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Crop adaptation to climate change requires accelerated crop
variety introduction accompanied by recommendations to help
farmers match the best variety with their field contexts. Existing
approaches to generate these recommendations lack scalabil-
ity and predictivity in marginal production environments. We
tested if crowdsourced citizen science can address this challenge,
producing empirical data across geographic space that, in aggre-
gate, can characterize varietal climatic responses. We present the
results of 12,409 farmer-managed experimental plots of common
bean (Phaseolus vulgaris L.) in Nicaragua, durum wheat (Triticum
durum Desf.) in Ethiopia, and bread wheat (Triticum aestivum
L.) in India. Farmers collaborated as citizen scientists, each rank-
ing the performance of three varieties randomly assigned from a
larger set. We show that the approach can register known specific
effects of climate variation on varietal performance. The predic-
tion of variety performance from seasonal climatic variables was
generalizable across growing seasons. We show that these analy-
ses can improve variety recommendations in four aspects: reduc-
tion of climate bias, incorporation of seasonal climate forecasts,
risk analysis, and geographic extrapolation. Variety recommen-
dations derived from the citizen science trials led to important
differences with previous recommendations.

climate adaptation | genotype × environment interactions | crop variety
evaluation | citizen science | crowdsourcing

Crop improvement is important to increase agricultural pro-
ductivity and to contribute to food and nutrition security.

The need for new crop varieties is exacerbated by climate change.
Farmers need to replace crop varieties with better-adapted ones
to match rapidly evolving climate conditions (1–4). Where suit-
able modern varieties do not exist, suitable farmer varieties are
needed instead (“variety” is applied to all cultivated materials
here) (4). The variety replacement challenge has yet to be effec-
tively addressed. One proposed solution is to increase variety
supply by accelerating crop breeding, removing older varieties
from the seed supply chain, and assiduously promoting new vari-
eties for farmers (2). Supply-driven variety replacement requires
that new varieties are locally adapted and acceptable, but vari-
eties are often recommended without prior geographic analysis
to determine recommendation domains (5) on the basis of tri-
als that do not adequately represent local production conditions
(6–8). Therefore, a supply-driven approach may introduce vari-
eties that perform worse than locally grown varieties. Demand-
oriented approaches address this issue but also fall short of
a solution. They involve farmers directly in the selection of
crop varieties in on-farm experiments (6). Farmer-participatory
selection stimulates local interest in new varieties and produces
information on variety performance that is immediately relevant

to local climate adaptation. This local focus is a strength as well
as a limitation. Scaling is constrained by the resource-intensive
nature of current participatory experimental methods and the
incompatibility of datasets across different efforts (9). The result-
ing paucity of data is a problem, because variety trials need to
capture spatiotemporal environmental variation to characterize
climatic responses.

A solution could come from a more scalable type of partic-
ipatory research: citizen science using digital “crowdsourcing”
approaches (10–12). This has already shown its potential to
engage large numbers of volunteering citizen scientists who
jointly generate sizable datasets that allow for geospatial anal-
ysis of climate change impact (for example, on cross-continental
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bird migration) (13). In a similar way, farmer citizen scien-
tists could provide information about crop variety performance,
which would feed into a demand-driven, scalable solution to
varietal climate adaptation.

To test this idea, we applied a recently developed citizen sci-
ence approach tricot—triadic comparisons of technologies (14,
15). In tricot variety evaluation, each farmer plants seeds from
a personal test package of three varieties, which are randomly
assigned from a larger pool of tested varieties. Farmers’ indepen-
dent on-farm observations are compiled and analyzed centrally.
A simple ranking-based feedback format allows even farmers
with low literacy skills to contribute their evaluation data through
various channels, including mobile telephones (15). Pilots with
the tricot approach have established its potential to produce
accurate data (16) and to engage motivated farmers as citizen
scientists (17).

The question that we address is if tricot trials can provide
robust, actionable information on varietal climate adaptation.
We organized tricot trials to obtain a dataset covering 842 plots
of common bean in Nicaragua, 1,090 plots of durum wheat in
Ethiopia, and 10,477 plots of bread wheat in India (Fig. 1). The
trials captured environmental variation through broad sampling
both spatially (many fields distributed across the landscape) and
temporally (different seasons and planting dates). We linked
farmers’ observations via their geographic coordinates and plant-
ing dates to agroclimatic and soil variables. We modeled the
influence of the environmental variables on the probability that
varieties outperform the other varieties in the trials. We evalu-
ated whether seasonal climate adequately predicts variety perfor-
mance in the tricot trials. Then, we explored if climatic analysis
of tricot trial data improves variety recommendations.

