, 2014).

Increasingly, pests have also developed resistance toward
pesticides, and farmers are using higher doses to overcome
declining yields. Extensive use of agrochemicals can not only lead
to pesticide resistance, but also decrease profits for farmer, as
more, at higher doses, are needed to control pests. Agrochemical
use not only affects the soil and environment, but also beneficial
organisms, such as birds and insects (Anderson et al., 2014).
The disappearance of pollinators and birds is the result of
uncontrolled use of agrochemicals and their persistence in the
environment.

Even if agrochemicals are needed in the face of increasing
concerns for food security, they have been shown to have potent
impacts on both the environment and people, indicated by
clusters of diseases, such as cancers, neurological diseases, fertility
issues, and mental and physical disabilities (Iida and Takemoto,
2018). A reduction in agrochemicals use may lead to healthy
crops and healthier environments (Frische et al., 2018).

MICROORGANISMS AS PLANT GROWTH
PROMOTERS

Plants are entirely dependent upon soil microorganisms to
utilize soils as a growth medium, and the synergy between both
is important for their survival (Rajendhran and Gunasekaran,
2008). The rhizosphere, the region of soil surrounding the
roots, has the greatest concentration of microorganisms (Hiltner,
1904). Root exudates dictate the microbial communities.
Manipulating the rhizosphere, changes microbial diversity and
could improve plant performance by influencing water dynamics
and enzyme activities (Ahmadi et al., 2018). A wide range
of microscopic organisms inhabits the rhizosphere: bacteria,
algae, fungi, protozoa and actinomycetes. Of these, bacteria is
the most abundant and important group of microorganisms
regarding plant growth and productivity (Ahmad et al.,
2013a). They either live freely in rhizosphere, or in inter
and intracellular spaces of root tissues, forming symbiotic
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associations with plants (Nadeem et al., 2014). Fungi play an
important role in organic matter decomposition, and therefore
nutrient cycling. Among soil fungi, arbuscular mycorrhizal
fungi (AMF) are the most important and widely studied
group as potential biofertilizers and biopesticides (Nadeem
et al., 2014). Examples of use of soil microorganisms for
improving crop growth and productivity have been summarized
in Table 1.

Taking a closer look at the rhizosphere, plants continually
secrete synthesized food through their roots, nourishing a
diverse community of soil rhizobacteria that in turn can
strongly influence plant development by performing vital
functions for plant. They are allies of plants, governing several
fundamental processes related to plant growth. One of the
important functions of plant growth promoting rhizobacteria
(PGPR) is phosphorus (P) solubilization in the soil (Zhang
et al., 2011a). The dynamics of P in soils are complex.
Its availability for plants is often totally dependent on
phosphate solubilizing bacteria (PSB), heterotrophic bacteria
that secrete organic acids, which solubilize fixed forms of P
and release available forms into the soil solution (He et al.,
2002). Other extensively studied plant growth promoting traits
are nitrogen fixation, 1-aminocyclopropane-1-carboxylic acid
(ACC), deaminase activity, nutrient solubilization, chitinase
activity, and catalase activity (Khan et al., 2009a; Ahmad et al.,
2011; Nadeem et al., 2014; Xiao et al., 2017).

Endophytic bacteria in plants were first reported by Darnel in
1904. They have since been reported to be associated with almost
every plant species. Their role in a plant’s life is integral and their
presence is considered as vital for plant function as nutrients,
sunlight, and water. It has been reported that about 105 cfu of
endophytic bacteria are present per gram of fresh root weight,
and their diversity so large that 70–80% of them have yet to be
identified, despite recent advances. Endophytes are a group of
microorganisms living in stems, leaves and roots of plants, and
perform important ecological functions during the plant’s life.
Themost important are protection against pathogens, interaction
with plant symbionts, eliciting plant defense mechanisms against
environmental stresses, production of volatile substances, and
nitrogen fixation. Endophytic bacteria are also known to produce
allelopathic substances, which serve as biological control for
different pests (González and Lopez, 2013). The combination of
these growth-promoting effects enhances plant’s immunity level
against diseases and pests (Hayat et al., 2010; Nadeem et al., 2014).

Endophytic bacteria live within the plant cells either forming
special structures, such as nodules in legumes, or those that
cannot be visually identified (Beneduzi et al., 2013). Maximum
colonization and population size has been observed in the
roots. When isolated from other tissues, endophytic bacteria will
first colonize roots before inhabiting other organs. Plant roots
are colonized by a variety of bacterial species from different
genera, such as Bacillus, Paenibacillus, Burkhulderia,Azotobacter,
Rhizobium, and Pseudomonas, which simultaneously function
together to synergistically promote plant growth (Maheshwari,
2013). It is not certain if less studied non-symbiotic endophytic
bacteria have any potential role relating to plant growth
promotion (Rosenblueth and Martinez-Romero, 2006).

Large reservoirs of essential nutrients are present in the
environment, but are not directly available to plants. Soil bacteria
play a vital role in making these nutrients available for plant
utilization. For example, nitrogen (N), when deficient, seriously
limits crop productivity, despite that 78% of the atmosphere is
made up of this element. However, it can be fixed by endophytic
bacteria, making it available to not only plants, but also the
entire ecosystem. In soils, most N, as other elements are locked
in organic matter. As a result, the role of bacteria as nutrient
cyclers is essential (Rasche and Cadisch, 2013). Bacterial activity
releases all organically bound nutrients into the ecosystem and
continues the natural cycle and flow of raw material from
source to sink. Similarly, other nutrients, such as P, potassium
(K), sulfur (S), calcium (Ca), and magnesium (Mg) cannot be
utilized by plants unless mineralized and made available for plant
uptake. Exogenous application of microbes can help in enhanced
colonization in roots, increasing the availability of nutrients,
minimizing the use of chemical fertilizers, and conserving of
organic systems (Perotti and Pidello, 2012; Ahemad and Kibret,
2014).

However, microbes used for these purposes are very specific
and need to be screened for specific characteristics before
development of biofertilizers. The development of microbial
inoculants/biofertilizers is a highly technical and specialized job
that goes through a number of steps before its ground level use
(Figure 1).

The use of multi-strain bio-inoculants is more effective
in establishing sustainable pest management solutions and
solubilizing fixed nutrients. Rhizobacteria can be used
in combination with endophytic bacteria and arbuscular
mycorrhizal fungi, significantly enhancing crop production,
and lessening dependency on fertilizers (Pérez et al., 2007).
The combined use of endophytic bacteria and rhizobacteria
is a novel approach, and recent reports showed that their
application is highly effective. PGPR and plant endophytic
bacteria are also highly useful in pest control, including insects,
pathogens and weeds. Prabhukarthikeyan et al. (2014) found
that combined use of PGPR and endophytic Bacillus bacteria
effectively controlled fusarium wilt and fruit borer in tomatoes
without pesticide application. Rhizobacteria are unique in
their ability to control plant diseases. For example, Bandi and
Sivasubramanian (2012) reported that Pseudomonas fluorescens
has the ability to induce systemic resistance (ISR) against
thrips (Thrips tabaci L.) and serve as biocontrol agent against
pests.

Despite the use of microbes as biofertilizers, there is still a
significant gap in the understanding of their role in agriculture
and plant ecology. Their application has a significant positive
impact on plant growth and productivity (Nadeem et al., 2011,
2014, 2015, 2016; Ahmad et al., 2016) through environmental
acclimatization, enhanced resistance to pests, and improved
stress resistance toward heavy metals, high salt concentrations,
pathogens, and extreme pH.

Microbes, especially bacteria, produce allelopathic substances,
which can serve as biological control against various pests
(Sessitsch et al., 2004). The ability of microbes to synthesize
metabolites that inhibit the activity of plant pathogens and
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TABLE 1 | Effect of inoculation with soil microorganisms on plant growth.

Crop Microbial strain Growth conditions Effect on plant growth References

Phaseolus vulgaris Cellulosimicrobium funkei

KM032184

Greenhouse

experiment/chromium

stress

Enhanced seed germination rate, shoot and root

length, total biomass, chlorophyll, and carotenoid

contents by modulating oxidative damage

Karthik et al., 2016

Chickpea Pseudomonas aeruginosa

OSG41

Pot experiment/chromium

stress

Increased dry matter accumulation, nodule

formation, grain yield, and protein of chickpea

Oves et al., 2013

Rice Pseudomonas fluorescens (PSF),

P. putida (PSP)

Field experiment/normal soil Significant improvement in growth, yield, and yield

contributing parameters

Chamani et al., 2015

Maize (Zea mays) Klebsiella sp.,

Pantoea sp., Enterobacter sp.

Pot trial/normal soil Dual inoculation of endophytic and rhizobacteria

improved growth and indole acetic acid contents in

maize

Rodrigues and Forzani,

2016

Wheat Azospirillium sp. Field experiment/normal soil Significant increase root length, and root fresh and

dry weight

Singh et al., 2017

Carrot Pseudomonas syringae pv.

syringae Pss20 and

Pseudomonas tolaasii Pt18

Laboratory

experiment/abiotic stress

Inoculation showed biocontrol potential and

significantly enhanced root formation of carrot slices

Etminani and Harighi, 2018

Cucumber

(Cucumis sativus)

Pseudomonas fluorescens Laboratory study/salinity

stress

Improved root and shoot growth by reducing the

negative effects of salinity stress

Nadeem et al., 2017

Wedelia trilobata Bacillus sp. WtEB-JS040 Laboratory

experiment/normal

conditions

Significant improvement in growth of inoculated

plants was observed

Dai et al., 2016

Century plant

(Agave americana

L.)

Rhizobium daejeonense,

Acinetobacter calcoaceticus and

Pseudomonas mosselii

Pot experiment/normal

conditions

Inoculation significantly increased plant growth and

sugar contents in century plant through nutrient

solubilization and phytohormones production

Torre-Ruiz et al., 2016

Tomato Azotobacter chroococcum Salinity and drought stress Improved plant growth by reducing the negative

effects of stress on plants

Viscardi et al., 2016

Camelina sativa Pseudomonas migulae 8R6 Pot experiment/salinity

stress

Improved plant growth by reducing the effect of

higher ethylene production through ACC-deaminase

activity

Heydarian et al., 2018

Maize Azospirillum sp. Az3,

Azospirillum sp. Az8,

Azospirillum sp. Az19,

Azospirillum sp. Az63,

A. brasilense Az39

Pot experiment/drought

stress

Inoculation enhanced the drought tolerance in maize

seedlings, and improved root and shoot growth

García et al., 2017

Wheat Arthrobacter protophormiae

(SA3),

Bacillus subtilis (LDR2), and

Dietzia natronolimnaea (STR1)

Hydroponic

experiment/salinity and

drought stress

Inoculation improved the salt and drought tolerance

thus improved growth of wheat seedlings

Barnawal et al., 2017

Citrus macrophylla Pseudomonas putida and

Novosphingobium sp.

