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Abstract
In the boreal forest, the red fox (Vulpes vulpes) is a key species due to its many strong food web linkages and its exploitation of
niches that form in the wake of human activities. Recent altitudinal range expansion and a perceived population increase have
become topics of concern in Scandinavia, primarily due to the potential impacts of red foxes on both prey and competitor species.
However, despite it being a common species, there is still surprisingly little knowledge about the temporal and spatial charac-
teristics of its population dynamics. In this study, we synthesized 12 years of snow-track transect data covering a 27,000-km2

study area to identify factors associated with red fox distribution and population dynamics. Using Bayesian hierarchical regres-
sion models, we evaluated the relationships of landscape productivity and climate gradients as well as anthropogenic subsidies
with an index of red fox population size and growth rates.We found that landscapes with high human settlement density and large
amounts of gut piles from moose (Alces alces) hunting were associated with higher red fox abundances. Population dynamics
were characterized by direct density-dependent growth, and the structure of density dependence was best explained by the
amount of agricultural land in the landscape. Population equilibrium levels increased, and populations were more stable, in areas
with a higher presence of agricultural lands, whereas density-dependent population growth was more prominent in areas of low
agricultural presence. We conclude that human land use is a dominant driver of red fox population dynamics in the boreal forest.
We encourage further research focusing on contrasting effects of anthropogenic subsidization on predator population carrying
capacities and temporal stability, and potential impacts on prey dynamics.
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Introduction

Human land use has dramatically altered the structure and
dynamics of natural habitats in biomes across the world
(Walther et al. 2002; Foley et al. 2005). Effects of human land
use on species distribution and abundance vary in their com-
plexity and direction. Direct effects of human influence may

be inevitable outcomes of habitat change (Andrén 1994) and
resource management (e.g., Milner et al. 2006) or indirect
consequences mediated through changes in community struc-
ture (e.g., Prugh et al. 2009). A matter of concern is an ob-
served large-scale and long-term increase in the number and
distribution of generalist predators, for example, the red fox
(Vulpes vulpes) in Europe (e.g., Vos 1995; Prugh et al. 2009;
Selås et al. 2011; Baines et al. 2016), the feral cat (Felis catus)
in Australia (Fancourt et al. 2015), or the fisher (Pekania
pennanti) in North America (Lapoint et al. 2015). Several
ultimate explanations for the increase in generalist predator
populations have been discussed, and in the context of our
study, findings about the potential role of land use practices
are especially relevant (Christiansen 1979; Henttonen 1989;
Selås and Vik 2006). Additionally, the role of climate change
and mesopredator release have received attention (e.g., Bartoń
and Zalewski 2007; Prugh et al. 2009; Elmhagen et al. 2015).
These are complementary hypotheses and they have been
used in the above mentioned studies to explain increased
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carrying capacity of red fox populations due to increased re-
source availability or less intra-guild predation.

Opportunistic and facultative species like the red fox that
take advantage of available foods ranging from berries to meat
and human waste may successfully exploit niches that form in
the wake of human activities. This may subsequently have
detrimental effects on competitor- and prey species like pine
marten (Martes martes) in the forest or arctic foxes (Vulpes
lagopus) in alpine regions (Frafjord et al. 1989; Hersteinsson
and MacDonald 1992; Lindstrom et al. 1994; Smedshaug
et al. 1999; Kämmerle et al. 2017). Diverse and strong food
web linkages of red foxes in the boreal forests have been
demonstrated via both experimental and correlative predation
studies on roe deer (Capreolus capreolus) and other prey spe-
cies like grouse (Tetraonidae) and mountain hare (Lepus
timidus) (Marcström et al. 1988; Lindstrom et al. 1994;
Kauhala et al. 2000; Panzacchi et al. 2009).

