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Increased agrobiodiversity through farm diversification and varietal selection 
is an alternative to help farmers to cope with the negative effects of climate 
change while ensuring food security. However, such approach have been 
difficult to scale up, since we often lack information to understand the contexts 
that drive farmers’ adaptation decisions and how to develop recommendations 
for adaptation. 
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specifically in smallholder farming. It provide insights for the different biological 
levels: species, focusing on trees as slow grower organisms for interspecific  
diversification; varieties, looking for locally adapted phenotypes; and genotypes, 
focusing on genotype by environmental interactions.

The results show that farmers have a clear preference to a set of adaptation 
strategies, with agroforestry as the first choice. The most preferred trees in 
coffee and cocoa agroforestry are the most vulnerable, but farmers could 
re-think the agroforestry designs using a portfolio of underutilised species 
already present in low densities at the current systems. At the variety level, the 
results show that scaling agricultural experimentation with citizen science can 
support recommendations for crop variety management for climate adapta-
tion. Also, that linking farmer-generated data to scientist-generated data can 
support breeding programs targeting challenging crop production environ-
ments. Overall, the results of this thesis should be seen as starting point to 
develop lines of research that support recommendations to adapt agricultural 
systems to a changing climate.
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Abstract

Agriculture is a dynamic activity that sustains food and other goods for global human population.
Aiming to ensure global food security, the sector has evolved dramatically, especially over the
last century with the introduction of high-yielding crops, improved technology and pathogen
resistant varieties, to name a few. According to the Food and Agriculture Organisation of the
United Nations (FAO), the food security issue is still present. In 2019, around 26% of the world
population experienced either a moderate or severe level of food insecurity. Climate change makes
the challenge of food security even more pressing. It is argued that increased agrobiodiversity
through farm diversification and varietal selection can help farmers to cope with the negative
effects of climate change while ensuring food security. However, such approaches have been
difficult to scale up. One could argue that we often lack information to understand the contexts
that drive farmers’ adaptation decisions and how to develop recommendations for adaptation.
In this thesis, I developed methods and tools to support farmers and stakeholders in adapting
to a changing climate. I present results from three continents to improve the understanding of
the food systems at the farm level, and specifically in smallholder farming. I provide insights
for the different biological levels: species level, focusing on trees as slow grower organisms for
interspecific diversification; varieties level, looking for locally adapted phenotypes; and genotype
level, focusing on G× E interactions to support crop breeding for intraspecific diversification.
From the first part of the study, conducted in Central America, the results showed that farmers
have a clear preference to a set of adaptation strategies, with reforestation (agroforestry) as the
first choice (Paper 1). Crop variety management is the least preferred choice of the top-5. In
the second part of the study, I assessed the impacts of climate change on the habitats of the 100
most common tree species used in coffee (Coffea arabica L.) and cocoa (Theobroma cacao L.)
agroforestry in Central America (Paper 2). The results showed that the most preferred trees
are the most vulnerable, but farmers could re-think the agroforestry designs using a portfolio
of underutilised species already present in low densities at the current systems. In the third
part of the study, I employed a citizen science approach that can scale variety testing and help
farmers to select the right crop variety for their farms (Paper 3). I tested this approach with
common bean (Phaseolus vulgaris L.) in Nicaragua, bread wheat (Triticum aestivum L.) in India
and durum wheat (Triticum durum Desf.) in Ethiopia. The results showed that the approach
reduces geographic sampling bias and could be scaled to provide tailored recommendations for
crop variety management. I also show, with durum wheat genotypes in Ethiopia, that linking
the farmer-generated data to scientist-generated data can support breeding programs targeting
challenging crop production environments using a data-driven decentralised approach (Paper 4).
The approach is fully replicable, and part of its workflow is presented in this thesis (Paper 5 and
Paper 6). Overall, the results of this thesis should be seen as starting point to develop lines of
research that support recommendations to adapt agricultural systems to a changing climate.
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Sammendrag

Landbruk er en dynamisk aktivitet som skal sikre mat og andre varer som verdens befolkning til
enhver tid trenger. Med global matsikkerhet som mål har landbruket utviklet seg mye, særlig
det siste århundre, blant annet ved å ta i bruk høytytende grøder, forbedret dyrkningsteknikk og
sorter som er resistente mot sykdommer. I følge FNs organisasjon for ernæring og landbruk (FAO)
er matsikkerhet fortsatt et aktuelt tema. I 2019 opplevde rundt 26% av verdens befolkning
en moderat eller alvorlig grad av usikkerhet rundt tilgangen på mat. Klimaendringer gjør
utfordringene rundt matsikkerhet enda mer krevende. Hele matvaresystemet må endres for å
takle klimaendringer og samtidig sikre nok mat til alle. Det hevdes at økt biologisk mangfold
i landbruket kan hjelpe bønder i å takle klimaendringene og samtidig sikre matproduksjonen,
dette gjennom mer variasjon i hva som dyrkes på gårdsnivå og gjennom et bedre utvalg av sorter.
Slike tilnærminger har imidlertid vist seg å være vanskelige å skalere opp. Man kan hevde at
vi ofte mangler tilstrekkelig med informasjon for fullt ut kunne forstå hva som avgjør bønders
valg knytta til klimatilpasning - og videre hvordan man så skal kunne utvikle rådgivingen for
dette. I denne avhandlingen har jeg utviklet metoder og verktøy som kan brukes for å hjelpe
bønder og andre i å tilpasse seg til endringer i klima. Jeg presenterer resultater fra tre ulike
kontinent, dette for gi eksempel på hvordan en økt forståelse av matvaresystemene kan fungere
på gårdsnivå, og særlig på små gårder. Jeg går inn på ulike biologiske nivå: på artsnivå, med
fokus på trær som vokser langsomt og som gir stor diversitet mellom arter; på sortsnivå, ved å
søke å finne lokalt tilpassa fenotyper; og på genotypenivå, ved å fokusere på samspillet mellom
gener og miljø (G × E), dette for å støtte foredlingsarbeid for økt diversitet innenfor arter.
Resultater fra første delen av studiet som ble gjennomført i Mellom-Amerika viste at bønder
har en klar preferanse for et sett av strategier i forhold til klimatilpasning, med agroskogbruk
som førstevalg (Artikkel 1). Sortsvalg er det minst foretrukne valget av topp fem. I andre
del av studiet undersøkte jeg hvor egnet dagens vokseplasser i Mellom-Amerika er for de 100
vanligste trærne som anvendes innenfor agroskogbruket med kaffe (Coffea arabica L.) og kakao
(Theobroma cacao L.), dette med tanke på framtidige klimascenarier (Artikkel 2). Resultatene
viste at de mest foretrukne trærne er de mest sårbare og at bøndene burde tenke nytt i forhold
til utforming av agroskogbruket, dette ved å ta i bruk en rekke mindre anvendte arter som likevel
finnes i dagens system. I tredje del av studiet anvendte jeg grasrotforskning som tilnærming for
å skalere opp sortsforsøk og hjelpe bønder med å velge riktig sort for gårdene sine (Artikkel 3).
Jeg undersøkte dette i bønner (Phaseolus vulgaris L.) i Nicaragua, vanlig brødhvete (Triticum
aestivum L.) i India og durumhvete (Triticum durum Desf.) i Etiopia. Resultatene viste at en
slik tilnærming reduserer feilkilder knyttet til geografisk representasjon og kan skaleres opp for å
gi mer skreddersydde løsninger for bruk av sorter. I arbeidet med ulike genotyper av durumhvete
i Etiopia viser jeg at foredlingsprogrammer kan styrkes at ved å koble grasrot-genererte data til
forsker-genererte data gjennom en desentralisert tilnærming (Artikkel 4). Tilnærmingen er fullt
mulig å gjenta, og en del av arbeidsflyten er presentert i avhandlingen (Artikkel 5 og 6). Samlet
sett bør resultatene fra denne avhandlingen sees som en start på å utvikle en forskningen som
kan bistå med anbefalinger slik at landbruket bedre kan tilpasse seg til et klima i endring.
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Preface

This thesis summarises an amazing chapter of my personal and professional life. Growing up
in the middle of the Brazilian Amazon, I always had an interest in plants, first to play with
but later to actually study and research how they function and grow. My grandmother was my
sponsor, supporting my interest to cultivate and harvest beans in our backyard. From my parents
I learned that the way people interact with the environment is also an important aspect to look
at. As I grew up, I met scientists that helped me to put these lessons into a more organised and
scientific way. First at the Federal University of Amazonas (UFAM, Manaus, Brazil) and the
National Institute of Amazonian Research (INPA, Manaus, Brazil) where I realised that, yes, I
want to be a scientist. For this, thank you all. At the Tropical Agricultural Research and Higher
Education Center (CATIE, Turrialba, Costa Rica) I learned how to integrate the complexity of
landscapes into coherent approaches, including people, trees and crops. Lessons that were taken
to a higher level when I joined the World Agroforestry (ICRAF, Costa Rica Office), Bioversity
International (Costa Rica Office) and the Inland Norway University of Applied Sciences (INN,
Hamar, Norway). During this time, I learned from an amazing group of scientists that gave me
all the inputs that I used to develop this thesis. The thesis summarises my interests in plants
and their interplay with people. That is why it assesses the different components of a landscape,
first the people, then the trees and then the crops from where they take most of their food.
I really enjoyed writing this thesis. All this thanks to the unbelievable opportunities that I
had and all the nice and brilliant people that I met during this path. I wish that the children
from the economically poor (but rich in biodiversity) regions in the tropics have access to the
opportunities that I had.

Hamar, October 2, 2020
Kauê de Sousa
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Introduction

Climate change has increased the risks and uncertainties associated with agriculture (Campbell
et al., 2016; Challinor et al., 2016; Steenwerth et al., 2014), which is one of the top sectors
contributing to greenhouse gases accumulation (Poore & Nemecek, 2018), and one of the most
vulnerable to its effects (Godfray et al., 2010; Tilman et al., 2011). Around the globe, changes
in the frequency and intensity of extreme climatic events are expected (Aguilar et al., 2005;
Imbach et al., 2018; Lin et al., 2017; Zohner et al., 2020), but its extent is hard to predict and
will vary among regions. In the tropics, unpredictable precipitation and temperature oscillation
associated with climate change has increased the concerns for farm adaptation, predominantly
comprised by low-input smallholder systems that most likely will experience large yield gaps
(Challinor et al., 2016, 2014; Peng et al., 2004; Zhao et al., 2017). On the other hand, an increase
in temperatures, rainfall, and CO2 levels may increase the productivity of agriculture in certain
areas, most likely in some temperate zones (DaMatta et al., 2019; King et al., 2018; Tollenaar
et al., 2017). This is however complicated, as increased pest pressure from weeds, insects and
diseases, and highly seasonal climate variations are expected as well (Deutsch et al., 2018; King
et al., 2018).

Agriculture, however, is a dynamic activity that has gone through a series of transformations
over centuries. In its origins, human populations selected, domesticated and replicated the best
plant genotypes and developed intercropping systems on which were the first steps of organised
societies (Bellwood, 2004; Maezumi et al., 2018; Vavilov, 1992; Zeven, 1998). In the last century,
in the attempt to provide food for a growing human population, agriculture evolved dramatically
through the release of technological packages with high-yielding and high-tolerant crops that
boosted agricultural production (Eshed & Lippman, 2019; Hickey et al., 2019). This revolution
led to complex and diversified food systems that improved food access and economic growth
throughout the world (Hickey et al., 2019; Pingali, 2012). However, this also produced trade-offs
such as land degradation (Gibbs et al., 2010), the increase in the intake of high caloric and poorly
nutritional foods (Pingali, 2012), and reduction in agricultural diversity through a greater focus
on few crop species (Manners & van Etten, 2018). Also, the question on how to feed a growing
human population still persists (FAO et al., 2019), despite the great contributions achieved in
the agricultural sector (Pingali, 2012). Climate change magnifies the challenge. This calls for a
new revolution and transformation of our food systems (Loboguerrero et al., 2020), at the farm
level (Nelson, 2020; Sanchez, 2020), at the crop science level (Manners & van Etten, 2018), and
also on how food is distributed and what we eat (Hirvonen et al., 2020; Willett et al., 2019).

It is argued that adoption of sustainable intensification and agroecological practices to meet
the future challenges will help farmers to cope up with the effects of climate change (Andrade
et al., 2020; Campbell et al., 2016; Lipper et al., 2014; Nelson, 2020; Steenwerth et al., 2014;
Thornton et al., 2017; Zimmerer & De Haan, 2017). This transformation would involve a number
of integrative approaches to help farmers to reorient their agricultural practices to ensure a rise
in productivity, farm income and food security while adapting and mitigating to climate change.
These practices include a range of actions, such as diversification, agroforestry, varietal selection,
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crop breeding, and landscape planning. Diversification, with the use of crop variety management
or agroforestry, is one of the most promoted approaches (van Zonneveld et al., 2020). However,
this approach needs to be explored to identify local solutions that embrace the complexity of
the cropping system with its ecological interactions and abiotic factors.

For diversification with varietal selection, one proposed solution is to increase variety supply by
accelerating crop breeding for more robust varieties and at the same time replace old varieties
from the seed system (Atlin et al., 2017). Supply-driven variety replacement assumes that
new varieties are well adapted to local environments and acceptable to farmers. For many
climate-vulnerable crops and regions, this assumption is unwarranted. Varieties are often
recommended without geographic analysis of climate adaptation to determine recommendation
domains (Annicchiarico, 2002). A solution could come from a more scalable type of participatory
research that crowdsources farmers’ local knowledge through citizen science (Beza et al., 2017;
Steinke et al., 2017; van Etten, Beza, et al., 2019).

In terms of agroforestry, adaptation is addressed by introducing trees to the agricultural
production system to ameliorate abiotic stress and facilitate the performance of understory
crops (Blaser et al., 2018; Holmgren et al., 1997). This approach is particularly challenging, as
perennial crops take long before farmers fully benefit from their management decisions (Cerda
et al., 2014; de Sousa et al., 2016; Ramírez et al., 2001). Two issues also increase the uncertainty
of agroforestry to address climate adaptation and risk management. First, climate change may
also affect the habitat for agroforestry tree species (Lyra et al., 2017). Second, interactions
between trees and crops could drive negative results in productivity (Abdulai et al., 2017; Blaser
et al., 2018), limiting the interest of farmers in adopting this approach. Understand the effects
of climate change on the suitability of agroforestry species may be one approach to support
farmers in selecting agroforestry designs at low risk.

The increasing intensity of extreme climatic events associated with climate change and the
absence of knowledge to provide recommendation domains highlights the need for rapid, tailored
and straightforward solutions to help farmers to adapt agricultural production. In this thesis, I
analysed diversification approaches to bring new insights to generate accurate climate-friendly
recommendations for farmers across different climatic spaces. I focussed on smallholder farming,
a practice that is conducted in more than 570 million farms worldwide (Lowder et al., 2016),
contribute to around 30-34% of global food supply (Ricciardi et al., 2018), is central for the
conservation of agrobiodiversity (Altieri & Nicholls, 2017), but also highly vulnerable to climate
change (Harvey et al., 2014; Lipper et al., 2014; Vermeulen et al., 2012). Here I bring evidence
for different levels of biological levels: species, focusing on trees as slow grower organisms for
interspecific diversification; varieties, looking for locally adapted phenotypes; and genotypes
(genes) focusing on G×E interactions to support crop breeding for intraspecific diversification.

14



Objectives

This thesis aimed to provide insight and develop methods to support farmers and stakeholders in
adapting agricultural systems to a changing climate, specifically for smallholders, by answering
the following questions:

1. Can climate awareness influence sustainable adaptation decisions in smallholder
farms? (Paper 1)

Climate change increases the risks and uncertainties associated with agriculture, particularly
for smallholders (Altieri & Nicholls, 2017; Campbell et al., 2016). The evidence has shown
that the adoption of agricultural innovations and climate-adapted practices can help vulnerable
farmers to cope with the effects of climate variability and change (Lipper et al., 2014; Vermeulen
et al., 2013, 2012). These practices include farm sustainable intensification, diversification of
production, agroforestry, crop variety management and plant breeding. Farmers’ awareness and
perceptions of climate change are correlated with the adoption of such innovations (Elum et
al., 2017; Niles & Mueller, 2016; Schattman et al., 2016; Singh et al., 2017), but no evidence
is provided for smallholders in Central America. Paper 1 (de Sousa, Casanoves, et al., 2018)
targets this knowledge gap.

2. What is the future of current agroforestry combinations in coffee and cocoa
production systems? (Paper 2)

Agroforestry, the deliberate and simultaneous management of trees within crop or livestock
systems (Nair, 1993), is considered an important climate-adapted innovation to increase the
resilience of agricultural systems (Spurgeon, 1979). Trees can ameliorate the micro-climate and
facilitate the performance of understory crops (Holmgren & Scheffer, 2010). Most perennial
crop systems in Central America are managed following agroforestry practices (Beer et al., 1998;
Somarriba et al., 2013), and have been increasingly encouraged as climate change is projected
to affect future crop production (Ovalle-Rivera et al., 2015). Nevertheless, climate change can
also affect the future ecological niches of several tree species (Holmgren et al., 2013; Lyra et al.,
2017) and may hamper the prospects of agroforestry as a viable approach for climate adaptation.
Paper 2 (de Sousa et al., 2019) assesses the future of the 100 most common tree species found
in Arabica coffee (Coffea arabica L.) and cocoa (Theobroma cacao L.) production systems in
Central America.

3. Can cocoa become a suitable alternative in vulnerable coffee production areas?
(Paper 2)

As climate change projections points to a decline in coffee production due to the increasingly
climate variability (Bunn et al., 2015; Läderach et al., 2017; Ovalle-Rivera et al., 2015), farmers
have developed an interest for cocoa. The drivers of this shift are trends in recent years of
increasing coffee production costs and large losses due to pests and diseases (e.g. the leaf rust
crisis caused by climate oscillation that makes coffee susceptible to the fungus Hemileia vastatrix
Berk. & Broome) (Avelino et al., 2015). Replacing coffee by cocoa has become one of the
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main strategies for climate change adaptation for producers in low elevation areas (Läderach et
al., 2017). Nevertheless, there is no quantitative assessment of the feasibility of such strategy,
starting from considering that cocoa is vulnerable to climate change itself (Schroth et al., 2016).
Paper 2 (de Sousa et al., 2019) also explores this strategy assessing the potential areas where
cocoa is a suitable alternative to coffee.

4. Can on-farm participatory crop trials generate insights into variety management
for climate adaptation? (Paper 3)

Crop improvement increases production and contributes to food and nutrition security (Godfray
et al., 2010; Hickey et al., 2019). Previous studies have shown that it is critical that farmers
keep a continuous turnover of improved and locally adapted varieties for climate adaptation
(Atlin et al., 2017; Challinor et al., 2016). One constraint, however, in adopting this practice is
the cost of the seeds. Farmers often rely on their local varieties and changing to new ones can
increase the risks when the performance of these varieties under local conditions is unknown
(Dawson et al., 2008). Existing experimental agricultural approaches lack the ability to provide
such recommendations across space and time, particularly to marginal production environments.
Paper 3 (van Etten, de Sousa, et al., 2019) address this issue by exploring a participatory
approach to characterise varietal climatic responses allowing for seasonal and geographical
extrapolation.

5. Can a data-driven decentralised approach improve the selection of genotypes in
challenging crop production environments? (Paper 4)

To adapt to climate change farmers require accelerated selection of genotypes and production of
locally adapted varieties (Eshed & Lippman, 2019; Godfray et al., 2010). Conventional breeding
programs have proven high success in maximizing genetic diversity in the early stages of selection
and then identifying superior germplasm (Hickey et al., 2019). At present, plant breeders use
genomic-driven approaches to increase selection intensity while reducing the time of the breeding
cycle and deriving greater genetic gain. However, the same approach may not translate well
in marginal environments, often in the periphery of research stations and characterised by a
diversity of environments and management practices (Annicchiarico et al., 2019). Decentralised
participatory approaches could help breeders in accelerate the selection of genotypes while
addressing the G × E ×M interactions (genotype by environment by management) required
for challenging crop production environments (Annicchiarico et al., 2019; Ceccarelli & Grando,
2019; Tester & Langridge, 2010; van Eeuwijk et al., 2001; van Etten, Beza, et al., 2019). Paper
5 (de Sousa, van Etten, Poland, et al., 2020a) addresses this issue by proposing a decentralised
data-driven approach scaled by citizen science.

6. Can we develop tools to allow reproducible and replicable workflows for crop
recommendation domains? (Paper 5 and Paper 6)

Reproducibility, the ability to repeat the analysis, and replicability, the ability to repeat an
experiment (Stevens, 2017), are key to perform collaborative scientific research (Munafò et
al., 2017; Powers & Hampton, 2019). It allows scientists to re-perform analysis after a long
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hiatus and the peers to validate analysis and get new insights using original or new data. In the
walk of climate change it is key to ensure that recommendation domains are made based on
replicable and reproducible workflows that can be updated as new data becomes available. To
address this issue we developed a series of tools to create a workflow for the analysis on crop
variety management using the R language (R Core Team, 2020). Paper 5 and 6 illustrates the
applicability of some of these tools.

Methods

Research sites

The studies took place in three different regions, Central America, East Africa and South Asia
(Fig. 1). The regions are characterised by its rich plant diversity being Centre of Origin and
domestication (Vavilov, 1992) of important staples and crops such as common bean (Phaseolus
vulgaris L.), maize (Zea mays L.) and cocoa in Central America; durum wheat (Triticum durum
Desf.) and coffee in East Africa; and rice (Oryza sativa L.), and bread wheat (Triticum aestivum
L.) in South Asia. Smallholder agriculture and livestock production are the main livelihood
for the majority of the population in these regions. Poverty and food insecurity levels are still
among the higher in the world. According to the 2019’s report on the State of Food Security
and Nutrition (FAO et al., 2019), in 2018 Central America, East Africa and South Asia had a
prevalence of severe or moderate food insecurity for 31.5%, 62.7% and 34.3%, respectively, of
their total population.

Figure 1: Research sites. (A) Overview. (B) India. (C) Central America. (D) Ethiopia. Farms included
in the trials or interviews are indicated as dots. Research in Paper 2 was performed across the framed
area in panel C.

Field data was collected between 2010 and 2016 as part of several Research for Development
programs performed across the regions. In Central America, farmer’s surveys were conducted in
El Salvador, Guatemala, Honduras and Nicaragua (Paper 1). A subset of participatory crop
trials was conducted in Nicaragua (Paper 3). Sampled farmers extended across three ecological
regions, the Central American Atlantic Moist Forests, the Central American Dry Forests and
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the Central American Pine-Oak Forests. The research in Paper 2 was conducted across the
entire area shown in Fig. 1C. Important crops grown by smallholders in the region are maize,
common bean, sorghum (Sorghum bicolor (L.) Moench), banana (Musa spp.), coffee and cocoa,
the last two grown for the international markets, while the others for local markets and household
consumption.

In East Africa, the research (Paper 3 and 4) was conducted in the regions of Amhara, Oromia
and Tigray in Ethiopia, which encompasses one main ecological region, the Ethiopian Montane
Grasslands and Woodlands. The main crop grown by smallholder farmers in this region are
durum wheat, teff (Eragrostis tef (Zucc.) Trotter), barley (Hordeum vulgare L.) and sorghum,
mostly for household consumption and local markets. In South Asia, the research (Paper 3) was
conducted across the States of Bihar, Madhya Pradesh and Uttar Pradesh in India encompassing
three ecological regions, the Upper Gangetic Plains Moist Deciduous Forests, the Lower Gangetic
Plains Moist Deciduous Forests, and the Narmada Valley Dry Deciduous Forests. The main crop
grown by smallholders are rice, bread wheat, maize, and several pulses and vegetables. Table 1
presents a description on the environmental characteristics of each region extracted from the
sampled locations used in this research (Hijmans et al., 2005; Jarvis et al., 2008; Olson et al.,
2001).

