1	Conservation Genetics Resources 5(3) 2013 DOI:10.1007/s12686-013-9891-y					
2	TECHNICAL NOTE					
3						
4	Isolation, characterization and predicted genome locations of Eurasian eagle-owl (Bubo					
5	<i>bubo</i>) microsatellite loci					
6						
7	Oddmund Kleven, Deborah A. Dawson, Jan O. Gjershaug, Gavin J. Horsburgh, Karl-Otto					
8	Jacobsen, Petter Wabakken					
9						
10	Oddmund Kleven (⊠) – Jan O. Gjershaug					
11	Norwegian Institute for Nature Research (NINA), N-7485 Trondheim, Norway					
12	Correspondence: Oddmund Kleven email: oddmund.kleven@nina.no					
13						
14	Deborah A. Dawson – Gavin J. Horsburgh					
15	Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK					
16						
17	Karl-Otto Jacobsen					
18	Norwegian Institute for Nature Research (NINA), Fram Centre, N-9296 Tromsø, Norway					
19						
20	Petter Wabakken					
21	Hedmark University College, Faculty of Applied Ecology and Agricultural Sciences,					
22	Evenstad, N-2480 Koppang, Norway					
23						
24	Running title: Eagle-owl microsatellites					
25	Word count: 1081					

27 Abstract We isolated 134 eagle-owl (Bubo bubo) microsatellite sequences. Eight of these newly isolated loci were characterized in 38 Eurasian eagle-owls in a northern European 28 29 population. Sequence homology was used to assign a predicted chromosome location for the eight loci. We also redesigned primers for four previously isolated eagle-owl sequences and 30 cross-amplified two published primer sets previously characterized in other owl species. 31 32 These 14 loci were amplified in three multiplex PCR sets and displayed 2 to 9 alleles with expected and observed heterozygosities ranging from 0.33 to 0.85 and from 0.42 to 0.97, 33 respectively. Estimated frequencies of null-alleles were low and only one locus deviated from 34 35 Hardy-Weinberg equilibrium. After correcting for multiple tests, linkage disequilibrium was found for a single pair of loci. The combined probability of identity for the 14 loci was 36 3.5×10^{-12} . These microsatellite loci are expected to be useful for genetic monitoring, 37 parentage analysis and population genetic studies. 38

39

40 Keywords *Bubo bubo* - Microsatellite loci - Multiplex PCR - Non-invasive samples 41 Predicted genome locations

42

The Eurasian eagle-owl (*Bubo bubo*) is a large owl occurring in a wide range of habitats in Asia and Europe (Cramp 1985). The global population size appears to be decreasing and the eagle-owl is listed as endangered on the Norwegian Red List (Kålås et al. 2010). To facilitate genetic monitoring of eagle-owls based on non-invasive sampling of shed feathers (e.g. Rudnick et al. 2005) we isolated new microsatellite loci, redesigned primer sets using previously isolated eagle-owl sequences and cross-amplified loci from other owl species using published primer sets.

50

A microsatellite-enriched genomic library was constructed. We used a confiscated captive 51 52 adult female eagle-owl (CF68) assumed to be a European eagle-owl (B. b. bubo). The sex of the bird was confirmed using the markers M5 (Bantock et al. 2008), MP and NP (Ito et al. 53 2003). Genomic DNA was extracted from blood using an ammonium acetate precipitation 54 method (Nicholls et al. 2000; Richardson et al. 2001) and the library was made using the 55 enrichment approach of Armour et al. (1994). The library was enriched for the following di-56 57 and tetranucleotide microsatellite motifs separately: $(CA)_n$, $(GA)_n$ and, $(GATA)_n$, $(TTTC)_n$, $(GTAA)_n$ and $(CTAA)_n$, which had been denatured and bound to magnetic beads following 58 Glenn and Schable (2005). Transformant colonies were not screened for the presence of a 59 60 repeat but directly sequenced. Sanger sequencing was conducted bidirectionally using Big Dye Terminators ver. 3.1 (Applied Biosystems) and in most cases a consensus sequence 61 created. A total of 134 unique sequences were obtained (EMBL accession numbers 62 63 HF564899- HF565032). Sixteen new primer sets were designed using Primer3 (Rozen and Skaletsky 2000) and the criteria used included a maximum 0.5°C difference between the 64 forward and reverse primers, possession of a G/C clamp and a maximum of three consecutive 65 mononucleotide bases. 66

67

We also redesigned primers from four previously isolated eagle-owl microsatellite sequences
(Isaksson and Tegelström 2002) using Primer3 (Rozen and Skaletsky 2000) to enable
amplification of shorter fragments as loci with shorter fragments seem to amplify at a higher
success rate when analyzing non-invasive samples (e.g. moulted feathers) characterized by
low quality DNA (Broquet et al. 2007). Furthermore, we cross-amplified two microsatellite
loci (*So15A6* and *Oe053*) from two other owl species (*Strix occidentalis* and *Otus elegans*)
(Thode et al. 2002; Hsu et al. 2003).