The red fox is a very successful habitat generalist, and its
distribution range is the largest among carnivores
(Hersteinsson and MacDonald 1992). Locally, however, red
foxes can turn into specialists and select mosaic landscapes
(Pulliainen 1981; Kurki et al. 1998; Güthlin et al. 2013) with
relatively high prey densities (Cavallini and Lovari 1991;
Panzacchi et al. 2008a; Henden et al. 2014; Carricondo-
Sanchez et al. 2016) and such landscapes are often modified
by humans. Human settlements will primarily provide red
foxes with increased scavenging opportunities (McKinney
2002; Vuorisalo et al. 2014). Secondary (i.e., indirect) effects
from anthropogenic land use may be modulated via forestry
and agricultural practices that cultivate cereals and grasses.
Fields of grass and cereals create habitats for preferred prey
(i.e., voles) (Christiansen 1979; Henttonen 1989; Panzacchi
et al. 2010; Güthlin et al. 2013; Bogdziewicz and Zwolak
2013) and increase predation success by increasing the
amount of habitat edges (Gorini et al. 2012 and references
therein). The secondary effects of human land use distribute
uniformly throughout the year and are therefore likely to in-
crease overall carrying capacity. Additionally, a marked in-
crease in ungulate abundances in Scandinavia during the last
decades has increased the availability of carrion from natural
mortality and gut piles (i.e., intestines, lungs, and stomach)
left on site after big game hunting (Loison and Langvatn
1998; Stubsjøen et al. 2000; Gomo et al. 2017). Open season
for, e.g., moose (Alces alces) starts in September and lasts
until December. These are pulsed, but substantial, food re-
sources that increase in abundance particularly preceding
and during winter (Halpin and Bissonette 1988; Cagnacci
et al. 2003; DeVault et al. 2003; Sidorovich et al. 2006;
Needham et al. 2014; Gomo et al. 2017).

Red fox population densities in the boreal forest vary con-
siderably among years according to the multi-annual popula-
tion cycles of its main prey, microtine voles (Lindström 1982).
This pattern is more profound with increasing latitude and

altitude (Englund 1980a; Lindén 1988), and the degree of
stability in the red fox population probably relates to both
the availability of alternative prey in the low phase of the vole
cycle and density-dependent, negative feedback mechanisms
from predation on voles (Erlinge et al. 1983). Such negative
feedback mechanisms may result from alternative prey sus-
taining high red fox population densities that, in turn, increase
predation pressure on voles in the crash phase of the cycle.

Studies investigating red fox population performance rare-
ly incorporate spatiotemporal variability and are therefore lim-
ited to either temporal or spatial inference.Whereas such stud-
ies are often valuable in identifying ecological factors and
mechanisms in the dimension under study, they often fail to
identify the complexity of spatiotemporal heterogeneity which
is essential in understanding population and community dy-
namics (Thorson et al. 2015). We therefore aim to investigate
factors potentially involved in the regulation of spatiotemporal
variation in red fox abundance and population growth across a
gradient of human influence on the landscape. To do this, we
contrast potential effects of anthropogenic subsidies and land
use to natural productivity gradients on red fox abundance and
temporal variability in population growth structure. The bulk
of literature on red fox spatial and temporal performance sug-
gests that we can expect red fox population abundance to
relate positively to the types of human land use practices that
increase scavenging opportunities such as agricultural patches
and settlements and, furthermore, that such human land use
practices should stabilize the variability in population growth
(e.g., Harris 1981; Gosselink et al. 2003; Vuorisalo et al.
2014), because red foxes can easily switch to more abundant
prey in such areas if needed. Finally, we discuss potential
mechanisms underlying the observed patterns as well as po-
tential consequences of anthropogenic subsidization of gener-
alist predators on the boreal forest ecosystem.

Material and methods

Study area

This study was conducted in Hedmark County, Norway, be-
tween 2003 and 2014 (Fig. 1). Hedmark (27,400 km2, of
which 13,000 km2 is forest) has marked latitudinal productiv-
ity gradients. In the south, there are relatively high productive
agricultural lowlands intermixed with large forested areas on
low hills. Further north, there are deeper valleys, forest ridges,
and mountains. In the north, agriculture and human settle-
ments are confined to strips along the valley bottoms and the
landscape is less productive. Agricultural land use categories
were dominated by cereal production (64,000 ha) and grass
production (41,000 ha) (Bjørlo et al. 2019). Similarly, the
continental climate is milder in the south (annual mean tem-
perature 4.76 °C) than in the north (annual mean temperature
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1.68 °C) (www.no.climate-data.org) and winter severity (i.e.,
snow depth and temperature) increases with a latitudinal as
well as an altitudinal gradient. Forests are heavily managed for
commercial timber production and primarily made up of
conifers, dominated by Scots pine (Pinus sylvestris) and
Norway spruce (Picea abies), but intermixed with deciduous
species such as rowan (Sorbus aucuparia), gray alder (Alnus
incana), aspen (Populus tremula), birch (Betula pubescens
and B. pendula), and willow (Salix caprea). Municipality-
wise, human population densities vary from 0.6 to
86 people km−2, with the lowest densities in the north. Red
foxes are common throughout the county and annual hunting
bags varied between 2160 and 4170 foxes during the study
period (Statistics Norway 2016). In the study area, voles were
non-cyclic prior to 2009. Since then, vole populations peaked
in 2011 and 2014 (Breisjøberget et al. 2018). Potential preda-
tors of the red fox, e.g., Eurasian lynx (Lynx lynx) (Linnell
et al. 1998) and golden eagle (Aquila chrysaetos) (Tjernberg
1981) occur throughout the county, whereas the low-density
recolonizing gray wolf (Canis lupus) population is concentrat-
ed in the east and southeast (Odden et al. 2006; Ordiz et al.
2015; Tovmo et al. 2016). Other species that occur frequently