Table 1: Environmental characteristics of sampled locations across the three research sites. Average
values with minimum and maximum shown between parenthesis.

Research site Elevation (m) Temperature (°C) Precipitation (mm) Ecoregions

Central America 597 (190–1,900) 23 (17–29) 1,717 (905–2,122) 3
East Africa 2,598 (1,960–3,200) 15 (6–25) 976 (671–1,078) 1
South Asia 85 (42–571) 25 (9–39) 1,024 (808–1,280) 3

Farmers’ climate awareness and adaptation strategies

This part of the research was performed only in Central America (Paper 1). In 2014, we performed
a survey to 283 households participating in the Mesoamerican Environmental Program (MAP)
(Gutierrez-Montes et al., 2020). Farmers were questioned about their perceptions regarding
changes in precipitation and temperature over the 10 years before the interviews (2005–2014).
Farmers who reported to have felt changes in climatic patterns were asked to list the farm
management practices they have adopted in their crop systems to cope with such changes.
These practices were ranked by the order they were mentioned. We wanted to answer two main
questions, how accurate are the farmers’ perceptions to climate change with observed time series
data, and whether socio-economic factors can influence farmers’ adaptation decisions.

To address the first question, we linked the farmers’ responses as categorical variables (e.g. more
precipitation, less precipitation, uncertain rain season) to a gridded time series precipitation
database from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset
(Funk et al., 2015). This dataset incorporates global daily rainfall from 1983 to near-present with
a resolution of 2.5 arc-min, which is obtained by weather stations and combined with remote
sensing. Changes in precipitation were assessed by calculating three extreme precipitation indices
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using an alpha version of the R (R Core Team, 2020) package climatrends (de Sousa, van
Etten, & Solberg, 2020). For this analysis we used the simple daily intensity index (SDII, total
precipitation/rainy days), the maximum 5-day precipitation (Rx5day), and the maximum length
of consecutive dry days (MLDS). We linked the observed changes in precipitation and farmers’
perceptions with a multiple correspondence analysis using the R package FactoMineR (Lê et
al., 2008). The analysis takes multiple categorical variables and seeks to identify associations
between levels of those variables. The associations were visualised with a biplot.

The second question was answered by linking the farmers prioritised adaptation management
strategies with their socio-economic data. Household socio-economic data was obtained by
the baseline survey performed with all farmers for the Mesoamerican Environmental Program.
From the adaptation strategies derived from all responses, we compiled a list of 10 options: (i)
Change in Agricultural Calendar, (ii) Change in Varieties, (iii) Production Diversification, (iv)
Introduction of New Crops, (v) Less Fertilizers and Pesticides, (vi) Reforestation and Restoration,
(vii) Sustainable Soil Management, (viii) Sustainable Water Management, (ix) Leave Farming
System, and (x) More Fertilizers and Pesticides.

The relative importance of the different strategies was measured following the Luce’s Choice
Axiom (Luce, 1959), which states that the probability that one item beats another is independent
from the presence or absence of any other items in the set.

Equation [1]

P (i � j) = pi

pi + pj

where pi is a positive real-valued score assigned to individual i. The comparison i � j can be
read as “i is preferred over j”

We estimated the worth parameters (relative importance) using the maximum log-likelihood
estimation with the Bradley-Terry (BT) model (Bradley & Terry, 1952). In the BT model, each
m individuals choice is compared with one another in pairs to compute the number of times i is
preferred over j. The outcomes of different pairings are assumed to be independent, and the
log-likelihood based on the BT model is estimated using the equation (Hunter, 2004):

Equation [2]

`(p) =
m∑

i=1

m∑

j=1
[wij ln pi − wij ln(pi + pj)]

where wij denotes the number of times individual i has beaten individual j and we assumes
wii = 0 by convention.

We used the top five strategies mentioned by each interviewed farmer and converted it into
pairwise comparisons using an alpha version of the R package gosset (de Sousa, van Etten,
Dumble, et al., 2020). Socio-economic variables were linked to the pairwise rankings using the
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Model-Based Recursive Partitioning approach (Zeileis et al., 2008) a non-parametric modelling
approach implemented in R by the package psychotree (Strobl et al., 2011). The algorithm
starts by fitting a BT model to the full data, then it assesses the stability of the worth parameters,
if there is a significant instability, the full data is split by the covariate with strong instability.
The process is repeated until there is no more significant instability (Zeileis et al., 2008). We
linked six covariates: (i) the ecoregion (Dry or Rainforest), (ii) the Progress Out of Poverty
Index (PPI), (iii) the literacy level of the head of household, (iv) the area of the main crop
system (ha), (v) the age of the head of household, and (vi) the number of practices adopted by
the farmers after participating in the Farmers Field Schools led by MAP.

Mapping future suitability of coffee and cocoa agroforestry

This assessment focussed on Central America within the coordinates 101◦ to 77◦ E and 7◦ to
22◦ N (Paper 2). We wanted to answer two main questions, how ecologically resilient are the
trees commonly used by farmers in coffee and cocoa agroforestry systems, and whether cocoa
can be a suitable alternative for coffee growers. These questions came out as a result from the
assessment on farmers’ adaptation decisions described in the earlier section. Among the 10
adaptation decisions mentioned by the interviewed farmers, restoration and reforestation (using
agroforestry) were the most preferred (de Sousa, Casanoves, et al., 2018).

To answer the first question, we assessed the current and future potential distribution of the
top-100 commonly used tree species in cocoa and coffee plantations across Central America. The
selection of the 100 species was based on three criteria. The first was the abundance reported in
relevant datasets of agroforestry inventories conducted in smallholder farms across the region
(Bonilla Zunhiga et al., 2014; Orozco et al., 2014; Sepulveda & Barrios, 2016), selecting from
the most abundant to the least. We then filtered the list of species based on ecological and
economic services identified by farmers and reported in the literature (CATIE & OFI, 2003),
taxa were classified by their main use; N-fixing (for soil amelioration), timber or fruit. The last
criterion was the availability of at least 60 geographical records to ensure accurate modelling
results. To answer the second, question we compared the current potential areas for coffee and
cocoa production with their projected distribution under climate change scenarios.

We compiled presence location points of selected tree species (including coffee and cocoa)
from the Global Biodiversity Information Facility (GBIF) (GBIF.org, 2020), MAPFORGEN
(http://www.mapforgen.org) and from the database of farm inventories used to select the tree
species. No distinction was made between locations from natural forests or farms because this
information was not always available in the original sources.

Bioclimatic predictors from WorldClim v1.4 (Hijmans et al., 2005) were used to model the
current distribution of the 100 species, and of coffee and cocoa. These bioclimatic variables are
widely used in ecology to model the distribution of species based on their interaction with the
variation in precipitation and temperature (Booth, 2018). To avoid model overfitting, we selected
the least correlated variables based the variance inflation factors, retaining those with VIF <
10 (Ranjitkar et al., 2014). This resulted in nine bioclimatic variables. Future projections were

20

http://www.mapforgen.org


based on two Representative Concentration Pathways (RCP) scenarios of climate change (van
Vuuren et al., 2011), RCP 4.5 as an intermediate scenario which predicts an average temperature
increase of 1.4 ◦C (0.9–2.0 ◦C), and RCP 8.5 as a high emissions scenario, which predicts an
average temperature increase of 2.0 ◦C (1.4–2.6 ◦C) by 2050. These scenarios are defined by
the value of radiative forcing (ability to absorb or release heat) from the atmosphere to 2050,
ranging from 2.6 to 8.5 Watts · m−2. The scenario RCP 2.6 was not chosen because it represents
the most effective mitigation scenario, aiming to keep temperature below 2 ◦C. Currently this
scenario is unlikely with projections of current policies (expected temperature increase of from
3.3 ◦C to 3.9 ◦C). To cover the uncertainty of the General Circulation Models, we used future
bioclimatic variables downscaled from 17 General Circulation Models that were available for
both RCP scenarios.

The distribution of the 100 species and coffee and cocoa was modelled using an ensemble
suitability method implemented by the R package BiodiversityR (Kindt, 2018). The procedure
consists of four steps that, first, calibrate the model by assessing the performance of 18 algorithms
of species distribution models (SDM) measured with the area under the curve (AUC). In this
step, the AUC values obtained by each algorithm are weighed using the following equation:

Equation [3]

Se =
∑

iwiSi∑
iwi

where the ensemble suitability (Se) is obtained as a weighted (w) average of suitabilities predicted
by the contributing algorithm (Si).

The second step consists in retaining only the algorithms that contributed at least in 5% to the
ensemble suitability (Se). The third step generates the suitability maps using the predictions from
the algorithms that were selected in the second step. Finally, to generate the presence–absence
layers, we convert the consensus suitability from the third step using the threshold of maximum
specificity + maximum sensitivity (Liu et al., 2013). Replication data and code used in this
analysis are available through Dataverse (de Sousa, van Zonneveld, et al., 2018).

Evaluation of crop varieties

This part of the research (Paper 3) was performed between 2012 and 2016 during three growing
seasons in Ethiopia, five growing seasons in Nicaragua, and four growing seasons in India (Table
2). Three crops were evaluated, common bean in Nicaragua, durum wheat in Ethiopia and bread
wheat in India. The question that we addressed was whether on-farm participatory crop trials,
scaled through a citizen science approach, can provide robust, actionable information on varietal
climate adaptation. This aimed to respond to one open question in the assessment of farmers’
adaptation decisions where change in crop varieties (or crop variety management) showed to be
one of the least choices in adaptation decisions among the farmers.

We compiled data from 12,409 farmer-managed plots across the research sites. Trial design
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followed the tricot approach, standing for triadic comparison of technologies (van Etten, Beza,
et al., 2019). The approach follows five principles: (i) anonymous subsets of three varieties (out
of a larger set) are allocated randomly as incomplete blocks (Atlin et al., 2001); (ii) participants
receive one subset to grow in their farms under their own management practices (Figure 2);
(iii) plots are set up within the crop system, plots are small to facilitate participation but
large enough to avoid strong edge effects; (iv) participants indicate the relative performance of
varieties through ranking answering to two short statements for each targeted characteristic (e.g.
which variety had the best leaf development? which variety had worst leaf development?); (v)
data from each farmer-managed plot is collated into a single dataset. Across the research sites
the pool of varieties comprised a list of 11 varieties in Nicaragua, 62 varieties and genotypes in
Ethiopia, and 21 varieties in India.

Table 2: Number of tricot trials per cropping season of durum wheat (Ethiopia, Meher season), bread
wheat (India, Rabi season), and common bean (Nicaragua).

Nicaragua

Year Ethiopia India Primera Apante Postrera

2012 – 562 – – –
2013 176 4,134 – – –
2014 578 4,947 – – –
2015 336 834 – 481 177
2016 – – 64 87 33

For the analysis of the ranking data generated by farmers, we used the Plackett–Luce (PL)
model (Luce, 1959; Plackett, 1975), implemented in R with the package PlackettLuce (Turner
et al., 2020). The PL model is similar to the BT model above and follows the Luce’s Choice
Axiom (Eq. 1). Whereas the BT model is used for pairwise comparisons, the PL model is used
for rankings of three or more items. This makes possible to compare items across the entire rank
permutation whereas BT model breaks the comparison into pairs. The PL model determines the
values of positive-valued parameters αi (worth) associated with each item i. These parameters
α are related to the probability (P ) that item i wins against all other n items. We report worth
values that sum to one. This makes each worth value αi equal to the probability of item i

outperforming all other items:

Equation [4]

P (i � {j, ..., n}) = ai

a1 + ...+ an
= ai

1 = ai

In the trials, we used rankings of three varieties (i � j � k), which have the following probability
of occurring according to the PL model:

Equation [5]

P (i � j � k) = P (i � j, k) · P (j � k)
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The likelihood for a ranking (i � j � k) follows from Eqs. 1, 4, and 5 and takes the following
form:

Equation [6]

`(α) = ln(P (i � {j, k})) + ln(P (j � k))

= ln(αi)− ln(αi + αj + αk) + ln(αj)− ln(αj + αk)

The likelihood is then the sum of the log-likelihood `(α) values across all rankings. Using
an iterative algorithm, the log-likelihood is maximised to identify the α values that make the
observed rankings most probable.

Climatic variables were linked to the rankings using the Model-Based Recursive Partitioning
approach (Zeileis et al., 2008) which builds the partitioning trees. This process is explained
in the previous section on farmers’ adaptation decisions. For the climatic variables, we used
free publicly available datasets with coverage across all the research sites to make comparable
studies. We derived rainfall and temperature indices using an alpha version of the R package
climatrends (de Sousa, van Etten, & Solberg, 2020). Rainfall was obtained using the CHIRPS
dataset (Funk et al., 2015), while temperature was obtained from MODIS MYD11A2 (Wan et
al., 2015).

Fourteen climatic variables were extracted for the vegetative, reproductive and grain filling
period and the whole growth period (from planting date to harvesting) in each observation point.
This resulted in 110 variables. To create models that provide generalizable predictions across
seasons, we used blocked cross-validation (with seasons as blocks) combined with a forward
variable selection procedure (Meyer et al., 2018). We used the deviance values of each validation
season to calculate an Akaike weight, which is the probability that a given variable combination
represents the best model (Wagenmakers & Farrell, 2004). We performed forward variable
selection, using this combined Akaike weight as our selection criterion. From each study case
(country) this procedure retained one variable, which were the maximum night temperature (◦C)
during the vegetative and reproductive periods for common bean in Nicaragua, the minimum
night temperature (◦C) during the vegetative period for durum wheat in Ethiopia, and the
diurnal temperature range (◦C) during the vegetative period for bread wheat in India.

We compared the goodness-of-fit of the model with climatic variables (climate model) against
three other models. The first with no covariates (intercept-only model), the second with
geolocation, season, planting dates, and soil categories, which represented the experimental
design (design model). And the third model with a combination of climatic variables plus
geolocation (climate + geolocation model). To compare the models, we calculated a weighted
average of pseudo-R2 (deviance reduction) values across testing seasons (Agresti & Kateri, 2011),
using the square root of the sample size as weights (Whitlock, 2005). All this process was done
using an alpha version of the R package gosset (de Sousa, van Etten, Dumble, et al., 2020).
Replication data are available through Dataverse (van Etten et al., 2018)
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Figure 2: Randomisation and subset allocation in the tricot approach. Three varieties are randomly
selected from a larger group and anonymised with the labels A, B, C, participants receive the anonymous
subset to evaluate in their farms under their own management practices.

Decentralised genotype selection

We then focussed on the crop variety management approach for decentralised breeding (Paper
4). This research was performed in Ethiopia from 2012 to 2015 with durum wheat. The main
question that we addressed was whether a decentralised approach could improve the selection of
genotypes for crop breeding targeting challenging crop production environments. We compared
a data-driven decentralised breeding approach, or 3D-breeding, for short, with a benchmark
representing a centralised approach used in current breeding programs (Figure 3). A total of
400 durum wheat genotypes were selected from a representative collection of accessions from the
Ethiopian Biodiversity Institute.

Centralised trials were performed in 2012 and 2013 in the districts of Geregera (Amhara) and
Hagreselam (Tigray). In 2012, thirty experienced smallholder farmers (15 men and 15 women)
were invited to participate in the trial evaluations at the station plots, held concurrently after
flowering stage. The farmers had no previous knowledge of the genotypes included in this study
to prevent bias in the evaluations. The participants provided appraisal with Likert scales (1 to 5
worse to best) (Likert, 1932) given to genotypes for overall appreciation (OA) (Kidane et al.,
2017; Mancini et al., 2017). Research technicians measured grain yield (GY) as grams of grain
produced per plot, then converted into t · ha−1. Absolute values of GY and OA measured in
centralised trials were converted into ordinal rankings.

A total of 1,165 decentralised plots were performed between 2013 and 2015 during three cropping
seasons across the regions of Amhara (471), Oromia (399) and Tigray (295) using a subset of the
41 best genotypes identified through farmer evaluation in centralised trials (Mancini et al., 2017).
Season 1 (2013) comprised 179 fields, Season 2 (2014) comprised 651 fields, and Season 3 (2015)
comprised 335 field. Trial design followed the tricot approach as described in the previous section.
Farmers reported the overall appreciation and research technicians collected GY measures in
farmers’ plots after harvesting. The comparison 3D-breeding vs benchmark was done using the
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subset of 41 genotypes used in both trials.

Genomic DNA was extracted from fresh leaves pooled from five seedlings for each of the
accessions in the centralised trials with the GenEluteTM Plant Genomic DNA Miniprep Kit
(Sigma-Aldrich, St Louis, USA) following manufacturer’s instructions in the Molecular and
Biotechnology Laboratory at Mekelle University, Ethiopia. Genotyping was performed on the
Infinium 90k wheat chip at TraitGenetics GmbH (Gatersleben, Germany). Single nucleotide
polymorphisms (SNPs) were called using the tetraploid wheat pipeline in GenomeStudio V11
(Illumina, Inc., San Diego, CA, USA). Full details on the genotyping are given by Mengistu et
al. (2016).

We derived best linear unbiased prediction (BLUP) values from GY and OA measured in
centralised trials. The benchmark representing a centralised breeding system was conducted
using genomic selection models and marker-based genetic relationship matrices computed on
BLUP data. To measure accuracy of genomic selection predictions, we calculated the Kendall’s
tau coefficient (τ), a measure of similarity of rankings (Kendall, 1938), between predicted values
and observed values.

Figure 3: Centralised breeding (A) derives recommendations from breeders’ evaluation and possibly
participatory assessments in a limited set of stations, using genomics to accelerate the production of
varieties that are eventually recommended with coarse spatial resolution. This system may become
more efficient if complemented by 3D-breeding (B), a decentralised approach where the best candidate
genotypes are tested by farmers in small, blinded and randomized sets. 3D-breeding produces scalable
solutions that can be linked to genomics, farmers’ knowledge and environmental data, to enhance the
local adaptation of the resulting varieties and tailor their recommendation to the landscape.

The statistical model that represented 3D-breeding was developed using the data generated by
the citizen science decentralised trials using the Plackett-Luce model. DNA data from SNPs
was added into the model as a prior using an additive matrix. To take into account explanatory
variables, we created Plackett-Luce trees through Model-Based Recursive Partitioning. Daily
temperature and precipitation data was obtained from the NASA Langley Research Center
POWER Project funded through the NASA Earth Science Directorate Applied Science Program
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(https://power.larc.nasa.gov/), using the R package nasapower (Sparks, 2018). Climatic
variables were obtained using the R package climatrends (de Sousa, van Etten, & Solberg,
2020). We selected the most relevant climatic variable using the process described in the earlier
section. Which retained the maximum night temperature (◦C) during reproductive growth and
the minimum night temperature (◦C) during the vegetative growth. Replication data and code
used in this analysis are available through Dataverse (de Sousa, van Etten, Poland, et al., 2020b).

Results and discussion

Climate awareness and farmers’ adaptation decisions

We assessed whether climate awareness could led to sustainable adaptation decisions in small-
holder farms in Central America. The 255 interviewed farmers (out of 283) reported to perceived
changes in climate patterns over the 10 years prior to the survey (2005–2014). The multiple
correspondence analysis of farmers’ perceptions versus anomalies from observed data shows
partial correlations between farmers’ perceptions and the time series data (Figure 4). Farmers
who perceived uncertainties in the start/end of the rainy season correlate with observed decrease
in heavy precipitation (Rx5day) and increase in the duration of consecutive dry days (MLDS).
However, farmers who perceived less annual precipitation correlate with observed increase in
heavy precipitation (as result of less distributed rain across the season but concentrated in
a short period), while those who perceived more precipitation or heavy precipitation did not
correlate with any of the observed precipitation indices.

Figure 4: Correlation between farmers’ perception on changes in precipitation and observed anomalies in
precipitation indices over 2005–2014 in the sampled locations across Central America. MLDS, maximum
length of consecutive dry days (< 1 mm); Rx5day, maximum 5-day precipitation (mm); SDII, simple
annual precipitation index (mm/day).

The partial correlations in observed and perceived climate may be explained by the difficulty to
properly observe the changes as they occur, without the aid of measuring devices (e.g. weather
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station, garden moisture meter), or access to climate services (Bouroncle et al., 2019). Or
the result of cognitive bias (Holmgren et al., 2018). However, even if farmers do not perfectly
perceive these changes, they do observe reductions in yields, and at times total losses, which
draws their attention to climate-related issues and increases their willingness to innovate and
try new farm management practices. Previous studies reported this behaviour as a product of
experiencing climatic risks or disasters (Bergquist et al., 2019; van Valkengoed & Steg, 2019).

In the case of interviewed farmers in Central America, there was a list of 10 practices that were
adapted upon the perception of changes in climate patterns. The worth parameters for the
adaptation practices show significant differences between the ranked options (Table 3). Practices
of Reforestation and Restoration, Introduction of New Crops, and Sustainable Soil Management
were reported as the most preferred choices among interviewed farmers, showing higher worth
than the reference Production Diversification, which was selected as reference because if the
most recommended adaptation strategy for farmers (Atlin et al., 2017; van Zonneveld et al.,
2020). Change in varieties, had a lower worth than the reference. The other practices were
ranked below the reference, with Leave Farming System and Change Agricultural Calendar on
the bottom of preferred practices to adapt to perceived changes in climatic patterns.

Table 3: Bradley-Terry model estimates from farmers’ management practices employed to adapt crop
systems to perceived changes in climate patterns in Central America.

Adaptation decision Worth Std. Error Pr(>|z|) Signif.

Reforestation and Restoration 1.5120 0.0811 < 0.0001 ***
Introduction of new crops 0.7572 0.0844 < 0.0001 ***
Sustainable soil management 0.2554 0.0834 0.0022 ***
Production diversification 0 – – –
Change in varieties -0.2805 0.0883 0.0015 **

Sustainable water management -0.6814 0.0919 < 0.0001 ***
Use of more fertilizers and pesticides -0.7658 0.0925 < 0.0001 ***
Use of less fertilizers and pesticides -0.8516 0.0942 < 0.0001 ***
Leave farming system -1.4053 0.1069 < 0.0001 ***
Change in agricultural calendar -1.5276 0.1095 < 0.0001 ***
Significance levels: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

We found significant differences in preferences for adaptation practices based on formal education
level, farm size and ecological region, with the BT model identifying four different sub-groups.
Overall, reforestation was the preferred choice among farmers independent of socio-economic
profiles. This practice had an interplay with agroforestry, where farmers intentionally planted
trees or allowed then to grow through natural regeneration within their crop systems. Several
studies have reported agroforestry among the bests climate change adaptation strategies (Blaser
et al., 2018; Lipper et al., 2014; Mbow, van Noordwijk, et al., 2014; Mbow, Smith, et al.,
2014; Verchot et al., 2007), it includes both mitigation and adaptation by providing carbon
sink, microclimate regulation and protection to extreme climate events (Caudill et al., 2015;
Holmgren & Scheffer, 2010; Torres et al., 2017). Farmers, however, have a clear preference to
few marketable species or that has a clear utility within the crop system (Cerdán et al., 2012;
de Sousa et al., 2016; Ordoñez et al., 2014). Some studies have shown that climate change can
also affect the suitability of tree species (de Sousa et al., 2017; Lyra et al., 2017) and hinder the
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benefits of agroforestry as an adaptation strategy.