Pot experiment/salinity

stress

Reduced the effects of salinity stress by decreasing

the production of abscisic acid (ABA) and salicylic

acid (SA) in plants

Vives-Peris et al., 2018

White clover Rhizoglomus intraradices,

Diversispora versiformis and

Paraglomus occultum

Pot experiment/normal

conditions

Inoculation significantly increased the nodulation,

root growth and chlorophyll contents

Lu and Wu, 2017

Lettuce Funneliformis mosseae and

Rhizophagus intraradices

Pot experiment/normal

conditions

Enhanced plant growth though improvement in Zn

uptake

Konieczny and Kowalaska,

2016

Citrus aurantifolia Glomus etunicatum and

Pseudomonas fluorescence

Pot experiment/drought

stress

Inoculation enhanced citrus growth by improving

chlorophyll contents and photosynthetic activity of

the plant

Shahsavar et al., 2016

Morus alba Acaulospora scrobiculata,

Funneliformis mosseae, and

Rhizophagus intraradices

Pot experiment/normal

conditions

Inoculation improved plant growth through

improvement in chlorophyll contents,

photosynthesis and stomatal conductance of plants

Shi et al., 2016

Hangbaiju

(Chrysanthemum

morifolium)

Funneliformis mosseae and

Diversispora versiformis

Pot experiment/salinity

stress

Inoculation improved salinity tolerance of plants, and

enhanced root and shoot growth, and root N

contents

Wang et al., 2017

Soybean Arbuscular mycorrhizal (AM)

fungi

Pot experiment/drought

stress

Inoculation improved plant growth and mitigated the

negative impact of drought stress

Salloum et al., 2017

Maize Funneliformis mosseae and

Pseudomonas fluorescens

Pot experiment/drought

stress

Inoculation enhanced the vegetative and

reproductive traits, N and P uptake, root

colonization and grain yield of maize

Ghorchiani et al., 2018

(Continued)
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TABLE 1 | Continued

Crop Microbial strain Growth conditions Effect on plant growth References

Soybean Bradyrhizobium sp. Field experiment/normal

conditions

Inoculation increased the N, P and S contents, and

improved seed and straw yield of soybean

Raja and Takankhar, 2018

Soybean Bradyrhizobium sp. Field experiment/normal

conditions

Bradyrhizobium sp. enhanced the growth and grain

yield of soybean

Galindo et al., 2018

Soybean Bradyrhizobium sp. Field experiment/normal

conditions

Inoculation with Bradyrhizobium sp. increased the

phosphorus use efficiency, and N and P uptake of

soybean plants

Fituma et al., 2018

Peanut Bradyrhizobium sp. Field experiment/normal

conditions

Inoculation enhanced the plant N and P uptake, and

nodulation in peanut

Argaw, 2018

Wheat Rhizobium sp. Pot experiment/normal

conditions

Inoculation with Rhizobium sp. enhanced root and

shoot growth of wheat

Kamran et al., 2017

Maize Azospirillum brasilense

Rhizobium tropici

Greenhouse study/normal

conditions

Inoculation improved plant root and shoot growth,

and nitrogen accumulation in shoot of maize plants

Picazevicz et al., 2017

Pea Rhizobium leguminosarum Pot experiment/normal

conditions

Inoculation reduced the disease severity, and

improved seed fresh and dry weight

Wienkoop et al., 2017

Wheat Azorhizobium caulinodans Axenic conditions Azorhizobium caulinodans inoculation improved the

number and weight of leaves and roots

Liu et al., 2017

FIGURE 1 | Stages in the development and commercialization of microbial inoculants/biofertilizers.

prevent plant diseases indicates their potential as effective
biopesticides. Studies have shown beneficial microbes in soil
destroy pathogens, such as fungal, bacterial and viral diseases,
insects, weeds, and nematode pests, through biocontrol or ISR
(Gao et al., 2015). Many researchers focused on effects of
microorganisms on seed germination and young weed seedlings
(Harding and Raizada, 2015).

Specific endophytes play an important role in plant protection
against soil borne pathogens (Sturz et al., 2000). Fungal
pathogens are the most lethal to plants, but due to the
antagonistic activity of hydrolytic enzyme producing bacteria

their presence is rarely observed. Therefore, the application of
bacteria as biopesticides could significantly reduce the use of
agrochemicals for sustainable crop production. For example,
in many crops like sugarcane, tomato, and potato, inoculation
by rhizobacterial strains resulted in complete prevention of
pathogenic development due to the production of antibiotic
substances, resulting in ISR in crop species (Sessitsch et al., 2004).
Bacteria are known to produce hydrolytic enzymes and binding
proteins in plants that efficiently control bollworms, mosquitoes,
blackfIies and beetles. Endophytic bacteria have been known
to supress competing weeds through allelopathy effect, or by
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developing a synergistic relationship with bacteria and fungi in
the rhizosphere (Bailey et al., 2010; Gao et al., 2015).

The use of microorganisms as biopesticides is an
environmentally friendly approach, as these microbes are
very specific to their host pathogens (Kachhawa, 2017). They
could decrease agrochemical use, helping to foster environmental
sustainability by reducing the harmful effects of toxic chemical
compounds.

PGPR have direct and indirect plant growth promoting
influences (Figure 2) through which they help plants to
perform better under field conditions. Some of these effects
are very common among culturable microbes, while others
are specific to certain microbial strains/species. Under diverse
environmental conditions, there are large fluctuations in
microbial communities in the rhizosphere, influenced by plant
species, soil moisture and temperature regimes, environmental
conditions and soil physiochemical conditions (Galazka
et al., 2017). For example, Gałazka and Grzadziel (2018)
reported the fungal genetic diversity and community level
through physiological profiling of microbial communities in
the soil under long-term maize monoculture. They reported
that techniques of maize cultivation and season had a great
influence on the fungal genetic structure in the soil. These
fluctuations in soil and environmental conditions also induce
or suppress different plant growth promoting characteristics
of microbial/strains. The most common direct effects include
biological nitrogen fixation, phytohormone production, nutrient
solubilization/mobilization, and siderophore production.
Indirect effects include biological control of phytopathogens,
and production of hydrolytic enzymes. PGPR are also effective
in improving plant growth in stress conditions through
ACC-deaminase activity, exopolysaccharides, production and
scavenging toxic reactive oxygen species.

Direct Effects on Plant Growth
The most important direct effects involved in plant growth
promoting include biological nitrogen fixation, phytohormone
production, nutrient solubilization, siderophore production, and
ACC deaminase activity.

Biological Nitrogen Fixation
Atmospheric N is reduced to plant available form though natural
or artificial means. When done artificially, N2 is reduced to
ammonia via the Haber–Bosch process (Rubio and Ludden,
2008), in which natural gas (CH4) and N2 are converted to
reduced forms of N at high temperature and pressure. In nature,
N2 reduction is performed by N-fixing microorganisms that use
the nitrogenase enzyme to reduce N2 to ammonia (Kim and Rees,
1994). This biological nitrogen fixation (BNF) is responsible for
two-thirds of the total fixed N worldwide.

The microbes performing BNF can be generally
categorized as symbiotic, associative symbiotic, and free-
living. However, a number of free-living N fixing bacteria,
such as Azotobacter, Gluconoacetobacter, and Azospirillum
spp. are present in nature and fix N for plants (Bashan
and Levanony, 1990). The highest proportion of BNF is
performed by symbiotic N2 fixers, i.e., rhizobia, which make

symbiotic associations with the roots of leguminous plants
(Zahran, 2001). The establishment of symbiotic association
involves a complex mechanism and exchange of chemical
signals between host plant and symbionts i.e., rhizobia
(Giordano and Hirsch, 2004), leading to the formation of
root knots, also called nodules. These develop from the
swelling of cortical cells that host rhizobia as intracellular
symbionts.

PGPR other than rhizobia also have the nitrogenase enzyme
and can fix N in non-leguminous plants, such as diazotrophs,
which are capable of forming non-obligate interactions with host
plants (Glick et al., 1998) other than legumes. Nitrogenase is a
two-component metallo-enzyme (Dean and Jacobson, 1992) that
consists of an iron (Fe) protein (dinitrogenase reductase) and
molybdenum (Mo)-Fe protein (dinitrogenase). For nitrogenase
complex to function, both components should be present. During
N fixation, the Fe protein receives electrons with high reducing
power from a low redox donor, such as reduced ferredoxin (Fd)
or flavodoxin, and is reduced itself. The reduced Fe protein
passes its electrons to Mo-Fe protein and becomes oxidized. This
complex chain of reactions requires significant metabolic energy
to reduce N2. The genes involved are nif genes, which are present
both in symbiotic and free-livingmicroorganisms (Kim and Rees,
1994). Inoculation of legumes with rhizobia of a specific cross
inoculation group can be helpful to improving the nodulating
capability of crops under field conditions (Ahmad et al., 2013b).

Phytohormone Production
Plants produce plant growth regulators/phytohormones,
complex organic compounds that control plant growth and
productivity. Due to their complexity, plants need a considerable
amount of energy and nutrients to synthesize them. Bacteria
synthesize significant quantities of phytohormones, and release
them into the plant, resulting in pronounced positive effects on
plant growth and development. It is reported that bacteria can
produce up to 60 times more plant growth regulators than plants
themselves (Camerini et al., 2008).

Phytohormones, such as indole acetic acid (IAA), ethylene,
abscisic acid, cytokinins, and gibberellins production by PGPR
help to improve crop growth and performance. Phytohormones
are involved in plant growth at different scales, such as cell
division, cell enlargement, seed germination, root formation,
and stem elongation (Taiz and Zeiger, 2000; Khalid et al.,
2006). Microbially-produced phytohormones have direct
influence on plants’ internal physiological processes and are
involved in plant growth (Kang et al., 2010). The effectiveness
of these microbially produced phytohormones to improve
crop productivity has been well-documented (Zahir et al.,
2007, 2010; Jamil et al., 2018). Microbes can meet the
plant’s hormonal requirements, saving the plant’s metabolic
energy for growth and reproduction. Microbially produced
phytohormones play an effective role both under normal and
stress conditions.

Auxins can alleviate the adverse effects of stress on plant
growth. Some plants produce enough auxins to cope with
adverse conditions, while others produce insufficient amounts,
resulting in an inability to alleviate stress conditions. To meet
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FIGURE 2 | Importance of the microbial community for environmental health and possible mechanisms of action.

the plant’s auxin requirements, exogenous application of auxins
or inoculation with microbes capable of producing auxins can be
helpful and allow for resumption of normal metabolic functions.
Ahmad et al. (2013c) evaluated the potential of auxin-producing
Pseudomonas and Rhizobium strains to improve osmotic stress
tolerance in Vigna radiata reporting an increase in total dry
matter and salt tolerance index. In another study, Jamil et al.
(2018) exogenously applied L-tryptophan in combination with
Pseudomonas fluorescens under drought conditions, and reported
a significant increase in growth, physiology, and yield. Abscisic
acid (ABA) also improves plant development under stress
conditions (Zhang et al., 2006) and plays an important role in
photoperiodic induction of flowering (Wilmowicz et al., 2008).
Patten and Glick (2002) inoculated canola plants with IAA-
producing bacterial strains and reported increase in root length
in comparison to IAA-deficient mutant and control plants.
Similarly, the production of auxins, cytokinin and gibberellins
by many strains of Bacillus, Paenibacillus, Pseudomonas, and
Azospirillum has been reported (Ahmad et al., 2011; Gamalero
and Glick, 2011; Mumtaz et al., 2017). Moreover, phytohormone-
producing strains improved the growth and productivity of
onion (Allium cepa) (Ahmad et al., 2016), cucumber (Cucumis
sativus) (Ahamd et al., 2015) and maize (Zea mays) (Mumtaz
et al., 2018). Steenhoudt and Vanderleyden (2000) showed that
the production of phytohormones is the main mechanism used
by Azospirillum strains to improve plant growth. Commercially
available phytohormones can be used for improving plant
growth (Jamil et al., 2018), although microbially-produced
phytohormones are often more effective and economical under
field conditions (Khalid et al., 2006).