in the study area and that are potential competitors to red fox
throughout the year are pine marten (Storch et al. 1990),
whereas European badgers (Meles meles) (Kauhala et al.
1998) are hibernating during winter.

Red fox population index

Snow tracking along 613 predefined transects averaging
2.95 km in length (SD = 0.54) was organized by the
Hedmark chapter of the Norwegian Association for Hunters
and Anglers. Experienced volunteers conducted the fieldwork
under favorable conditions (i.e., from 2 to 5 days after snow-
fall) in late January or early February each year between 2003
and 2014. The number of surveyed transects varied among
years (mean = 391.7, SD = 54.9, Table 1). Transect layout
was originally designed to monitor Eurasian lynx family
groups, and transects were therefore situated below the tree-
line and across contour lines (Linnell et al. 2007). The number
of crossing red fox tracks, transect length (km), and days since
last snowfall were reported for each transect survey. In total,
21,675 fox crossings were observed along 13,746 km of tran-
sect during the 12-year survey. Annual population index esti-
mates were calculated as crossing tracks km−1 24 h−1. In total,
we obtained a population index estimate for 4700 transect-
years. Snow-track surveys, as used here, give credible approx-
imations of animal abundance and may be used to infer pop-
ulation dynamics of species (Thompson et al. 1989; Kurki
et al. 1998; Kawaguchi et al. 2015), but it is important to
acknowledge that such data hold information about both spe-
cies density and activity. We further assume that activity pat-
terns across the scale under study is not asymmetric but rela-
tively homogenous. This is a realistic assumption given the
spatial extent at which, e.g., red fox home range size varies
(Walton et al. 2017). Nevertheless, the transect data ultimately
reflect predation pressure by red fox as perceived by prey
species across the landscape (Kurki et al. 1998).

Red fox temporal variation

Not all individual transects were complete 12-year time-series
because of zero observations or they were not surveyed. The
presence of zero observations constitutes a problem when do-
ing time-series analysis because of, e.g., logarithmic transfor-
mations and calculation of population growth rates. To amend
both zero observations and years not surveyed, individual
transects were pooled into 300 transect groups based on prox-
imity by using the spatstat and raster libraries in R (Baddeley
et al. 2016; Hijmans 2016). With the pooling procedure,
snow-track data and offsets were added whereas covariates
were averaged. These transect groups then constituted new
individual time-series for investigations of temporal variation
in the red fox population. Consequently, after grouping, tran-
sect groups had longer sequences of monitoring and fewer

Fig. 1 Hedmark County in southeastern Norway with transect centroid
points depicted as dots
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zero-observations. For zero counts (not to be confused with
not surveyed) still remaining after grouping (n = 97), we
added the smallest observable entity possible (Turchin
2003), which in our case was 1 crossing red fox track.
Finally, because red fox populations in the southern boreal
forest have previously been described as cyclic with a length
of 3–4 years, each time-series should cover minimum one
potential cycle. We therefore discarded segments of < 4 years
of consecutive monitoring and remaining segments were treat-
ed as 255 individual, complete time-series with 1781 time-
steps of population index estimates (Supplementary material
Appendix, Fig. 7).