For genotyping, genomic DNA was extracted from the feather calamus using an automated 76 system (Maxwell®16 Research System, Promega) and the Maxwell 16 tissue DNA 77 purification kit following the manufacturer's protocol. Loci were PCR amplified with 78 79 fluorescently labeled forward primers (Applied Biosystems DS-33 dye set). Initially, single PCRs were performed on four wild eagle-owls from Norway. Those loci identified as 80 polymorphic in four individuals were typed in 38 presumably unrelated eagle-owls (23 81 82 females and 15 males; sex determined with the primers M5 (Bantock et al. 2008), MP and NP (Ito et al. 2003)) from Luroy municipality (66°21'N, 12°36'E) in northern Norway using 83 multiplex PCR. Multiplexing was performed with Qiagen multiplex PCR Plus kit (Applied 84 Biosystems) following the manufacturer's protocol, but using a 10-µl reaction volume. PCR 85 products (0.8 µl) were mixed with Genescan 500 LIZ (Applied Biosystems) size standard 86 (0.25 µl) and Hi-Di formamide (9.75 µl) following capillary electrophoresis on an ABI 87 88 3130xl Genetic Analyzer (Applied Biosystems). Alleles were scored using Genemapper ver. 4.0 software (Applied Biosystems). To avoid problems with allelic drop-out (cf. Andreassen 89 et al. 2012), homozygous genotypes were only included when the peak height was greater 90 91 than 300 relative fluorescence units (RFU).

92

The mean number of alleles, observed and expected heterozygosities, and deviation from
Hardy-Weinberg equilibrium were estimated using Arlequin ver. 3.5.1.3 (Excoffier and
Lischer 2010). Linkage disequilibrium was evaluated using Genepop ver. 4.2 (Rousset 2008)
and null-allele frequencies estimated with Micro-Checker ver. 2.2.3 (van Oosterhout et al.
2004). A Bonferroni correction for multiple statistical tests was (Rice 1989) applied to linkage
disequilibrium p-values. The probability of identity was calculated using GenAlEx ver. 6.5
(Peakall and Smouse 2012).

100

Of the 22 loci initially tested in four individual eagle owls, 14 were polymorphic. Twelve of
the polymorphic loci were assigned an autosomal location in the zebra finch (*Taeniopygia guttata*) genome based on sequence homology (following Dawson et al. 2006; Figure 1). Two
loci (*BbuS116* and *BbuS132*) could not be assigned a chromosomal location in either the zebra
finch, chicken (*Gallus gallus*) or turkey (*Meleagris gallopavo*) genome.

106

107 The 14 polymorphic loci showed a mean of 4.9 alleles per locus (range 2 to 9; Table 1).

108 Heterozygotes were present in both sexes for all loci indicating none are sex-linked. The mean expected heterozygosity was 0.66 (range 0.33 to 0.85) and mean observed heterozygosity was 109 0.70 (range 0.42 to 0.97; Table 1). There was no indication of null-alleles in any loci, however 110 one locus (*BbuS132*) deviated significantly (p < 0.05) from Hardy-Weinberg equilibrium 111 (Table 1). After correcting for multiple tests, a single pairwise locus combination (Bb100-112 Bb126) displayed significant linkage disequilibrium. The combined probability of identity for 113 the 14 loci was 3.5×10^{-12} . Cross-species application revealed that all 14 loci amplified 114 successfully and many were polymorphic in the spotted eagle-owl (B. africanus) and Indian 115 116 eagle-owl (B. bengalensis; Table 2). In conclusion, these eagle-owl microsatellite loci and their multiplex-PCR assays will be useful for family analysis, monitoring and population 117 118 genetic analyses.

119

Acknowledgements We thank Hollie Marshall and Mike Wheeler at the University of
Worcester, UK and Cotswold Falconry, UK for kindly providing the eagle-owl blood sample
used to create the library, James McKay for providing the spotted eagle-owl and Indian eagleowl samples, Espen R. Dahl for field assistance in Norway, and Terry Burke for project
support. Marker development was performed at the NERC Biomolecular Analysis Facility at
the University of Sheffield (supported by the Natural Environment Research Council, UK)

and the molecular lab at Norwegian Institute for Nature Research in Trondheim, Norway.