Change in varieties was the least choice in the top-5 options reported by interviewed farmers
in Central America. The low uptake of this approach reflects the weakness of formal and
informal seed systems in supporting smallholders to select the right variety (McGuire & Sperling,
2016), mainly the informal seed systems, as it is expected to provide higher contribution for
local adaptation (Bellon et al., 2011). Costs and the high risk associated with crop variety
managements by smallholder farmers are also among the reasons for the low uptake. Several
studies in Africa and Asia investigated the reason for uptake (or non-uptake) of agricultural
innovations among smallholder farmers (Elum et al., 2017; Meijer et al., 2015; Senyolo et al.,
2018; Singh et al., 2017), the lack of knowledge (Meijer et al., 2015) and high costs (Senyolo et
al., 2018), among others, were also pointed out as main reasons for non-uptake of innovations,
such as crop variety management. Smallholder farming also have an intrinsic characteristic of
being performed in diverse low-input systems (Lowder et al., 2016), which makes the challenge
of recommending (or producing new) crop varieties more problematic and riskier.

Cost is a factor that involves multiple factors beyond farmers’ control (Chapagain et al.,
2020). However, risks in selecting crop varieties could be reduced with tailored advice. Recent
experiences in Central America, Africa and Asia provided new evidence that this challenge can
be addressed by scaling agricultural experimentation with citizen science (Beza et al., 2017;
Steinke et al., 2017; van Etten, Beza, et al., 2019). These studies showed positive prospects
that citizen science could support seed systems in tracking the responses of crop systems to
the changing climate patterns as they occur in the farms and help farmers in taking the best
decisions towards climate adaptation.

Overall, when facing changes in climate, farmers adopt a set of sustainable climate-friendly
practices to cope with the negative effects. The utilisation of more fertilizers and pesticides
may be a controversial choice but is likely to be associated with farm intensification, that helps
smallholders in increasing the productivity (Cassman, 1999), that again is reducing their need
to expand the production into new crop areas. The adoption of sustainable practices and farm
intensification is likely to be associated with participation in long-term outreach projects. Such
projects support farmers in enhancing their learning (Baumann et al., 2020; Gutiérrez-Montes &
Ramirez-Aguero, 2015) to adapt their production systems.

The future of coffee and cocoa agroforestry

We then looked how suitable to climate change are the most common trees used in coffee and
cocoa agroforestry. Coffee and cocoa are perennial crops with high vulnerability to climate
variability. Both are plants which were found in the tropical forests understory in the canopy of
bigger trees, they have good development under full sun, but the stress caused by long-term
exposure to the sun shortens the lifespan of such plants. Agroforestry management is used to
reduce the stress and provide a large lifespan for the plantation, and also provide other benefits
such as N-fixing in the soil using legume trees. First, we assessed how suitable are the coffee and
cocoa habitats to climate change in Central America. The results showed that, by 2050, between
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55–62% of current areas for coffee production will likely become unsuitable (Fig. 5A), especially
in mid-altitudinal areas (400–700 m a.s.l.). Highlands (>1,800 m a.s.l.) may partly compensate
these losses, where coffee will likely expand up to 9–13%. This result confirms the findings of
previous studies on Arabica coffee vulnerability (Bunn et al., 2015; Ovalle-Rivera et al., 2015).

Figure 5: Shifts in suitability due to climate change by 2050 across the altitudinal gradient of (A) coffee
(Coffea arabica L.) and (B) cocoa (Theobroma cacao L.) in Central America

In contrast, cocoa is likely to lose between 13–17% of the current distribution range (Fig. 5B)
especially in dry lowland areas (0–300 m a.s.l.), expected to become drier in the next decades
(Lyra et al., 2017). Humid areas along the Atlantic coast will remain suitable for cocoa, and
have an overlap with a portion of vulnerable coffee areas, showing that cocoa could potentially
replace 85% of the vulnerable coffee areas (Fig. 6).

Figure 6: Potential areas where cocoa (Theobroma cacao L.) could replace coffee (Coffea arabica L.)
under climate change. Dark blue indicate vulnerable areas for coffee that can be replaced by cocoa. Light
blue indicate areas suitable for coffee and cocoa. Red indicate vulnerable areas for coffee where cocoa is
not an alternative under climate change. Light yellow indicate remaining areas for coffee where cocoa is
not suitable.
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Even as a current trend (Cohen & Castro, 2016; Gross, 2014; Renteria & Rowling, 2016),
changing coffee with cocoa is a dramatic alternative for most smallholder farmers in the region.
It requires a series of well-structured efforts to reduce the costs of transformation (maybe
subsidised by the cocoa industry) and ensure that farmers are well trained to deliver a product
that meets the strict market requirements (Levai et al., 2015), to name a few. Additionally, a
recent study showed that the impacts of climate change on coffee could be lower than what
was projected (DaMatta et al., 2019). For example, coffee could find optimal growth conditions
with the increase of CO2 availability, new varieties with local adaptation are in the breeding
pipeline (Arguedas-Ortiz, 2019; Marie et al., 2020; Pruvot-Woehl et al., 2020), and technological
changes could sustain coffee production in the future. Is important to note that projections
based on ecological niches, as the object of our study, do not take into account site-specific
agroecological factors, and should be used as a proxy to identify vulnerable areas and define
adaptation strategies, like those discussed by DaMatta et al. (2019).

Figure 7: Expected changes in suitability due to climate change of the most common (A) fruit trees, (B)
N-fixing trees and (C) timber trees in coffee (Coffea arabica L.) and cocoa (Theobroma cacao L.) habitats
in Central America. Grey dot represents the area of a given species under the current climate conditions.
Red arrows (left direction), represent decrease in suitable areas. Blue arrows (right direction) represent
increase in suitable areas. Species ordered by main use and by their abundance (from top to bottom) in
the inventoried coffee and cocoa farms across Central America.

Alternatively, by managing agroforestry systems, farmers could potentially maintain their current
coffee and cocoa plantations using suitable trees to ameliorate microclimatic conditions. This
alternative could also prevent the expansion of agricultural activities towards protected areas that
are reported to be suitable in the future (Schroth et al., 2015). Although it may require a change
in the current agroforestry combinations given our projections showing a high vulnerability of
the most preferred tree species (Fig. 7).

Looking at specific tree groups by their main use, we estimate that 20 of the 33 fruit trees will
lose more than 15% of their current suitability in coffee areas. The same trend is observed for 14
fruit trees in cocoa suitable areas. High losses (>15%) are expected for 25 of the 30 N-fixing
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tree species assessed in coffee and for 18 N-fixing tree species in cocoa areas. We also estimate
loses of >15% for 22 of 37 species in coffee and 12 tree species in cocoa areas. Most of these
losses accounts for the most preferred tree species, such as the timber species cedar (Cedrela
odorata L.), the fruit species avocado (Persea americana Mill.), and the N-fixing poró (Erythrina
poeppigiana (Walp.) O.F.Cook).

Despite the overall losses in suitability for some of the most popular tree species, our projections
suggest that agroforestry could persist as a viable alternative to manage coffee and cocoa
plantations in Central America. Approximately 72% of coffee areas (both, remaining and
vulnerable) will be suitable for more than 30 tree species. This includes a portfolio of at least 10
species per main use (10 fruit species, 10 N-fixing species and 10 timber species). Most of these
tree species are already present in coffee plantations (as identified in the baseline inventories)
but mainly in low densities and remain underutilised. Only 9% of coffee areas have very low tree
species options (<3 species). The results also suggest that cocoa suitable areas have a higher
potential for agroforestry than coffee, with 95% of cocoa areas being suitable for more than 30
tree species. Only 3% of cocoa areas have very low tree species options (<3 species) potentially
available

Coffee areas with high potential to select tree species from a portfolio of at least 10 species per
main use include the highlands across the Pine-Oak Forests and Petén-Veracruz Moist Forests in
Mexico. In Honduras, the Pine-Oak Forests and Mountain Forests, and across the Talamancan
Montane Forests in Costa Rica. Areas with high vulnerability (<3 species per main use) are
identified across the midlands Pine-Oak Forests and Dry Forests of Honduras, Nicaragua, El
Salvador and highlands in Mexico.

Cocoa areas with high potential for selecting trees from a portfolio of more than 30 species (10
per main use) cover all the humid tropical forest at lowlands across the Pacific coast in Costa
Rica, Atlantic coast in Nicaragua, Mosquitia in Honduras, Belize, lowlands north of Cobán and
south of Sierra Madre in Guatemala and lowlands in the Gulf of Mexico. There is also a high
potential for selecting more than 30 species across the transition zones of the Central American
Moist Forests and Central American dry forests in Nicaragua, the Dry Forests of El Salvador
and the Moist Forests of Costa Rica. Vulnerable cocoa areas with low agroforestry options (< 3
species), are identified across the Dry Forest of Honduras.

The results of our study show that is highly probable that current agroforestry schemes will need
to be modified in terms of species composition, since some of the most popular tree species are
also vulnerable to future climates. It is particularly concerning the losses in habitat suitability
of N-fixing trees since these species make up the most abundant agroforestry trees in coffee and
cocoa plantations in the region (Cannavo et al., 2011; Peeters et al., 2003) and have a key role
for the management of soil fertility, especially in low-input and smallholder farms (Schnabel et
al., 2017).

Rethinking current agroforestry species composition in coffee and cocoa landscapes requires the
identification of the best tree species. We found an opportunity for the underutilised species
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which are present in low densities in coffee and cocoa plantations, and most of them are remnants
of previous vegetation (Ordoñez et al., 2014). Expanding the adoption of underutilised species
in agroforestry systems will require a deeper understanding of their agronomic performance
considering other factors beyond just climate (e.g. pests, diseases, soil fertility), crop × tree
interactions, farmers’ perceptions and local knowledge regarding management and utilisation of
these tree species, as well as market incentives to facilitate their wider use. Therefore, selecting
the best climate-adapted agroforestry designs is one of the big challenges for the future of cocoa
and coffee agroforestry.

Some authors argued that agroforestry (in the case of cocoa) could be less resilient to extreme
climates than under full sun (Abdulai et al., 2017), and despite the obvious controversies in
the study (Norgrove, 2018), the main message is that a bad agroforestry design may hamper
known benefits of agroforestry (Andres et al., 2018; Armengot et al., 2020; Blaser et al., 2018;
Schnabel et al., 2017). The work of Padovan et al. (2018, 2015) studying root interactions and
water utilisation in coffee agroforestry in a transition area (from dry forest to rainforest) of
Nicaragua brought new knowledge into the crop × tree interactions showing that the evergreen
tree Simarouba amara Aubl. is more more suitable as coffee shade tree compared to the deciduous
tree Tabebuia rosea (Bertol.) Bertero ex A.DC. due to the competition for water. A study by
Cerdán et al. (2012), showed that farmers are aware of such interaction and classify these trees
as ‘fresh’ (suitable for integration) or ‘hot’ (unsuitable) based on their leaf texture and size,
foliage density, crown shape, and root system attributes. Agroforestry is an ancient agricultural
practice (Levis et al., 2017; Maezumi et al., 2018; Nair, 1993), but also a new discipline with its
first concepts being developed in the late 1970’s (Nair, 1993; Spurgeon, 1979), and there is still
a number of questions to be explored. More recently, for example, Sauvadet et al. (2020) used
an approach with phylogenetic analyses that may help in selecting the most appropriate shade
trees in cocoa agroforestry systems. The utilisation of the functional diversity approach (Díaz et
al., 2016; Suárez Salazar et al., 2018) linked to farmers knowledge (Cerdán et al., 2012), can also
answer a series of open questions on how shade trees interact with crops (during their different
phenological stages) and how to best design climate-adapted agroforestry systems.

Overall, the results of our study are just a starting point to develop lines of research that support
the re-design of agroforestry schemes and open new venues of research to adapt coffee and cocoa
production systems in Central America.

Crop variety management

We then looked on how to define adaptation strategies in seasonal crops. First, we tested whether
the model with climatic variables was able to outperform models tested with farmer-generated
rankings. The three case studies, with different crops in Nicaragua, Ethiopia and India, provided
independent confirmation of the predictive value of the tricot trials (Table 4), the model with
only climate covariates has the best fit in all cases. Various factors influenced model fit, including
farmers’ observation skills and environmental variation. We found that most of the differences
were among countries, likely due to the different levels of diversity within the sets of varieties.
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In Ethiopia, farmers evaluated a large poll of varieties with easily observable differences in
performance, while in Nicaragua and India, farmers evaluated a small set of varieties with
relatively homogeneous performance.

The results demonstrated the ability of the model with climatic covariates to capture the
environmental variability of the sampled environments. This means that the climatic covariates
contain unique and substantial information explaining varietal performance. For Nicaragua, we
found that common bean variety performance changed when the maximum night temperature
exceeded 18.7 ◦C. For durum wheat in Ethiopia, varietal performance was very much related
to cold night temperatures during the vegetative period, the performance changed when night
temperature exceeded the 8.4 ◦C. For bread wheat in India, varietal performance patterns
changed with the diurnal temperature range (DTR) during the vegetative period, which is the
difference between minimum and maximum daily temperatures, when DTR exceeded the 14.5
◦C and 15.7 ◦C. These findings correspond to the threshold temperature for heat stress or cold
acclimatisation reported in the literature for each crop species (Fowler, 2008; Rainey & Griffiths,
2005; Rao et al., 2015).

Table 4: Goodness-of-fit (pseudo-R2) of Plackett-Luce models linked to explanatory variables. Four
models were built using farmer-generated rankings and compared to each other. Intercept-only is a model
with no covariates; Design model uses geolocation, season, planting dates, and soil categories, which
represents the experimental design; Climate model uses climatic covariates selected with forward selection;
and Climate + geolocation is a combination of the Climate model plus geolocation.

Model Nicaragua Ethiopia India

Intercept-only 0.1484 0.3947 0.0381
Design 0.1869 0.4709 0.0721
Climate 0.1978 0.4870 0.0882
Climate + geolocation 0.1977 0.4720 0.0872

We showed that the climatic analysis can improve variety recommendations by incorporating
seasonal forecasts, and generate variety recommendations for wider areas trough spatial ex-
trapolation (Fig. 8 A, B, C). Since long-term forecasts were not available by the time of the
research, we prepared representative seasonal scenarios of past climate conditions of each site
by extracting the last 15 years of seasonal climate data derived from the MODIS dataset. For
Nicaragua we show that official variety recommendations fail to identify superior bean varieties
that are sufficiently heat tolerant for the study area. In Ethiopia, the findings can improve
variety recommendations for durum wheat by uncovering the importance of cold adaptation.
In India, the analysis of the tricot trial data adds geographic specificity to the existing variety
recommendations and suggests that a broader set of bread wheat varieties should be promoted to
take into account the climatic differences across the study area. We quantified how much farmers
could benefit from the variety recommendations by calculating variety reliability, the probability
of outperforming a check variety. For each location, we compared the recommendations produced
in the study with the previous recommendations as the check. Reliabilities ranged from 0.59 to
0.65 in Ethiopia, from 0.58 to 0.60 in Nicaragua, and from 0.51 to 0.62 in India (Fig. 8 D, E, F),
indicating substantial benefits for large areas.
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Overall, the tricot citizen science data revealed generalisable relations between seasonal climate
variables and crop variety performance that corresponded to known yield-determining factors
(Challinor et al., 2014; Villegas et al., 2016). By scaling the agricultural experimentation
we were able to track climate trends as they manifest themselves on farms, adjust variety
recommendations and recommendation domains, and contribute to understanding how climate
affects on-farm varietal performance. The main contribution is that the citizen science data can
be linked to seasonal forecasts to provide tailored crop variety recommendations to smallholder
farmers in challenging crop production environments. Other opportunities of this approach for
climate adaptation have been discussed elsewhere, arguing that it can be used in agroecological
intensification (Nelson, 2020), can enhance farmers’ access to high-quality germplasm (van
Zonneveld et al., 2020), can enhance the accuracy of self-reported data in remote sensing (Paliwal
& Jain, 2020), and can become part of decentralised plant breeding strategies for climate
adaptation (Ramirez-Villegas et al., 2020). I discuss the later opportunity in the next section.

Figure 8: Citizen science can improve variety recommendations. Top two varieties for each area according
to their probability of winning over a base period (2002–2016), in (A) Nicaragua, (B) Ethiopia and (C)
India. Probability of outperforming (reliability) existing varietal recommendations by using crop varieties
recommendations generated with the tricot citizen science approach in (D) Nicaragua, (E) Ethiopia and
(F) India.

Genotype selection in challenging crop environments

We explored the opportunity of the tricot approach in support decentralised breeding strategies
for climate adaptation. We focussed on the durum wheat trials in Ethiopia, linking the farmer-
generated data in the tricot trials with environmental and DNA data to track G × E ×M
interactions that could support the selection of local-adapted genotypes for crop breeding (Paper
4). We call this approach data-driven decentralised breeding, or 3D-breeding. We established a
benchmark that represents a centralised breeding approach that is a competitive alternative to
3D-breeding. We focused on grain yield (GY) and farmers’ overall appreciation of genotypes
(OA), which were both recorded in centralised (station) and decentralised (farm) trials. The
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goodness-of-fit was assessed using the Kendall τ correlation between observed and predicted
rankings in each trial, with higher values meaning a higher ability to predict the rankings.

The results show that 3D-breeding consistently provided higher accuracy than the benchmark for
both GY and OA, and also that OA in 3D-breeding produces higher accuracies than GY (Table
1). Previous studies showed that farmer evaluations are able to capture agronomic performance
of genotypes in untested locations (Annicchiarico et al., 2019; Kidane et al., 2017). Farmers
provided OA according to their own experience and preferences, and it presumably depended on
a combination of traits of which GY represented only one dimension (Mancini et al., 2017).

Table 5: Performance of the 3D-breeding compared with the benchmark of a centralised genomic selection.
3D-breeding provides higher across-season goodness-of-fit (Kendall τ) than centralised genomic selection
on farmers’ overall appreciation (OA) and grain yield (GY).

Approach OA GY

Centralised GS
Season 1 (n=179) 0.134 -0.012
Season 2 (n=651) 0.105 0.076
Season 3 (n=335) 0.183 0.073

0.141 (± 0.039) 0.046 (± 0.049)

3D-breeding
Season 1 (n=179) 0.270 0.160
Season 2 (n=651) 0.276 0.078
Season 3 (n=335) 0.203 0.119

0.251 (± 0.040) 0.109 (± 0.041)

We show that 3D-breeding can identify genotypes with local adaptation traits. The best three
genotypes in each terminal node of the 3D-breeding model (from the Plackett-Luce trees) had a
genetic background markedly separated from that of varieties currently recommended for the
region, and consistently higher worth (Fig. 9). Indeed, the model selected genotypes derived from
landraces over improved varieties. We estimated the probability that the model recommendation
exceeds the current recommendation in terms of OA. In this assessment, predictions from
3D-breeding outperformed the current varietal recommendations in most of the farmers’ fields,
with consistently higher probabilities (0.83-0.91), including in marginal areas for which the
centralised breeding approach could not provide accurate predictions.

In centralised breeding, the environmental variation of target environments is factored through
experimental control or indirectly as an average response across breeding stations as in our
benchmark. This makes extrapolation to real farming conditions challenging. The 3D-breeding
approach addresses the low correlation between performance in selection environments and
production environments, while taking a step forward to fully data-driven breeding and may
speed up the turnover of varietal release to address the climate change challenges (Cai et al.,
2014; Challinor et al., 2016; Ray et al., 2012). The expansion of the design with the addition of
further testing seasons and local management conditions may allow to highlight drivers of local
performance of genotypes beyond temperature (Kehel et al., 2016). Indeed, as the model grew
in complexity (by adding the DNA data), it was able to retain another environmental variable
(maximum night temperature during reproductive growth) differently from our previous case
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study with only climate variables (van Etten, de Sousa, et al., 2019).

The advantages provided by the approach are clear, phenotyping costs would be divided in
much smaller packets, supporting the modular expansion of the breeding effort towards new
genetic materials or new locations. In return, each generated data-point would be a better
representation of the true farming conditions to which varieties are directed. As farmers are at
the centre of the experimental design, varieties deriving from 3D-breeding are more likely to be
adopted and suited to local cultivation (Ceccarelli, 2012; Rhoades & Booth, 1982), increasing the
effectiveness of breeding efforts. Indeed, we found that farmers’ OA was a better predictor than
GY in predicting yield realised both in centralised and decentralised trials (Table 5). However,
there are a number of open questions in relation to decentralised crop breeding, including how
to best motivate new farmers to participate in the evaluation of materials, how much planting
material each farmer needs, the logistics of providing farmers with the genetic material, and how
to share benefits deriving from the utilisation of farmers’ knowledge to produce new varieties.

Figure 9: Selection of durum wheat genotypes based on 3D-breeding. Principal component coordinates of
the genetic diversity of tested genotypes. Pink dots represent the varieties currently recommended for the
area of study. 3DB Cold tolerant (blue) represents the top 3 genotypes selected by 3D-breeding in cold
areas (minimum night temperature < 11.5 °C). 3DB Warm tolerant (red) represents the top 3 genotypes
selected by 3D-breeding in warm areas (minimum night temperature > 11.5 °C). Size of dots represents
the performance of genotypes in farmer fields as overall appreciation (OA).

Overall, we show that the data-driven focus of 3D-breeding enables embracing the complexity
of real-world G × E ×M interactions for the benefit of breeding. Such a multidimensional,
collaborative approach calls for best practices in data management and sharing (Leonelli et al.,
2017). 3D-breeding is based on a documented set of methods, from experimental design (van
Etten, Beza, et al., 2019) to data curation and analysis (de Sousa, van Etten, Dumble, et al.,
2020; Turner et al., 2020). Some of these methods were specifically developed to enable the
analysis and inference of the tricot data, which I explain in the next section. We show that
the crowdsourced citizen science approach associated with open-source digital tools makes it
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possible for breeders and farmers to apply 3D-breeding in new contexts and crops to complement
traditional breeding.

A workflow to analyse crowdsourced citizen science data

During the implementation of the activities in this project (Paper 1, 3 and 4) we developed a
set of tools and methods to accommodate the tricot data into a dynamic workflow in R and
that could update the models and provide new insights as the database grows in number of
data-points (Paper 5 and 6). These were our first attempts in moving the tricot data analysis
into a machine learning framework (James et al., 2013). The workflow (Fig. 10) follows the
steps: (A) Several participants contribute with small tasks, as explained in the tricot description,
(B) Explanatory variables are added (e.g. using geographical coordinates and planting dates,
or even DNA markers), (C ) Model selection to find the variables that best explain the data,
(D) Automated reports can be generated and provide feedback to participants, (E) A stable
recursive partitioning tree is used for further analysis and inference.

Figure 10: Workflow to analyse crowdsourced citizen science data. (A) Several participants contribute
with small tasks; all data is combined using rankings. (B) Covariates are linked to the rankings using
georeferenced information and planting dates. (C) Selection of the most relevant covariate(s) using
forward selection approach. (D) Automated reports can be generated to give feedback to participants in
A. (E) A stable tree is used for further analysis and inference.

The ClimMob platform (https://climmob.net/) storages the tricot data in the cloud. To start
the workflow, we developed ClimMobTools (de Sousa, van Etten, & Madriz, 2020) an application
programming interface (API) client that allows the user to fetch their tricot data into the
R section preserving the original data. This package is designed to work with the ClimMob
platform and has no clear application in other domains.

For the other tools, we focused on generalisation, which means that they can be used in other
domains outside the proposed workflow. The package gosset (de Sousa, van Etten, Dumble, et
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al., 2020) provides the methods to analyse the tricot and other metadata, from collating data
(transforming into rankings) to model selection and visualisation. It supports steps A, C, D
and E of the workflow. The cross-validation and forward selection procedure, as well as the
Akaike weights, pseudo-R2, Kendal τ , and worst regret computation used in Paper 3 and Paper
4 are implemented in this package. Additionally, it also has visualisation tools that help the
explanatory analysis of any rank-based data.

During the data discovery for Paper 3 we tried a number of statistical learning process to analyse
the tricot data (e.g. boosting, bootstrap aggregating, cross-validation, forward selection). We
found that the combination of cross-validation + forward selection + Akaike weights was the
most reasonable method to work with the data. Afterwards, the scripts used in the analysis
were converted into functions in the package gosset allowing it to be applied in other research
domains using Bradley-Terry, Plackett-Luce or Generalised Linear Models.