Habitat data

Transects were related to predictor variables via the transect
centroid point. These predictors included elevation, latitude,
relative settlement density, and relative agricultural density
(Fig. 2). Transect altitude was assessed via a digital terrain
model (DTM) from The Norwegian Mapping Authority
(The Norwegian Mapping Authority 2017). We expressed lat-
itude as the UTM-north coordinate of the transect centroid

point. Land use maps (N250) (The Norwegian Mapping
Authority 2017) were the basis for relative settlement and
agricultural density estimates. We transformed houses to a
point layer that was subsequently used to predict a planar
kernel density map from which we extracted kernel values
for each transect centroid point. Kernel bandwidth was esti-
mated by Gaussian approximation (Silverman 1986). For rel-
ative density of agricultural land, we calculated the geometri-
cal center of agriculture fields and predicted planar kernel
density by using agricultural field size as z value. Again, ker-
nel density values were extracted to the transect centroid
points.

The only predictor with spatiotemporal variation was num-
ber of moose culled per hectare of productive forest. This
variable (hereafter “moose culled”) was calculated for each
municipality (351 to 3180 km2 large), as this was the smallest
scale from which culling data was available. The annual num-
ber of moose culled per municipality was retrieved from
Statist ics Norway (Skara and Steinset 2016) and
Hjorteviltregisteret (Miljødirektoratet 2016), whereas the ex-
tent of productive forest was derived from digital land use
maps (N250) (The Norwegian Mapping Authority 2017). In

Fig. 2 From left to right: relative
density of agricultural land,
relative settlement density, and
the digital elevation model used
as predictors. From green to white
indicate low to high values of the
respective parameter

Table 1 Annual number of
transects surveyed and transect
density

Year 2003 2004 2005 2006 2007 2008

Number of transects 360 434 459 472 367 347

Transects per 100 km−2 total area 1.31 1.58 1.68 1.72 1.34 1.27

Transects per 100 km−2 forested area 2.77 3.34 3.53 3.63 2.82 2.67

Year 2009 2010 2011 2012 2013 2014

Number of transects 415 430 403 354 391 268

Transects per 100 km−2 1.51 1.57 1.47 1.29 1.43 0.98

Transects per 100 km−2 forested area 3.19 3.31 3.10 2.72 3.01 2.06
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total, the annual bag of moose varied between 6164 and 8055
animals. Transect group predictors were the means of the tran-
sect predictor values prior to grouping. Development of planar
kernel density predictions was done in ArcGIS (ESRI INC
2011).

Statistical analyses

We evaluated environmental and anthropogenic relationships
to red fox population indices by modeling the population in-
dex (tracks km−1 24 h−1) as a dependent variable in a hierar-
chical Bayesian linear model framework via the rethinking
library (McElreath 2016) in R (R Core Team 2016). The red
fox population index was formalized as a gamma-Poisson
distribution with a log link function. The linear predictor
was offset with the log of transect length (km) and log of days
since last snowfall, and we fitted municipality as a random
effect (see the appendix for details on model components).

To describe and specify temporal variation in the red fox
population, we first detrended all time-series with the fitted
values from a linear model of the respective time-series. Then,
each transect group with > 10 time-steps (n = 58) was checked
for cyclicity in the negative feedback processes via the partial
rate correlation function (PRCF). The PRCF is quite similar to
the partial auto correlation function, but it regresses the instan-

taneous rate of increase (rt ¼ ln Nt
Nt−1

� �
Þ on lagged population

indices (Berryman and Turchin 2001). We did not detect any
cyclic pattern in the negative feedback processes of population
regulation by using Bartlett’s criteria of significance.
Furthermore, lag 1 from the partial rate correlation function
(PRCF[1]) was the dominating order of feedback-delay indi-
cating that direct density dependence was the dominating

pattern in growth structure of the red fox population.
Henceforth, we used the instantaneous rate of increase (r) as
a dependent variable in the model framework investigating
spatiotemporal variation in population growth. These models
were formalized as a Gaussian distribution with an identity
link (see the appendix for details on model components).

We modeled both the population index and density-
dependent growth as functions of linear terms. Each model
of instantaneous rate of increase included the red fox pop-
ulation index at time t−1 as part of an interaction with each
predictor. This allowed us to investigate spatial variation in
density dependence. The population index at time t−1,
however, was formalized as a second-order polynomial
due to its curvilinear relationship to the instantaneous rate
of increase. We fitted 20 and 11 a priori models for each
dependent variable (population index and r respectively).
We specified simple models aiming at obtaining factor-
specific information relating red fox population index and
density-dependent growth to anthropogenic activity and
natural productivity gradients.