Characterizing Variety Performance
Cross-validation showed that the tricot trials uncovered statisti-
cally robust differences in variety performance (Table 1). From
a previous pilot study, we expected consistently positive, but low
to moderate, pseudo-R2 values (16). In this study, model fit was
comparatively low for bread wheat in India (0.04–0.09), mod-
erate for common bean in Nicaragua (0.15–0.20), and high for
durum wheat in Ethiopia (0.39–0.48). The three case studies
each provide independent confirmation of the predictive value
of the tricot trials. Various factors influenced model fit, includ-

A B

C D

Fig. 1. Research sites: (A) overview, (B) India, (C) Nicaragua, and (D)
Ethiopia. Farms included in the trials are indicated as dots.

Table 1. Goodness of fit (pseudo-R2) of PLTs determined with
10-fold cross-validation

PLT model Nicaragua Ethiopia India

No covariates 0.1484 0.3947 0.0381
Design 0.1869 0.4709 0.0721
Climate 0.1978 0.4870 0.0882
Climate + geolocation 0.1977 0.4720 0.0872

The model with only climate covariates has the best fit in all cases
(indicated in bold).

ing farmers’ observation skills and environmental variation.
The largest differences were between countries, which were
probably due to the different levels of diversity within the sets of
varieties. Indian and Nicaraguan farmers evaluated a small, care-
fully selected group of modern varieties with relatively homo-
geneous performance. In Ethiopia, farmers tested a diverse set
of modern and farmer varieties drawn from a wide area and
evidently found easily observable differences in performance
between varieties.

For each country, we modeled the environmental influence
on variety performance. We were specifically interested in mod-
els with covariates derived from seasonal climatic conditions
(climate in Table 1), because these covariates can potentially
enhance extrapolation of variety performance predictions across
time and space. In all cases, these models had indeed a better
fit than the respective model without environmental covariates
(no covariates in Table 1). The next question that we addressed
was if the models with climatic variables captured the main envi-
ronmental factors or missed important aspects. Therefore, we
compared these models with two other types of models. One type
of model includes covariates that represent the experimental
design and are known in advance: geolocation, season, plant-
ing dates, and soil categories (design in Table 1). These models
reflect how multilocation trials are often analyzed and capture
variation in terms of the trial structure but not in terms of the
underlying climatic causal factors, hence limiting the potential
of extrapolation beyond the trial. In all cases, the models with
climatic covariates slightly outperformed the models with trial
design covariates. This means that the climatic covariates contain
unique and substantial information explaining varietal perfor-
mance. A second comparison was with models that include the
climatic covariates together with additional covariates that rep-
resent geographic structure (climate + geolocation in Table 1).
This comparison tested if important local factors are being over-
looked that are not covered by the climatic covariates. Adding
these geolocational variables did not improve the models, how-
ever, and even slightly degraded them. This implies that no
large-scale geographical structure remained after accounting for
seasonal climate. From this analysis, it is clear that the models
with climatic covariates captured a large part of the environmen-
tal variation in variety performance. Therefore, in subsequent
analyses, we focused on models with climatic covariates only.

We generated generalizable models that afford extrapolation
across seasons of variety performance predictions by selecting
those climatic variables that contribute to predictivity across sea-
sons. The variable selection procedure retained one climatic
variable in each case (Fig. 2 and SI Appendix, Fig. S1). We discuss
the results for each case study.