127 Financial support was provided by the Norwegian Directorate for Nature Management,

128 Research Council of Norway, Norwegian Institute for Nature Research, Hedmark University

- 129 College and County Governor in Nordland.
- 130

131 **References**

- Andreassen R, Schregel J, Kopatz A, Tobiassen C, Knappskog PM, Hagen SB, Kleven O, 132 Schneider M, Kojola I, Aspi J, Rykov A, Tirronen KF, Danilov PI, Eiken HG (2012) 133 A forensic DNA profiling system for Northern European brown bears (Ursus arctos). 134 Forensic Sci Int Genet 6 (6):798-809. doi:doi.org/10.1016/j.fsigen.2012.03.002 135 Armour JAL, Neumann R, Gobert S, Jeffreys AJ (1994) Isolation of human simple repeat loci 136 by hybridization selection. Hum Mol Genet 3 (4):599-605. doi:10.1093/hmg/3.4.599 137 138 Bantock TM, Prys-Jones RP, Lee PLM (2008) New and improved molecular sexing methods for museum bird specimens. Mol Ecol Res 8 (3):519-528. doi:10.1111/j.1471-139 140 8286.2007.01999.x 141 Broquet T, Ménard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success 142 143 and genotyping error rates. Conserv Genet 8 (1):249-260. doi:10.1007/s10592-006-9146-5 144 Cramp S (ed) (1985) The birds of the western Palearctic, Vol. IV. Oxford University Press, 145 Oxford 146 Dawson DA, Burke T, Hansson B, Pandhal J, Hale MC, Hinten GN, Slate J (2006) A 147 predicted microsatellite map of the passerine genome based on chicken-passerine 148
- sequence similarity. Mol Ecol 15 (5):1299-1320. doi:10.1111/j.1365-
- 150 294X.2006.02803.x

- Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform
 population genetics analyses under Linux and Windows. Mol Ecol Res 10 (3):564-
- 153 567. doi:10.1111/j.1755-0998.2010.02847.x
- 154 Glenn TC, Schable NA (2005) Isolating microsatellite DNA Loci. In: Elizabeth AZ, Eric HR
- 155 (eds) Methods in Enzymology, vol Volume 395. Academic Press, pp 202-222.
- doi:10.1016/s0076-6879(05)95013-1
- 157 Hsu YC, Severinghaus LL, Lin YS, Li SH (2003) Isolation and characterization of
- microsatellite DNA markers from the Lanyu scops owl (*Otus elegans botelensis*). Mol
 Ecol Notes 3 (4):595-597. doi:10.1046/j.1471-8286.2003.00523.x
- 160 Isaksson M, Tegelström H (2002) Characterization of polymorphic microsatellite markers in a
- 161 captive population of the eagle owl (*Bubo bubo*) used for supportive breeding. Mol

162 Ecol Notes 2 (2):91-93. doi:10.1046/j.1471-8286.2002.00156.x

- 163 Ito H, Sudo-Yamaji A, Abe M, Murase T, Tsubota T (2003) Sex identification by alternative
- polymerase chain reaction methods in Falconiformes. Zool Sci 20 (3):339-344.
- 165 doi:10.2108/zsj.20.339
- Kålås JA, Viken Å, Henriksen S, Skjelseth S (eds) (2010) The 2010 Norwegian red list for
 species. Norwegian Biodiversity Information Centre, Norway,

168 Nicholls JA, Double MC, Rowell DM, Magrath RD (2000) The evolution of cooperative and

- pair breeding in thornbills *Acanthiza* (Pardalotidae). J Avian Biol 31 (2):165-176.
- 170 doi:10.1034/j.1600-048X.2000.310208.x
- 171 Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic
- software for teaching and research an update. Bioinformatics 28 (19):2537-2539.
- doi:10.1093/bioinformatics/bts460
- 174 Rice WR (1989) Analyzing tables of statistical tests. Evolution 43 (1):223-225