To link environmental covariates with the rankings (Fig. 10B) we developed the packages chirps
(Paper 5) (de Sousa, Sparks, et al., 2020) and climatrends (Paper VI) (de Sousa, van Etten, &
Solberg, 2020). The package chirps offers an API client for the CHIRPS data (Funk et al., 2015)
in R. With the package, users can fetch CHIRPS data into the R section and compute rainfall
indices that can be linked to the workflow or used in other research domains. The package
climatrends supports analysis of trends in climate change, ecological and crop modelling by
computing temperature and precipitation indices. It started as a set of R scripts used in Paper 1
(de Sousa, Casanoves, et al., 2018) and, as it grew in complexity and demand, it was implemented
as a R package. The indices implemented in the package derived from literature showing case
studies with applications in a diverse set of areas (Aguilar et al., 2005; Challinor et al., 2016;
Kehel et al., 2016; Prentice et al., 1992; Trnka et al., 2014). The climatic data required to
compute such indices can be provided by the user (e.g. from data loggers) or alternatively using
the R package nasapower (Sparks, 2018) and chirps, further details are given in the dynamic
documentation in the packages’ website.

One of the steps to better address smallholder farmer adaptation is the evaluation and learning
(van Zonneveld et al., 2020). In step D, supported by the package gosset, we provide the
supporting methods to give feedback to participants in the tricot experiments, a procedure that
is automated in the ClimMob platform (de Sousa, Dumble, et al., 2020). Overall, these tools are
our attempt to provide to the research community a set of open source tools for data analysis,
and also to enable the replication of the analysis reported in this thesis.

Conclusions

This thesis provided insights to support climate adaptation strategies in agriculture. We identified
how smallholder farmers in Central America reacted to changes in climate patterns and what
were the main socio-economic drivers for their adaptation decisions. Overall, farmers had a
tendency to select a set practices which is likely related to their participation and training in
long-term research for development programs that were conducted across the research areas.
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Reforestation and restoration (linked to agroforestry) is the most preferred adaptation decision
among the participants in this research. Crop variety management is considered a risk activity
and was identified as the least choice among the top-5 adaptation decisions reported by farmers.

Farmers in Central America select a number of tree species to intercrop but had a clear preference
in increasing tree density using a small set of species. Based on the projected habitats of the
100 most common trees in coffee and cocoa production systems, we show that some of the most
preferred trees are also the most vulnerable to climate change. We argue that re-thinking the
design of the current agroforestry schemes is necessary. Farmers have the option to increase the
density of underutilised trees already present in most of the current coffee and cocoa systems.
Transformation costs and lack of markets for underutilised trees are among the bottlenecks for
the adaptation of such crop systems. Modern approaches as phylogenetics and functional traits
showed positive prospects to support the selection of species based on crop × tree interactions.
The current advances in selecting coffee and cocoa genotypes to develop new locally adapted
varieties can also provide, together with agroforestry, a new hope to smallholder farmers that
are strongly vulnerable to climate change.

By scaling agricultural experimentation powered with citizen science we developed and validated
the tricot approach, that can generate tailored recommendations for crop variety management.
This can significantly reduce the risks of smallholder farmers in managing crop varieties across
different seasons. The approach was validated with data-points from thousands of farmer-
managed plots in smallholder farms in three countries (Nicaragua, India and Ethiopia). The
outcomes of this study, however, can most likely be applied to a diverse set of regions (beyond
tropical areas) and farming systems (beyond smallholder farming systems). We also showed
the ability of the tricot approach, linked to DNA and environmental data, to support breeding
programs to fully track G× E ×M interactions and select genotypes with local adapted traits,
specifically in challenging and diverse crop production environments. The analytical workflow
that was developed for this research can be employed to provide new insights as new data
becomes available in the future.

Future research and perspective

There is a series of open questions to explore on how to identify new agroforestry designs that
both provide benefits to farmers and are resilient to future climates. The increasingly number of
datasets being made available by research organisations in open source databases (e.g. Dataverse,
Zenodo, CGIAR Gardian) may support the meta-analysis of large datasets to infer patterns on
crop × tree interactions to deliver recommendations based on the portfolio theory (Blandon,
1985). New studies on phylogenetics (Sauvadet et al., 2020) and farmers’ local knowledge
(Cerdán et al., 2012) also offers an excellent opportunity to provide data-driven insights for
future agroforestry designs.

Future research on crop variety management would explore the other dimensions of the tricot
data. With Paper 4 we also demonstrated the potential in joining the farmer-generated data
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with scientist-generated data (DNA, grain yield, satellite data, etc.) to capture some of the
layers of information provided by citizen scientists. The data-driven approach could be used to
further developed and integrate different topics in agroecology, maybe joining information from
plant × insect interactions and the interplay of using a diversified portfolio of species/varieties
and other organisms that are part of the production system. The tricot approach can also be
further developed to be adjusted to the needs of the civil society, maybe integrated into urban
agriculture, digital agricultural markets and extension programs.

Additionally, understanding farmers’ planting decisions (based on the recorded planting dates)
could provide information on the environmental factors that need to be considered to adjust the
crop growing calendar for climate adaptation. We also see a potential to employ farmer-generated
data with crop models targeting challenging crop production environments by, for example, using
the new indices for physiological stress (Challinor et al., 2016; Trnka et al., 2014) implemented
in the package climatrends, such as heat stress events, lethal temperatures and crop duration
index. Incorporating socio-economic data derived from the Rural Household Multi-Indicator
Survey (RHoMIS) (Hammond et al., 2017) could unlock a new factor (S) to the interactions that
drive crop variety performance and management decisions, in that way tracking G×E ×M × S
interactions as they occur in the system. Future research would look for adoption rates of new
crop varieties and look for the intertwining of farmers’ overall appreciation with other traits
(e.g. resistance to pests, market value) that are also registered in the tricot trials but never
explored until now. In the final line of the breeding program, it is also important to consider
the consumers’ preference and market acceptance on new products, the tricot approach could
support such assessments and orient breeders and markets on the development and fine tuning
of agricultural products for resilient and sustainable food systems.
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Overview of the agricultural landscape in Copán, Honduras. Credit: K. de Sousa
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A B S T R A C T

Central America is one of the regions with the highest vulnerability to climate change, with negative effects
projected to affect its economy and food security. To address this issue, an integrative farm management ap-
proach such as Climate-Smart Agriculture can help reorient agricultural practices towards climate adaptation
and food security. Past studies have shown that several factors can either hinder or encourage the adoptions of
Climate-Smart practices, including subjective expectations and perceptions. Building on this literature, we
analyze farmers' climate awareness and their perceptions regarding the change in climate patterns as well as
their choices of farming practices to adapt to these changes. We show that reforestation was the preferred
adaptation strategy among interviewed farmers and that educational profiles and the size of landholdings drive
the adoption of this and other practices. Soil management and introduction of new crops are preferred by literate
farms with large farmlands, whereas illiterate farmers with smaller farmland tend to move towards farm in-
tensification with an increase in the utilization of external inputs. Our findings provide evidence to support the
design of capacity development interventions targeting specific groups of farmers according to their main crop
and education profile.

1. Introduction

Trends in greenhouse gases emissions to 2050 indicate a low con-
tribution of Central America to global warming (Marchal et al., 2011),
and yet the region is highly vulnerable to the effects of climate change.
Several climate-related impacts have been projected for the region,
indicating changes in evapotranspiration, temperature, precipitation,
species suitability, farm productivity, and forest loss, mainly across the
drier zones (Hannah et al., 2017; Lyra et al., 2017). Therefore, pro-
moting farm practices to strengthen resilience and productivity of
agricultural systems is crucial to help farmers in Central America adapt
to climate change and thus ensure food provision and income genera-
tion.

Climate change has increased the risks and uncertainties associated

with agriculture, particularly in developing countries (Altieri and
Nicholls, 2017; Imbach et al., 2017). Changes in the frequency and
intensity of extreme climatic events in the tropics due to climate change
have increased the concerns for farm adaptation among scientists
(Hannah et al., 2017; Harvey et al., 2014; Mbow et al., 2014) and
farmers (Elum et al., 2017; Khatri-Chhetri et al., 2017; Singh et al.,
2017). It is argued that the adoption of Climate-Smart Agriculture
(CSA) practices will help vulnerable farmers cope with the effects of
climate variability and change (Lipper et al., 2014; Steenwerth et al.,
2014). Climate-Smart Agriculture is an integrative approach designed
to help farmers reorient their agricultural practices to sustainably rise
agricultural productivity to ensure increases in farm incomes and food
security, while adapting and mitigating climate change. These practices
include farm sustainable intensification and diversification of
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production, agroforestry, varietal selection, plant breeding, ecosystem
management, crop patterns identification, and integrated practices to
minimize the need of external inputs (FAO, 2010).

The adoption and impact of agricultural practices and technologies
has been a focus of study for several years (see Mwangi and Kariuki
(2015), for a literature review on adoption, and Ogundari and
Bolarinwa (2018), for a recent meta-analysis on the impacts of agri-
cultural technologies). The literature shows that the adoption of tech-
nologies by smallholder farmers mostly has a positive effect on welfare
and production outcomes, and that adopting technology packages as
opposed to individual components can further increase these benefits
(Khonje et al., 2018).

Nevertheless, several socio-economic barriers can hinder technology
adoption, even in countries that enjoy higher levels of technological
innovation and well-established institutions (Long et al., 2016). The
presence of certain policies, such as input subsidies (Koppmair et al.,
2017), and technology specific characteristics (Senyolo et al., 2018;
Wassie and Pauline, 2018) can also influence whether and which
technologies farmers adopt. Likewise, intrinsic factors, such as per-
ceptions and knowledge of farmers, play a role on shaping technology
adoption (Meijer et al., 2015).

One strain of this body of literature on technology adoption uses the
theory of planned behavior (Ajzen, 1991) to understand how percep-
tions and other underlying psychological constructs affect technology
adoption. In a study about the adoption of improved natural grassland
in Brazil, Borges et al. (2014) find that farmers' expectations about the
benefits of this new technology, their perceptions about social pressure,
and their perceptions about their own skills are significantly correlated
with the intention to adopt. Similarly, Wauters et al. (2010) show that
attitudes towards soil conservation practices are one of the biggest
determinants of adoption among Belgium farmers. Regarding sustain-
able agricultural practices for climate adaptation, several studies con-
clude farmers’ awareness and perceptions of climate change are cor-
related with adoption (Elum et al., 2017; Niles and Mueller, 2016;
Schattman et al., 2016; Singh et al., 2017).

Building on this body of literature, the objective of this study is to
understand how farmers' awareness of climate change and their socio-
economic profiles drive the utilization of sustainable farm management
practices in Central America. We assess farmers’ climate awareness by
identifying farmers' perceptions of climate variability and compare it
with observed climate anomalies using time series data. Additionally,
we implement a Bradley-Terry model to assess how socioeconomic
profiles and farm characteristics influence farmers' choices in the
adoption of sustainable agriculture practices.

2. Materials and methods

2.1. Study area and household data

We used surveyed data from 283 households participating in the
Mesoamerican Environmental Program (MAP), a rural development
program conducted in Central America between 2009 and 2017 that
used Farmer Field Schools (FSS) to promote CSA practices and gender
integration (see Gutierrez-Montes et al. (2018), for details on the
methodology applied in the FFS). We used two sets of data: (i) a
household survey on farmer's perceptions on climate change (Appendix
A), and (ii) household socioeconomic data and information records of
practices adopted by the farmers after participating in FFS obtained
from MAP's annual monitoring.

Farmers were located across the two main ecoregions of Central
America (Fig. 1): the Central American Dry Corridor (or Dry Forests),
corresponding to El Salvador, Guatemala, Honduras, and part of Ni-
caragua (districts of Jinotega and Matagalpa); and the Central Amer-
ican Rainforests in Nicaragua (districts of Jinotega, Matagalpa, and
Atlántico Norte). Farms across the Dry Corridor have an annual average
precipitation of 1400mm (1000–2100mm), mean annual temperature

of 22 °C (14–25 °C) and mean elevation of 750m a.s.l. (300–1950m
a.s.l.). Farms across the Rainforests present annual average precipita-
tion of 2200mm (1500–2400mm), mean annual temperature of 22 °C
(19–25 °C) and mean elevation of 570m a.s.l. (240–1200m a.s.l.)
(Hijmans et al., 2005). Agricultural and livestock production are the
main economic activities developed across the research sites.

Precipitation is key for determining the crop seasons in Central
America, especially for the annual crops. The first growing season,
called Primera, starts in May and ends in September, when the second
season (Postrera) begins. The last growing season, Apante, starts in
November and ends in January. This season presents a gradual decrease
in rainfall until the beginning of the dry season (Verano) in January
(Fig. 2).

To collect the household data, in 2014, we applied a questionnaire
to identify the perceptions of farmers regarding changes in climatic
patterns and how they responded to these events in terms of farm
management practices. Farmers were questioned about their percep-
tions regarding changes in precipitation and temperature over the 10
years before the interviews (2005–2014). Farmers who reported to have
felt changes in climatic patterns were asked to list the farm manage-
ment practices they have adopted in their crop systems to cope with
such changes. These practices were ranked by the order they were
mentioned by the farmers. In Table 1 we show descriptive statistics of
the socioeconomic data from the 283 households disaggregated by
ecoregion.

2.2. Retrieving environmental data to validate farmers’ perceptions

We took farmers' perceptions of changes in climatic patterns and
compared them to a gridded time series precipitation database from the
Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) (Funk et al., 2015). This database incorporates global daily
rainfall data since 1983 with a resolution of 2.5 arc-min (∼5 km2),
which is obtained by weather stations and combined with remote
sensing. Changes in precipitation were assessed by calculating three
extreme precipitation indices relevant for Central America (Aguilar
et al., 2005): (i) SDII, simple daily intensity index (precipitation
amount/rainy days≥ 1mm); (ii) Rx5day, maximum 5-day precipita-
tion (days); and (iii) MLDS, maximum length of consecutive dry days
(< 1mm). Information on temperature was not assessed due to the lack
of consistent high-resolution time series data for Central America. We
performed a multiple correspondence analysis for quantitative and ca-
tegorical variables (Lê et al., 2008) to identify the association of ob-
served changes in precipitation (based on CHIRPS data) and farmers’
perceptions.

2.3. Ranking farmers’ strategies to cope with climate variability

We analyzed the strategies each farmer claimed to have adopted to
cope with perceived changes in climate patterns by using a Bradley-
Terry model (Bradley and Terry, 1952; Turner and Firth, 2012) to
create partial ranks of 5 (the five first strategies mentioned by each
farmer). The Bradley-Terry model estimates the “worth parameter” or
the relative importance of the different strategies in pairwise compar-
isons and, under the Model-Based Recursive Partitioning approach,
identifies sub-groups of farms with similar choices (Hothorn and
Zeileis, 2015; Strobl et al., 2011).

We added six variables to the splitting algorithm: (i) the ecoregion
(Dry or Rainforest), (ii) the Progress Out of Poverty Index (PPI), (iii) the
literacy level of the head of household, (iv) the area of the main crop
system (ha), (v) the age of the head of household, and (vi) the number
of practices adopted by the farmers after participating in the FFS. Under
this approach, if the difference in chosen strategies was significant
(α < 0.05), then the model would create different groups. Based on
practices reported by farmers, we ranked 10 options: (i) Change in
Agricultural Calendar, (ii) Change in Varieties, (iii) Production
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Diversification, (iv) Introduction of New Crops, (v) Less Fertilizers and
Pesticides, (vi) Reforestation and Restoration, (vii) Sustainable Soil
Management, (viii) Sustainable Water Management, (ix) Leave Farming
System, and (x) More Fertilizers and Pesticides. These practices vary in
terms of effort, costs, and information level required for its im-
plementation (for details see FAO (2013)). We used Production Di-
versification as a reference in the Bradley-Terry model, since this is one
of the main strategies to reduce risks of food insecurity and climate
vulnerability (Campbell et al., 2016). Finally, the likelihood of farmers
using these practices was assessed by analyzing the relationship of the
farmers’ main crop system and their list of reported practices (Theus
and Urbanek, 2008).

3. Results

3.1. Farmers perceived changes in precipitation with some accuracy

From the group of 283 interviewed farmers, 255 (90%) felt changes
in climate patterns over the 10 years prior to the survey (2005–2014).
Trends during this period in the precipitation time series data show
statistical differences in all three precipitation indices used in this
analysis. The frequency of heavy precipitation in Rx5day was pro-
gressively reduced over the period of 2005–2014 across both ecor-
egions (Fig. 3). The negative anomaly (historical mean minus year
mean) in Rx5day is seen in most of the observed years, with significant

Fig. 1. Research sites across Central America.

Fig. 2. Average monthly precipitation between 1891 and 2016 per crop season across the research sites in Central America.
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decreases in the Rainforests. The daily precipitation intensity (SDII)
shows important changes across the Rainforests, with no significant
changes across the Dry Corridor. This index also indicates strong ne-
gative anomalies in the Rainforests, mainly in 2014. Both ecoregions
had gradual increment on the length of consecutive dry days (MLDS),
with significant changes occurring in the Rainforests (Fig. 3).

The multiple correspondence analysis of farmers' perceptions versus
observed anomalies shows partial correlations between farmers’ per-
ceptions and observed time series data (Fig. 3). Farmers who perceived
uncertainty regarding the start/end of the rainy season correlate with
observed decrease in heavy precipitation (Rx5day), decrease in daily
precipitation intensity (SDII), and increase of the length of consecutive

dry days (MLDS). Farmers who perceived less annual precipitation
correlate with observed increase in SDII and Rx5day. Finally, those who
perceived more precipitation or heavy precipitation are not correlated
with any of the observed changes from the time series data (Fig. 4).

3.2. Socioeconomic factors led to the utilization of new practices

The worth estimates for ranked practices from the Bradley-Terry
model show significant differences between practices employed to
adapt with perceived changes in climatic patterns across the research
sites (Table 2). Worth estimates for Reforestation and Restoration, In-
troduction of New Crops, and Sustainable Soil Management are sig-
nificantly higher than the reference Production Diversification. The other
practices are ranked below the reference, with Leave Farming System and
Change Agricultural Calendar on the bottom of ranked practices to cope
with perceived changes in in climatic patterns (Table 2).

The recursive partitioning algorithm split the data in four sub-
groups by the following variables: ecoregion, literacy level and farm
area (Fig. 5). Overall, Reforestation and Restoration was the first choice
in the four sub-groups. The first group includes those farmers living in
the Dry Corridor, illiterates and with farm area ≤0.5 ha. Additionally
to reforestation, farmers from this sub-group chose practices such as
Sustainable Soil Management, Introduction of New Crops, Use of More
Fertilizers and Pesticides and Production Diversification as the main
practices to respond to the effects of perceived climate variability.

The second splitting group comprises the farmers living in the Dry
Corridor, illiterates and with farm area> 0.5 ha. In this sub-group, the
main chosen practices were Sustainable Soil Management, Leave Farming
System, and Use of Less Fertilizers and Pesticides. In the third sub-group,
we identify literate farmers (primary or secondary degree) living in the
Dry Corridor who chose, additional to reforestation, the Introduction of
New Crops, Sustainable Soil Management and Production Diversification.
Farmers living in the Rainforests corresponds to the fourth sub-group

Table 1
Socioeconomic characteristics of interviewed households by ecoregion.

Variables Dry Corridor Rainforests

Mean S.D. Mean S.D.

Age of the HH head 51.69 13.19 50.89 12.85
Level of education of the HH head
Illiterate (1/0) 0.320 0.280
Primary school (1/0) 0.600 0.700
Secondary school (1/0) 0.080 0.020
Number of HH members above 60 years 1.490 0.570 1.380 0.490
Number of HH members between 15 and 60

years
3.880 1.950 3.810 1.850

Number of HH members between 5 and 15
years

1.910 0.910 2.040 1.080

Production diversity* 2.760 1.060 4.510 1.610
PPI** 37.67 16.20 36.63 15.54
Farm area (ha) 5.380 12.05 10.17 12.13
Area of main system (ha) 5.640 55.40 1.070 0.830
N 159 124

Note: HH, household. *Number of crops cultivated in the farmland. **PPI,
Progress Out of Poverty Index.

Fig. 3. Trends in precipitation indices (a, b, c) and anomaly (d, e, f) from 2005 to 2014 across the Central America Dry Corridor and Rainforests. SDII, simple annual
precipitation index (mm/rainy days); Rx5day, maximum 5-day precipitation (mm); MLDS, maximum length of consecutive dry days (< 1mm).
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whose preferred practices for climate adaptation were Introduction of
New Crops and Change Varieties.

3.3. Choices in practices influenced by the type of crop system

The type of farming system also influenced how farmers chose to
adapt to changes in perceived climate patterns. Interviewed cocoa
growers showed higher likelihood to use Change in Agricultural
Calendar, Introduction of New Crops, and Leave Farming System, as well as
a lower likelihood to implement Sustainable Soil Management and Use of
Less Fertilizer and Pesticides. Similarly, farmers who cultivate fruit trees
have a higher likelihood to use Production Diversification and
Reforestation and Restoration. On the other hand, livestock farmers are
likely to use Change in Varieties (livestock grass varieties) and less likely
to adopt Sustainable Practices for Soils and Water Management. Farmers
whose main crop system is vegetables show a higher likelihood to use
Sustainable Soil and Water Management and Less Fertilizers and Pesticides,
with low preferences for Reforestation and Restoration, Production
Diversification, and Change in Varieties (Fig. 6).

4. Discussion

We show that Central American farmers are aware of the change in
climate patterns caused by climate change, with partial correlations
between farmers’ perceptions and the historical precipitation data.
These partial correlations may be explained by the difficulty to properly
observe the changes as they occur without the aid of measuring devices
(e.g. weather station, garden moisture meter) or without up-to-date
weather information from other sources. However, even if farmers do
not perfectly perceive these changes in climate patterns, they do ob-
serve reductions in their yields and at times losses of their crops, which
draws their attention to climate-related problems and increases their
willingness to innovate and try new farm management practices.

Reforestation was the preferred choice among farmers independent
of education profiles, farm size, and ecoregion. This practice is ad-
vocated as the best way to cope with the effects of climate change, since
it includes both mitigation and adaptation by providing carbon sink,
microclimate regulation and protection to extreme climate events
(Caudill et al., 2015; Locatelli et al., 2015; Torres et al., 2017). Farmers
demonstrated high willingness to adopt reforestation despite low gov-
ernmental incentives, which often can act as disincentives given the

Fig. 4. Correspondence between farmers' perception on changes in precipitation and observed anomalies in precipitation indices over 2005–2014 across the Central
America Dry Corridor and Rainforests. MLDS, maximum length of consecutive dry days (< 1mm); Rx5day, maximum 5-day precipitation (mm); SDII, simple annual
precipitation index (mm/rainy days).
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restrictions and bureaucratic regulations for the utilization of trees
outside forests (mainly for timber) in many Central American countries
(Detlefsen and Scheelje, 2012). Despite the lack on incentives to grow
trees, we show that across the Rainforest, agroforestry (reforesta-
tion + introduction of new crops) was the first approach employed by
farmers to adapt their systems, which is in accordance with the recent
analysis conducted by Somarriba et al. (2017) in this region. Con-
sidering, however, the expected impacts of climate change on dis-
tribution and suitability of the most common tree species used in
Central America (de Sousa et al., 2017), it is necessary to increase
farmer's awareness to select the best climate suited trees for their farms.