Nutrient Solubilisation
Soil microorganisms are solely responsible for nutrient cycling.
Around 50% of soil organic matter is composed of carbon, while
the rest consists of N, P, S, and other nutrients. In addition to
the decomposition of soil organic matter, microbes also make
chemically fixed nutrients, such as phosphorus (P), zinc (Zn),
potassium (K), and iron (Fe) available. The main mechanism
in the solubilization of P, K, Fe, and Zn is the lowering of pH
from the production of organic acids (Jennings, 1994). The P
solubilizing soil bacteria include free living rhizobacteria, such
as Pseudomonas, the symbiotic nitrogen fixers (rhizobia), and
asymbiotic nitrogen fixers (Azotobacter). In addition to release
bound P through phosphatase production and rhizosphere
acidification, these bacteria also provide phytohormones to
crop plants and protect plants from various diseases through
synthesizing siderophores, antibiotics, cyanogenic compounds,
etc. (Khan et al., 2013). To solubilize Zn and phosphate, bacteria
produce gluconic acid and its derivatives (Gadd and Sayer, 2000;
Saravanan et al., 2007). Derivatives of gluconic acid e.g., 5-keto-
gluconic acid and 2-keto-gluconic acid have also been reported
in solubilization of Zn by Saravanan et al. (2007). Soil bacteria
and fungi have ability to reinstate soil fertility of degraded lands
by improving nutrient bioavailability through nitrogen fixation
and solubilization of P, K, and Fe, and aggregate satbility (Rashid
et al., 2016).

Bacillus spp. has the potential to solubilize insoluble
Zn resources. Ramesh et al. (2014) demonstrated the Zn
solubilization ability of Bacillus aryabhattai on Tris-minimal
medium separately amended with different Zn compounds.
Similarly, Hussain et al. (2015) reported the formation of a
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halo zone on ZnO amended Bunt and Revira medium by
Bacillus sp. (AZ6). Mumtaz et al. (2017) also demonstated
Zn solubilization by screening 70 isolates and identified four
best ZSB strains, Bacillus sp. ZM20, Bacillus aryabhattai ZM31,
Bacillus subtilis ZM63, and Bacillus aryabhattai S10. Gandhi
and Muralidharan (2016) reported Zn solubilization in ZnO
amended broth inoculated with Acinetobacter sp. (AGM3).
Shaikh and Saraf (2017) reported a 6-fold increase in Zn and
Fe content in grains of wheat inoculated with Exiguobacterium
aurantiacum strain in comparison to the control. Solubilization
of Zn in ZnO amended broth inoculated with Bacillus aryabhattai
and Gluconaacetobacter diazotrophicus (Ramesh et al., 2014;
Mumtaz et al., 2017) was also reported. Bacillus strains
solubilize unavailable Zn by producing and secreting chelating
ligands, organic acids, amino acids, vitamins, phytohormones,
and through oxidoreductive systems and proton extrusion
(Wakatsuki, 1995; Saravanan et al., 2003).

However, the processes involved in P solubilization depend
on the organic and inorganic nature of phosphate complexes.
Various biochemical processes, comprising of organic acids
secretion and proton discharge, achieve phosphate solubilization.
The extent and forms of fixed P in soil depend on the
soil’s pH. At lower pH, Fe, and aluminum (Al) phosphate
complexes are abundant, while at higher pH, calcium phosphate
minerals are formed (Goldstein, 2000). Solubilization of Fe/Al-
phosphate complexes by PSB mainly takes place through
proton release, altering the negative charge at exchange sites,
to facilitate the release of phosphate ions. The decrease in
adsorption of phosphates enhances availability of primary and
secondary orthophosphates (Henri et al., 2008). Furthermore,
PSB secrete carboxylic acid that releases carboxyl ions, which
replace P in precipitated complexes through ligand exchange. In
alkaline conditions, P is precipitated with calcium compounds
(Goldstein, 2000). The PSB solubilize calcium phosphate
complexes by releasing organic acids, acidifying the surrounding
environment. The decrease in pH releases utilizable P and
increases the availability of other macro and micronutrients. The
calcareousness of soils increases buffering capacity, but reduces
the efficiency of PSB in releasing P (Stephen and Jisha, 2009).
To solubilize the organic proportion of immobilized P, PSB
use alkaline and acidic phosphatases, which liberate bioavailable
inorganic forms of P. Phosphatases are also exudated by plant
roots, but the largest quantity is secreted by PSB (Dodor and
Tabatabai, 2003).

Fe is an essential mineral nutrient in plants and
microorganisms, except some species of lactobacilli (Neilands,
1995). Under aerobic conditions, Fe exists in its oxidized
form, i.e., ferric Fe, which forms insoluble complexes, such
as hydroxides and oxyhydroxides, which are unavailable for
uptake by plants and microorganisms (Rajkumar et al., 2010).
PGPR secrete low molecular mass iron chelating compounds,
siderophores, which solubilize iron and increase its availability
for microbes and plants (Machuca et al., 2007).

Siderophore Production
Microbially-released siderophores increase plant Fe uptake
through different mechanisms, such as chelation and release of

Fe, direct uptake of Fe complexed siderophores, or by ligand
exchange reactions (Schmidt, 1999). As a result, the soluble metal
concentration increases through binding with siderophores.
Inoculation with siderophore-producing rhizobacteria improved
plant growth and nutrient assimilation (Rajkumar et al., 2010).
Under low Fe conditions, siderophores can solubilize Fe
from minerals and organic compounds (Khan et al., 2009a).
Siderophores also form stable complexes with heavy metals,
alleviating the toxic effect of heavy metals (Rajkumar et al.,
2010). Marathe et al. (2015) inoculated Glycine max seeds
with siderophore-producing Pseudomonas spp., and reported
enhanced growth. Inoculation also showed antifungal activity
against Aspergilus spp. In another study, Sharma et al. (2003)
inoculated mung bean with Pseudomonas (GRP3) strain having
ability to produce siderophores, and reported enhanced Fe
contents in inoculated plants. Rajkumar et al. (2010) reported the
uptake of Fe in cereal grains through production of siderophores
by rhizobacteria. Pseudomonas fluorescens synthesizes Fe-
pyoverdine, which can increase the Fe uptake in Arabidopsis
thaliana tissues, enhancing plant growth (Vansuyt et al., 2007).
Microbes with the ability to produce siderophores could be
helpful in chelation of Fe from mineral and organic compounds
to make it bioavailable. They also can promote uptake of Fe and
other minerals in nutrient-deficient soils.

ACC Deaminase Activity
Ethylene is an endogenously produced phytohormone with
a specific role in determining plant maturity. Lower levels
of ethylene are essential for plant metabolism during normal
growth and development (Khalid et al., 2006). It is a stress
hormone (Saleem et al., 2007) that helps plants to cope with
biotic and abiotic stress. Ethylene negatively affects normal
metabolic processes in plants leading to decrease in root and
shoot growth. For example, Ahmad et al. (2011) reported a
decrease in root and shoot length and increased stem diameter
due to salinity stress and linked it to increased concentrations
of ethylene. It has been well-documented that PGPR strains
belonging to genera Bacillus, Enterobacter, and Pseudomonas
isolated from stress conditions contain ACC deaminase enzyme
(Nadeem et al., 2009; Ahmad et al., 2011) and improve plant
growth under biotic and abiotic stresses (Mayak et al., 2004;
Zahir et al., 2010; Ahmad et al., 2012, 2013b; Glick, 2012).
ACC is the immediate precursor of ethylene and cleaves it
into α-ketobutyrate and NH3 (Glick et al., 1998). Therefore,
these bacterial strains can increase stress tolerance in plants
by decreasing ethylene levels, allowing increased plant growth
even under stress (Zahir et al., 2008; Ahmad et al., 2013b).
Consequently, the use of these bacteria as biofertilizers and
biopesticides can be helpful in reducing the dependence on
chemical fertilizers and pesticides.

Indirect Effects on Plant Growth
Examples of indirect effects of using soil microorganisms for
plant growth promotion are biological control of phytopathogens
through competition for nutrients, production of antibiotics,
hydrolytic enzymes, and siderophores, along with the triggering
of ISR in plants (Lugtenberg and Kamilova, 2009; Glick,
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2012). PGPR can be used as a tool for biocontrol of plant
pathogens as they indirectly improve plant growth by
suppressing pathogenic microorganisms. The antibiotics
produced are mostly effective against fungal pathogens
(Glick, 2012). PGPR produce a number of antibiotics
and antifungal metabolites, such as viscosinamide, tensin,
pyrrolnitrin, phenazines, 2,4-diacetyphlaroglucinol, pyoluteorin
and hydrogen cyanide (Raaijmakers et al., 2002; Haas and
Keel, 2003; Compant et al., 2005; Mazurier et al., 2009;
Bhattacharyya and Jha, 2012; Glick, 2012). Hydrogen cyanide
works synergistically with antibiotics to improve their efficiency
(Glick, 2012).

The production of hydrolytic enzymes, such as lipases,
proteases, glucanases and chitinases by PGPR is also an effective
mechanism of biocontrol. Hydrolytic enzymes dissolve the cell
wall of fungal pathogens, suppressing their growth. Studies have
shown PGPR strains to be successful in controlling pathogenic
fungi from genera including Fusarium, Sclerotium, Botrytis,
Rhizoctonia, Phytophthora, and Pythium (Frankowski et al., 2001;
Kim et al., 2008; Glick, 2012).

In addition to improvement in Fe availability in crop plants,
siderophores produced by PGPR strains can limit phytopathogen
proliferation by suppressing Fe availability to pathogenic fungi
(Kloepper et al., 1980). High affinity siderophores that bind Fe,
limit its availability to fungal pathogens, therefore suppressing
their growth (Glick, 2012). Siderophore producing bacteria can
be used as a biocontrol agent, as plants need much lower
Fe concentrations than most microorganisms (O’Sullivan and
O’Gara, 1992) Moreover, many plants can take up siderophore-
complexed Fe (Wang et al., 1993) while not the pathogenic
microorganisms.