- Richardson DS, Jury FL, Blaakmeer K, Komdeur J, Burke T (2001) Parentage assignment and
 extra-group paternity in a cooperative breeder: the Seychelles warbler (*Acrocephalus sechellensis*). Mol Ecol 10 (9):2263-2273
- 178 Rousset F (2008) GENEPOP '007: a complete re-implementation of the GENEPOP software
 179 for Windows and Linux. Mol Ecol Res 8 (1):103-106. doi:10.1111/j.1471-
- 180 8286.2007.01931.x
- Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist
 programmers. In: Krawetz S, Kisener S (eds) Bioinformatics Methods and Protocols:
- 183 Methods in Molecular Biology. Humana Press, Totawa, NJ, pp 365-386
- 184 Rudnick JA, Katzner TE, Bragin EA, Rhodes OE, Dewoody JA (2005) Using naturally shed
- 185 feathers for individual identification, genetic parentage analyses, and population
- 186 monitoring in an endangered Eastern imperial eagle (*Aquila heliaca*) population from
- 187 Kazakhstan. Mol Ecol 14 (10):2959-2967. doi:10.1111/j.1365-294X.2005.02641.x
- 188 Thode AB, Maltbie M, Hansen LA, Green LD, Longmire JL (2002) Microsatellite markers
- 189 for the Mexican spotted owl (*Strix occidentalis lucida*). Mol Ecol Notes 2 (4):446-448.
- 190 doi:10.1046/j.1471-8286.2002.00267.x
- 191 van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER:
- software for identifying and correcting genotyping errors in microsatellite data. Mol
- 193 Ecol Notes 4 (3):535-538. doi:10.1111/j.1471-8286.2004.00684.x

194

Figure 1 Predicted chromosome locations in the zebra finch (*Taeniopygia guttata*) genome of 12 microsatellite loci polymorphic in the Eurasian

- 197 eagle-owl (*Bubo bubo*)

Table 1 Characterization of 14 microsatellite loci in a northern European eagle-owl (*Bubo bubo*) population^a

203

Locus	Clone name and	Prii	ner sequences (5'-3')	Repeat motif	PCR	п	А	Expected	Observed	H _O	$H_{\rm E}$	$P_{\rm HWE}$	$F_{\rm NULL}$
	EMBL accession				multiplex			allele size	allele size				
<u> </u>	number	1 / 1			set				range				
Characterizati	tion of eight novel eagle-			20	2	150	145 151	0.74	0.67	0.040	0.044		
BbuS013	BB12_C09	F:		$(G1)_{18}$	A	38	3	150	145-151	0.74	0.67	0.840	-0.044
D1 0007	HF564911	R:	TIGAGGCTTATCATTICTICIGC			20		0.47	051 071	0.00	0.70	0.000	0.000
BbuS027	BB12_F0/	F:	NED-ICATGAGGAACITICAGIGCIC	$(1A1C)_{10}$	A	38	6	247	251-271	0.82	0.78	0.929	-0.028
D1 0047	HF564925	R:	GAAGAAAGGCAGCICICACC			20	2	124	120 142	0.50	0.55	0 (01	0.000
BbuS04/	BB13_C01	F:	6FAM-GCACIGITIGGATGIGIGGA	$(G1)_{13}$	A	38	3	134	138-142	0.50	0.55	0.681	0.028
D1 0064	HF564945	R:	CCTTTACTGCAGCCCTGTGT		P	20	•	100	104 100	0.40	0.04	0.170	0.067
BbuS064	BB13_F10	F:	NED-TGTAGTAGTAGCGCTCATTGCAG	$(CA)_{14}$	В	38	2	190	184–188	0.42	0.34	0.170	-0.06/
DI 0071	HF564962	R:			P	20	•	101	117 110	0.40	0.51	0.040	0.050
BbuS0/1	BB13_H05	F:		$(GA)_{12}$	В	38	2	121	11/-119	0.42	0.51	0.343	0.052
D1 0100	HF564969	R:	TICIGCATAGITIGITCACATICAC			20	_	221	222 220	0.66	0.74	0.740	0.045
BbuS102	BB14_F05	F:	6FAM-AACTGATTTGGAAACCACCATC	(GATA) ₈	А	38	5	221	222-238	0.66	0.74	0.748	0.045
D1 0111	HF565000	R:					_	202	100 010	0.44	0.57	0.000	0.000
BbuS116	BB16_B03	F:	PET-GITICIGCAGCIGGGICAG	$(TATC)_8$	В	38	5	202	198–218	0.66	0.65	0.383	-0.009
D1 0100	HF565014	R:	AAACAGITTCCATGCCTTACG				0	1.55	150 001	0.07		0.010	0.055
BbuS132	BB18_D10	F:	VIC-TCATTGTAGGTCCCATCCAAC	$(TTCTA)_{22}$	В	38	8	177	159–204	0.87	0.78	0.012	-0.056
	HF565030	R:	CCATATCTATCAAGCAACCTTGG										
Characterizat	tion of six previously isol	lated n	iicrosatellite loci										
Bb100 ^c	Bb100	F:	NED-TGTACCGCAAATCAAGGACA	$(TG)_8 TA (TG)_4$	С	38	9	163	162–188	0.87	0.85	0.720	-0.016
	AF432094	R:	AGTATGCCCAGTGAACACCA										
Bb111 ^c	Bb111	F:	PET-GTTTTCCCTGTAGCCGACAA	$(AG)_{10}$	С	38	3	185	187–191	0.67	0.63	0.436	-0.026
	AF432096	R:	TCAAGTCATCACCAATATCTAAGCA										
Bb126 ^c	Bb126	F:	VIC-CCAGAAGGGTTGTCATCTCC	$(GA)_{15}A_7(GA)_2$	С	38	5	179	165-181	0.76	0.72	0.899	-0.033
	AF432097	R:	CAGCTTCTTTCAAGATTTCCAGA										
Bb131 ^c	Bb131	F:	6FAM-TCTAGGAGGTGAAGGGGCTA	$(CA) A_2 (CA)_3 A (CA)_4 CG (CA)_{11}$	С	38	3	124	119–125	0.45	0.44	0.895	-0.008
	AF432098	R:	CAGATGCTGTAGCACTGTTCCT										
Oe053 ^d	Oe053	F:	PET-CTCTGCATCTTAACGCACAGGAC	$(CTAT)_{12}$	С	38	6	203	218-238	0.97	0.79	0.166	-0.108
	AY312424	R:	CCTCCAAGTGGACAGGAAAAGC										
So15A6 ^e	15A6	F:	VIC-ACCTCAGAAGCAGACAGAACC	(GATA) ₁₃	С	38	8	149	119–155	0.95	0.84	0.732	-0.068
	AF510325	R٠	CCTTTGCGATTGCTGTAAC										