For Nicaragua, Fig. 2 shows the Plackett–Luce tree (PLT)
with the retained variable of the generalizable model for com-
mon bean. We found that bean variety performance changed
when the maximum night temperature exceeded 18.7 ◦C. This
finding corresponds to the threshold temperature for heat stress
reported in the literature of 20 ◦C at night (18). Our esti-
mate is slightly lower than the reported threshold but refers to
land surface temperature rather than air temperature. Three
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Fig. 2. Plackett–Luce trees of tricot trial data and associated climatic data
for common bean in Nicaragua. The horizontal axis of each panel is the
probability of winning of varieties. Error bars show quasi-SEs. The gray verti-
cal lines indicate the average probability of winning (1/number of varieties).
In this case, the model selected maxNT, the maximum night temperature
(degrees Celsius) during the vegetative and flowering periods, as the covari-
ate. Equivalent figures for the trials in Ethiopia and India are shown in SI
Appendix, Figs. S2 and S3.

bean varieties, INTA Fuerte Seqúıa, BRT 103–182, and INTA
Centro Sur, performed better than the local variety above the
heat stress threshold. These three varieties are known to be heat
tolerant. Contrary to our expectations, another heat-tolerant
variety, SJC 730–79, did not show a performance advantage
above 18.7 ◦C. Above higher-heat stress thresholds, however,
this variety did outperform heat-sensitive varieties. The group
of local varieties has a small quasi-SE, despite the diverse nature
of this group, which contains all varieties that farmers currently
grow. This gives a reference on farmers’ overall appreciation
of the tested varieties in comparison with their own varieties.
The local varieties were outperformed under heat stress but not
under cool conditions.

For durum wheat in Ethiopia, varietal differences in per-
formance were related to the lowest night temperature during
the vegetative period (SI Appendix, Fig. S2). Performance pat-
terns changed when at least one 8-day period had average night
temperatures under 8.4 ◦C. This temperature corresponds to
the threshold temperatures for vernalization and cold accli-
mation induction (19). Under warm conditions, vernalization-
requiring varieties will delay flowering. Under cold conditions,
cold-sensitive varieties will reduce their yield due to chill-
ing or frost damage. Most of the varieties tested in Ethiopia
were farmer varieties and likely adapted to their original envi-
ronments, which may have led to differences in adaptiveness
between varieties. To test the effect of local adaptation, we com-
pared cold-adapted varieties with cold-sensitive farmer varieties
as detected by the tricot trials (Materials and Methods). Cold-
adapted varieties came from higher elevations (2,483 ± 113
meters above sea level) than cold-sensitive ones (2,101 ± 485
meters), a significant difference [t(594)= 16.1, P < 2.2 · 10−16].
Our results indicate that cold tolerance is a main geographic
adaptation factor for durum wheat in the Ethiopian highlands.

For bread wheat in India, varietal performance patterns
changed with the diurnal temperature range (DTR) during the
vegetative period, which is the difference between minimum

and maximum daily temperatures (SI Appendix, Fig. S3). Splits
occurred at DTR values of 14.5 ◦C and 15.7 ◦C. Between these
two values, the varieties showed very similar performance. Many
varieties that performed above average under high DTR per-
formed below average under low DTR and vice versa. Some
varieties performed well under both high and low DTR, espe-
cially HD 2967. Our interpretation is that low and high ranges
of DTR are related to different sets of stresses, while the mid-
dle range has relatively low stress. DTR has an impact on crop
yield through several mechanisms: high DTR is associated with
increased heat or cold stress, and low DTR is associated with
high cloud coverage, low solar radiation, and high rainfall. Con-
sistent with our results, a study has shown that DTR explains
a substantial share of wheat yield variation in India (20). This
same study found that DTR has a negative correlation with wheat
yields in some areas and a positive correlation in other areas, in
line with high and low DTRs having an association with different
types of crop stress.

Improving Variety Recommendations
We examined four ways in which climatic analysis afforded by tri-
cot trials can improve variety recommendations. First, a potential
improvement is that climatic analysis corrects the climatic sam-
pling bias, a bias that occurs when trials are performed under
unrepresentative seasonal climate conditions, thereby degrading
variety recommendations. To assess the importance of climatic
sampling bias, we followed the cross-validation procedure used
to generate the generalizable models but did not use the seasonal
climate data for predictions. Instead, we predicted variety perfor-
mance for a representative 15-y base period of seasonal climate
data and averaged the results (average season in Table 2). The
averaged prediction had slightly higher pseudo-R2 values than
the “no covariates” model in all cases. This analysis shows that,
even when climatic sampling bias is low, correction can help to
further improve predictions.