PGPR have the ability to effectively colonize plant roots to
better use root exudates. Inoculation with PGPR can lead to
higher proliferation and ultimately competition with pathogenic
microorganism for nutrients and space, suppressing pathogenic
microorganism growth. For example, Innerebner et al. (2011)
tested bacterial strains from the genera Methylobacterium and
Sphingomonas for their biocontrol activity against Pseudomonas
syringae pv. tomato DC3000 in Arabidopsis thaliana. They
reported that strains from the genus Sphingomonas diminished
disease symptoms, suppressed pathogenic growth, and
protected A. thaliana plants from developing severe disease
symptoms. However, Methylobacterium strains were ineffective
in controlling pathogens.

PGPR interact with plant roots and induce resistance in
plants against pathogenic microorganisms, leading to ISR. ISR
is phenotypically similar to the systemic acquired resistance
(SAR), the plant’s internal mechanism for responding to
infection by pathogens (Pieterse et al., 2009). In plants, ISR
involves jasmonate and ethylene signaling, which stimulate the
host plant’s defense responses against a range of pathogens
(Verhagen et al., 2004). In addition to phytohormones, individual
bacterial components can induce ISR, such as homoserine, 2,4-
diacetylphloroglucinol, cyclic lipopeptides, lipopolysaccharides
(LPS), lactones, and some other volatile compounds (Lugtenberg
and Kamilova, 2009).

MICROBIAL REMEDIATION OF
ENVIRONMENTAL POLLUTION

Anthropogenic activities and resulting waste disposal is a
global issue, but is particularly problematic in regions with lax
environmental regulations and legislation. In some developing
countries, wastewater can in fact be highly desirable for farmers
due to its high nutrient concentration. However, the long-term
application of wastewater can alter the physical, chemical, and
biological properties of soil (Narwal et al., 1988; Joshi and Yadav,
2005; Antil et al., 2007; Kharche et al., 2011) and lead to high
concentrations of heavy metals (Narwal et al., 1988; Kharche
et al., 2011) and dyes. Sewage sludge application on soils may, if
not properly processed, contain potentially pathogenic organisms
that pose health hazards (Chambers et al., 2001; Lapen et al., 2008;
Edwards et al., 2009; Gottschall et al., 2009). Sludge, however, can
be a rich source of nutrients, particularly for highly depleted soils.
It contains N and P along with high concentration of organic
matter, but may also contain heavy metals and chlorinated
hydrocarbons (Jang et al., 2010).

Another potential industrial waste product is crude oil. Crude
oil and other petroleum-based product spills can occur during
transport and storage of petroleum products on land, but can
also be spilled from tankers, offshore platforms, pipelines, drilling
rigs, polluting soil, and water (Adelana et al., 2011). Petroleum
products are a mixture of various organic compounds, many
carcinogenic. Benzene, a petroleum product, is known to cause
leukemia in humans (Kirkeleit et al., 2006).

The increase in heavy metal contamination worldwide is
attributed to anthropogenic activities. Around the world, toxic
effluents from industry and urban centers are polluting soil,
air, and water, making them unfit for crop production, as well
as human and animal well-being (Wahid et al., 2000). There
is an urgent need to treat these industrial effluents to remove
contaminants prior to discharge into the surrounding soil and
water bodies. Attention has been given to remediation strategies
of these pollutants due to their persistent nature and increased
awareness among the global community (Ali, 2010). Several
physicochemical methods have been used to detoxify industrial
effluents (Arslan-Alaton, 2007). However, these methods are
expensive and not environment friendly as they generate large
amounts of sludge, which also requires safe disposal and can also
cause secondary pollution (Zhang et al., 2004).

Microorganisms are being used for removing the pollutants
from environment. These microbes can make a significant
impact by removing contaminants from soils and reducing
their toxic effect on the environment (EPA, 2016). The living
microorganisms or their metabolites are used naturally or
artificially to destroy, remove, or immobilize the pollutants from
the environment (Uqab et al., 2016). PGPR can be successfully
used in reenforcing plant growth by remediating contaminated
and degraded soils and water bodies and removing toxins from
the environment (Gouda et al., 2018).

Microorganisms contain enzyme systems with the potential
to mineralize industrial effluents under different environmental
conditions (Pandey et al., 2007). Bioremediation is a strategy
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that relies on the metabolic capabilities of microbes to transform
aromatic compounds into essentially harmless or at least less
toxic compounds (Xu and Zhou, 2017). It has a number of
advantages compared to physicochemical methods. For example,
microbial treatment is effective to degrade persistent and
recalcitrant compounds. Other advantages include a reduction
in sludge production, shorter treatment time, applicability over
a wide range of temperatures, and are easy and simple to
handle (Kulshrestha and Husain, 2007). It is based on the use
of microorganisms with the ability to degrade recalcitrant and
xenobiotic materials present in industrial wastewater.

Spina et al. (2018) emphasized the importance of fungi
for biodegradation of pesticides and pollutants. They argue
that currently perceived limitations of bioremediation, such as
nature of organisms, the enzymes involved, the concentration,
availability, and final survival of microorganisms, as well as the
cost vs. overall environmental impact, can be solved to some
extent by understanding the genetics and biochemistry of the
desired microbes. The advent of synthetic communities indicated
a sustainable way to facilitate the bioremediation as degradative
fungi appeared to be particulary effective.

Organic Pollutants
Persistant organic pollutants (POPs) include dyes used in
textile and other inductries, pesticides and polycyclic aromatic
hydrocarbons. These are toxic chemicals that have adverse effects
on human health and environment around the world. Most of the
POPs are generated in one country and affect human and wildlife
far from where they are generated, used or released. Chemically
these are complex compounds which are classified as xenobiotics
thus barely removed from the environment. Microbial strains
have been screened and identified that can degrade these POPs
through their enzyme systems.

Dyes
Bacterial strains have been identified that efficiently degrade
the xenobiotic/recalcitrant compounds in industrial wastewater
(Khalid et al., 2008a,b). Fungal species are also reported to
degrade/detoxify industrial effluents. Bacteria contain specific
enzymatic/gene systems responsible for the degradation of
toxic compounds found in industrial effluents. Bacteria use
biosorption and enzymatic degradation, or a combination
of both, to detoxify/decolorize industrial effluents containing
azodyes (Wu et al., 2012). An azo-reductase enzyme has been
isolated and characterized from bacterial species. Azo-dyes
have strong bonding properties, but some bacteria have the
ability to break them with the azo-reductase enzyme (Chen,
2006). Oxygenase and hydroxylase enzymes also degrade the
intermediate products formed during decolorization (Khalid
et al., 2009). In this process, different amounts and kinds of
microbes that degrade recalcitrant/xenobiotic compounds are
involved (Table 2).

Several studies demonstrated the ability of fungi, algae, and
yeast to degrade industrial effluents in wastewater (Dresback
et al., 2001; Olguin, 2003). However, carbon sources are
required in the dye solution for microbial growth during the
decolorization process. Factors, such as pH, temperature and

presence of salts in contaminants can also affect the rate of the
biodegradation of industrial effluents (Prasad and Rao, 2011).
Many species of bacteria, fungi, algae, and yeast are reported to
decolorize the dyes (Khalid et al., 2009).

Pandey et al. (2018) tested the potential of the lignolytic
mushroom Lenzites elegans WDP2 to dicolorize synthetic dyes.
Brilliant green, malachite green, and Congo red were decolorized
by almost 93, 21, and 99%, respectively. The Congo red dye
was completely bio-absorbed by fungal culture within 1 month.
The fungal decolorized broth revealed an extracellular laccase
activity in all the three cases, supporting the involvement
of laccase enzyme in decolorization. Photomicrographs clearly
showed the bio-sorption of the dyes by fungal culture into the
mycelium/spores.

Paper and pulp industries also produce wastewater with toxic
compounds. This is problematic because of the color of the
water, toxic complexes, suspended solids, lignin, chlorinated
compounds, chemical oxygen demand, and biological oxygen
demand. Xenobiotics of paper, pulp, and mill effluents can be
degraded by different microorganism including bacteria, fungi
and actinomycetes (Hossain and Ismail, 2015).

Bacillus cereus and two strains of Pseudomonas aeruginosa
have been found to decolorize bleached kraft paper-mill effluents
(Tiku et al., 2010). Pseudomonas putida and Acienetobacter
calcoaceticus degrade black liquor from a kraft pulp and paper
mill. Their color removal efficiency was around 80% after 8 days
(Abd El-Rahim and Zaki, 2005). A few algal species, such as
Microcystis spp., can decolorize diluted bleached kraft paper-mill
effluents. Microcystis spp. removed 70% color within 2 months
(Sharma et al., 2014). Research is required to determine the
pathways to degrade industrial effluents with microbial strains.
Moreover, research focusing on the use of mixed cultures for the
detoxification of these compounds should also be prioritized. The
in situ application of this novel technology should also be further
evaluated.

Polycyclic Aromatic Hydrocarbons
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants,
mostly originating from anthropogenic activities. Most are
carcinogens and mutagens. Their longevity in terms of their
persistence in the environment may be due to their complex
structure, hindering their bioavailability. PAHs also have
stronger adsorption potential on solid particles due to high
hydrophobicity and solid-water distribution ratios (Johnsen
et al., 2005). As a result of these qualities, they are difficult
to degrade and pose a severe and long-lasting hazard to the
environment. Long term contamination of petroleum products
affects the microbial population and diversity in the soil (Galazka
et al., 2018). One effective strategy is bioremediation, or the use of
microbes for decontamination of complex organic compounds.
Studies on the use of microbes for degradation of PAHs are
summarized in Table 3.

However, PAHs can serve as energy source for
microorganisms and consequently be converted into
harmless or less toxic compounds. Bioremediation of PAHs
is well-documented as cost-effective, feasible, and practically
applicable natural process for the degradation of polyaromatic
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TABLE 2 | Potential of microbial strains for detoxification of industrial effluents.

Microbial strain Experimental conditions Response/Results References

Brevibacillus laterosporus

MTCC 2298

Mixture containing seven commercial textile dyes

with different structures and color properties

It showed 87% decolorization in terms of ADMI

(American Dye Manufacturing Institute) removal

within 24 h

Kurade et al., 2011

Aspergillus niger Used pulp and paper industry wastewater Decolorization of pulp and paper industry

wastewater

Kamali and Khodaparast,

2015

Aspergillus foetidus Used different textile effluents Maximum decolorization of several azo dyes Sumathi and Phatak, 1999

Pseudomona putida Degradation of textile effluents observed at 25◦C Industrial textile wastewater, 95% color, 92% COD Babu et al., 2011

Pseudomonas sp. SUK1 Sulfonated azo dye (Reactive Red 2) in a wide range

(up to 5 g L−1), at temperature 30◦C, and pH range

6.2–7.5 in static condition

Showed decolorization of the media containing a

mixture of dyes

Kalyani et al., 2008

Bacillus

licheniformis LS04

Reactive black 5, reactive blue 19 and indigo

carmine was used in the experiment

More than 80% of color removal in 1 h at pH 6.6 or

9.0

Lu et al., 2012

Tinctoporia borbonica Pulp and paper industry wastewater Decolorization of pulp and paper industry waste Senthilkumar et al., 2014

Bacillus sp. ADR Used different azodyes Decolorized different azo dyes with efficiencies of

68–90%

Telke et al., 2011

Penicillium oxalicum SAR-3 18S and internal transcribed

spacer (ITS) rDNA gene sequence analysis and

checked the degradation rate

Dye decolorization was detected Saroj et al., 2014

Bacillus and Pseudomonas Metals contaminated sites Reducing the toxicity and concentrations of

pollutants

Fosso-Kankeu et al., 2011

Lenzites elegans WDP2 Used different azodyes Decolorized brilliant green, malachite green and

congo red by 93, 21, and 99%, respectively

Pandey et al., 2018

hydrocarbons in soil and water environments (Anwar et al.,
2016). A variety of microorganisms, such as bacteria, fungi and
actinomycetes can be used for bioremediation. However, bacteria
are the most reliable in degrading PAHs in aquatic environments
(Johnsen et al., 2005).