Relative settlement and agricultural density, as well as ele-
vation and latitude, were not paired in the same model due to
collinearity (r > 0.6). All predictors were scaled to z scores (x
− mean/2SD), and thus, intercepts and interactions were sim-
pler to interpret (Gelman and Su 2016). Markov chain Monte
Carlo sampling (MCMC) was specified to run at four chains
across 6000 iterations and burn-in was set to 4000 iterations.
We detected spatial autocorrelation in our dependent variable
via the Moran’s I test (Moran 1950). Spatial autocorrelation
was handled by modeling varying intercepts as a function of
squared distances between the random effects (i.e., between
municipalities and transect groups for population index and
growth models respectively) (McElreath 2016).

Fig. 3 Mean population index of
red fox (tracks km−1 24 h−1) ±
2SE across transects in the study
area (2003–2014)
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Model evaluation and selection

We visually inspected Markov chains for failure to converge

and no convergence issues were detected. All bR values were
between 1 and 1.01. Relative model parsimony was assessed
byWAIC (widely applicable information criterion) (Watanabe

2010) based on posterior likelihoods. We followed an
information-theoretic approach when evaluating models, and
hence, a combination of model weights (i.e., threshold
ΔWAIC < 2) and relative distance to the top model were
criteria of inference. Parameter posterior predictions were av-
eraged across models based on model weights, keeping all
other fixed effects constant, and reported parameter predic-
tions henceforth incorporate parameter uncertainty.

Results

Temporal variation in the population index of red fox in the
study area varied between 2003 and 2014 with more variation
earlier than later in the period (Fig. 3).

Evaluation of the population index models showed
that the additive effect of settlement density and moose
culled performed markedly better than any other model
(WAICw = 0.82) (Supplementary material Appendix,
Table 2). The positive relationship of settlement density
to the red fox population index was quite strong, whilst
the weaker, but positive, relationship of moose culled
included a slope of zero (Fig. 4). Adding moose culled
to settlement density greatly improved the model parsi-
mony as compared to sett lement density alone
(Supplementary material Appendix, Table 4).

Whereas the mean population index from transect groups
was generally concentrated around a few hotspots, absolute
values of instantaneous rate of increase were more heteroge-
neously distributed (Fig. 5). The first-order (i.e., annual)
density-dependent structure indicated a relatively strong de-
gree of density dependence (β = − 1.33) (Supplementary
material Appendix, Fig. 8). Median instantaneous rate of in-
crease was 0.045 (mean = 0.027, SD = 0.025) and ranged be-
tween − 3.62 and 3.68 (Supplementary material Appendix,
Fig. 9).

Table 2 Bayesian mixed effect regression models for red fox
abundance ranked according to widely applicable information criterion
(WAIC)

Model WAIC K ΔWAIC Weight

Settlements + moose culled 24,327.7 38.8 0 0.82

Elevation + settlements 24,331.3 40.3 3.7 0.13

Settlements * moose culled 24,334.6 41.2 6.9 0.03

Settlements * elevation 24,336.3 42.5 8.6 0.01

Latitude + settlements 24,337.7 39.3 10.1 0.01

Settlements 24,338.2 38.8 10.5 0

Latitude * settlements 24,342.3 40.9 14.7 0

Elevation + agriculture 24,447.8 45.0 120.2 0

Elevation * agriculture 24,452.5 47.0 124.8 0

Agriculture + moose culled 24,457.6 42.9 129.9 0

Agriculture * moose culled 24,467.6 46.8 139.9 0

Latitude + agriculture 24,476.4 44.6 148.7 0

Agriculture 24,477.6 43.9 149.9 0

Latitude * agriculture 24,482.3 46.1 154.6 0

Elevation 24,555.4 47.5 227.7 0

Moose culled 24,622.2 46.5 294.5 0

Latitude + moose culled 24,624.6 48.3 296.9 0

Latitude * moose culled 24,630.1 50.8 302.5 0

Latitude 24,640.1 48.1 312.4 0

Constant 24,643.4 46.8 315.8 0

ΔWAIC is the change in WAIC relative to the highest ranking model, K
the number of parameters in the model, Weight is the Akaike model
weight