Second, climatic analysis can improve variety recommenda-
tions by incorporating seasonal forecasts. Perfect forecast in
Table 2 shows that the pseudo-R2 values increase further when
observed climate information is available for prediction. The
improvement gained from a perfect forecast was substantially
larger than the improvement from sampling bias correction. It
requires additional work to quantify the improvement of variety
recommendations with a realistic climate forecast skill. It is clear,
however, that variety recommendations derived from tricot trials
can benefit from seasonal forecasts.

Third, climatic analysis can support risk analysis. Table 3
shows the expected probability of outperforming all other vari-
eties, which is a metric of average performance, and a risk metric,
worst regret (21)—the largest underperformance of the recom-
mended variety relative to the best variety. These two metrics
produced divergent variety recommendations in all three cases
(indicated in bold in Table 3). In principle, risk analysis for vari-
ety choice is also possible without explicit climatic analysis, but
this produces results that are difficult to interpret in terms of
climatic causality and requires trials during a large number of

Table 2. Goodness of fit (pseudo-R2) of generalizable
PLT models

Model Nicaragua Ethiopia India

No covariates 0.1533 0.4280 0.0611
Average season 0.1536 0.4290 0.0694
Perfect forecast 0.1749 0.4442 0.1065

Model average season corrects for climatic sampling bias by averaging
predictions over a base period of seasonal climate data. Model perfect
forecast uses observed climatic covariates in the predicted seasons. Val-
ues represent cross-validated pseudo-R2 values averaged across blocks and
weighted with the square root of the sample size of each block.
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Table 3. Expected probability of winning (average of all farms
over the base period) and worst regret measures of a subset of
the varieties

Case study and variety Probability of winning Worst regret

Common bean (Nicaragua)
Local variety 0.130 0.023
INTA Fuerte Sequı́a 0.125 0.021
INTA Centro Sur 0.098 0.057
BRT 103-182 0.092 0.068
INTA Rojo 0.088 0.082
INTA Matagalpa 0.087 0.057

Durum wheat (Ethiopia)
208279 0.059 0.062
Hitosa 0.049 0.035
208304 0.041 0.048
8034 0.030 0.053
Ude 0.025 0.063
222360 0.023 0.061

Bread wheat (India)
K 9107 (Deva) 0.077 0.051
HD 2967 0.068 0.047
HD 2733 0.066 0.036
K 0307 (Shatabadi) 0.063 0.095
CSW 18 0.042 0.073
HI 1563 (Pusa Prachi) 0.041 0.093

The results show how different criteria of variety selection can lead to
different recommendations (best value according to each criterion is indi-
cated in bold). Using the probability of winning as a criterion maximizes
the average performance but ignores risk. Minimizing worst regret (the loss
under the worst possible outcome) is a criterion that takes a conservative
approach to risk.

seasons to avoid sampling bias and to characterize probability
distributions accurately (22).

Fourth, climatic analysis of tricot trial data can generate
variety recommendations for wider areas through geospatial
extrapolation. To illustrate this, we generated maps of varieties
recommendations based on “average season” model predictions
(Fig. 3). In all three cases, geographical patterns of variety
adaptation have no relationship to administrative boundaries
or agroecological zones, which are commonly used to delineate
recommendation domains.

To assess what the tricot trial results mean in practice,
we contrast our results with existing recommendations. For
Nicaragua, we compare the results of the tricot trials with the

recommendations of a recent national variety catalog (23). The
catalog recommends INTA Rojo and INTA Matagalpa for the
study area, but these varieties performed worse than the local
varieties in the tricot trials (Fig. 3A). However, the tricot tri-
als identified INTA Fuerte Seqúıa and INTA Centro Sur as top
varieties (Table 3), but the variety catalog recommends them for
warm areas outside our study area. In the tricot trials, INTA
Fuerte Seqúıa and INTA Centro Sur outperformed other vari-
eties, especially under heat stress, which apparently occurs with
more frequency in our study area than assumed by current vari-
ety recommendations. In Nicaragua, then, the tricot trial results
show that official variety recommendations fail to identify supe-
rior bean varieties that are sufficiently heat tolerant for the study
area.