Illiterate farmers with small landholdings living in the Dry Corridor
chose a set of approaches to adapt their systems and intensify the
production that includes the adoption of new crops, soil management,
and increased use of fertilizers. These practices, when integrated and
well managed, can help smallholders to achieve high yields (Cassman,

1999) while reducing the need to expand the production to new crop
areas. However, two concerns arise for this group. First, it is not clear if
the increased utilization of fertilizers is employed under an optimal
level to ensure sustainability and soil conservation, considering the
crop and soil requirements. Second, the adoption of this technological
package could, in the long run, lead to a high dependency of external
inputs, a non-desired outcome in the concept of Climate-Smart Agri-
culture. To avoid this risk, farmers could employ integrated nutrient
practices such as the utilization of nitrogen-fixing plants and green
manures (Kang, 1997), which could be utilized as the only approach or
integrated with a reduced amount of synthetic inputs.

Farmers living in the Dry Corridor with large farmland also selected
reforestation and sustainable soil management as adaptation ap-
proaches. However, this group considered leaving the farm system as
the third best adaptation strategy, which raises concerns about the fu-
ture sources of food and household income to these families. The in-
sufficient family workforce (∼4 people with 15–60 years-old per fa-
mily) in a large family farmland may drive farmers to this alternative.
An approach for this group could be the intensification of small parts of
their farms and utilization of intercropping systems such as quesungual,
a high advocated alternative for drylands in Central America (Ayarza
et al., 2010; Kang, 1993).

Changing agricultural calendar was one of the least preferred
choices among interviewed farmers, which is unfortunate, as it is one of
the simplest approaches to adapt to the effects of climate variability
(Yegbemey et al., 2014). By adopting this approach, farmers can adjust
the planting season to operate in a time-efficient manner and avoid
extreme climatic events during sensitive growing phases, such as
flowering (Sacks et al., 2010). The low preference for this approach
may be the result of the scarce up-to-date agroclimatic information and
forecasts on upcoming growing seasons, which are also in accordance
with the partial correlations between farmers perceptions and the his-
torical data observed in our analysis. The establishment of information
services and early warning systems to provide seasonal forecasting and
agroclimatic information can help farmers make the best decisions to
adapt their systems under seasonal climate variability.

We show that the participation in long-term outreach projects can
influence farmers’ decision to adopt sustainable practices (Gutierrez-
Montes et al., 2018; Mercado et al., 2017). In this study, we provide

Table 2
Model estimates from farmers’ management practices employed to adapt to
perceived changes in climate patterns in Central America.

Practices Estimate Std. Error z value Pr (> |z|) Signif.

Reforestation and
Restoration

1.5120 0.0811 18.6470 <0.0001 ***

Introduction of new
crops

0.7572 0.0844 8.9680 <0.0001 ***

Sustainable soil
management

0.2554 0.0834 3.0620 0.0022 ***

Production
diversification

0.0000 – – – –

Change in varieties −0.2805 0.0883 −3.1770 0.0015 **
Sustainable water

management
−0.6814 0.0919 −7.4140 <0.0001 ***

Use of more fertilizers
and pesticides

−0.7658 0.0925 −8.2820 <0.0001 ***

Use of less fertilizers
and pesticides

−0.8516 0.0942 −9.0400 <0.0001 ***

Leave farming system −1.4053 0.1069 −13.1440 <0.0001 ***
Change in agricultural

calendar
−1.5276 0.1095 −13.9520 <0.0001 ***

Significance levels: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

Fig. 5. Recursive partitioning of Bradley-Terry model of farmers' management practices employed to adapt to perceived changes in climate patterns in Central
America. Intervals show quasi-standard errors. CAC = Change in agricultural calendar, Chv=Change in varieties, Dvp=Production diversification, INC =
Introduction of new crops, Lvf= Leave farming system, LFP=Use of less fertilizers and pesticides, MFP=Use of more fertilizers and pesticides, RfR = Reforestation
and restoration, SSM = Sustainable soil management, SWM = Sustainable water management.
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evidence to support the design and implementation of outreach projects
oriented for specific groups of farmers according to their main liveli-
hood, ecoregion, and education profile. For example, when dealing
with livestock and illiterate farmers, these findings are very important
since they are more likely to increase the use of fertilizers and pesticides
and reduce practices for soil and water management. Also, we identi-
fied that the preference of farm practices is closely related with the
main crop produced by the farmer. For example, the utilization of Re-
forestation and Restoration in farms producing fruits is increased by
climate variability, while it is not a preferred option in farms producing
vegetables. This finding demonstrates the importance of tailoring the
Farmer Field Schools curricula to the farmers' characteristics and the
main crop they produce. For example, the need to learn about climate-
smart practices related to reforestation may be lower when regarding
tree growers.

5. Conclusions

Our study provides an overview of farmers' perception of the
changes in climate patterns in Central America and we argue that these
perceptions to some extent drive the adoption of Climate-Smart
Agriculture practices across the region. We demonstrate the relation-
ship between farmers’ awareness of climate variability and their re-
sponses through the use of climate-smart practices. Overall, farmers
demonstrated self-motivation to adapt their systems to climate varia-
bility. Nevertheless, most of them require technical guidance to adopt
sustainable practices for sustainable agriculture. The participation in
Farmer Field Schools can help farmers make the best decisions to adapt
their agricultural systems to climate variability.

As we have shown, there is a strong correlation between some so-
cioeconomic characteristics and the adoption of specific technological
packages. Illiterate farmers, for instance, adopted a set of practices that

includes the utilization of more fertilizers, which may affect farmers in
the long term by increasing their dependency on external inputs and
increase financial risks. Therefore, we recommend tailoring the Farmer
Field Schools curricula to the needs of each specific group, taking into
account their farm size, educational level and main crop.

Although farmers demonstrated awareness to climate change and to
its effects the lack of up-do-date agroclimatic information is still an
issue that hinders making the best decision regarding crop manage-
ment, especially for the annual crops. The promotion of community
weather stations can help farmers obtain accurate information re-
garding the climate and thus close this information gap. Furthermore,
local and international development agencies and NGOs should make
use of the weather information and models already available to foster
the adoption of short and long-term technological packages tailored to
specific ecoregions.

Given the uncertainties of the multiple effects of climate change in
agriculture (Howden et al., 2007; Vermeulen et al., 2013), farmers and
stakeholders must be constantly updated about the latest re-
commendations for each climatic region and for each crop activity.
Recent experiences with citizen-science in Central America, Africa and
Asia (Beza et al., 2017; Mancini et al., 2017; Steinke et al., 2017;
Steinke and van Etten, 2017; van Etten et al., 2016) showed that
farmers and decision-makers can track the responses of crop systems to
the changing climate patterns as they occur in the farm and take the
best decision towards climate adaptation. Therefore, it is important to
stay in the loop and understand that adaptation requires constant
evaluations on the state of farming system and on the outcomes of
employed practices in terms of climate adaptation and productivity.
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The future of coffee and cocoa 
agroforestry in a warmer 
Mesoamerica
Kauê de Sousa  1,2, Maarten van Zonneveld2,3, Milena Holmgren4, Roeland Kindt5 & 
Jenny C. Ordoñez6,7

Climate change threatens coffee production and the livelihoods of thousands of families in Mesoamerica 
that depend on it. Replacing coffee with cocoa and integrating trees in combined agroforestry systems 
to ameliorate abiotic stress are among the proposed alternatives to overcome this challenge. These two 
alternatives do not consider the vulnerability of cocoa and tree species commonly used in agroforestry 
plantations to future climate conditions. We assessed the suitability of these alternatives by identifying 
the potential changes in the distribution of coffee, cocoa and the 100 most common agroforestry trees 
found in Mesoamerica. Here we show that cocoa could potentially become an alternative in most of 
coffee vulnerable areas. Agroforestry with currently preferred tree species is highly vulnerable to future 
climate change. Transforming agroforestry systems by changing tree species composition may be the 
best approach to adapt most of the coffee and cocoa production areas. Our results stress the urgency for 
land use planning considering climate change effects and to assess new combinations of agroforestry 
species in coffee and cocoa plantations in Mesoamerica.

Adapting agricultural systems to climate change is particularly challenging for perennial crops that take long 
before farmers fully benefit from their management decisions. Yet, a sense of urgency has developed among farm-
ers, scientists and policy makers across the tropics as climate warming and extreme weather events compromise 
the productivity of major perennial crops1. In Mesoamerica – the area comprising Panama to central Mexico – the 
productivity of Arabica coffee (Coffea arabica L.) is expected to drastically decline as suitable growing areas shift2, 
and pests and pathogens incidence increases under unfavourable climate conditions3,4.

Since the first reports of potential impacts of climate change on coffee suitability2 an ever growing number 
of news and blogs from private sector, NGO’s and research organisations are reporting the replacement of coffee 
by cocoa in zones under 600 m a.s.l. (above the sea level) mainly in Mesoamerica (supplementary information 
Table S1). According to these sources the drivers of this shift are trends in recent years of increasing coffee pro-
duction costs and large loses due to pests and diseases (leaf rust crisis)4 at low altitudes, attributed to climate 
change and fuelled by differences in coffee and cocoa prices. All in all, replacing coffee by cocoa has become 
one of the main strategies for climate change adaptation for producers in low elevation areas5, already taking 
place in Nicaragua, Honduras and El Salvador. Moreover, this strategy is strongly advocated by large NGO’s 
and development agencies active across the region, under the assumption that areas not suitable for coffee can 
become unequivocally suitable for cocoa6. Nevertheless, there is no quantitative assessment of the feasibility of 
such strategy, starting from considering that cocoa is vulnerable to climate change itself7,8, plus other limitations 
for transformation of cropping systems.

On the other hand, agroforestry – the deliberate and simultaneous management of trees within crop or live-
stock systems9,10 –, is considered another key strategy to increase the resilience of agricultural systems to climate 
change11–13. Currently, most coffee and cocoa production in Mesoamerica occurs in agroforestry systems14,15. 
Under proper management, agroforestry trees can improve microclimatic conditions that reduce abiotic stress 
and facilitate the performance of understory crops16,17. In addition, farmers can benefit from agroforestry systems 
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by its capacity to provide a number of ecological services, such as water and soil conservation, maintenance of 
soil fertility and biodiversity conservation18. Nevertheless, climate change can also affect the future ecological 
niches of several tree species19,20 and may restrain the prospects of agroforestry as a viable approach for climate 
adaptation.

To evaluate these two alternatives, shifting coffee-cocoa plantations or maintaining and promoting 
crops-agroforestry, we assessed the vulnerability of both coffee and cocoa under climate change and the poten-
tial impacts of climate change on the habitat suitability for 100 of the most common tree species in coffee and 
cocoa plantations across Mesoamerica. We modelled current and future climatic niches with ensemble model-
ling algorithms21 using bioclimatic information22, downscaled from 17 General Circulation Models, under two 
Representative Concentration Pathways scenarios of climate change23. We selected the intermediate scenario RCP 
4.5, which predicts an average temperature increase of 1.4 °C (0.9–2.0 °C), and a scenario with high emissions 
RCP 8.5, which predicts an average temperature increase of 2.0 °C (1.4–2.6 °C) by 2050 (period 2046–2065). We 
focus on climate projections for the 2050 s to align with the United Nations framework of global challenges in 
agriculture and food security13. For simplicity, we focus the results in the intermediate scenario and included the 
variation between the two scenarios assessed here into the main text, the full results for climate change scenario 
with high emissions are available as supplementary information.

Results
Coffee is more vulnerable to climate change than cocoa. Between 55–62% of current areas for cof-
fee production will no longer be suitable by 2050 (Fig. 1a) especially in mid-altitudinal areas (400–700 m a.s.l.). 
Highlands (>1,800 m a.s.l.) may partly compensate these losses, where coffee will likely expand up to 9–13%. In 
contrast, cocoa production will probably lose between 13–17% of the current distribution range (Fig. 1a) espe-
cially in some lowland areas (0–300 m a.s.l.), expected to become drier in the next decades19. Our model pro-
jections show that 83–87% of current cocoa areas will remain suitable, especially in the humid areas along the 
Atlantic coast (0–300 m a.s.l.) (Fig. 1b; Supplementary Fig. S1, Text S1).

Cocoa could potentially replace 85% of the vulnerable coffee areas under climate change in moist regions at 
elevations under 400 m a.s.l. and 53% at elevations between 400–700 m a.s.l. Areas to be replaced decrease sharply 
with altitude with no possibility beyond 1,200 m.a.s.l under RCP 4.5 and 1,600 m.a.s.l under RCP 8.5 (Fig. 2, 
Supplementary Fig. S2).

Agroforestry trees: winners and losers. The distribution range of 79% of the tree species assessed in 
coffee areas and 62% of the tree species assessed in cocoa areas will drastically shrink or become unsuitable in 
both remaining and vulnerable areas for coffee and cocoa. Major losses are expected for the most popular trees 
used for fruits, N-fixing and timber in mid-altitudinal coffee areas (400–700 m a.s.l.) and lowland cocoa areas 
(0–300 m a.s.l.; Fig. 3).

Looking at specific tree groups by their main use, we estimate that 20 of the 33 fruit trees will lose more than 
15% of their current suitability in coffee areas. The same trend is observed for 14 fruit trees in cocoa suitable areas. 
The common fruit trees in coffee and cocoa plantations, Persea americana (avocado), Psidium guajava (guava) 
and Manguifera indica (mango) are among the most vulnerable species with average loss of 53% in suitable areas. 
Major gains (>15%), however, are found for species such as Spondias mombin (jobo) and Manilkara zapota (sapo-
dilla) in coffee, Melicoccus bijugatus (mamon) in cocoa and Tamarindus indica (tamarind) in both coffee and 
cocoa areas (Fig. 4a, Supplementary Fig. S3).

High losses (>15%) are expected for 25 of the 30 N-fixing tree species assessed in coffee and for 18 N-fixing 
tree species in cocoa areas (Fig. 4b, Supplementary Fig. S4). Most common N-fixing trees currently growing in 
coffee and cocoa plantations, such as Erythrina poeppigiana (poró), Inga oerstediana, I. ruiziana and I. jinicuil 
(guama) are the most vulnerable to expected climate change, with losses of 56% in suitable areas. Only two spe-
cies, of the selected, may expand their suitability in >26% across cocoa areas, Inga laurina (guama) and Senna 
atomaria (vainillo), but only up to 4% in future coffee areas.

In the case of timber trees, we estimate loses of >15% for 22 of 37 species in coffee and 12 tree species in cocoa 
areas. The most vulnerable timber species include the widely common Cedrela odorata (cedar), as well as, the 
locally important timber species Perymenium grande (tatascán) and Pachira quinata (pochote), in both coffee 
and cocoa areas (Fig. 4c, Supplementary Fig. S5). Marginal gains (~5%) are expected for Albizia saman (carreto), 
Ceiba pentandra (ceiba) and Guazuma ulmifolia (guácimo) in both coffee and cocoa areas.

Prospects for future coffee and cocoa under agroforestry. Despite the overall losses in suitability for 
some of the most popular tree species, our projections suggest that agroforestry could persist as a viable alterna-
tive to manage coffee and cocoa plantations in Mesoamerica under climate change. By 2050, approximately 72% 
of coffee areas (both, remaining and vulnerable) will be suitable for more than 30 tree species. This includes a 
portfolio of at least 10 species per main use (10 fruit species, 10 N-fixing species and 10 timber species). Most of 
these tree species are already present in coffee plantations but mainly in low densities and remain underutilised. 
Only 9% of coffee areas have very low tree species options (≤3 species).

Our results suggest that cocoa suitable areas have a higher potential for agroforestry than coffee. By 2050, 95% 
of cocoa areas will be suitable for more than 30 tree species. Only 3% of cocoa areas have very low tree species 
options (≤3 species) potentially available (Supplementary Fig. S6).
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Discussion
Our results stress the urgency for land use planning that considers potential climate change impacts to define the 
best areas and growing systems for production of coffee and cocoa under agroforestry management. These results 
suggest that important changes in tree species composition will be needed for agroforestry systems to remain as 
the best alternative for climate adaptation of coffee and cocoa fields.

Large areas are highly suitable for cocoa production in Mesoamerica under current climatic conditions and 
this suitability remains under climate change in 2050, opposing to the trends reported for the current largest 
cocoa production countries in West Africa24. In fact, the total area potentially suitable for cocoa in 2050 in the 
region could be four times the current world’s cocoa producing area (11 M ha)25 stressing the comparative advan-
tage of the region for cocoa production. Despite this large potential, currently Mesoamerica is a minor player 
in the global cocoa supply chain (providing <1% total world cocoa production in 2017). In general, cocoa pro-
duction systems in the region include smallholders, with low levels of input use, old plantations and low yields 

Figure 1. Shifts in suitability due to climate change (RCP 4.5) by 2050 for (a) coffee (Coffea arabica L.) and (c) 
cocoa (Theobroma cacao L.) in Mesoamerica. In (b,d), shifts in suitability are shown for the altitudinal gradient 
covered by coffee and cocoa within the continent. Light blue indicate new areas for coffee/cocoa by 2050. Dark 
blue indicate areas where coffee/cocoa will remain suitable under climate change. Red indicate areas expected to 
be no longer suitable (vulnerable) for coffee/cocoa under climate change.
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(60–328 kg ha−1 year−1)26. It is argued that this panorama could change substantially if, for instance, farmers used 
to the management of a specialised perennial crop such as coffee, turn their efforts to cocoa production.

Only considering the coffee vulnerable areas to climate change that will be suitable for cocoa in 2050 (a modest 
18% of the total suitable area), there could be 7.5 M ha in Mesoamerica available for cocoa production. Even at 
the extremely low yields typical of the region, these potentially new producing areas could add 1.5 million tons 
of cocoa to the global supply. In reality the actual coffee areas that can be replaced by cocoa will be lower than 
these estimated areas, because farmers may lack financial capacities to transform their coffee plantations27 and the 
capacity to meet the strict existing quality standards. Still, the potential of the region remains large, but fuelling 
cocoa expansions will require well-structured efforts to i) reduce barriers to transformation, ii) ensure coupling 
of production to markets and iii) adequate land use planning to avoid expansion of cocoa into natural forests28,29 
(cocoa suitable areas do coincide with various protected areas within the Mesoamerican Biological Corridor).

Alternatively, by managing agroforestry systems, farmers could potentially maintain their current coffee and 
cocoa plantations using suitable trees to ameliorate microclimatic conditions. This alternative could also prevent 
the expansion of agricultural activities towards protected areas that are reported to be suitable in the future30. 
However, it seems highly probable that current agroforestry schemes will need to be modified in terms of species 
composition, since some of the most popular tree species are also vulnerable to future climate. It is particularly 
concerning the losses in habitat suitability of N-fixing trees such as E. poeppigiana (poró) and the majority of 
Inga species. These species make up the most abundant agroforestry trees in coffee and cocoa plantations in 
Mesoamerica31,32, and have a key role for the management of soil fertility and sustain more stable productivity33,34, 
especially in low-input and small farming plantations35. Therefore, our results anticipate a serious threat for future 
coffee and cocoa plantations if alternatives for N-fixing species are not promptly identified.

Rethinking current agroforestry species composition in coffee and cocoa landscapes requires the identifica-
tion of the best tree species. Currently, farmers have a clear preference towards few species such as C. odorata 
(cedar), E. poeppigiana (poró), Inga spp., M. indica (mango), P. americana (avocado) and P.guajava (guava), all 
widespread in agricultural fields or open areas and of easy regeneration and propagation. We found that some 
currently underutilised tree species in coffee and cocoa plantations could potentially maintain or even increase 
their suitable distribution ranges under future climate, such as the fruit trees M. sapota, S. dulcis, Brosimum ali-
castrum, and the timber trees Simarouba glauca and Ceiba pentandra. These species are present in low densities in 
coffee and cocoa plantations, and most of them are remnants of previous vegetation36.

Expanding the use of underutilised species in agroforestry systems will require a deeper understanding of 
their agronomic performance considering other factors beyond just climate (e.g. pest, diseases, soil fertility), 
ecological interactions37–39, farmers’ perceptions and local knowledge regarding management and utilisation of 
these tree species, as well as market incentives to facilitate their wider use. In our assessment, we employed a 
species distribution modelling (SDM) approach disregarding these aspects. Therefore, the interpretation of our 
results is driven by the expected changes in biophysical conditions characterised here as changes in extreme 
precipitation and temperature events. The evidence has shown that these changes are particularly important for 

Figure 2. Potential areas in Mesoamerica where cocoa (Theobroma cacao L.) can replace coffee (Coffea arabica 
L.) under climate change (RCP 4.5). Dark blue indicate vulnerable areas for coffee that can be replaced by cocoa. 
Light blue indicate areas suitable for coffee and cocoa. Red indicate vulnerable areas for coffee where cocoa is 
not an alternative under climate change. Light yellow indicate remaining areas for coffee where cocoa is not 
suitable.
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agroecosystems in Mesoamerica, and other regions affected by El Niño Southern Oscillation, in which this phe-
nomenon shapes the ecosystem productivity20,40, not only across dry regions but also in rainforests19.

Here we show that coffee systems are more vulnerable than cocoa systems to climate change. Not only is coffee 
more sensitive than cocoa to future climate, but also the tree species commonly used in coffee plantations are 
more vulnerable to the expected climate change. Cocoa as an alternative to coffee could potentially occur in most 
of the vulnerable coffee areas, but this will require addressing other ecological constraints, the impacts of pest 
and diseases, costs of technological change and market requirements to determine the real potential of cocoa to 
replace coffee. Adapting coffee and cocoa to changing climates can benefit from agroforestry systems with a new 
set of currently underutilised tree species already present in coffee and cocoa plantations. The results of this study 
are a starting point to develop lines of research that support the re-design of agroforestry schemes and open new 
venues of research to adapt coffee and cocoa production systems in Mesoamerica.

Figure 3. Changes in suitability of the 100 most common tree species in coffee (Coffea arabica L.) and cocoa 
(Theobroma cacao L.) agroforestry over the altitudinal gradient in Mesoamerica. Panels a, b and c shows the 
shifts for fruit, N-fixing and timber trees in coffee areas, respectively. Panels d, e and f shows the shifts for fruit, 
N-fixing and timber trees in cocoa areas, respectively.
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Methods
Selection of tree species. We selected 100 of the most commonly used tree species in cocoa and cof-
fee plantations across Mesoamerica (Supplementary Table S2) using three criteria: (i) abundance assessed from 
compiled inventories of shade species in smallholder farms across the region41–43; (ii) ecological and economic 
services identified by farmers44,45; and, (iii) availability of a minimum of 60 records to ensure accurate modelling 
results46.

From these 100 species, 30 are mainly used due to their potential to improve soil conditions by fixing nitro-
gen, 37 species mainly used for timber products (within the farm and potentially marketable) and 33 species 
mainly used as fruit trees44,45. The selected species belong to 27 botanical families and most (91 species) are 
native of the neotropics; the others are economically important species and naturalised fruit trees in Mesoamerica 
(Supplementary Table S2).

Compilation and validation of presence location points. We compiled presence location points of 
selected tree species (including coffee and cocoa) from the Global Biodiversity Information Facility (GBIF)47, 
MAPFORGEN48 and from the database of farm inventories used to select the tree species. No distinction was 
made between locations from natural forests or farms because this information was not always available in the 
original sources.

Records with no geographic information or with obvious errors such as incomplete coordinates, locations in 
the ocean and mismatches between administrative data and coordinates were excluded from the analysis. For this, 
we compared the collected presence data and information on administrative boundaries with information from 
the DIVA-GIS database49, removing the mismatches. Presence locations from 1959 or before were also removed 
to meet the current baseline climate used. Finally we reduced the possible effects of sampling bias and spatial 
autocorrelation through systematic sampling50. This approach consists in create a grid of a defined cell size (in 
our case 2.5 arc-min) and randomly sample one presence points per grid cell. In the Fourcade et al.50 assessment, 
the approach showed well performance among the other tested approaches irrespective the species and bias type, 
which is our case.