Fig. 4 Model weighted
predictions of red fox population
index as a function of settlements
(left) and moose culled ha−2 pro-
ductive forest (right) whilst hold-
ing the other fixed effect constant.
Shaded areas are 95% highest
posterior density intervals
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The best performing model of spatially explicit, first-order
density-dependent growth was the interaction between the red
fox population index and relative density of agricultural land
in the landscape (Supplementary material Appendix, Tables 3
and 4). The density-dependent structure in the red fox popu-
lation was asymmetric throughout the agricultural landscape
indicating higher variability in the population index across
areas with less agricultural land. Landscapes with more agri-
culture sustained a slightly higher equilibrium and an increas-
ingly stable population index of red fox, as the equilibrium
point (i.e., rt = 0) increased along the gradient from low to
high proportions of agricultural fields in the landscape
(Fig. 6).

Discussion

In this paper, we show that the spatiotemporal dynamics of red
foxes are closely interrelated with human landscape modifica-
tion and activities. The red fox population index related pos-
itively to relative settlement density and the density of moose
culled from hunting. Furthermore, we found that negative
feedback processes of first-order dynamics (i.e., direct density
dependence) dominated the structure of temporal variation in
the population index. An increase in the population index of
one reduced the instantaneous rate of increase by 1.3, imply-
ing relatively strong density dependence. Overall, the equilib-
rium of the population index (i.e., rt = 0) increased and tem-
poral variability around the equilibrium decreased in areas
where agricultural practices (i.e., crop and grass production)
was a dominating form of land use.

Positive relationships between fox abundance and human
settlements have been observed earlier (e.g., Panek and
Bresinski 2002). Human-dominated landscapes are attractive
to red foxes primarily via anthropogenic subsidies in the form
of increased scavenging opportunities on, e.g., garbage and
road kills (Rosalino et al. 2010; Selås et al. 2010). Elevation
was nonetheless included in the second best model, but other
predictors representing climate and productivity gradients
(e.g., latitude) were generally not ranked high. This implies
that potential effects of settlements differ from those of land-
scape productivity and climate and, furthermore, that strong
relationships between red fox indices and anthropogenic in-
fluence mask potential effects of natural productivity and cli-
mate gradients.

Although there was a positive relationship between moose
culled and the red fox index, the relationship was weak. This is
surprising given the multitude of forage and diet studies

�Fig. 5 Spatial variation in mean red fox population index (2003–2014)
and instantaneous rate of increase (mean of absolute values 2003–2014)
from the transect groups in Hedmark County
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identifying entrails, carrion, and carcass remains as important
items in red fox diets (Halpin and Bissonette 1988;
Jędrzejewski and Jędrzejewska 1992; Cagnacci et al. 2003;
DeVault et al. 2003; Sidorovich et al. 2006; Panzacchi et al.
2008b; Needham et al. 2014). The inclusion of the moose
culled term, however, greatly improved the relative model
performance over settlements alone and moose culled thus
explained a large proportion of the variance in the red fox
index not accounted for by settlements. This specific pattern
may be caused by the fact that offal from hunting is mainly
available in a temporally narrow pulse during late autumn
(Gomo et al. 2017). Additionally, as highlighted in several
dietary studies, there is temporal variability in the importance
of large herbivore remnants and carcasses. In Poland, deer
carcasses from kills from large carnivores or other winter mor-
tality were important buffer foods when voles were scarce
(Jędrzejewski and Jędrzejewska 1992), whereas the impor-
tance of carcasses from semi-domesticated reindeer
(Rangifer tarandus tarandus) was inversely related to lem-
ming (Lemmus lemmus) abundance in northern Norway
(Killengreen et al. 2011). As such, the degree of scavenging

for carcasses probably interacts with varying accessibility to
voles, either via their abundance or, e.g., snow cover
(Willebrand et al. 2017). The impact of such alternative
sources of foods to the red fox needs to be better understood,
but they are probably improving body condition preceding
winter and thus winter survival (Needham et al. 2014).