For Ethiopia, the Wheat Atlas of the International Maize and
Wheat Improvement Center (CIMMYT) recommends modern
varieties Hitosa, Ude, and Assassa for all of the Ethiopian high-
lands, which it classifies as a single “mega-environment” (24).
The tricot approach produced geographically more specific rec-
ommendations (Fig. 3B). With this, we confirm the results of a
previous analysis based on multilocational trial data that showed
the benefits of location-specific recommendation domains for
durum wheat in Algeria, and we show that such an analysis can
also be done with tricot data (25). The tricot results confirmed
the superiority of farmer varieties 8208 and 208304 (Table 3),
which were approved for official variety release in March 2017
(on the basis of other field trials) (26). Farmer variety 208279 also
has a high probability of winning, but it has a high value of worst
regret (Table 3). Our analysis suggests that 208279 could be con-
sidered for the coldest areas as shown in Fig. 3B. In Ethiopia, the
tricot trial findings improve variety recommendations for durum
wheat by uncovering the importance of cold adaptation.

For India, we compare our findings with the front-line demon-
strations of the Indian Institute for Wheat and Barley Research
(IIWBR); the 1-ha plots demonstrate new varieties by compar-
ing them with a check variety. IIWBR promoted the variety HD
2967 for the North-Eastern Plain Zone during 2016–2017 (27).
HD 2967 was indeed the top variety in the tricot trial among the
varieties considered by the IIWBR (Table 3). In the tricot tri-
als, however, K 9107 (a variety released in 1996) outperformed
HD 2967 (released in 2011), with a comparable level of worst
regret (Table 3). The tricot trials also showed that another vari-
ety, HD 2733, outperformed HD 2967 in a large part of the
study area (Table 3). In the IIWBR front-line demonstrations,
HD 2733 was included as a check variety in four areas and was
outyielded by HD 2967 in only one of four areas, while in the
other three, the yield difference was not significant (27). Our
analysis shows that HD 2733 generally does better than HD

A B C

Fig. 3. Variety recommendations based on average season predictions from PLTs using climatic variables for (A) common bean in Nicaragua (Apante season),
(B) durum wheat in Ethiopia (Meher season), and (C) bread wheat in India (Rabi season). Map categories show the top two varieties for each area according
to their probability of winning over a base period (2002–2016).
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2967 in areas with a low average DTR during the growing season
(Fig. 3C). In India, the analysis of the tricot trial data adds geo-
graphic specificity to the existing variety recommendations and
suggests that a broader set of wheat varieties should be promoted
to take into account the climatic differences across the study
area.

We quantified how much farmers can benefit from tricot-
based variety recommendations by calculating variety relia-
bility, the probability of outperforming a check variety (Eq.
2 in Materials and Methods). For each location, we com-
pared the tricot-recommended variety (Fig. 3) with the best-
performing variety from the previous recommendations as the
check. Reliabilities ranged from 0.59 to 0.65 in Ethiopia, from
0.58 to 0.60 in Nicaragua, and from 0.51 to 0.62 in India
(SI Appendix, Fig. S4), indicating substantial benefits for large
areas.

Conclusions
The main question that we addressed is whether on-farm par-
ticipatory crop trials, scaled through a farmer citizen science
approach, can generate insights into climate adaptation of
varieties. Citizen science data revealed generalizable relations
between seasonal climate variables and crop variety perfor-
mance that corresponded to known yield-determining factors.
Climatic analyses of these data were shown to improve variety
recommendations. Our study demonstrates that, in vulnerable,
low-income areas, climatic analysis of variety performance is
possible with trial data generated directly by farmer citizen sci-
entists on farms. Arguably, similar results could be achieved by
a combination of existing approaches (target environment char-
acterization, multilocation trials, participatory variety selection,
variety dissemination). The unique contribution of the tricot
approach is that it integrates aspects of these approaches into
a simple trial format that addresses the challenge of variety
replacement for climate adaptation in a way that is, at the same
time, scalable and demand led. Tricot trials can track climate
trends as they manifest themselves on farms, adjust variety rec-
ommendations and recommendation domains, and contribute
to understanding how climate affects on-farm varietal perfor-
mance. Trial analysis combines insights in climatic adaptation
mechanisms with a comprehensive evaluation of variety perfor-
mance from the perspective of farmers, the end users of the
seeds. Results can, therefore, be directly translated into action-
able information for climate adaptation on the ground. The
findings can serve to create variety portfolios that diminish cli-
mate risk (22), can feed into climate information services in
combination with seasonal forecasts (28), and can become part
of decentralized plant breeding strategies for climate adaptation
(8). Combining the tricot trial data with other data could gener-
ate additional insights into variety performance and acceptability
as influenced by environmental (11), socioeconomic (29), and
genomic (30) factors.