The final dataset with validated and unbiased presence locations comprised 130,480 occurrences for the 100 
tree species combined (Supplementary Table S2), 2,194 location points for coffee and 1,241 location points for 
cocoa. Since absence locations were not available, for each species, we allocated 1,000 random pseudo-absence 
locations within the study area, which were sampled (without replacement) using the R51 package dismo52.

Climate data. We used bioclimatic predictors (baseline period of ~1960–1990) from WorldClim22 at a spa-
tial resolution of 2.5 arc-min. The bioclimatic variables include extreme or limiting factors that are ecologically 
important based on the variation in precipitation and temperature. We selected the least correlated variables 
applying an analysis of variance-inflation factors (VIF)53, whereby the variables with the highest correlation 
(VIF > 10) were removed, resulting in nine bioclimatic predictors. Which were: (i) bio02, mean diurnal range; 
(ii) bio03, isothermality; (iii) bio08, mean temperature of wettest quarter; (iv) bio09, mean temperature of driest 
quarter, (v) bio13, precipitation of wettest month; (vi) bio14, precipitation of driest month; (vii) bio15, precipi-
tation seasonality; (viii) bio18, precipitation of warmest quarter; and, (ix) bio19, precipitation of coldest quarter.

We based the projections of future distribution in 2050 s on two Representative Concentration Pathways sce-
narios (RCPs) of climate change from the Intergovernmental Panel on Climate Change (IPCC)23. We selected 

Figure 4. Expected changes in suitability due to climate change (RCP 4.5; expressed as % of current suitable 
areas) of the most common a fruit trees, b N-fixing trees and c timber trees in coffee (Coffea arabica L.) and 
cocoa (Theobroma cacao L.) plantations in Mesoamerica. Grey dot represent the area of a given species under 
the current climate conditions; Red arrows (left direction), represent decrease in suitable areas; Blue arrows 
(right direction) represent increase in suitable areas. Species ordered by main use and by their abundance (from 
to top to bottom) in the inventoried coffee and cocoa farms across Mesoamerica.
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the intermediate scenario RCP 4.5, which predicts an average temperature increase of 1.4 °C (0.9–2.0 °C), and a 
scenario with very high emissions RCP 8.5, which predicts an average temperature increase of 2.0 °C (1.4–2.6 °C) 
by 2050 (period 2046–2065). We focus on climate projections for 2050 to align with the United Nations frame-
work of global challenges in agriculture13. For each selected scenario, we predicted species suitability using the 17 
General Circulation Models (GCM) available for both RCP scenarios (Supplementary Table S3).

Data analysis. We modelled the distribution of all species within the longitudes −101 and −77, and the 
latitudes 7 and 22. All analyses were done in R51 using a consensus method for species distribution modelling 
(SDM) compiled by the package BiodiversityR21, which calculate ensemble suitability as a weighted average of 
probabilities predicted by 17 SDM algorithms (Supplementary Table S4). Previous studies have shown that the 
consensus method based on weighted averages can significantly increase the accuracy of SDM54.

For the model calibration, we performed a 4-fold cross-validation by randomly assigning (without replace-
ment) location data to four bins. The performance of different SDM algorithms was evaluated for each bin 
separately after algorithms were calibrated with data from the other three bins. The SDM performance was 
assessed by the area under the curve (AUC55) criterion computed by the R package PresenceAbsence56. Although 
some authors tend to criticise this method, the evidence57 has shown that AUC has strong correlation with the 
presence-absence threshold that makes sensitivity equal to specificity and remains a valid measure of relative 
model performance. Considering that, predictions from each of the 17 SDM algorithms were transformed to 
AUC weights by dividing each by the total of all AUC predictions. We selected the SDM algorithms with AUC 
weights >0.05, which means at least 5% of contribution to the consensus predictivity21, and recalculated weights 
to sum to one53. The AUC values for the selected SDM models are shown in supplementary information Fig. S7.

Therefore, selected SDM algorithms were used to obtain the suitability model for coffee, cocoa and the 100 tree 
species. We then applied the derived suitability model to each of the 17 downscaled GCMs to predict the distribu-
tion of suitability by the 2050 s. For each species, ensemble suitability maps for baseline and future climates were 
converted in absence-presence maps with the recommended threshold method of maximum sensitivity (true 
positive) + specificity (true negative)58,59.

Since there are no criteria to assess which of the GCMs best predict future climate, by incorporating all 17 
GCMs we included all plausible changes in the distribution of the focal species. The results of the 17 GCMs 
presence-absence layers were integrated into a single layer, using the criterion of likelihood scale60, which requires 
at least 66% of agreement among GCMs to keep the predicted presence or absence in a given grid cell.

Organising the datasets relied on R packages magrittr61 and tidyverse62. Layers were processed using the R 
packages maptools63, raster64, rgeos65 and rgdal66. To produce Figs 3, 4, S3, S4, S5 and S7, the R packages ggplot267 
and svglite68 were used.

Data Availability
Data and R code used is available through Dataverse69. The full project replication workflow is available 
through GitHub https://github.com/agrobioinfoservices/enm_agroforestry.
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Farmer evaluating a common bean plot under the tricot approach, Honduras. Credit: J. Steinke
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Crop adaptation to climate change requires accelerated crop
variety introduction accompanied by recommendations to help
farmers match the best variety with their field contexts. Existing
approaches to generate these recommendations lack scalabil-
ity and predictivity in marginal production environments. We
tested if crowdsourced citizen science can address this challenge,
producing empirical data across geographic space that, in aggre-
gate, can characterize varietal climatic responses. We present the
results of 12,409 farmer-managed experimental plots of common
bean (Phaseolus vulgaris L.) in Nicaragua, durum wheat (Triticum
durum Desf.) in Ethiopia, and bread wheat (Triticum aestivum
L.) in India. Farmers collaborated as citizen scientists, each rank-
ing the performance of three varieties randomly assigned from a
larger set. We show that the approach can register known specific
effects of climate variation on varietal performance. The predic-
tion of variety performance from seasonal climatic variables was
generalizable across growing seasons. We show that these analy-
ses can improve variety recommendations in four aspects: reduc-
tion of climate bias, incorporation of seasonal climate forecasts,
risk analysis, and geographic extrapolation. Variety recommen-
dations derived from the citizen science trials led to important
differences with previous recommendations.

climate adaptation | genotype × environment interactions | crop variety
evaluation | citizen science | crowdsourcing

Crop improvement is important to increase agricultural pro-
ductivity and to contribute to food and nutrition security.

The need for new crop varieties is exacerbated by climate change.
Farmers need to replace crop varieties with better-adapted ones
to match rapidly evolving climate conditions (1–4). Where suit-
able modern varieties do not exist, suitable farmer varieties are
needed instead (“variety” is applied to all cultivated materials
here) (4). The variety replacement challenge has yet to be effec-
tively addressed. One proposed solution is to increase variety
supply by accelerating crop breeding, removing older varieties
from the seed supply chain, and assiduously promoting new vari-
eties for farmers (2). Supply-driven variety replacement requires
that new varieties are locally adapted and acceptable, but vari-
eties are often recommended without prior geographic analysis
to determine recommendation domains (5) on the basis of tri-
als that do not adequately represent local production conditions
(6–8). Therefore, a supply-driven approach may introduce vari-
eties that perform worse than locally grown varieties. Demand-
oriented approaches address this issue but also fall short of
a solution. They involve farmers directly in the selection of
crop varieties in on-farm experiments (6). Farmer-participatory
selection stimulates local interest in new varieties and produces
information on variety performance that is immediately relevant

to local climate adaptation. This local focus is a strength as well
as a limitation. Scaling is constrained by the resource-intensive
nature of current participatory experimental methods and the
incompatibility of datasets across different efforts (9). The result-
ing paucity of data is a problem, because variety trials need to
capture spatiotemporal environmental variation to characterize
climatic responses.

A solution could come from a more scalable type of partic-
ipatory research: citizen science using digital “crowdsourcing”
approaches (10–12). This has already shown its potential to
engage large numbers of volunteering citizen scientists who
jointly generate sizable datasets that allow for geospatial anal-
ysis of climate change impact (for example, on cross-continental
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bird migration) (13). In a similar way, farmer citizen scien-
tists could provide information about crop variety performance,
which would feed into a demand-driven, scalable solution to
varietal climate adaptation.

To test this idea, we applied a recently developed citizen sci-
ence approach tricot—triadic comparisons of technologies (14,
15). In tricot variety evaluation, each farmer plants seeds from
a personal test package of three varieties, which are randomly
assigned from a larger pool of tested varieties. Farmers’ indepen-
dent on-farm observations are compiled and analyzed centrally.
A simple ranking-based feedback format allows even farmers
with low literacy skills to contribute their evaluation data through
various channels, including mobile telephones (15). Pilots with
the tricot approach have established its potential to produce
accurate data (16) and to engage motivated farmers as citizen
scientists (17).

The question that we address is if tricot trials can provide
robust, actionable information on varietal climate adaptation.
We organized tricot trials to obtain a dataset covering 842 plots
of common bean in Nicaragua, 1,090 plots of durum wheat in
Ethiopia, and 10,477 plots of bread wheat in India (Fig. 1). The
trials captured environmental variation through broad sampling
both spatially (many fields distributed across the landscape) and
temporally (different seasons and planting dates). We linked
farmers’ observations via their geographic coordinates and plant-
ing dates to agroclimatic and soil variables. We modeled the
influence of the environmental variables on the probability that
varieties outperform the other varieties in the trials. We evalu-
ated whether seasonal climate adequately predicts variety perfor-
mance in the tricot trials. Then, we explored if climatic analysis
of tricot trial data improves variety recommendations.

Characterizing Variety Performance
Cross-validation showed that the tricot trials uncovered statisti-
cally robust differences in variety performance (Table 1). From
a previous pilot study, we expected consistently positive, but low
to moderate, pseudo-R2 values (16). In this study, model fit was
comparatively low for bread wheat in India (0.04–0.09), mod-
erate for common bean in Nicaragua (0.15–0.20), and high for
durum wheat in Ethiopia (0.39–0.48). The three case studies
each provide independent confirmation of the predictive value
of the tricot trials. Various factors influenced model fit, includ-

A B

C D

Fig. 1. Research sites: (A) overview, (B) India, (C) Nicaragua, and (D)
Ethiopia. Farms included in the trials are indicated as dots.

Table 1. Goodness of fit (pseudo-R2) of PLTs determined with
10-fold cross-validation

PLT model Nicaragua Ethiopia India

No covariates 0.1484 0.3947 0.0381
Design 0.1869 0.4709 0.0721
Climate 0.1978 0.4870 0.0882
Climate + geolocation 0.1977 0.4720 0.0872

The model with only climate covariates has the best fit in all cases
(indicated in bold).

ing farmers’ observation skills and environmental variation.
The largest differences were between countries, which were
probably due to the different levels of diversity within the sets of
varieties. Indian and Nicaraguan farmers evaluated a small, care-
fully selected group of modern varieties with relatively homo-
geneous performance. In Ethiopia, farmers tested a diverse set
of modern and farmer varieties drawn from a wide area and
evidently found easily observable differences in performance
between varieties.

For each country, we modeled the environmental influence
on variety performance. We were specifically interested in mod-
els with covariates derived from seasonal climatic conditions
(climate in Table 1), because these covariates can potentially
enhance extrapolation of variety performance predictions across
time and space. In all cases, these models had indeed a better
fit than the respective model without environmental covariates
(no covariates in Table 1). The next question that we addressed
was if the models with climatic variables captured the main envi-
ronmental factors or missed important aspects. Therefore, we
compared these models with two other types of models. One type
of model includes covariates that represent the experimental
design and are known in advance: geolocation, season, plant-
ing dates, and soil categories (design in Table 1). These models
reflect how multilocation trials are often analyzed and capture
variation in terms of the trial structure but not in terms of the
underlying climatic causal factors, hence limiting the potential
of extrapolation beyond the trial. In all cases, the models with
climatic covariates slightly outperformed the models with trial
design covariates. This means that the climatic covariates contain
unique and substantial information explaining varietal perfor-
mance. A second comparison was with models that include the
climatic covariates together with additional covariates that rep-
resent geographic structure (climate + geolocation in Table 1).
This comparison tested if important local factors are being over-
looked that are not covered by the climatic covariates. Adding
these geolocational variables did not improve the models, how-
ever, and even slightly degraded them. This implies that no
large-scale geographical structure remained after accounting for
seasonal climate. From this analysis, it is clear that the models
with climatic covariates captured a large part of the environmen-
tal variation in variety performance. Therefore, in subsequent
analyses, we focused on models with climatic covariates only.

We generated generalizable models that afford extrapolation
across seasons of variety performance predictions by selecting
those climatic variables that contribute to predictivity across sea-
sons. The variable selection procedure retained one climatic
variable in each case (Fig. 2 and SI Appendix, Fig. S1). We discuss
the results for each case study.

For Nicaragua, Fig. 2 shows the Plackett–Luce tree (PLT)
with the retained variable of the generalizable model for com-
mon bean. We found that bean variety performance changed
when the maximum night temperature exceeded 18.7 ◦C. This
finding corresponds to the threshold temperature for heat stress
reported in the literature of 20 ◦C at night (18). Our esti-
mate is slightly lower than the reported threshold but refers to
land surface temperature rather than air temperature. Three

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1813720116 van Etten et al.
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SJC 730-79
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0.00 0.05 0.10 0.15

Node 3 (n= 341)

Fig. 2. Plackett–Luce trees of tricot trial data and associated climatic data
for common bean in Nicaragua. The horizontal axis of each panel is the
probability of winning of varieties. Error bars show quasi-SEs. The gray verti-
cal lines indicate the average probability of winning (1/number of varieties).
In this case, the model selected maxNT, the maximum night temperature
(degrees Celsius) during the vegetative and flowering periods, as the covari-
ate. Equivalent figures for the trials in Ethiopia and India are shown in SI
Appendix, Figs. S2 and S3.

bean varieties, INTA Fuerte Seqúıa, BRT 103–182, and INTA
Centro Sur, performed better than the local variety above the
heat stress threshold. These three varieties are known to be heat
tolerant. Contrary to our expectations, another heat-tolerant
variety, SJC 730–79, did not show a performance advantage
above 18.7 ◦C. Above higher-heat stress thresholds, however,
this variety did outperform heat-sensitive varieties. The group
of local varieties has a small quasi-SE, despite the diverse nature
of this group, which contains all varieties that farmers currently
grow. This gives a reference on farmers’ overall appreciation
of the tested varieties in comparison with their own varieties.
The local varieties were outperformed under heat stress but not
under cool conditions.

For durum wheat in Ethiopia, varietal differences in per-
formance were related to the lowest night temperature during
the vegetative period (SI Appendix, Fig. S2). Performance pat-
terns changed when at least one 8-day period had average night
temperatures under 8.4 ◦C. This temperature corresponds to
the threshold temperatures for vernalization and cold accli-
mation induction (19). Under warm conditions, vernalization-
requiring varieties will delay flowering. Under cold conditions,
cold-sensitive varieties will reduce their yield due to chill-
ing or frost damage. Most of the varieties tested in Ethiopia
were farmer varieties and likely adapted to their original envi-
ronments, which may have led to differences in adaptiveness
between varieties. To test the effect of local adaptation, we com-
pared cold-adapted varieties with cold-sensitive farmer varieties
as detected by the tricot trials (Materials and Methods). Cold-
adapted varieties came from higher elevations (2,483 ± 113
meters above sea level) than cold-sensitive ones (2,101 ± 485
meters), a significant difference [t(594)= 16.1, P < 2.2 · 10−16].
Our results indicate that cold tolerance is a main geographic
adaptation factor for durum wheat in the Ethiopian highlands.

For bread wheat in India, varietal performance patterns
changed with the diurnal temperature range (DTR) during the
vegetative period, which is the difference between minimum

and maximum daily temperatures (SI Appendix, Fig. S3). Splits
occurred at DTR values of 14.5 ◦C and 15.7 ◦C. Between these
two values, the varieties showed very similar performance. Many
varieties that performed above average under high DTR per-
formed below average under low DTR and vice versa. Some
varieties performed well under both high and low DTR, espe-
cially HD 2967. Our interpretation is that low and high ranges
of DTR are related to different sets of stresses, while the mid-
dle range has relatively low stress. DTR has an impact on crop
yield through several mechanisms: high DTR is associated with
increased heat or cold stress, and low DTR is associated with
high cloud coverage, low solar radiation, and high rainfall. Con-
sistent with our results, a study has shown that DTR explains
a substantial share of wheat yield variation in India (20). This
same study found that DTR has a negative correlation with wheat
yields in some areas and a positive correlation in other areas, in
line with high and low DTRs having an association with different
types of crop stress.

Improving Variety Recommendations
We examined four ways in which climatic analysis afforded by tri-
cot trials can improve variety recommendations. First, a potential
improvement is that climatic analysis corrects the climatic sam-
pling bias, a bias that occurs when trials are performed under
unrepresentative seasonal climate conditions, thereby degrading
variety recommendations. To assess the importance of climatic
sampling bias, we followed the cross-validation procedure used
to generate the generalizable models but did not use the seasonal
climate data for predictions. Instead, we predicted variety perfor-
mance for a representative 15-y base period of seasonal climate
data and averaged the results (average season in Table 2). The
averaged prediction had slightly higher pseudo-R2 values than
the “no covariates” model in all cases. This analysis shows that,
even when climatic sampling bias is low, correction can help to
further improve predictions.

Second, climatic analysis can improve variety recommenda-
tions by incorporating seasonal forecasts. Perfect forecast in
Table 2 shows that the pseudo-R2 values increase further when
observed climate information is available for prediction. The
improvement gained from a perfect forecast was substantially
larger than the improvement from sampling bias correction. It
requires additional work to quantify the improvement of variety
recommendations with a realistic climate forecast skill. It is clear,
however, that variety recommendations derived from tricot trials
can benefit from seasonal forecasts.

Third, climatic analysis can support risk analysis. Table 3
shows the expected probability of outperforming all other vari-
eties, which is a metric of average performance, and a risk metric,
worst regret (21)—the largest underperformance of the recom-
mended variety relative to the best variety. These two metrics
produced divergent variety recommendations in all three cases
(indicated in bold in Table 3). In principle, risk analysis for vari-
ety choice is also possible without explicit climatic analysis, but
this produces results that are difficult to interpret in terms of
climatic causality and requires trials during a large number of

Table 2. Goodness of fit (pseudo-R2) of generalizable
PLT models

Model Nicaragua Ethiopia India

No covariates 0.1533 0.4280 0.0611
Average season 0.1536 0.4290 0.0694
Perfect forecast 0.1749 0.4442 0.1065

Model average season corrects for climatic sampling bias by averaging
predictions over a base period of seasonal climate data. Model perfect
forecast uses observed climatic covariates in the predicted seasons. Val-
ues represent cross-validated pseudo-R2 values averaged across blocks and
weighted with the square root of the sample size of each block.

van Etten et al. PNAS Latest Articles | 3 of 6



Table 3. Expected probability of winning (average of all farms
over the base period) and worst regret measures of a subset of
the varieties

Case study and variety Probability of winning Worst regret

Common bean (Nicaragua)
Local variety 0.130 0.023
INTA Fuerte Sequı́a 0.125 0.021
INTA Centro Sur 0.098 0.057
BRT 103-182 0.092 0.068
INTA Rojo 0.088 0.082
INTA Matagalpa 0.087 0.057

Durum wheat (Ethiopia)
208279 0.059 0.062
Hitosa 0.049 0.035
208304 0.041 0.048
8034 0.030 0.053
Ude 0.025 0.063
222360 0.023 0.061

Bread wheat (India)
K 9107 (Deva) 0.077 0.051
HD 2967 0.068 0.047
HD 2733 0.066 0.036
K 0307 (Shatabadi) 0.063 0.095
CSW 18 0.042 0.073
HI 1563 (Pusa Prachi) 0.041 0.093

The results show how different criteria of variety selection can lead to
different recommendations (best value according to each criterion is indi-
cated in bold). Using the probability of winning as a criterion maximizes
the average performance but ignores risk. Minimizing worst regret (the loss
under the worst possible outcome) is a criterion that takes a conservative
approach to risk.

seasons to avoid sampling bias and to characterize probability
distributions accurately (22).

Fourth, climatic analysis of tricot trial data can generate
variety recommendations for wider areas through geospatial
extrapolation. To illustrate this, we generated maps of varieties
recommendations based on “average season” model predictions
(Fig. 3). In all three cases, geographical patterns of variety
adaptation have no relationship to administrative boundaries
or agroecological zones, which are commonly used to delineate
recommendation domains.

To assess what the tricot trial results mean in practice,
we contrast our results with existing recommendations. For
Nicaragua, we compare the results of the tricot trials with the

recommendations of a recent national variety catalog (23). The
catalog recommends INTA Rojo and INTA Matagalpa for the
study area, but these varieties performed worse than the local
varieties in the tricot trials (Fig. 3A). However, the tricot tri-
als identified INTA Fuerte Seqúıa and INTA Centro Sur as top
varieties (Table 3), but the variety catalog recommends them for
warm areas outside our study area. In the tricot trials, INTA
Fuerte Seqúıa and INTA Centro Sur outperformed other vari-
eties, especially under heat stress, which apparently occurs with
more frequency in our study area than assumed by current vari-
ety recommendations. In Nicaragua, then, the tricot trial results
show that official variety recommendations fail to identify supe-
rior bean varieties that are sufficiently heat tolerant for the study
area.

For Ethiopia, the Wheat Atlas of the International Maize and
Wheat Improvement Center (CIMMYT) recommends modern
varieties Hitosa, Ude, and Assassa for all of the Ethiopian high-
lands, which it classifies as a single “mega-environment” (24).
The tricot approach produced geographically more specific rec-
ommendations (Fig. 3B). With this, we confirm the results of a
previous analysis based on multilocational trial data that showed
the benefits of location-specific recommendation domains for
durum wheat in Algeria, and we show that such an analysis can
also be done with tricot data (25). The tricot results confirmed
the superiority of farmer varieties 8208 and 208304 (Table 3),
which were approved for official variety release in March 2017
(on the basis of other field trials) (26). Farmer variety 208279 also
has a high probability of winning, but it has a high value of worst
regret (Table 3). Our analysis suggests that 208279 could be con-
sidered for the coldest areas as shown in Fig. 3B. In Ethiopia, the
tricot trial findings improve variety recommendations for durum
wheat by uncovering the importance of cold adaptation.

For India, we compare our findings with the front-line demon-
strations of the Indian Institute for Wheat and Barley Research
(IIWBR); the 1-ha plots demonstrate new varieties by compar-
ing them with a check variety. IIWBR promoted the variety HD
2967 for the North-Eastern Plain Zone during 2016–2017 (27).
HD 2967 was indeed the top variety in the tricot trial among the
varieties considered by the IIWBR (Table 3). In the tricot tri-
als, however, K 9107 (a variety released in 1996) outperformed
HD 2967 (released in 2011), with a comparable level of worst
regret (Table 3). The tricot trials also showed that another vari-
ety, HD 2733, outperformed HD 2967 in a large part of the
study area (Table 3). In the IIWBR front-line demonstrations,
HD 2733 was included as a check variety in four areas and was
outyielded by HD 2967 in only one of four areas, while in the
other three, the yield difference was not significant (27). Our
analysis shows that HD 2733 generally does better than HD

A B C

Fig. 3. Variety recommendations based on average season predictions from PLTs using climatic variables for (A) common bean in Nicaragua (Apante season),
(B) durum wheat in Ethiopia (Meher season), and (C) bread wheat in India (Rabi season). Map categories show the top two varieties for each area according
to their probability of winning over a base period (2002–2016).
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2967 in areas with a low average DTR during the growing season
(Fig. 3C). In India, the analysis of the tricot trial data adds geo-
graphic specificity to the existing variety recommendations and
suggests that a broader set of wheat varieties should be promoted
to take into account the climatic differences across the study
area.