The observed range in the estimated instantaneous rate of
increase was higher than in other reports (e.g., Hone 1999),
and we propose two explanations for this pattern. Firstly, dis-
persal of highly mobile juvenile red foxes (Englund 1980b) as
well as considerable flexibility in space use within home
ranges (i.e., LoCoH 90 vs. MCP 100) (Walton et al. 2017)
are innate components of the monitored population, and sec-
ondly, the fluctuating nature of the boreal forest ecosystem
should yield high variation in birth and death rates
(Lindström 1982). In systems with fluctuating resources
(e.g., vole cycles in the boreal forest), these two mechanisms
are entwined because red foxes may show an aggregative and/
or a demographic responses to spatiotemporal variability in
resource distribution (Henden et al. 2010; McKinnon et al.
2013). It is worth noting that we cannot separate the two

Table 3 Bayesian mixed effect
regression models for red fox
density dependence ranked
according to widely applicable
information criterion (WAIC)

Model WAIC K ΔWAIC weight

Agriculture * density^2 4119.1 156.3 0 0.62

Settlements * density^2 4121.8 151.9 2.6 0.17

Agriculture * density^2 + moose culled 4122.6 156.9 3.5 0.11

Settlements * density^2 + moose culled 4122.8 152.9 3.6 0.10

Density^2 4151.9 167.1 32.7 0

Moose culled * density^2 4159.1 170.0 39.9 0

Elevation * density^2 4159.6 168.7 40.4 0

Elevation * density^2 + moose culled 4161.6 169.3 42.4 0

Latitude * density^2 + moose culled 4161.8 169.8 42.6 0

Latitude * density^2 4162.0 170.2 42.8 0

Constant 5074.7 30.4 955.6 0

ΔWAIC is the change in WAIC relative to the highest ranking model, K the number of parameters in the model,
Weight is the Akaike model weight

Table 4 Parameter estimates for the best performingmodels explaining red fox abundance (top) and population growth (bottom). Credible intervals are
given at the 95% level

α β1 β2 β3 β4 β5

Intercept Settlement Moose culled

Abundance − 0.79 0.47 0.12

95% CI − 0.88 − 0.7 0.03 0.41 − 0.02 0.27

Intercept Agri Abundance Abundance2 Agri/abundance Agri/abundance2

Growth − 0.11 0.42 − 1.93 0.56 0.5 − 0.33
95% CI − 0.26 0.04 0.3 0.53 − 2.07 − 1.8 0.48 0.66 0.28 0.72 − 0.51 − 0.16
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responses (i.e., aggregative and demographic) because chang-
es in track frequencies may be due to changes in both red fox
density and activity.

Density dependence across the agricultural continuum was
asymmetric. As the red fox index increased, the strength of
density dependence progressively relaxed with increasing rel-
ative coverage of agricultural land. This suggests that the var-
iability in red fox is inversely related to the presence of agri-
culture because variable population dynamics is associated
with strong density-dependent growth (Hanski 1990). Both
the density and distribution of resources as well as social reg-
ulation may be underlying factors explaining this pattern.
Previously, variation in space use across a large-scale produc-
tivity gradient have been observed (Walton et al. 2017), but
the degree of heterogeneity in space use at smaller scales is
less known, although probably similar (Kurki et al. 1998).
Social regulation, due to territoriality, is one potential mecha-
nism that may decrease with increasing territory size
(Goszczyński 2002), which again is inversely related to red
fox density (Trewhella et al. 1988).

In Scandinavia, predation pressure exerted on alterna-
tive prey by generalist predators (e.g., red foxes) varies in
phase with the vole cycle, and this relationship is termed
the alternative prey hypothesis (Hagen 1952; Angelstam
et al. 1984; Panzacchi et al. 2008a). The fundamental
principal is that large annual variation in the main prey,

typically voles, generates predator-mediated fluctuations
in alternative prey species, e.g., grouse. Due to prey
switching, predation pressure on alternative prey increase
during vole population declines. As vole populations in-
crease, alternative prey is again relieved of predation pres-
sure due to lower red fox abundance and prey switching.
Provisioning red foxes with alternative foods may buffer
fox population declines following the crash in the vole
cycle and this may well be a mechanism causing the ob-
served asymmetry in population regulation along the ag-
ricultural continuum. Elevated baseline populations of
predators in the low phase of the prey cycle may subse-
quently limit cyclic amplitude in the prey population
(Krebs et al. 2014). Moreover, negative feedback process-
es from predation in a cyclic system may also dampen
prey fluctuations (Erlinge et al. 1983, 1991). Ultimately,
trophic cascades driven by increased scavenger abun-
dance, survival, and fecundity are expected implications
of providing anthropogenic food subsidies (Newsome
et al. 2014). Such effects on other trophic levels may,
for example, involve stabilization of prey species by
preventing sequential years of population growth
(Hansson 1988).

