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ABSTRACT:  Postmortem body temperature is
used to estimate time of death in humans, but
the available models are not validated for most
nonhuman species. Here, we report that cooling
in an adult female moose (Alces alces) equipped
with a rumen temperature monitor was extremely
slow, with a rumen temperature of 27-28 C as late
as 40 h postmortem.

Body temperature is used in forensics for
estimating time of death in humans (Lyle and
Cleaveland 1956; Kaliszan 2013); however,
extrapolation of these methods to estimate
cooling of animal carcasses is difficult, espe-
cially because many factors, including species
differences affect this process (Munro and
Munro 2013; Brooks 2016). Species-specific
temperature curves have been used to pro-
duce models predictive of time of death in
certain species, including white-tailed deer
(Oates et al 1984; Hadley et al. 1999). This
knowledge would be useful to expand to other
species for studies on causes of animal
mortalities and for forensic cases.

Although models for humans have been
applied to wildlife, we propose that rumi-
nants, with postmortem rumen bacterial
activity, have a death temperature curve that
is not comparable to humans (Nation and
Williams 1989). In cattle, body temperature
rises after death, as rumen fermentation
continues. Bacteria, including Clostridium
spp., produce gas-driven bloating of the
carcass, stretching the skin and increasing
body temperature. As decomposition pro-
gresses, gas production decreases (Nation
and Williams 1989). Algor mortis, the gradual
cooling of the cadaver to ambient tempera-
ture, depends on temperature of the body at
death, body mass, and environmental factors,

such as ambient temperature, wind, and
precipitation (Zachary and McGavin 2013).

In February 2015, eight adult female moose
(Alces alces) in Oland, Sweden (56°43'N
16°39'E) were fitted with global positioning
system (GPS) collars, collar thermometers, and
rumen temperature loggers with a mortality
detector (Vectronic Aerospace GmbH, Berlin,
Germany). The capture and device deployment
were as previously described (Evans et al.
2012; Minicucci et al. 2018). Rumen temper-
ature (T,), collar temperature (T.), and GPS
locations were recorded at 15-min intervals.

We report the death of one of the
instrumented female moose, estimated to be
6 yr old at capture on 10 February 2015. Its
calf was found dead on 18 May 2015. The
following year, the moose decreased its
movement distinctly on 22 March 2016 and
dropped it further on 23 March 2016. It died
on 7 April 2016 at 1610 hours due to unknown
reasons. The movement change was identified
with behavioral change point analysis (Gurarie
et al 2009) that analyzed the animal’s speed,
variation in speed, and the duration of the
directed movement (Fig. 1A) and identified
breakpoints when a change occurred in all
three components. The time of death was
pinpointed by the mortality detector. On
inspection, the site where the animal was
found was open, with grass and willow bushes
and direct sun exposure.

To predict cooling, we used the formula as
adapted previously (Horning and Mellish,
2009):

Tcore - Ta

mbient _ 1 9565 — 0.25¢7",
TO - Tambient

Q:

We replaced core temperature (Teope) With
rumen temperature (T,), as being similar to
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Ficure 1.

(A). Movement patterns of a female moose (Alces alces) equipped with a temperature data logger

in the rumen. Behavioral change point analysis identification of different periods of movements between 7
March and 8 April. Break points in movement were identified when a simultaneous change occurred in speed,
variation, and duration of movement (vertical lines). Each point is a position: x axis represents the time, y axis
shows the velocity (1, dots) and the variance (o, lines) in meters per 3-h interval. We found a strong decrease in
in the variance of velocity about 2 wk before she died. (B). The decline in rumen temperature (T,; dotted line) in
the 36 h after death in a female moose (Alces alces). The body temperature started declining approximately 2 h
after death and continued gradually over the 36 h pictured. The model body temperature (T,,; solid line) shows
predicted cooling rates. The ambient temperature (dashed line) as measured by the sensor on the collar is T..

Teore in moose (Herberg 2017). We replaced
the ambient temperature (Tymbient) With collar
temperature (T.), which has been validated as
a proxy for Tymbient (Ericsson et al. 2015). The
T, at the time of death is T, (38.6 C), t is the
hours since death, and B is the Newtonian

cooling coefficient described by

B = —1.2815 X (C X mass) "% 4+ 0.0284,

where C is the correction factor (0.75) for
moving air (Horning and Mellish 2009). Body
mass was estimated by field personnel to be




300 kg. We adapted this formula to give the
predicted core temperature for a given ¢ since
death, with T,, as the model-predicted core
body temperature:

T, = (1.25¢" — 0.25¢")(Ty — T.) + Te.

As illustrated in Figure 1B, postmortem
cooling in a large animal is extremely slow
with a T, of 27-28 C nearly 40 h after death at
Tambient 5—15 C. Slow cooling contributes to
carcass decomposition and may interfere with
accurate interpretation of gross and micro-
scopic changes. For a meaningful necropsy,
relevant for determination of cause of death,
including disease, nutrition, or anthropogenic
factors, cooling of the carcass should be
hastened by skinning of the carcass, removal
of the gastrointestinal tract, refrigeration, field
necropsy, or sampling of organs at the site of
death. In forensic cases, deep body temper-
ature may be used, together with ambient
temperature, to estimate the time from death
by solving for time (¢). Indeed, models on the
basis of body mass and ambient conditions
have been applied to other species (Horning
and Mellish, 2009).

Interestingly, T, decreased faster than the
model until slowing 24 h after death of the
moose. This was contrary to previous reports
that rumen fermentation causes an immediate
increase in T, (Nation and Williams, 1989).
The lack of movement and presumed lack of
foraging before death may have affected the
ruminal microbial flora. In hunted animals,
the temperature of the carcass can be used to
assess if the time of death (e.g., as given by the
hunter) is reasonable.

We documented the postmortem cooling
rate in a dying moose. The results are relevant
for forensic cases, including legal or illegal
hunting and traffic accidents and management
issues (inspections of shot animals, disease
outbreak investigations, or marking-related
deaths). More data should be collected to make
a model as previously done for white-tailed
deer (Cox et al 1994; Hadley et al. 1999,). We
suggested the importance of cooling, skinning,
and eviscerating large animals to preserve the
carcasses to enable a proper necropsy.
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