We quantified how much farmers can benefit from tricot-
based variety recommendations by calculating variety relia-
bility, the probability of outperforming a check variety (Eq.
2 in Materials and Methods). For each location, we com-
pared the tricot-recommended variety (Fig. 3) with the best-
performing variety from the previous recommendations as the
check. Reliabilities ranged from 0.59 to 0.65 in Ethiopia, from
0.58 to 0.60 in Nicaragua, and from 0.51 to 0.62 in India
(SI Appendix, Fig. S4), indicating substantial benefits for large
areas.

Conclusions
The main question that we addressed is whether on-farm par-
ticipatory crop trials, scaled through a farmer citizen science
approach, can generate insights into climate adaptation of
varieties. Citizen science data revealed generalizable relations
between seasonal climate variables and crop variety perfor-
mance that corresponded to known yield-determining factors.
Climatic analyses of these data were shown to improve variety
recommendations. Our study demonstrates that, in vulnerable,
low-income areas, climatic analysis of variety performance is
possible with trial data generated directly by farmer citizen sci-
entists on farms. Arguably, similar results could be achieved by
a combination of existing approaches (target environment char-
acterization, multilocation trials, participatory variety selection,
variety dissemination). The unique contribution of the tricot
approach is that it integrates aspects of these approaches into
a simple trial format that addresses the challenge of variety
replacement for climate adaptation in a way that is, at the same
time, scalable and demand led. Tricot trials can track climate
trends as they manifest themselves on farms, adjust variety rec-
ommendations and recommendation domains, and contribute
to understanding how climate affects on-farm varietal perfor-
mance. Trial analysis combines insights in climatic adaptation
mechanisms with a comprehensive evaluation of variety perfor-
mance from the perspective of farmers, the end users of the
seeds. Results can, therefore, be directly translated into action-
able information for climate adaptation on the ground. The
findings can serve to create variety portfolios that diminish cli-
mate risk (22), can feed into climate information services in
combination with seasonal forecasts (28), and can become part
of decentralized plant breeding strategies for climate adaptation
(8). Combining the tricot trial data with other data could gener-
ate additional insights into variety performance and acceptability
as influenced by environmental (11), socioeconomic (29), and
genomic (30) factors.

The tricot approach facilitates engaging large numbers of
farmers in citizen science trials with large sets of varieties.
Scaling does not only involve an expansion in terms of num-
bers and scope, however, but also, it implies new institutional
arrangements. Carefully designed strategies should foster com-
munication between providers and users of information (31).
Wide-ranging collaborations are needed for climate adaptation
in crop variety management, involving farmers, extension agents,
seed retailers, seed producers, plant breeders, and climate infor-
mation providers. The tricot approach can help to cut across
these different domains, because it is able to link climatic and
varietal information directly to farmer decision making. With
appropriate institutional support and investment, citizen science
can potentially make an important contribution to farmers’ adap-
tive capacity and to the mobilization of crop genetic diversity for
climate adaptation.

Materials and Methods
Crop Trials. Trials were performed between 2012 and 2016 during three
cropping seasons in Ethiopia, five cropping seasons in Nicaragua, and
four cropping seasons in India (SI Appendix, Table S1). Trial design fol-
lowed the tricot citizen science approach (14, 15). Sets of varieties were
allocated randomly to farms as incomplete blocks (7), maintaining spatial
balance by assigning roughly equal frequencies of the varieties to each
area. In Nicaragua and India, incomplete blocks contained three varieties.
In Ethiopia, we used a modified approach that included four varieties per
farm. Plots were small to facilitate farmer participation but in all cases, large
enough to avoid strong edge effects. Farmers indicated the relative per-
formance of varieties through ranking. Ranking is a robust data collection
approach that avoids observer drift (32) and allows for aggregation across
disparate datasets (33).

The trials required three moments of contact with the farmers: (i) explain-
ing the experiment and distributing the seeds, (ii) collecting evaluation data,
and (iii) returning the results. Data were initially collected using paper forms
and in subsequent seasons, through electronic formats linked to a purpose-
built digital platform, https://climmob.net. In the trials presented here, field
agents collected the data through visits (phone calls are also feasible).

Data Analysis. All analyses were done in R (34). For the analysis of the
variety-ranking data generated by farmers, we used the Plackett–Luce
model (35, 36). The Plackett–Luce model estimates for each variety the
probability that it wins, beating all other varieties in the set. The model
determines the values of positive-valued parameters αi (worth) associated
with each variety i. These parameters α are related to the probability that
variety i wins against all other n varieties in the following way:

P (i�{j, . . . , n})= αi

α1 + · · ·+αn
. [1]

The probability that variety i beats another variety j is calculated in a
similar way.

P(i� j) =
αi

αi +αj
. [2]

Eq. 2 also serves to calculate the reliability of a variety—its probability of
beating a check variety (37). These equations follow from Luce’s Choice
Axiom, which states that the probability that one item beats another is
independent from the presence or absence of any other items in the set
(36). We report worth values that sum to one. This makes each worth
value αi equal to the probability of variety i outperforming all other
varieties:

P (i�{j, . . . , n})= αi

α1 + · · ·+αn
=
αi

1
=αi. [3]

In the trials, we used rankings of three varieties (i� j� k), which have the
following probability of occurring according to the Plackett–Luce model:

P(i� j� k) = P(i�{j, k}) · P(j� k). [4]

The log likelihood for a ranking i� j� k follows from Eqs. 1, 2, and 4 and
takes the following form (38):

`(α) = ln(P(i�{j, k})) + ln(P(j� k))

= ln (αi)− ln
(
αi +αj +αk

)
+ ln

(
αj

)
− ln

(
αj +αk

)
.

[5]

The log likelihood is then the sum of the log-likelihood `(α) values across
all rankings. Using an iterative algorithm, the log likelihood is maximized
to identify the α values that make the observed rankings most probable.
We also generated quasi-SEs for α (39). To take into account covariates, we
created PLTs through recursive partitioning (40). Additional details are given
in SI Appendix.

Data and Code Availability. Full data are available through Dataverse (41).
Code is available in SI Appendix.
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26. Mengistu DK, Kidane YG, Fadda C, Pè ME (2018) Genetic diversity in Ethiopian durum
wheat (Triticum turgidum var durum) inferred from phenotypic variations. Plant
Genet Resour 16:39–49.

27. ICAR-IIWBR (2017) Progress Report of AICRP on Wheat and Barley 2016–17, Social
Sciences (ICAR–Indian Institute of Wheat and Barley Research, Karnal, Haryana,
India).

28. Klemm T, McPherson RA (2017) The development of seasonal climate forecasting for
agricultural producers. Agric For Meteorol 232:384–399.

29. Hammond J, et al. (2017) The Rural Household Multi-Indicator Survey (RHoMIS) for
rapid characterisation of households to inform climate smart agriculture interven-
tions: Description and applications in East Africa and Central America. Agric Syst
151:225–233.

30. Kidane YG, et al. (2017) Genome wide association study to identify the genetic base
of smallholder farmer preferences of durum wheat traits. Front Plant Sci 8:1230.

31. Hewitt CD, Stone RC, Tait AB (2017) Improving the use of climate information in
decision-making. Nat Clim Change 7:614–616.

32. Halekoh U, Kristensen K (2008) Evaluation of treatment effects by ranking. J Agric Sci
146:471–481.

33. Simko I, Piepho HP (2011) Combining phenotypic data from ordinal rating scales in
multiple plant experiments. Trends Plant Sci 16:235–237.

34. R Core Team (2017) R: A Language and Environment for Statistical Computing (R
Foundation for Statistical Computing, Vienna), Version 3.4.3.

35. Plackett RL (1975) The analysis of permutations. J R Stat Soc Ser C Appl Stat 24:193–
202.

36. Luce RD (1959) Individual Choice Behavior: A Theoretical Analysis (Wiley, New York).
37. Eskridge K, Mumm R (1992) Choosing plant cultivars based on the probability of

outperforming a check. Theor Appl Genet 84:494–500.
38. Hunter DR (2004) MM algorithms for generalized Bradley-Terry models. Ann Stat

32:384–406.
39. Turner HL, van Etten J, Firth D, Kosmidis I (2018) Modelling rankings in R: The

PlackettLuce package. arXiv:1810.12068.
40. Strobl C, Wickelmaier F, Zeileis A (2011) Accounting for individual differences

in Bradley-Terry models by means of recursive partitioning. J Educ Behav Stat
36:135–153.

41. van Etten J, et al. (2018) Replication data for “Crop variety management for cli-
mate adaptation supported by citizen science.” Harvard Dataverse. Available at
https://doi.org/10.7910/DVN/4ICF6W. Deposited July 27, 2018.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1813720116 van Etten et al.



4

Durum wheat in a participatory variety selection plot in Tigray, Ethiopia. Credit: M.
Dell’Acqua
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Data-driven decentralised breeding increases genetic
gain in a challenging crop production environment
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Crop breeding must embrace the broad diversity of smallholder agricultural systems
to ensure food security to the hundreds of millions of people living in marginal pro-
duction environments. This challenge can be addressed by combining genomics, farm-
ers’ knowledge, and environmental analysis into a data-driven decentralised approach
(3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat
(Triticum durum Desf.) decentralised trial distributed as incomplete blocks in 1,165
farmer-managed plots across the Ethiopian highlands with a benchmark representing
genomic selection applied to conventional breeding. We found that 3D-breeding could
double the accuracy of the benchmark. 3D-breeding could identify genotypes with
enhanced local adaptation providing consistent yield advantages across seasons and
locations. We propose this decentralised approach to leverage the diversity in farm-
ers’ fields and complement conventional plant breeding to enhance local adaptation in
challenging crop production environments.
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Introduction
The big data revolution in genomic tools has
transformed plant breeding with inexpensive se-
quencing methods, enabling greatly accelerated
variety development1–3. At present, plant breed-
ers use data-driven methods, including genomic
selection, to increase selection intensity while re-
ducing the time of the breeding cycle and deriving
greater genetic gain4. Most conventional breed-
ing programs still rely on a centralised scheme
aimed at maximizing genetic diversity (G) in
the early stages of selection and then identifying
superior germplasm on the basis of phenotypic
observations made in a limited number of re-
search stations with explicit environmental (E)
and management (M) conditions. In this setting,
genomic selection may be used to predict the
performance of untested new genotypes but is
bound to the G× E ×M interactions captured
by the research stations that are used to train the
selection models5. This limitation of centralised
breeding approaches may result in sub-optimal
development and deployment of crop varieties
for use by farmers seeking local adaptation in
challenging environments6.

To respond to local needs impacted by climate
change, breeders need to find new ways to
accelerate variety development while directly
addressing G × E × M interactions to the
fullest3,7,8. Mobilizing farmers’ traditional
knowledge of crop varieties and local adaptation
can address this challenge6,9,10 in a coherent,
decentralised breeding program relying on farmer-
participatory selection11–13. A crowdsourced
citizen science approach has demonstrated the
feasibility of a data-driven decentralised variety
evaluation14 that enables on-farm variety testing
in a digitally supported and cost-efficient way15.
Predictive accuracy of farmer selection criteria
may outperform breeder evaluations even in a
context of modern agriculture16.

Crowdsourced citizen science further integrates
the E and M components into breeding by per-
forming selection directly in target environments
and using environmental data to analyse geno-
typic responses. Thus, the citizen science ap-

proach scales E and M data collection to generate
a volume of data that matches the big data di-
mension of G. Combining genomic selection with
citizen science opens the possibility of simulta-
neously capturing the three dimensions of crop
performance, G, E, and M, in a data-driven way.
Here, we describe and demonstrate potential ben-
efits of this approach that we call data-driven
decentralised breeding, or 3D-breeding, for short.
Potentially, 3D-breeding could benefit the ~500
million smallholder farmers around the world
who often produce in marginal, low-input envi-
ronments and work with diverse cropping and
farming systems and respond to local consump-
tion preferences17.

We tested the 3D-breeding approach in the
Ethiopian highlands, where many smallholder
farmers grow durum wheat (Triticum durum
Desf.) and select landraces following criteria
related to environmental adaptation, food
culture, and market demand18,19. Rich local
wheat diversity has co-evolved with local cultures
and landscapes over millennia. Consequently,
Ethiopian farmers still often select and cultivate
local landraces, which under local conditions
tend to outperform modern varieties produced
by centralised breeding20. In this context,
3D-breeding can leverage local wheat diversity
and knowledge, and bring breeding closer to
the target environments cutting through the
complexity of G× E ×M .

We compared 3D-breeding with a centralised
breeding approach. In a centralised trial, we
collected phenotypic data and farmer evaluations
on a panel of 400 fully genotyped durum wheat
lines derived from genebank accessions18 in two
managed fields commonly used for varietal se-
lection in the Ethiopian highlands in 2012 and
2013. In a decentralised trial, we distributed a
subset of 41 genotypes (Fig. S1) as packaged sets
containing incomplete blocks of three genotypes,
plus one commercial variety to each farmer, fol-
lowing the tricot citizen science approach15. A
total of 1,165 farmers planted these packages on
their farms across three administrative regions
of Ethiopia (Fig. S2). We use the data from the
centralised and decentralised trials to evaluate

2



whether 3D-breeding could complement genomics
assisted breeding by increasing prediction accu-
racy in challenging environments.

Results
Benchmark: centralised breeding
enhanced by genomic selection and
farmer participation
We established a benchmark that represents
a centralised breeding approach that is a
competitive alternative to 3D-breeding. We
focused on grain yield (GY) and farmers’
overall appreciation of genotypes (OA), which
were both recorded in centralised (station)
and decentralised (farm) trials. Centralised
stations and farmer fields belong to the same
agroecological zones of Ethiopia (Fig. S3). To
establish the benchmark, we used a genomic
selection model trained on GYST AT ION and
OAST AT ION to predict, respectively, GYF ARM

and OAF ARM in 1,165 farmer fields located
in the same breeding mega-environment (Fig.
1A). The benchmark represents a centralised
breeding approach using farmer on-station
selection. Its scope and size reflect a regional
variety trial, an advanced stage in breeding
that focuses on a set of genetic materials and
target environments with the aim of selecting
the best genotypes for varietal release and
recommendation. The stations are commonly
used as breeding field trials for Amhara and
Tigray regions of Ethiopia, and differ in altitude,
temperature, rainfall, and soil20. Additional
multilocation trials would typically occur in
earlier stages of the breeding cycle. On-station
involvement of farmers is not common practice
but is increasingly conducted in association
with breeding12,16 and makes the benchmark
more competitive. 3D-breeding expands on the
centralised genotype characterisation by moving
the selection to farmer fields (Fig. 1B).

Heritability (H2), the proportion of phenotypic
variance explained by genotypic variance, was
0.55 and 0.42 for GYST AT ION across locations
for 2012 and 2013 respectively (Table S1). Men

Fig. 1. Centralised breeding (A) derives recommen-
dations from breeders’ evaluation and possibly partic-
ipatory assessments in a limited set of stations, using
genomics to accelerate the production of varieties that
are eventually recommended with coarse spatial res-
olution. This system may become more efficient if
complemented by 3D-breeding (B), a decentralised ap-
proach where the best candidate genotypes are tested
by farmers in small, blinded and randomized sets.
3D-breeding produces scalable solutions that can be
linked to genomics, farmers’ knowledge and environ-
mental data, to enhance the local adaptation of the
resulting varieties and tailor their recommendation to
the landscape.

and women farmer provided consistent evalua-
tions, although with differences across locations
(Fig. S4). In order to capture farmers’ tradi-
tional knowledge regardless of gender, farmer
scores were combined across men and women
respondents, the H2 of OAST AT ION was 0.78
across locations (Table S2). We validated the
centralised prospect by predicting on-station per-
formance from one season to the next, focusing
on a subset of 41 top-performing genotypes in
managed trials that were later distributed in de-
centralised farmer fields. This led to accuracies
up to τ = 0.248 in predicting GYST AT ION in
the following season (Fig. S5). We found that
farmers’ evaluations (OAST AT ION ) were a bet-
ter predictor than GYST AT ION to capture both
OAST AT ION and GYST AT ION , including when
disaggregated by gender (Fig. S6). GY and OA
collected in stations showed poor correlations
with on-farm performance (Fig. S7).

The benchmark had a low prediction accuracy
when using GYST AT ION to predict GYF ARM in
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individual seasons, with an average of τ = 0.046.
When using OAST AT ION to predict OAF ARM ,
the average was τ = 0.141 (Table 1). Accu-
racy remained low when GYST AT ION was used
to predict measures of GYF ARM and OAF ARM

combined across seasons. However, OAST AT ION

had consistent positive accuracy in predicting
GYF ARM and OAF ARM (Fig. S8). This con-
firmed that genomic selection can be enhanced
by farmers’ traditional knowledge whereas selec-
tion based only on GY could result in reduced
appreciation by farmers (Fig. S9).

GYST AT ION provided a more accurate prediction
of GYF ARM when restricting the model to cold-
tolerant genotypes (Fig. S10). This was likely
due to the partial representation of the climatic
variation that can be provided by a centralised
approach with a handful of stations (Fig. S11), as
farms could experience lower temperatures than
stations (Fig. S12). Still, centralised predictions
of increasingly distant farm environments shown
an erratic pattern, showing that variation at the
farming sites goes beyond that captured by tem-
perature variation (Fig. S13). Regardless the
fact that both stations and farms were located
in the same agroecological zone (Fig. S3), the
benchmark failed to predict performance under
production conditions, showing that the small-
scale variation in climate and management may
hamper the success of centralised breeding deci-
sions.

3D-breeding provides higher prediction
accuracy than the benchmark
3D-breeding uses GYF ARM and OAF ARM to gen-
erate a model that affords predictive extrapo-
lation across space and time. We determined
the accuracy of 3D-breeding with cross-validated
Plackett-Luce trees21 considering seasons as bins.
Environmental indices were derived from seasonal
time-series climatic conditions observed in each
plot. In this case, the model selected the mini-
mum night temperature during vegetative growth
and maximum night temperature during repro-
ductive growth as the most critical indices in
determining the performance of genotypes (Fig.

S14). Genotypes’ DNA markers were included in
the model as an additive matrix in a Bayesian
framework. 3D-breeding consistently provided
higher accuracy than the benchmark forGYF ARM

and OAF ARM with τ = 0.109 and τ = 0.251
(Table 1). The prediction accuracy of the 3D-
breeding approach was not biased towards spe-
cific environmental conditions, suggesting that it
could capture the environmental diversity of test
sites better than the benchmark (Fig. S15).

Table 1: Performance of the 3D-breeding compared
with the benchmark of a centralised genomic selection.
3D-breeding provides higher across-season goodness-
of-fit (Kendall τ) than centralised genomic selection
on overall appreciation (OA) and grain yield (GY)
derived from farmer rankings on decentralised fields.

Approach OA GY

Centralised GS
Season 1 (n=179) 0.134 -0.012
Season 2 (n=651) 0.105 0.076
Season 3 (n=335) 0.183 0.073

0.141 (±0.03) 0.046 (±0.04)

3D-breeding
Season 1 (n=179) 0.270 0.160
Season 2 (n=651) 0.276 0.078
Season 3 (n=335) 0.203 0.119

0.251 (±0.04) 0.109 (±0.04)

Overall appreciation of genotypes in 3D-breeding
resulted in higher accuracies than GYF ARM in
all farmers’ fields (Fig. S16). Previous stud-
ies showed that farmer evaluations are able to
capture agronomic performance of genotypes in
untested locations16,19, as confirmed by the high
H2 observed for OAST AT ION (Table S2). Farm-
ers provided OA according to their own expe-
rience and preferences, and it presumably de-
pended on a combination of traits of which GY
represented only one dimension20. By eliciting
traditional knowledge of men and women farmers
at cropping sites, 3D-breeding successfully pre-
dicted varietal performance under local growing
conditions (Fig. S8). GYF ARM is objectively and
independently measured at each plot and there-
fore it could not be biased by OAF ARM . It is
possible that GYST AT ION and GYF ARM failed
to capture secondary traits with high heritabil-
ity (Table S1) that were observed by farmers and
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that were correlated to the GYF ARM of genotypes
under marginal conditions19,20. As OAF ARM is
directly related to the probability of variety adop-
tion it is an important complement to GY in
driving varietal development for marginal envi-
ronments.

3D-breeding provides consistent recom-
mendations across seasons
Next, we extrapolated the 3D-breeding model
predictions to assess the probability that the
genotypes selected by 3D-breeding on the ba-
sis of OA will outperform current recommen-
dations as per the Wheat Atlas22. We found
that the best three genotypes in each terminal
node of the 3D-breeding model splits had a ge-
netic background markedly separated from that
of varieties currently recommended for the region,
and consistently higher worth (Fig. 2A). Indeed,
the model selected genotypes derived from lan-
draces over improved varieties. We estimated
the probability that the model recommendation
exceeds the current recommendation in terms of
OAF ARM . In this assessment, predictions from
3D-breeding outperformed the current varietal
recommendations22 in most of the farmers’ fields,
with consistently higher probabilities (0.83-0.91),
including in marginal areas for which the cen-
tralised breeding approach could not provide ac-
curate predictions (Fig. 2B). To provide an agro-
nomic measure, we also predicted the increase in
GYF ARM and tested to see if the yield advantage
could be maintained by selecting the best three
genotypes indicated by 3D-breeding under 15 dif-
ferent growing seasons simulated on target farms.
We found that 3D-breeding ensured consistent
recommendations over years with expected in-
creases in yield of about 20% (Fig. 2C). Thus,
3D-breeding accurately identified the best per-
forming genotypes to be advanced in breeding
efforts targeting local growing conditions, to be
developed into suitable new varieties, and to be
promoted with environmental-specific recommen-
dations.

Fig. 2. Selection of durum wheat genotypes based on
3D-breeding. (A) Principal component coordinates of
the genetic diversity of tested genotypes. Pink dots
represent the varieties currently recommended for the
area of study. 3DB Cold tolerant (blue) represents
the top 3 genotypes selected by 3D-breeding in cold
areas (minimum night temperature < 11.5 °C). 3DB
Warm tolerant (red) represents the top 3 genotypes se-
lected by 3D-breeding in warm areas (minimum night
temperature > 11.5 °C). Size of dots represents the
performance of genotypes in farmer fields as overall
appreciation (OA). (B) Probability of outperforming
improved varieties currently recommended by using
genotype selection generated by 3D-breeding with
OA. The panel shows the probability of the top 3
genotypes in a given location in outperforming the
improved variety recommended for that location. (C)
Expected increase in yield across 15 consecutive grow-
ing seasons (2001 to 2015) for genotype selection from
3D-breeding.
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Discussion
Genomic selection is a well-known approach to
accelerate breeding programs, but current imple-
mentations in plant breeding have not yet reached
their full potential. The earliest and most suc-
cessful implementations of genomic selection have
arguably occurred in dairy cattle breeding23. The
accelerated evaluation of bull net merit was key
to this24, but that success also depended on the
fact that breeders had access to phenotyping data
from a broad range of environments in the form
of milking records, which farmers record for their
own management benefit. In conventional crop
breeding, all of the phenotyping costs fall on the
breeding program and limit the number of tar-
get environments that can be represented in the
selection process. 3D-breeding seeks to comple-
ment and expand the flow of information from
a few centralised locations to the whole mega-
environment where results from numerous decen-
tralised observations and farmer knowledge may
converge to inform breeding decisions.

In centralised breeding, the environmental varia-
tion of target environments is factored through
experimental control or indirectly as an average
response across breeding stations as in our bench-
mark. This makes extrapolation to real farm-
ing conditions challenging. G × E affects yield
and its components25,26 and calls for selection
models to explicitly account for it27. These mod-
els, however, are bound to the observations that
can be made in resource-intensive breeding trials.
Data from crowdsourced citizen science, like 3D-
breeding, may further our understanding of the
G × E interactions that are observed in farmer
fields and allow the integration of increasingly
accurate seasonal prediction models28 in breeding
and germplasm recommendation pipelines.