Several factors may interact with habitat quality and suc-
cessively modulate effects of habitat on red fox density and
population dynamics in the landscape (Gorini et al. 2012). In

Fig. 6 Model weighted
predictions of the interaction
between agricultural land and red
fox index (Nt−1) on the
instantaneous rate of increase in
the red fox population. Red to
green gradient depict negative to
positive instantaneous rate of
increase
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spite of the potential for complex regulatory mechanisms,
single-factor explanations governing red fox distribution and
performance along the forest-farmland continuum is of partic-
ular interest to conservation (e.g., Tryjanowski et al. 2011) and
determinants of density-dependent structure needs to be pur-
sued in future research in general (Sibly and Hone 2002). For
conservational purposes, it is important to distinguish between
factors increasing the landscape’s overall carrying capacity
from factors that stabilize red fox population growth. Such
factors are inherently different in the potential impact on al-
ternative and incidental prey in a fluctuating environment.
Reducing anthropogenic subsidization, particularly preceding
and during winter may prove a successful conservation action
for farmland or other species currently depressed by red fox
predation.
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Appendix

Model components

We modeled red fox abundance likelihoods with gamma-
Poisson (i.e., negative binomial) error distributions, whilst
we modeled density-dependent growth likelihoods with
Gaussian (i.e., normal) error distributions.

Abundance models:

Y i∼Gamma−Poisson μi;Cið Þ

Growth models:

Y i∼Normal μi;σð Þ

We fitted municipality and year as group-level effects for
the linear predictors for abundance and growth models respec-
tively. Offset for abundance models was the log of transect
length (km) and log of days since last snowfall. For abundance
models, spatial autocorrelation was accounted for at the mu-
nicipality level, whilst in growth models, spatial autocorrela-
tion was accounted for between transect groups.

Abundance models:

log μið Þ ¼ log lengthið Þ þ log daysið Þ þ aMUNICIPALITYi

þ γMUNICIPALITYi
þ βxi

Growth models:

μi ¼ αYEARi þ γTRANSGROUPi þ βxi

The prior distribution for the spatial autocorrelation com-
ponent was formalized by a Gaussian process distribution
(i.e., multivariate normal) of a K-dimensional (22 dimensions
for municipalities and 255 dimensions for transect groups)
matrix of zero means in order for the distribution to express
the deviance from the expected mean intercept α in the linear
predictor.

γ∼MVNormal 0;…; 0ð ÞKð Þ

The covariance matrix K describing covariance between
the ith and jth group-level factor was defined as the product
of the maximum covariance between any two group levels η2,
the exponential covariance decline rate ρ2 and squared dis-
tance D between the ith and jth group-level factor. The last
term, δijσ

2 (i.e., jitter term), provides additional covariance
for multiple observations from the same group-level factors
and was fixed to 0.01.

Kij ¼ η2 exp −ρ2D2
ij

� �
þ δijσ

2

Prior distributions of hyper- and model parameters
were weakly informed (i.e., flat priors). Model parame-
ters for fixed effects β were normally distributed and set
to μ = 0 and σ = 10 for all beta coefficient priors. The
grand mean intercept parameter α was set to μ = 0 and
σ = 1. Scale parameter C was formalized as a half-
Cauchy distribution with location of zero and scale of
2 (i.e., relatively wide) whilst standard deviation σ,
maximum covariance η2, and covariance decline rate
ρ2 were half-cauchy distributions with location of zero
and scale of 1.

β∼Normal 0; 10ð Þ
α∼Normal 0; 1ð Þ
C∼Half−Cauchy 0; 2ð Þ
σ∼Half−Cauchy 0; 1ð Þ
ρ2∼Half−Cauchy 0; 1ð Þ
η2∼Half−Cauchy 0; 1ð Þ
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Fig. 7 The transect grouping
prior to analysis of spatial
variability. In this particular
example, the first 4 years of the
transect group are excluded
because of only 3 years of
consecutive monitoring after
grouping

Fig. 8 First-order density-
dependent structure (rt = f(Nt −

1) + ϵt) in the red fox population
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