204

205 Number of individuals genotyped (*n*); Number of different alleles observed (A); Observed heterozygosity (*H*₀); Expected heterozygosity (*H*_E); Probability of deviation from Hardy-Weinberg equilibrium (*P*_{HWE}),

206 Estimated frequency of null-alleles according to the Brookfield1 method implemented in Micro-Checker (van Oosterhout et al. 2004) (F_{NULL})

^aAn additional eight primer sets were tested of which three were monomorphic (*BbuS105*, *BbuS080*, *BbuS099*), three amplified non-specific fragments (*BbuS029*, *BbuS094*, *BbuS094*, *BbuS108*) and two failed to amplify

208 (*BbuS093*, *BbuS123*)

- 209 ^bThe expected allele size was based on the sequence of the cloned *Bubo bubo* individual (CF68) for the newly isolated *BbuS* loci
- 210 °For these loci, the eagle-owl sequences were isolated by Isaksson and Tegelström (2002) but new primer sets redesigned specifically for this study to enable amplification of shorter fragments
- 211 ^dSequence isolated from the Lanyu scops-owl *Otus elegans botelensis* and the published primer set used (Hsu et al. 2003)
- 212 "Sequence isolated from the Mexican spotted owl *Strix occidentalis lucida* and the published primer set used (Thode et al. 2002). 'So' added to original locus name (15A6) to indicate species identity

Table 2 Allele sizes in the spotted eagle-owl (*Bubo africanus*) and Indian eagle-owl (*B*.

214 *bengalensis*).

215

Locus	<i>Bubo africanus</i> (n = 2)	<i>Bubo bengalensis</i> (n = 1)
BbuS013	139, 141	153
BbuS027	251, 255	255, 259
BbuS047	127, 133, 135	149
BbuS064	184	183, 189
BbuS071	117, 121	119
BbuS102	238, 242, 246	226
BbuS116	198, 202	210
BbuS132	149	144, 159
Bb100 ^a	150, 154	164, 168
Bb111 ^a	193	191
Bb126 ^a	160, 168	169
Bb131 ^a	112, 114, 122, 128	125
Oe053 ^b	210, 228, 236	222
So15A6 ^c	135, 139	123, 143

216

217 n, number of individuals genotyped

218 ^aFor these loci, the eagle-owl sequences were isolated by Isaksson and Tegelström (2002) but new primer sets redesigned specifically for this

study to enable amplification of shorter fragments

220 ^bSequence isolated from the Lanyu scops-owl *Otus elegans botelensis* and the published primer set used (Hsu et al. 2003)

221 ^cSequence isolated from the Mexican spotted owl *Strix occidentalis lucida* and the published primer set used (Thode et al. 2002). 'So' added

to original locus name (15A6) to indicate species identity