The tricot approach facilitates engaging large numbers of
farmers in citizen science trials with large sets of varieties.
Scaling does not only involve an expansion in terms of num-
bers and scope, however, but also, it implies new institutional
arrangements. Carefully designed strategies should foster com-
munication between providers and users of information (31).
Wide-ranging collaborations are needed for climate adaptation
in crop variety management, involving farmers, extension agents,
seed retailers, seed producers, plant breeders, and climate infor-
mation providers. The tricot approach can help to cut across
these different domains, because it is able to link climatic and
varietal information directly to farmer decision making. With
appropriate institutional support and investment, citizen science
can potentially make an important contribution to farmers’ adap-
tive capacity and to the mobilization of crop genetic diversity for
climate adaptation.

Materials and Methods
Crop Trials. Trials were performed between 2012 and 2016 during three
cropping seasons in Ethiopia, five cropping seasons in Nicaragua, and
four cropping seasons in India (SI Appendix, Table S1). Trial design fol-
lowed the tricot citizen science approach (14, 15). Sets of varieties were
allocated randomly to farms as incomplete blocks (7), maintaining spatial
balance by assigning roughly equal frequencies of the varieties to each
area. In Nicaragua and India, incomplete blocks contained three varieties.
In Ethiopia, we used a modified approach that included four varieties per
farm. Plots were small to facilitate farmer participation but in all cases, large
enough to avoid strong edge effects. Farmers indicated the relative per-
formance of varieties through ranking. Ranking is a robust data collection
approach that avoids observer drift (32) and allows for aggregation across
disparate datasets (33).

The trials required three moments of contact with the farmers: (i) explain-
ing the experiment and distributing the seeds, (ii) collecting evaluation data,
and (iii) returning the results. Data were initially collected using paper forms
and in subsequent seasons, through electronic formats linked to a purpose-
built digital platform, https://climmob.net. In the trials presented here, field
agents collected the data through visits (phone calls are also feasible).

Data Analysis. All analyses were done in R (34). For the analysis of the
variety-ranking data generated by farmers, we used the Plackett–Luce
model (35, 36). The Plackett–Luce model estimates for each variety the
probability that it wins, beating all other varieties in the set. The model
determines the values of positive-valued parameters αi (worth) associated
with each variety i. These parameters α are related to the probability that
variety i wins against all other n varieties in the following way:

P (i�{j, . . . , n})=
αi

α1 + · · ·+αn
. [1]

The probability that variety i beats another variety j is calculated in a
similar way.

P(i� j) =
αi

αi +αj
. [2]

Eq. 2 also serves to calculate the reliability of a variety—its probability of
beating a check variety (37). These equations follow from Luce’s Choice
Axiom, which states that the probability that one item beats another is
independent from the presence or absence of any other items in the set
(36). We report worth values that sum to one. This makes each worth
value αi equal to the probability of variety i outperforming all other
varieties:

P (i�{j, . . . , n})=
αi

α1 + · · ·+αn
=
αi

1
=αi. [3]

In the trials, we used rankings of three varieties (i� j� k), which have the
following probability of occurring according to the Plackett–Luce model:

P(i� j� k) = P(i�{j, k}) · P(j� k). [4]

The log likelihood for a ranking i� j� k follows from Eqs. 1, 2, and 4 and
takes the following form (38):

`(α) = ln(P(i�{j, k})) + ln(P(j� k))

= ln (αi)− ln
(
αi +αj +αk

)
+ ln

(
αj

)
− ln

(
αj +αk

)
.

[5]

The log likelihood is then the sum of the log-likelihood `(α) values across
all rankings. Using an iterative algorithm, the log likelihood is maximized
to identify the α values that make the observed rankings most probable.
We also generated quasi-SEs for α (39). To take into account covariates, we
created PLTs through recursive partitioning (40). Additional details are given
in SI Appendix.

Data and Code Availability. Full data are available through Dataverse (41).
Code is available in SI Appendix.
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