In sediments or soils, the efficiency of bacteria may be lower
because of reduced bioavailability (Yuan and Chang, 2001), or
alternatively improved due to the involvement of solid-phase
bacteria in the degradation of sorbed contaminants (Hwang et al.,
2003). The latter argument is supported by the work of Poeton
et al. (1999), which showed the enhanced biodegradation rates
of PAHs (phenanthrene and fluoranthene) by marine bacteria
in the presence of sediments. However, further studies need to
be conducted in order to evaluate the efficiency of bacteria in
bioremediation of PAHs under a range of conditions. The effect
of high sediment contents on biodegradation of PAHs in natural
water bodies was studied by Xia et al. (2006). An increase in
the population of PAH degrading bacteria in a water system
corresponded with increasing sediment content.

PAHs meant to be degraded by bacteria must also be
bioavailable (Dandie et al., 2004; Fredslund et al., 2008).
Dissolution and vaporization make them bioavailable, but
sorption on soil particles makes it difficult for bacterial
degradation due to the limitations of the microbes under these
conditions (Kim et al., 2007). The bioavailability of PAHs is
affected by a number of factors, including soil structure, moisture
contents, and presence of bacterial species. Uyttebroek et al.
(2007) reported that desorption and ultimately decomposition of
PAHs is affected by their age in soil. The rate of decomposition
is also affected by the presence of readily available nutrient
and carbon sources. Decomposition of PAHs becomes more

difficult if the enzymes involved are non-specific. The enzymes
would prefer to attach to substrates, which are easier to degrade,
allowing PAHs to persist in the environment (Wang et al.,
2009). The presence of intermediate compounds can favor
decomposition of PAHs. Sphingomonas, Nocardia, Beijerinckia,
Paracoccus, and Rhodococcus were found by Teng et al. (2010) to
decompose anthracene completely in the presence of dihydriol,
an initial oxygenated intermediate compound.

PAHs can also be degraded by fungal enzymes. Various aerobic
and anaerobic fungi can be used for the degradation of PAHs
(Aydin et al., 2016). Bjerkandera adusta, Pleurotus ostreatus,
and Phanerochaete chrysosporium have the ability to produce
ligninolytic enzymes applicable to PAH degradation, such as
laccase, Mn peroxidase and lignin peroxidase (Kadri et al., 2016).
The rate of degradation depends on culture conditions, such as
the presence of oxygen, temperature, availability of nutrients,
and in an agitated or shallow culture. The efficiency of fungal
enzymes is also affected by addition of biosurfactants. The in situ
biodegradation of PAH is more complicated due to heterogenic
nature of soils (Kadri et al., 2016). Therefore, all factors affecting
the bioavailability of PAHs should be considered when using
fungi for the degradation of these compounds.

The PGPR also have the potential to degrade PAHs.
Pseudomonas sp. JPN2 is able to degrade pyrene and other
aromatic contaminants (Jin et al., 2016). Its degradation potential
increased with increasing incubation time, and maximum
degradation (83%) was achieved after 25 days of incubation.
The analysis of culture medium on GC-MS showed four
metabolites (1-hydroxy-2-naphthoic acid, 4-phenanthrol, 4,5-
dihydroxy-4,5-dihydropyrene and phthalate). Additionally, JPN2
showed increased growth at 100mg L−1 of pyrene, indicating its
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TABLE 3 | Microbial strains tested for degradation of polyaromatic hydrocarbons.

Microbial strain Experimental conditions Response/Results References

Pseudomonas

plecoglossicida strain PB1

and Pseudomonas sp. PB2

Naphthalene, fluoranthene, pyrene and

chrysene in the balch tubes in liquid

culture media

Pseudomonas plecoglossicida strain PB1 and Pseudomonas

sp. PB2 degraded pyrene between 8 and 13%, chrysene 14

and 16%, naphthalene 26 and 40%, fluroanthene 5 and 7%,

respectively

Nwinyi et al., 2016

Bordetella avium MAM-P22 Screened four naphthalene concentrations

to determine the most potential strain

having ability to use naphthalene as sole

source of carbon and energy

Bordetella avium MAM-P22 degraded naphthalene to give six

intermediate compounds viz. 1,2-Benzene dicarboxylic acid,

Butyl-2,4-dimethyl-2-nitro-4-pentenoate, 1-Nonen-3-ol,

Eicosane, Nonacosane

Abo-State et al., 2018

Thalassospira sp. strain

TSL5-1

Pyrene degradation in the presence of

additional nutrients, different pH and

salinity levels

Optimum salinity level for degradation was 3.5% and 5%, pH

fluctuation affected degradation rate and peptone had

antagonistic effect with pyrene degradation

Zhou et al., 2016

Bacteria; Pseudomonas sp.

N3 and Pseudomonas

monteilii P26 and

Actinobacteria;

Rhodococcus sp. F27,

Gordonia sp. H19 and

Rhodococcus sp. P18

Pyrene, naphthalene and phenanthrene

degradation at flask scale

Pure culture of Pseudomonas sp. N3 and Pseudomonas

monteilii P26 efficiently degraded low molecular weight (LMW)

PAHs but showed unfavorable results for degradation of high

molecular weight (HMW) PAHs

Actinobacteria; Rhodococcus sp. F27, Gordonia sp. H19 and

Rhodococcus sp. P18 degraded relatively efficiently HMW

PAHs but not able to degrade LMW PAHs

The combination of four strains degraded phenanthrene and

naphthalene (100%) while pyrene (42%); almost 6-times

higher than pure cultures

Isaac et al., 2015

Acinetobacter sp. WSD Biochemical characterization and 16S

rDNA gene sequence analysis in the

laboratory

The bacteria degraded phenanthrene (90%), fluorine (90%)

and pyrene (50%), and used as sole source of carbon and

degraded other PAHs as well after 6 days of incubation

Glucose and humic acids improved degradation rate and

served as alternate carbon source but co-metabolism was

recorded in case of humic acid

Shao et al., 2015

Amycolatopsis sp. Poz14 Biochemical characterization and 16S

rDNA gene sequence analysis in the

laboratory, incubation studies

Utilized LMW; anthracene and naphthalene, and HMW;

fluoranthene and pyrene polyaromatic hydrocarbons as sole

source of energy and carbon

Degraded naphthalene (100%), anthracene (37.9%), pyrene

(25.1%), and fluoranthene (18.%) within 45-days of incubation

Ortega-Gonzalez et al.,

2015

Pseudomonas sp. CES Multiplexed LC-MS/MS assays in the

laboratory, stable isotope dimethyl labeling

Bacterium able to degrade caffeine and can tolerate caffeine

three times higher (9.0 g L−1) than the maximum tolerable

levels of previously reported bacteria

Discovered caffeine-degrading enzymes in bacterial strain

Yu et al., 2015

Three fungal strains: A;

Trichoderma/Hypocrea, B

and C; Fusarium

18S ribosomal DNA sequencing and

morphological characterization incubation

studies of 7 and 14 days at 28◦C with

PAHs as the substrate

Fungal strains used pyrene as the sole source of carbon

strains A and B assimilated anthracene and fluoranthene,

while strain C was unable to assimilate them

Additional carbon source and pH affected the degradation

potential and it was more at pH 4.0 than pH 6.5

Mineki et al., 2015

Pleurotus ostreatus,

Collybia sp., Rhizoctonia

solani and Trametes

versicolor

Studied the potential ligninolytic activity

using decolorization of a polymeric dye

Poly R-478, ligninolytic enzyme profile

studies

All fungi produced MnP and laccase while the Collybia sp.

and R. solani also produced LiP in addition

T. versicolor produced MnP and laccase 3–4 times more than

the other fungi

McErlean et al., 2006

Consortium of five

microorganisms. viz.

Achromobacter insolitus,

Bacillus licheniformis,

Bacillus cereus,

Microbacterium sp. and

Sphingobacterium sp.

Studied the bioremediation of selected

PAHs (naphthalene, anthracene and

phenanthrene) by by shake flask method

using microbial consortium isolated from

petrochemical contaminated soil

Microbial consortium effectively biodegraded the naphthalene

and anthracene. Microbial consortia consisting of these

potential microorganisms can be used for biodegradation

PAHs compounds generated by petrochemical industries

Fulekar, 2017

Bjerkandera adusta,

Pleurotus ostreatus and

Phanerochaete

chrysosporium

Reviewed the biodegradation of PAHs by

fungal enzymes

Fungal strains have the ability to produce ligninolytic

enzymes, such as laccase, Mn peroxidase and lignin

peroxidase applicable to PAH degradation

Kadri et al., 2016

Pseudomonas gessardii

strain LZ-E

Studied simultaneous degradation of

naphthalene and reduces Cr(VI) in aerated

bioreactor system

Pseudomonas gessardii strain LZ-E continuously remediated

naphthalene and reduced Cr(VI) to Cr(III)

Huang et al., 2016
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tolerance for pyrene (Jin et al., 2016). Meena et al. (2016) isolated
pyrene degrading bacteria from industrial effluent contaminated
sites which suggest these sites may be attractive niches for PAH
degrading bacteria. From the industrial effluent, six bacterial
isolates were isolated and purified following serial enrichment
techniques, and were assessed for their pyrene degradation
potential using modified mineral salt medium supplemented
with pyrene. Through 16S rRNA sequencing, the isolated bacteria
were found to belong to four genera, i.e., Ochrobactrum,
Microbacterium, Bacillus, and Acinetobacter. The isolate Bacillus
megaterium YB3 was further evaluated for its efficiency to
degrade pyrene. Over 7 days of incubation, it degraded almost
73% of 500mg L−1 pyrene into two relatively less toxic
intermediate metabolites, based on GC-MS analysis. A further
characterization of B.megateriumYB3 showed that it was positive
for aromatic-ring-hydroxylating dioxygenase indole-indigo and
catechol 1,2-dioxygenase conversion assays.

Bacteria belonging to the genus Mycobacterium are among
the most effective degraders of PAHs. Hennessee and Li (2016)
studied four Mycobacterium species with respect to single
and mixed culture PAH metabolism. Four PAH compounds
(phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene) were
used as model compounds to characterize the degradation
potential of bacteria in a strain- and mixture-dependent manner.
The results indicated metabolic differences between single and
mixed degradation of PAH, which could be helpful for risk
assessment and bioremediation of PAH-contaminated sites.
Chen et al. (2016) investigated functional microbial populations
and processes involved in pyrene biodegradation in soils. Two
soils were incubated with 60mg kg−1 of pyrene, more than 80%
of the added pyrene degraded within 35 days in both soils. Thirty-
five days after incubation, a significant enrichment of gram-
positive bacteria harboring PAH-ring hydroxylation dioxygenase
(PAH-RHDα GP) genes was observed along with an increase
in Mycobacterium. Both soils showed a large proportion of
uncultured gram-positive bacteria along with Mycobacterium,
suggesting they may be the important groups of pyrene degraders
in soils. The genes, nidA and nidA3, were identified as the major
genes involved in biodegradation following two different pyrene
catabolic pathways (Chen et al., 2016).

The above studies point to the viability of microbes to
degrade PAHs. Both bacteria and fungi are able to degrade
various organic contaminants, including pesticides, azodyes, and
petroleum hydrocarbons. In some cases, microbes use PAHs
as energy and nutrient sources, converting them into harmless
or less toxic compounds. In some cases, they rely on alternate
energy sources and degrade pollutants without any direct
benefits. Therefore, the addition of an alternate carbon source
may accelerate the bioremediation process. Bioremediation is
equally effective in liquid (water) and solid (soil) environments.
However, it is affected by different biotic and abiotic factors, such
as the type of microorganism involved, microbial population
and diversity, structure of substrate, bioavailability of substrate,
pH, aeration and alternate energy sources (Sihag et al., 2014).
Microbes have different genes related to the degradation of PAHs,
and consequently follow different pathways for decomposition
of these compounds (Table 4). A number of intermediate

compounds are produced depending upon the nature of the
original pollutant and the type of microbe involved. These
intermediate compounds can be even more toxic, therefore
the bioremediation system should be continuously monitored.
Although a lot of work has already been carried out in the
field, more extensive studies using mixtures of contaminants
and microbial consortia are needed. Further exploration of the
specific mechanisms and genes involved needs more attention.

Pesticides
Long-term exposure of certain microorganisms to agrochemicals
can result in resistance. Therefore, they can be used in
bioremediation of pesticide-contaminated sites (Khan et al.,
2009b). Their performance substantially increases in the presence
of specific pesticides as they use them as a nutrient and energy
source (Qiu et al., 2009; Reddy et al., 2016). Their ability to
degrade pesticides is essential for eliminating harmful, toxic
chemicals from the environment, controlling and reducing
environmental pollution (Surekha et al., 2008).

Pesticide degradation is possible through bioremediation as
an alternative to conventional methods, and is a more effective,
versatile, environment-friendly, and economical strategy
(Finley et al., 2010). Certain microorganisms have the ability
to biodegrade pesticides through specific enzymes. Enzyme
catalyzed biodegradation of pesticides is a complex process
that involves a series of biochemical reactions. However, the
rate and final fate of different pesticides in the environment
varies greatly and depends upon biotic and abiotic factors.
For example, due to structure, some pesticides, such as
dichlorodiphenyltrichloroethane (DDT) became more persistent
and remain in the environment for longer periods than
others (Kannan et al., 1994). A variety of microbes, including
fungi, bacteria and actinomycetes, are able to degrade and
remove pesticides from the environment (Parte et al., 2017).
Bioremediation can be carried out by indigenous microflora, or
through the enrichment of microbial cultures.

Bioremediation is also affected by environmental factors,
such as temperature, pH, nutrients, and moisture availability.
Consequently, environmental conditions should be conducive
for the growth and activity of microbes for accelerated
bioremediation (Vidali, 2001). The long-term application of
pesticides can also promote biodegrading enzymes in the
indigenous microflora, as they served as a source of carbon and
energy, making the remediation of pesticide contaminated sites
easier (Qiu et al., 2009). Pesticide degrading microorganisms
have been isolated from a wide variety of polluted environments.
Some of them have potential to degrade more than one organic
pollutant. Hence, scientists are working on microbial diversity
and functioning to understand their physiology, diversity,
ecology, and evolution for in situ biotransformation of organic
contaminants (Mishra et al., 2001).

As of this point, most studies have used pure cultures
of microbes to observe biodegradation of pesticides. This
involves the isolation of microbes from contaminated sites, their
purification and characterization for degradation of different
rates of specific pesticides under laboratory conditions. For
example, some stains of microbes for biodegradation of DDT
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TABLE 4 | Pathways used by microbial strains for the degradation of polyaromatic compounds.

Microbial strain Isolation source Mechanism/pathway for degradation References

Thalassospira sp. strain TSL5-1 Coastal soil of Yellow Sea, China Two pathways: salicylic acid and phthalate routes Zhou et al., 2016

Acinetobacter sp. WSD PAHs contaminated groundwater from a

coal-mining area

Phthalic acid and Phenol, 2,5-bis(1,1-dimethylethyl)

pathways

Shao et al., 2015

Pseudomonas sp. CES PAHs contaminated area Caffeine-degrading pathway Yu et al., 2015

Amycolatopsis sp. Poz14 Oil-contaminated soil Salicylic acid and phthalic acid pathways Ortega-Gonzalez et al.,

2015

P. chrysosporium Pre-isolated obtained from, Institute of

Microbiology, Chinese Academy of

Science

Manganese peroxidase (MnP) and lignin peroxidase

(LiP) pathways

Wang et al., 2009

Pleurotus ostreatus, Collybia sp.,

Rhizoctonia solani and Trametes

versicolor

Grassland soil Ligninolytic enzymes production, MnP and laccase

production

McErlean et al., 2006

Pseudomonas sp. Polycyclic aromatic hydrocarbon polluted

soil

Salicylate and phthalate pathways Jia et al., 2008

Arthrobacter sp. Polycyclic aromatic hydrocarbon

-contaminated site

Phthalic pathway is more expressed than the

salicylate pathway

Seo et al., 2006

Cycloclasticus sp. P1 Deep sea sediments Pyrene degradation pathway Wang et al., 2018b

Bordetella avium MAM-P22 Petroleum refinery wastewater Degradation of naphthalene by production of

intermediate compounds i.e., 1,2-Benzene

dicarboxylic acid,

Butyl-2,4-dimethyl-2-nitro-4-pentenoate,

1-Nonen-3-ol, Eicosane, Nonacosane

Abo-State et al., 2018

have been isolated from soil, sewage, animal feces, activated
sludge and sediments (Johnsen, 1976; Lal and Saxena, 1982;
Rochkind-Dubinsky et al., 1986). The in situ use of microbes
for degradation of organophosphates in the pioneering work
of Matsumura et al. (1968) showed that Pseudomonas sp. was
capable of degrading dieldrin in soil in natural environments. The
degradation of certain pesticides requires more than one bacterial
strain. The use of this strategy is known as co-metabolism. In this
process, one bacterial strain converts the original compound to
an intermediate that is ultimately converted in to a final product
having less or even no potential hazards for the environment. For
example, the biodegradation of DDT with an alternative carbon
source, which microbes used as a nutrient or energy source to
transform DDT, involves co-metabolism (Bollag et al., 1990).

Neurotoxic systemic insecticides not only persist for long
periods in the soil, but also are non-selective and kill beneficial
insects. They are water-soluble and persist in food chains and
biogeochemical cycles. There are several bacterial strains with the
ability to biodegrade neonicotinoids in soil and water systems
(Hussain et al., 2016). Organochloride pesticides are recalcitrant
and are more resistant to biodegradation (Díaz, 2004). Bacteria
are the major group among microorganisms with the potential to
degrade organochloride pesticides. The degradation ability of soil
bacteria from the genera Arthrobacter, Pseudomonas, Bacillus,
andMicrococcus was reported by Langlois et al. (1970).

Fungi are equally important in the degradation of
organochlorine pesticides. Xiao et al. (2010) conducted a
study on fungal degradation of heptachlor and reported that
after 14 days of incubation P. acanthocystis, P. brevispora,
and P. tremellosa removed about 90, 74, 71% heptachlor,
respectively. They proposed that hydrolysis and hydroxylation

are the dominant reactions involved. Similarly, Ozdal et al.
(2016) reported that P. aeruginosa G1, Stenotrophomonas
maltophilia G2, B. atrophaeus G3, Citrobacter amolonaticus G4,
and Acinetobacter lowffii G5 have high biodegradation ability for
the organochlorine, endosulfan. Ortega-Gonzalez et al. (2015)
conducted an experiment with marine fungi extracted from
marine sponges. The fungi Penicillium raistrickii, Trichoderma
sp., Aspergillus sydowii, Penicillium miczynskii, Bionectria sp.,
and Aspergillus sydowii were tested in solid culture medium
containing 5, 10 and 15mg of dichlorodiphenyldichloroethane
(DDD), and in a liquid medium, which had the same amounts
of DDD per 100mL of liquid medium. They reported that A.
sydowii, Trichoderma sp., and P. miczynskii grow well in the
presence of the pesticide; however Trichoderma sp. performed
best and was selected for further studies.

The concentration and form of the alternate carbon sources
may affect the degradation potential of microbes. Fang et al.
(2010) tested glucose, yeast extract, sucrose, and fructose as
additional carbon sources to foster the degradation of DDTs
using Sphingobacterium sp. and found the half-lives of DDTs
significantly decreased in the presence of additional carbon
sources. Glucose as an additional carbon source resulted in the
fastest biodegradation of DDTs. They confirmed these in vitro
results through field studies. Results showed a significantly lower
concentration in the samples inoculated with Sphingobacterium
sp. as compared to uninoculated control after 90 days of
incubation.

Microbes play a significant role in the degradation of the
nematicide oxamyl. However, little information exists regarding
the types ofmicrobes involved in its biotransformation. Rousidou
et al. (2016) isolated four oxamyl-degrading bacterial strains
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with the potential to enhance biodegradation of oxamyl in soil.
Based on the multilocus sequence analysis (MLSA), the bacterial
strains belong to different subgroups of the genus Pseudomonas.
They hydrolyzed oxamyl to oxamyl oxime, but did not use
it as a carbon source, instead utilizing methylamine as source
of C and N. Three of the four strains contain methylamine
dehydrogenase enzyme. Furthermore, all these strains also have
a gene highly homologous to a carbamate-hydrolase gene, cehA,
which has been found in carbaryl- and carbofuran-degrading
bacterial strains. A number of bacterial strains are responsible for
the degradation of carbamates, such as carbofuran and carbaryl
(Bano and Musarrat, 2004; Yan et al., 2007) as well as methomyl
(Mohamed, 2009; Xu et al., 2009). Aldicarb is degraded by
Stenotrophomonas maltophilia (Saptanmasi et al., 2008) and
Aminobacter and Mesorhizobium spp. are also considered to be
oxamyl-degrading bacterial strains (Osborn et al., 2010).

The biodegradation of organophosphorus pesticides
has been extensively studied (Singh, 2008). A variety of
enzymatic systems in bacteria degrades them, for example
Acinetobacter sp., Serratia sp., Proteus vulgaris, and Vibrio
sp. have been reported to degrade dichlorovos (Agarry et al.,
2013). Malghani et al. (2009) isolated bacteria efficient in
the degradation of profenofos from the genus Pseudomonas.
Rayu et al. (2017) demonstrated that Xanthomonas sp. 4R3-
M3 and Pseudomonas sp. 4H1-M3 were able to use both
chlorpyriphos and 3,5,6-trichloro-2-pyridinol as a sole carbon
and nitrogen source under laboratory conditions. Similarly,
degradation of cyhalothrin along with other pyrethroides by B.
thuringiensis was reported (Chen et al., 2015). Chanika et al.
(2011) identified two bacterial strains, Pseudomonas putida
and Acinetobacter rhizosphaerae, which were able to rapidly
degrade organophosphate fenamiphos (FEN). Both strains
hydrolyzed FEN to fenamiphos-phenol and ethyl-hydrogen-
isopropylphosphoramidate, although it was only further
transformed by P. putida. The two strains use FEN as a C and N
source.

Due to a decrease in effectiveness of individual pesticides,
mixtures containing different active ingredient groups are
being developed, especially the combination of pyrethroid and
organophosphorus pesticides (Moreby et al., 2001). Genetically
engineered microorganism (GEM) inoculants have the potential
to degrade these complex pesticides. For example, Zhang et al.
(2016) succefully engineered a multifunctional Pseudomonas
putida X3 strain by introducing methyl parathion (MP)-
degrading gene. They reported that genetically engineered strain
X3 is a strong bioremediation agent that showed competitive
advantage in complex environment contaminated with MP
and Cd. Yuanfan et al. (2010) suggested the development of
GEMs could be effective for bioremediation of contamination
by multiple pesticides, as indicated by GEM with the methyl
parathion hydrolase gene, mpd, which is responsible for
hydrolyzing methyl parathion to p-nitrophenol and dimethyl
phosphorothioate. The development of GEMs and dual-species
consortia has the potential to be used for degrading different
pesticides.

Wang et al. (2018a) studied endophyteNeurospora intermedia,
isolated from sugarcane roots grown in a diuron-treated soil.

Diuron is a broad-spectrum phenylurea herbicide for pre-
emergence weed control in a wide bunch of crops. Their results
indicated that the strain DP8-1 was capable of degrading up to
99% diuron within 3 days under optimal degrading conditions.
The degradation spectrum of DP8-1 inlcuded fenuron, monuron,
metobromuron, isoproturon, chlorbromuron, linuron, and
chlortoluron. Its on-site applicability, however, needs further
investigation.

Microbes that can degrade more than one group of pesticides
would be more efficient and economic than those with specific
traits. Above all, strains with multiple plant growth promoting
traits, such as the ability to solubilize zinc, promote phosphate
and chitinase activity, with a high root colonization potential, and
biodegrade pesticides would be most effective due to their multi-
purpose applicability. As these strains can efficiently colonize the
plant roots and help plant roots to proliferate, phytoremediation
is more feasible and makes inoculation with these microbes
an economical and applicable strategy for the remediation of
pesticide-contaminated sites.

Recently, the potential of GME to degrade or accumulate
contaminants is also discussed. Their impact is much wider
than that of their wild relatives, improving degradation or
alteration of catabolic pathways, either to protect the host plant
against phytotoxicity or to improve their overall efficiency of
phytoremediation. This is especially suitable when hydrophilic
compounds fail to be degraded by rhizospheric microbes due to
the rapid uptake by plants (Ijaz et al., 2016).

Inorganic Pollutants
Pollution to soil, water, and air is caused by release of
inorganic chemical waste by industries, auomobiles, construction
companies, and fertilizers. Inorganic pollutants mainly include
heavy metals which may be detoxified by using microbes in
the presence or absence of plant systems. Heavy metals may
be beneficial or harmful for microbes, depending upon their
nature and bioavailability (Ayangbenro and Babalola, 2017). For
example, some heavy metals like manganese (Mn), Fe, nickel
(Ni), Mg, copper (Cu), chromium (Cr), cobalt (Co), and Zn are
essential micronutrients, required in a number of physiological
processes, such as forming parts of enzyme complexes, redox
reactions, and the stabilization of molecules through electrostatic
interactions (Bruins et al., 2000). Other heavy metals, such as
arsenic (As), antimony (Sb), lead (Pb), gold (Au), cadmium (Cd),
Al, silver (Ag), and mercury (Hg), are not essential, and have no
biological role in the microbial body (Bruins et al., 2000). In high
concentrations, they can form various complexes in microbial
bodies that are highly toxic. Even essential heavy metals like Zn
and Ni can also be toxic at higher concentrations.

Microbial Detoxification of Heavy Metals
Some microbial strains develop resistance against these heavy
metals and they have the ability to detoxify them. They could
be a means to detoxify heavy metals at higher concentrations in
the environment. Heavy metals and other ions must first enter
the microbial cells for any indication of beneficial or harmful
effects on microbial physiology (Nies, 1999). Many divalent
heavy metals, e.g., Zn2+, Cu2+, Ni2+ Co2+, Fe2+, and Mn2+,
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are structurally similar, and anions of some heavy metals with
oxygen resemble the anions of essential elements, for example
chromate resembles sulfate, while arsenate resembles phosphate.
As a result, the microbial uptake mechanisms need to be tightly
controlled. Microbes use chemiosmosis, a gradient driven, very
fast, and unspecific uptake systems for heavy metals (Nies, 1999)
that increase their accumulation within the microbial body.

In microbial cells, toxicity may occur when heavy metals
displace essential metals from their binding sites (Nies, 1999).
They may also cause toxicity due to ligand interactions (Bruins
et al., 2000). Heavy metals have the tendency to bind with
sulfur-hydrogene (SH) groups in the microbial body and play
a role in the inhibition of sensitive enzymes. The minimum
concentration of heavy metals effective enough to bind with
SH groups and inhibit enzyme activity is called the minimal
inhibitory concentration (MIC). Some bacterial strains have an
exceptionally high MIC, and therefore have a high resistance to
heavy metals. For example, Yilmaz (2003) isolated and identified
a bacterial strain Bacillus circulans EB1, with a high MIC for
heavy metals. Bacterial strains with a higher MIC are preferable
for bioremediation of heavy metal contaminated sites.

Other possible mechanisms of heavy metal resistance in
microbes could be intra and extra-cellular sequestration,
enzymatic reduction, biosorption, reduction in sensitivity of
cellular targets to metal ions, and antioxidant defense system
(Huang et al., 1990; Brady and Duncan, 1994; Liu et al., 2004;
Xu et al., 2015). Microorganims release extracellular polymeric
substances (EPS) which bind the heavy metals. Biosorption
mechnisms used by EPS from Bacillus subtilis involve functional
groups. Heavy metals, such as Cu(II) binds with anionic oxygen-
bearing ligands and form inner-sphere complexes with the EPS
functional groups as reported by Fang et al. (2014). These
mechanisms can be useful in understanding the survival of
microbes in this context.

Microbes remove heavy metal contaminants in different
ways, such as biosorption, precipitation, biotransformation,
bioaccumulation, complexation, enzymatic transformation of
metals and phytoremediation (Liu et al., 2004; Ojuederie
and Babalola, 2017; Xu et al., 2017). In bioaccumulation,
microbes retain and concentrate heavy metals in their body.
Bioaccumulating microbial strains can be strong candidates for
decontamination of polluted soil and water as reported by
Akhter et al. (2017). They isolated and identified three bacterial
strains of B. cereus, i.e., BDBC01, AVP12, and NC7401, from
rhizosphere of Tagetes minuta and reported that these strains
have strong solubilization and accumulation potential for Cr(VI),
Ni(II), and Cd(II) thus help in biosorption of these metals.
Biosorption of heavy metals is the sequestration of positively
charged metal ions by ionic groups on cell surfaces (Malik, 2004).
Bacteria-clay mineral interactions are important in the context
of metal immobilization and allocation of metals to mineral
fraction. The adsorption-desorption mechanisms are affected
by microbial composition and diversity, chemical behavior of
metals, metal speciation and concentration, modeling method
(Du et al., 2017a; Qu et al., 2017b), soil physico-chemical
properties, such as clay minerals and soil pH, affecting the
number of negative charge sites (Qu et al., 2017a) and plant
species. The mobility of heavy metals in soils also depends

upon type and concentration of ligands and sorbents, such as
bacteria-mineral complexes (Du et al., 2016a). For example,
citrate and humic acid enhanced Cd adsorption on P. putida–
montmorilonite and P. putida–goethite composites while oxalate
suppressed Cd adsorption. Phosphate ligand increased Cd
sorption on P. putida–goethite while decreased on P. putida–
montmorilonite composite. Recently, Qu et al. (2018) conducted
a study on Pb sorption on montmorillonite-bacteria composites
using a combination of atomic force microscope (AFM), X-
ray diffraction (XRD), surface complexation modeling (SCM),
Pb-LIII edge extended X-ray absorption fine structure (EXAFS)
spectroscopy, and isothermal titration calorimetry (ITC). They
observed that formation of montmorillonite, Pseudomonas
putida complex promoted the allocation of Pb to mineral fraction
and reported that SCM, EXAFS, and ITC may help in predicting
the speciation and fate of Pb in soils and associated environments.
For risk assessments in soils and associated environments, the
heavy metal adsorption in complex systems is based on accurate
modeling. In another study, Du et al. (2017a) investigated
Cd adsorption on Gram-positive Bacillus subtilis, Gram-
negative Pseudomonas putida and their binary mixtures with
montmorillonite using SCM, Cd K-edge EXAFS, spectroscopy,
and ITC. They reported that B. subtilis adsorbed more amounts
of Cd than P. putida at pH < ∼6 while P. putida was more
efficient for Cd sorption to phosphate groups. This suggests
that microbial composition and diversity along with biochemical
behavior of trace metals are important for metal sorption in
microbe-bearing environments. Qu et al. (2017a) established
component additivity (CA) method with CA-site masking for Cd
adsorption on goethite-Pseudomonas putida composites using
different mass ratios. Both CA and CA-site masking models
were in line with ICT data however, it was observed that CA
method was excellent in simulating Cd adsorption on bacteria-
iron oxides composites at low bacterial and Cd concentrations
while wide deviation was observed at higher concentrations.
Both models were supported by thermodynamic reaction data
while these models are conditional to mineral/bacteria ratio
and concentration and different models behave differently under
different conditions and heavymetal concentrations (Wang et al.,
2016). Moreover, interfacial complexation reations that occur
between iron (hydr)oxides and bacteria should be taken into
account for higher bacterial/metal concentrations.

Organic matter in complexation with iron minerals helps the
adsorption of metals in soil environments. Soil microbes can
further imrpove the adsorption when present in these multi-
complexes. In soil environments, iron oxides make complexes
with organic composites and help in the transformation trace
metals. Du et al. (2017b) studied the copper adsorption on
composites of synthetic goethite, cells of Pseudomonas putida,
humic acid (HA), and their binary and ternary composites with
batch adsorption experiments coupled with ITC. They reported
that bacterial composites with goethite or humic acid separately
and in combination help in adsorption and cycling of Cu but their
affinity was less than binary composite of goethite and humic
acid. Furthermore, binary and tertiary complexes of bacteria,
iron oxide and humic substances affected the sequestration
of heavy metals (Du et al., 2017a). During precipitation and
transformation, microbes change the oxidation state of metals
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and metalloids to make them less harmful. The microbes used
in bioremediation demonstrate a wide range of mechanisms,
which change the bioavailability, transport properties, sorption
characteristics and toxicity of heavy metals (Malik, 2004; Gupta
et al., 2016). Metals show competitive adsorption for same type
of adsorbents as they tend to bound on same types of adsorption
sites on the adsorbent (Du et al., 2016b). Similarly, different
microbial strains vary in their affinity for the sorption of heavy
metals. For instance, fungal strain Paecilomyces lilacinusXLAwas
more efficient and eco-friendly than Mucoromycota sp. XLC for
bioremediation of Cd2+ from wastewater (Xia et al., 2015).

Some studies aimed to isolate and screen metal-resistant
microorganisms from polluted environments for bioremediation
purposes (Pal and Paul, 2004; Abou-Shanab et al., 2007). For
example, Akinbowale et al. (2007) isolated aeromonads and
pseudomonads from fish, which were resistant to heavy metals.
Srivastava et al. (2007) and Congeevaram et al. (2007) successfully
used heavy metal resistant bacteria to detoxify heavy metal
polluted sites. In the past decade, attention has been turned
toward identification of bacterial strains with the potential
to bioremediate polluted soils through the sequestration of
toxic heavy metals and degradation of xenobiotic compounds
(Braud et al., 2009; Hayat et al., 2010; Wani and Khan,
2010; Ahemad, 2012). Bioaugmentation of contaminated sites
through efficient microbial strains can significantly reduce metal
concentrations in polluted soil (Emenike et al., 2016; Fauziah
et al., 2017). There are a number of bacterial strains belonging
to the genera Pseudomonas, Bradyrhizobium, Psychrobacter,
Ochrobactrum Lysinibacillus, Rhodococcus, and Bacillus, which
have novel traits useful for heavy metal decontamination from
polluted environments (Dary et al., 2010; Ma et al., 2010;
Wani and Khan, 2010; Emenike et al., 2016). Fungi are also
equally important in the remediation of metal polluted sites. For
example, Xu et al. (2017) reported that Paecilomyces lilacinus
XLA has the ability to reduce Cr6+ that can reduce over 90% of
Cr6+ in growth media with Cr6+ concentration below 100mg
L−1 at pH 6 after 14 days of incubation. They reported that
XLA used biosorption, biotransformation, and bioaccumulation
as the major mechanisms for reduction of chromium. The XLA
might have detoxified the reactive oxygen species produced
by external Cr6+ through its efficient antioxidant enzyme
system. The efficiency of these fungal species can be affected
by soil conditions, such as pollution level of metals, pH, EC,
temperature, and nutrient status of soils.

Phytoremediation of Heavy Metals
Phytoremediation is based on hyper-accumulating plant
species. The phytoremediation ability of plants depends on
environmental conditions, the quantity of heavy metals present
at the site, soil type, and microbial number and diversity
(Ojuederie and Babalola, 2017). To accelerate the process,
scientists are exploring plant–microbe interactions, combining
the capabilities of rhizosphere bacteria to improve metal uptake
by the plant. Kuffner et al. (2008) isolated ten rhizosphere
isolates obtained from heavy metal accumulating willows (Salix
sp.). They belonged to the genera Agromyces, Flavobacterium,
Serratia, Pseudomonas, and Streptomyces. Plant growth, as well as
Zn and Cd uptake potential of these strains were measured. The

strain Agromyces AR33 almost doubled Zn and Cd extractability,
which was attributed to the improvement of release of Zn and Cd
specific ligands. Some other strains were helpful in improving
Zn and Cd uptake of Salix caprea plantlets. However, they might
have used different plant-microbe interactions to improve heavy
metal uptake, except IAA production, ACC deaminase activity
and siderophore production.

Some PGPR have the ability to improve heavy metal uptake
in crops. For example, Ghasemi et al. (2018) conducted an
experiment to study the effectiveness of five bacterial isolates
with plant growth promoting traits on improving growth, health
and Ni phytoextraction capacity of three Ni-hyperaccumulators,
Odontarrhena inflate, O. bracteata, and O. serpyllifolia. Plants
were inoculated with five rhizobacterial strains (previously
isolated from O. serpyllifolia) and grown for 3 months. The
bacterial inoculants enhanced Ni removal due to the stimulation
in growth and/or increase in shoot Ni concentration, but the
effectiveness of these strains varied with bacterial strain, plant
species and soil type (Ghasemi et al., 2018).

Bacteria with ACC deaminase can potentially induce heavy
metal stress tolerance in crop plants. Consequently, they could
enhance the phytoextraction and phytoremediation potential of
plants. Four bacterial strains from Ni-contaminated soils were
isolated by Rodriguez et al. (2008) on the basis of ACC deaminase
activity. They were identified as Pseudomonas putida Biovar B,
and also have plant growth promoting traits, such as indole acetic
acid and siderophores production, in addition to ACC deaminase
activity. They were tolerant of up to 13.2mM Ni in a culture
medium. Based its effectiveness from the laboratory results, strain
HS-2 was tested in pot experiments. It was observed that canola
plants inoculated with HS-2 strain accumulated more biomass
and had higher Ni contents in shoots and roots. According
to these results, HS-2 could be a potential inoculant for the
phytoremediation of Ni contaminated sites (Rodriguez et al.,
2008).

Endophytic bacteria have also been shown to improve heavy
metal stress tolerance in crop plants. For example, Sheng
et al. (2008) isolated two Pb resistant endophytic bacteria,
Pseudomonas fluorescens G10 andMicrobacterium sp. G16, from
the roots of canola plants grown in Pb contaminated fields. The
isolated strains were resistant to heavy metals and successfully
improved growth of canola plants in pot experiment. Zhang
et al. (2011b) characterized three ACC deaminase producing
endophytic bacteria, Ralstonia sp. J1-22-2, Pantoea agglomerans
Jp3-3, and Pseudomonas thivervalensis Y1-3-9 out of 100 isolates
isolated from copper-tolerant plants. They reported that these
bacteria promoted plant growth and copper (Cu) accumulation
in canola plants in a pot experiment This supports the
endophytic bacterial-assisted phytoremediation strategy for Cu-
contaminated environments.

As seen in the above studies, microbes can be part of an
innovative strategy to remediate heavy metal contaminated
soils. Under varying conditions and in different crops, bacterial
strains showed the ability to improve plant growth, such
as IAA production, ACC deaminase activity, siderophores
production, and heavy metal uptake, through bioaccumulation,
biotransformation, precipitation, and biosorption. However,
there are still gaps in the understanding of specific plant-microbe
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interactions involved in the bioremediation of metal
contaminated sites. There are bacterial strains with no IAA
and siderospores production ability, and no ACC deaminase
activity, which have enhanced metal uptake and accumulation in
plant organs. Bioremediation technologies are necessary for the
detoxification of metal-contaminants in polluted environments
(Emenike et al., 2018a,b), to prevent their toxic effects on the
environment and living organisms.

CONCLUSION AND FUTURE PROSPECTS

The efforts to feed a burgeoning population by increasing yields
with new crop varieties and agrochemicals have significantly
violated global ecosystems. Moreover, industrialization and
urbanization have put extra pressure on soil and water resources
around the cities and towns, engulfing fertile agricultural lands.
Effluents and exhaust from industries and automobiles pollute
soil, water, and atmosphere, add contaminants into food chain,
and create unhealthy conditions for human life.

This paper overviewed methods to restore and sustain
the environment with the use of microorganisms for site
decontamination. It demonstrated that microbes are effective
in the degradation of agrochemicals, industrial effluents, and
petroleum products. Microorganisms have great potential to
decontaminate polluted sites though their direct role in the
degradation of organic pollutants and detoxification of inorganic
compounds, and their indirect role of decreasing the need for
agrochemicals through plant growth promoting mechanisms.

The reviewed literature shows that microbial inoculants
can be successfully used as biofertilizers and biopesticides by
using diverse plant growth promoting traits. Microorganisms
either improve plant growth by direct effects, such as BNF,
hormone production, nutrients solubilization, or are indirectly
involved in the protection of plants from biotic and abiotic
stresses. Other mechanisms are antibiotic production for the
suppression of phytodiseases, chitinase and catalase activities
for the degradation of fungal cell wall, exopolysaccharides and
siderophore production to make nutrients unavailable for disease
causing organisms, and ACC deaminase activity to reduce the
negative impact of stressed environments. Through these and
other still unknownmechanisms,microbes improve plant growth
and productivity, without fertilizers and pesticides. Most of the
studies conducted so far have focused on the use of microbial
inoculants for agricultural productivity. As these microbes may
also affect ecology and soil microbial community structure,
leading to improved soil health, future research should be focused
on quantifying the impact of microbial inoculants on ecosystem
and soil health.

This review also outlines the potential for microbial
inoculants in bioremediation and detoxification of pollutants
from the environment. Microbes from different genera of
rhizobacteria, endophytes, and fungi have been identified for
their ability to degrade organic pollutants and detoxify heavy
metals. They are equally effective in degrading pesticides,
azodyes, and polyaromatic hydrocarbons, along with the
detoxification of heavy metals from industrial waste. Studies on

consortial inoculants should be the priority for the degradation
of complex agrochemicals, polyaromatic hydrocarbons, and
azodyes. Moreover, root colonization efficiency of these microbes
should also be further studied to increase their effectiveness
as bioremediators specific plant-microbe interactions in the
decontamination of environmental pollutants need to be
explored, as it has been suggested that microbes use unknown
mechanisms to enhance metal uptake and accumulation in
plants. Research is also needed to find out the pathways for the
degradation of industrial effluents by microbial strains

The use of genetically engineered microbes has also been
reported in literature. Comprehensive research is needed as little
is known about these microbes in situ. Their behavior in a natural
environment and their impact on soil health and soil microbial
community structure and functional genes should be studied
extensively. Furthermore, the specific mechanisms and genes
involved for bioremediation and detoxification of pollutants
should also be explored. There is a need to investigate site-specific
microbial communities under a wide range of environmental
conditions. Another area of interest is the formulation of suitable
inoculants and the testing of their environmental impact. Only
the tip of the iceberg has been identified, while the vast majority
of beneficial species and their potential have yet to be unraveled.
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