The 3D-breeding approach addresses the low cor-
relation between performance in selection environ-
ments and production environments, while taking
a step forward to fully data-driven breeding. In
this, 3D-breeding is a promising approach that
could add to conventional breeding increasing
varietal performance in smallholder agriculture,
which accounts for more than 80% of all global

farms17. Here, the adoption rate of current breed-
ing innovation may be suboptimal due to socioeco-
nomic and environmental factors20,29–31. Climate
change is pushing these farming systems to the
edge of their adaptation capacity with increas-
ing pressure from pest and diseases32,33, threats
of yield loss7,34 and increased seasonal climatic
variability35,36, calling for tailored solutions. 3D-
breeding may speed up the turnover of varietal
release to address these challenges. As farmers
are at the centre of the experimental design, va-
rieties deriving from 3D-breeding are more likely
to be adopted and suited to local cultivation10,37,
increasing the effectiveness of breeding efforts.
Indeed, we found that farmers’ OA was a bet-
ter predictor than GY in predicting yield real-
ized both in centralised and decentralised trials
(Table 1). Likewise, varieties derived from lan-
draces consistently outranked the performance
of improved varieties (Fig. 2A) derived from
centralised breeding18. Beyond varietal recom-
mendations, 3D-breeding can direct the choice
of parents to crosses aiming at the production
of recombinant lines to provide higher and more
stable yields in local agriculture.

3D-breeding is useful beyond smallholder farming
agriculture, and the citizen science approach on
which it relies has already been applied to several
crops to enhance the selection of climate-adapted
varieties14. Its general scheme may also be useful
in high-input, yield maximizing agriculture to en-
hance local adaptation and support sustainability
and food security, where the usefulness of farm-
ers’ evaluations in a genomic setting was already
demonstrated16. There are a number of open
questions in relation to decentralised crop breed-
ing, including how to best motivate new farmers
to participate in the evaluation of materials, how
much planting material each farmer needs, the
logistics of providing farmers with the genetic
material, and how to share benefits deriving from
the utilisation of farmers’ knowledge to produce
new varieties.

3D-breeding may be most effective as a comple-
ment to a centralised breeding system providing
a high-throughput evaluation of correlated traits
to support earlier varietal selection to be tested
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in farmer fields38. Accuracy is just one among
the factors controlling genetic gain39, thus our
findings should be integrated in the broader pic-
ture of modern breeding. Multi-trait models may
increase prediction accuracy by measuring corre-
lated traits with higher heritability38,40,41. These
models could be employed in centralised stations
and used to narrow down the set of varieties
to be distributed to farmers in the 3D-breeding
approach aiming to fine-tune local adaptation.
Moreover, our findings support the need to fur-
ther explore the challenge to model farmers’ ap-
preciation at the genomic level to improve the
effectiveness of genotypes evaluation trials16.

The advantages provided by the approach are
clear: phenotyping costs would be divided in
much smaller packets, supporting the modular
expansion of the breeding effort towards new ge-
netic materials or new locations. In return, each
generated datapoint would be a better represen-
tation of the true farming conditions to which
varieties are directed. Previous research found
that the involvement of farmers in selection ex-
periments has negligible effects on costs42. In 3D
breeding the costs are shared by farmers, who
would in exchange obtain access to the best mate-
rials for their farm. Farmer preference would be
collected directly on farms rather than derived
from correlated metrics that come from on-station
evaluations in centralised breeding. In terms of
absolute costs, an implementation of 3D-breeding
based on OA would only require seed amplifica-
tion, seed distribution and telecommunications to
obtain feedback from farmers. Genotyping costs
are negligible thanks to ever increasing sequenc-
ing capabilities1. Indeed, a tricot experiment
conducted in Nicaragua14 resulted in a lower cost
per datapoint in decentralised evaluations than
in stations experiments.

The data-driven focus of 3D-breeding enables
embracing the complexity of real-world G × E
for the benefit of breeding. Such a multidimen-
sional, collaborative approach calls for best prac-
tices in data management and sharing43. 3D-
breeding is based on a documented set of meth-
ods, from experimental design15 to data curation
and analysis21,44. While our demonstration of

these methods relied on a large dataset, we be-
lieve that much larger field sample designs and
genomic variant datasets are quite feasible and
will provide additional power, as is also much in
evidence in livestock genetics. The expansion of
the design with the addition of further testing
seasons and local management conditions may
allow to highlight drivers of local performance
of genotypes beyond temperature45. The crowd-
sourced citizen science approach associated with
open-source digital tools makes it possible for
breeders and farmers to apply 3D-breeding in
new contexts and crops, dependent only on cre-
ativity in identifying untested production niches,
potentiating a culturally-driven coevolution be-
tween farming systems and data-driven breeding
to complement traditional breeding.

Materials and Methods
Genotypes sampling and DNA extrac-
tion
We selected 400 durum wheat (Triticum durum
Desf.) genotypes from a representative collection
of accessions from the Ethiopian Biodiversity In-
stitute. Genomic DNA was extracted from fresh
leaves pooled from five seedlings for each of the
accessions with the GenEluteT M Plant Genomic
DNA Miniprep Kit (Sigma-Aldrich, St Louis,
USA) following manufacturer’s instructions in
the Molecular and Biotechnology Laboratory at
Mekelle University, Ethiopia. Genomic DNA was
checked for quantity and quality by electrophore-
sis on 1% agarose gel and NanodropTM 2000
(Thermo Fisher Scientific Inc., Waltham, USA).
Genotyping was performed on the Infinium 90k
wheat chip at TraitGenetics GmbH (Gatersleben,
Germany). Single nucleotide polymorphisms
(SNPs) were called using the tetraploid wheat
pipeline in GenomeStudio V11 (Illumina, Inc.,
San Diego, CA, USA). SNP calls were cleaned
for quality by filtering positions and samples
with failure rate above 80% and heterozygosity
above 50%. Full details on the genotyping are
given by Mengistu et al. (2016)18. The SNP calls
for the genotypes included in this study and the
details on the provenance of genotypes tested are
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given as part of the full dataset on Dataverse46.

Evaluation of genotypes in centralised
trials
Centralised trials were performed in 2012 and
2013 in the districts of Geregera (Amhara) and
Hagreselam (Tigray) (Fig. S1). The experimen-
tal stations were chosen to represent the highland
agroecology of Ethiopia, and are often used as va-
rietal testing sites for local agriculture. The trial
was laid out in a replicated alpha lattice design,
and field managements were conducted as per
local guidelines with manual weeding. Accessions
were sown in four rows 2.5 m long, at a seeding
rate of 100 kg · ha−1. At sowing, 100 kg · ha−1

diammonium phosphate and 50 kg · ha−1 urea
were applied, with additional 50 kg ·ha−1 urea at
tillering. In 2012, thirty experienced smallholder
farmers growing durum wheat (15 men and 15
women) were invited to participate in the trial
evaluations at the station plots, held concurrently
after flowering stage. The farmers had no previ-
ous knowledge of the genotypes included in this
study to prevent bias in the evaluations. The par-
ticipants provided appraisal with Likert47 scales
(1 to 5, worse to best) given to genotypes for
overall appreciation (OA)19,20. Farmers did not
use half-values in order to streamline the evalua-
tion effort. Research technicians measured grain
yield (GY) as grams of grain produced per plot,
then converted into t · ha−1. Absolute values of
GY and OA measured in centralised trials were
converted into ordinal rankings.

Evaluation of genotypes in decen-
tralised trials
A total of 1,165 decentralised plots were stab-
lished between 2013 and 2015 during three grow-
ing seasons across the regions of Amhara (471),
Oromia (399) and Tigray (295) (Fig. S1) using a
subset of the 41 best genotypes identified through
farmer evaluation in centralised trials20. The
farms were sampled in the same agroecological
zones of the centralised fields (Fig. S3). Season 1
(2013) comprised 179 fields, Season 2 (2014) com-
prised 651 fields, and Season 3 (2015) comprised

335 field. Trials (farmer-managed plots) followed
the triadic comparison of technologies (tricot)
approach15. Sets of three local genotypes plus an
improved variety (Asassa in Tigray and Amhara,
and Hitosa and Ude in Oromia) were allocated
randomly to farmers as incomplete blocks, main-
taining spatial balance by assigning roughly equal
frequencies of the genotypes. Trial size ranged
from 0.4 m2 to 1.6 m2 depending on season and
location. Farmers set, managed and evaluated
their own experiments indicating the OA of geno-
types through ranking the four entries that they
received from best to worst, using pre-defined
answer forms at the end of the growing season.
Differently from the centralised trials, the OA was
derived from the relative rankings of genotypes as
each farmer evaluated a different set of materials.
Research technicians collected GY measures in
farmers’ plots after harvesting.

Centralised trait data analysis
All analyses were done in R48. GYST AT ION and
OAST AT ION measured in centralised trials were
used to derive best linear unbiased prediction
(BLUP) values using the R package ASReml49,
treating locations as a fixed factor and all other
factors as random. Full model details are reported
in Supplementary Note 1. For the central com-
parison between benchmark and 3D-breeding, we
used measures of GYST AT ION combined across
seasons and locations. Similarly, OAST AT ION

in the central comparison represents OA values
combined across genders and locations. When
relevant, GYST AT ION and OAST AT ION measures
are split by location, season or gender. Agree-
ment between farmer gender groups in evaluating
centralised station data was derived from a linear
model fit. Spearman correlations between loca-
tion specific BLUP values and farm performance
were also computed.

Decentralised trait data analysis
For the analysis of the decentralised data we used
the Plackett-Luce model21,50,51. Plackett-Luce
is a rank-based model that estimates the worth
parameter. These parameters α are related to the
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probability (P ) that one genotype i wins against
all other n genotypes in set, and are obtained
using the following equation:

Equation [1]

P (i � {j, ..., n}) = ai

a1 + ...+ an

Each farmer ranking in the input OAF ARM data
was converted to a dense ranking, which ranked
genotypes from 1 (first place) to nr (last place).
Genotypes not ranked in a given farmer plot had
a rank of 0. For GYF ARM , we converted each
observation into ordinal rankings, by assigning
values from 1 (highest yield) to nr (lowest yield),
and then converted into a dense ranking. Alto-
gether, OAF ARM and GYF ARM represented the
probably of winning of any given genotype in
any set of testing sites by either farmer choice
(OA) or production (GY). In order to detail spe-
cific aspects of the dataset, the probability of
winning was computed restricting farms to those
belonging to any of specific subset (e.g. year,
environmental distance class, region). Turner et
al 202021 introduces the Plackett-Luce model and
its applications with partial rankings, which was
the case in this research. The implementation
of Plackett-Luce model to analyse data from de-
centralised crop variety trials is demonstrated by
van Etten et al. 201914.

Implementation of the genomic selec-
tion benchmark
The benchmark representing a centralised breed-
ing system was conducted using genomic selec-
tion models and marker-based genetic relation-
ship matrices computed on BLUP data with the
package rrBLUP52. To measure accuracy of ge-
nomic selection predictions, we calculated the
Kendall’s tau coefficient (τ), a measure of simi-
larity of rankings53, between predicted values and
observed values. The use of the τ metric, uncom-
mon in breeding, allowed to compare accuracies
with the 3D-breeding approach. A Pearson’s
correlation, the standard metric for genomic se-
lection accuracy, was also computed but did not
show any relevant difference with the Kendall τ .

The following genomic selection scenarios
were considered: (i) using GYST AT ION and
OAST AT ION to predict GYST AT ION measured
in the same locations in the following season;
(ii) using GYST AT ION and OAST AT ION to
predict GYF ARM and OAF ARM . In the first
scenario, the training population was made of all
genotypes measured in stations in 2012 and the
test population was the subset of 41 genotypes
included in the decentralised trials and measured
in stations in 2013. In the second scenario, the
training population resulted from the combined
measures of GYST AT ION and OAST AT ION across
seasons and locations and the test population
was the subset of 41 genotypes measured for
GYF ARM and OAF ARM independently for each
season. In a siding analysis stations were used
to predict increasingly different farms based on
quantiles of environmental distances according
to the distances derived from climatic data.
Note that in both scenarios the use of a training
sample overlapping the test sample was meant
to allow a fair comparison with the 3D-breeding
that also uses the entire dataset to train the
model.

Mirroring the approach used in the 3D-breeding,
the accuracy of genomic selection in the second
scenario was derived from a cross-validation ap-
proach averaging Kendall τ specific for Season 1,
Season 2, and Season 3 using the square root of
the sample size as weights54.

Alternative genomic selection scenarios were also
performed but showed consistent accuracy values.
Most notably: (i) without overlap between train-
ing and test samples, (ii) restricting training and
test samples to the subset distributed to decen-
tralised fields, (iii) using rankings derived from
BLUP values to train the GY and OA model. In
none of the cases above, the benchmark provided
accuracies with a noticeable difference from the
second scenario reported above and used for the
central comparison with 3D-breeding.

3D-breeding implementation
The model representing the 3D-breeding ap-
proach was built with the data generated by
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the citizen science decentralised trials using the
Plackett-Luce model. We used two variants of
the model, one using OAF ARM and the other
using GYF ARM to check which of these metrics
had the higher model precision, as shown in
Table 1. DNA data from SNPs was added into
the model as a prior using an additive matrix.
Climatic variables were linked to the rankings
using the Model-Based Recursive Partitioning
approach55. Daily temperature and precipitation
data were obtained from the NASA LaRC
POWER Project (https://power.larc.nasa.gov/),
using the R package nasapower56. A set of
climatic covariates were extracted for the
vegetative, reproductive and grain filling phases
and the whole growth period (from planting
date to harvesting as measured on-site) in
each observation point using the R package
climatrends57. This resulted in 110 covariates.

To create a model that provides generalizable
predictions across seasons with few covariates,
we used blocked cross-validation (with seasons
as blocks) combined with a forward selection58.
We used the deviance values of each validation
season to calculate an Akaike weight, which is the
probability that a given variable combination rep-
resents the best model59. We performed forward
selection, using this combined Akaike weight as
our selection criterion. The PLT models had a
cut-off value of α = 0.01 and a minimal group
size of 20 percent of the total dataset partitioning
selection. The variables selected under this proce-
dure were the maximum night temperature (◦C)
during reproductive growth and the minimum
night temperature (◦C) during the vegetative
growth. To compare the accuracy of the model
representing 3D-breeding with the benchmark,
we calculated the Kendall τ between observed
rankings and predicted coefficients.

Generalisation of the 3D-breeding
We then evaluated if the model obtained with the
variable selection procedure retained predictive
power across seasons. We simulated untested fu-
ture seasonal climate with representative seasonal
scenarios of past climate conditions by extracting

the last 15 years of daily climate data derived
from NASA POWER (2001-2015). We deter-
mined three windows for sowing dates in each
growing season as the midpoints of equiprobable
quantile intervals estimated from the observed
planting dates in the data set. We predicted
genotype performance for 15 seasons × 3 sowing
dates (45 seasonal scenarios) for 1,200 random
points generated across an alpha hull area within
the range of the trials’ coordinates. We averaged
genotype probability of winning across these sce-
narios for each planting date interval, excluding
the seasons used as testing data.

We calculated the reliability (Fig. 2B), the proba-
bility of outperforming a check variety60. We used
the worth parameters from Plackett-Luce to de-
termine the values of positive-valued parameters
αi associated with each genotype i, by comparing
the worth from the check variety (Asassa, Hitosa
and Ude, currently recommended for the mega-
environment22) with the worth of the selected
genotypes from 3D-breeding. These parameters
(α) are related to the probability (P ) that geno-
type i wins against all other n genotypes in set
following the Luce’s Choice Axiom, which states
that the probability that one item beats another
is independent from the presence or absence of
any other items in the set. Reliability was calcu-
lated following Equation 2:

Equation [2]

P (i � {j, ..., n}) = ai

a1 + ...+ an
= ai

1 = ai

Environmental characterisation of test
sites and genotypes
The agroecological zonation of Ethiopia was ob-
tained by the Ethiopian Institute of Agricultural
Research (EIAR)61. GPS coordinates of cen-
tralised stations and decentralised farmer fields
were used to retrieve climatic data from NASA
POWER. Temperature indices for covariates used
in the PL model were retrieved for the growing
seasons object of the study in the time span from
sowing date and flowering dates as measured on-
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site. Climatic variables considered were the maxi-
mum night temperature (◦C) during reproductive
growth and the minimum night temperature (◦C)
during the vegetative growth, which showed to
be the most relevant for the sampled data. A
principal component analysis (PCA) was used
to summarise and depict variation at test sites.
Climatic distance of test sites was derived from
a multidimensional scaling (MDS) of the mul-
tivariate climate dataset. For each of the two
stations, climatic distance was computed with
all farm sites. Wheat genotypes were split in
cold adapted and warm adapted according to
the altitude of their original sampling site with a
one-tailed, unequal-variance t-test.

Supporting software
Organising the datasets relied on R pack-
ages data.table62, caret63, gosset64, janitor65,
magrittr66 and tidyverse67. Climatic variables
were obtained using the packages climatrends57
and nasapower56. Statistical analysis was
performed using packages PlackettLuce21,
gosset64 and qvcalc68. Spatial visualisation was
performed with the packages dismo69, raster70,
sf71 and smoothr72. Charts were produced using
packages corrplot73, ggplot274 and patchwork75.

Data availability
Full data and code are available through
Dataverse46.
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Summary

The chirps package provides functionalities for reproducible analysis in R (R Core Team,
2020) using the CHIRPS (Funk et al., 2015) data. CHIRPS is daily precipitation data set
developed by the Climate Hazards Group (Funk et al., 2015) for high resolution precipitation
gridded data. Spanning 50◦ S to 50◦ N (and all longitudes) and ranging from 1981 to near-
present (normally with a 45 day lag), CHIRPS incorporates 0.05 arc-degree resolution satellite
imagery, and in-situ station data to create gridded precipitation time series for trend analysis
and seasonal drought monitoring (Funk et al., 2015). Additionally, the package provides the
API client for the IMERG (Huffman et al., 2014) and ESI (SERVIR Global, 2019a) data. The
Integrated Multi-satelliE Retrievals for GPM (IMERG) data provides near-real time global
observations of rainfall at 0.5 arc-degree resolution, which can be used to estimate total
rainfall accumulation from storm systems and quantify the intensity of rainfall and flood
impacts from tropical cyclones and other storm systems. IMERG is a daily precipitation
dataset available from 2015 to near-present. The evaporative stress index (ESI) data describes
temporal anomalies in evapotranspiration produced weekly at 0.25 arc-degree resolution for
the entire globe (Anderson et al., 2011). The ESI data is based on satellite observations of
land surface temperature, which are used to estimate water loss due to evapotranspiration
(the sum of evaporation and plant transpiration from the Earth’s land and ocean surface to
the atmosphere). The ESI data is available from 2001 to near-present. When using these
data sets in publications please cite Funk et al. (2015) for CHIRPS, Huffman et al. (2014)
for IMERG and SERVIR Global (2019a) for ESI.

Implementation

Four main functions are provided, get_chirps(), get_imerg(), get_esi() and precip_in
dices(). The get_chirps() function provides access to CHIRPS data via the ClimateSERV
API Client (SERVIR Global, 2019b) with methods to handle objects of class ‘data.frame’,
‘geojson’ and ‘sf’ via the package methods (R Core Team, 2020). To accept the query,
ClimateSERV requires a geojson object of type ‘Polygon’ (one single polygon per request).
Using the package sf (Pebesma, 2018) internally, the input provided in get_chirps() is
transformed into a list of polygons with a small buffer area (0.0001 arc-sec by default) around
the point and transformed into a list of geojson strings. chirps uses crul (Chamberlain, 2019)
to interface with ClimateSERV API. The query returns a JSON object parsed to jsonlite
(Ooms, 2014) to obtain the data frame for the time series required. get_chirps() returns a
data.frame, which also inherits the classes ‘chirps’ and ‘chirps_df’, where each id represents
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the index for the rows in the in-putted ‘object’. The function get_imerg() returns the
precipitation data from the IMERG data set. The function works with the same parameters
described for get_chirps() and also inherits the classes ‘chirps’ and ‘chirps_df’. The function
get_esi() returns the evaporative stress index (ESI) data (Anderson et al., 2011), and works
similarly to get_chirps() returning a data.frame which inherit the class ‘chirps_df’. Users
providing objects of class ‘sf’ and ‘geojson’ in get_chirps(), get_imerg() and get_esi()
can also choose to return an object with the same class as the object provided using the
arguments ‘as.sf = TRUE’ or ‘as.geojson = TRUE’. With the function precip_indices
() users can assess how the precipitation changes across the requested time series using
precipitation variability indices (Aguilar et al., 2005), computed using stats (R Core Team,
2020), the main input is an object of class ‘chirps’. Extended documentation is provided with
examples on how to increase the buffer area and draw quadrants for the geojson polygon using
sf (Pebesma, 2018).

Application: a case study in the Tapajós National Forest

The Tapajós National Forest is a protected area in the Brazilian Amazon. Located within
the coordinates -55.4◦ and -54.8◦ E and -4.1◦ and -2.7◦ S with ~ 527,400 ha of multiple
Amazonian ecosystems. We take twenty random points across its area to get the precipitation
from Jan-2008 to Dec-2018 using get_chirps(). We use an object of class ‘sf’ which is
passed to the method get_chirps.sf(). Then, we compute the precipitation indices for the
time series with intervals of 30 days using precip_indices().

library("chirps")
library("sf")

data("tapajos", package = "chirps")
set.seed(1234)
tp <- st_sample(tapajos, 20)
tp <- st_as_sf(tp)

dt <- get_chirps(tp, dates = c("2008-01-01","2018-01-31"))

p_ind <- precip_indices(dt, timeseries = TRUE, intervals = 30)

We selected four indices for the visualization using tidyverse (Wickham et al., 2019). Plots
were ensembled together using gridExtra (Auguie, 2017). Here we see how these indices are
changing across the time series (Figure 1). In this quick assessment, we note an increasing
extent of consecutive dry days (MLDS) across the time series, with also a decrease in the
number of consecutive rainy days (MLWS), which stays above the historical average for MLDS
and bellow the historical average for MLWS. The trends also show a decrease in the total
rainfall in the 30-days intervals, staying below the average after 2014. Finally, we note a
decrease in maximum consecutive 5-days precipitation, which also stays bellow the historical
average.
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Figure 1: Trends in precipitation variability across the Tapajós National Forest, Brazil, for the period
of 01-Jan-2010 to 31-Dec-2018 with four precipitation indices. MLDS, maximum length of consecutive
dry days (days), MLWS, maximum length of consecutive wet days (days), Rtotal, total precipitation
(mm), Rx5day, maximum consecutive 5-days precipitation (mm). Red lines indicates the historical
mean of each index in the time series. Blue line indicates the smoothed trends in each index using
the ’loess’ method.

Other applications and conclusion

Deriving precipitation indices that can be obtained from CHIRPS proved to be an excellent
approach to evaluate the climate variability using precipitation data (de Sousa et al., 2018) and
the effects of climate change on a continental analysis (Aguilar et al., 2005). Additionally,
these indices can be used to register specific effects of climate variability on crop varietal
performance. In crop modelling, Kehel, Crossa, & Reynolds (2016) applied this to assess the
interactions of wheat varieties with the environment, showing how severe drought, assessed
with the maximum length of dry spell (MLDS), can affect the plant development and the yield.
These indices can also be useful to improve variety recommendation for climate adaptation in
marginal production environments (van Etten et al., 2019).
Overall, CHIRPS data can be used in many applications and currently has over 800 citations
from studies using this tool. Many applications are the field of agriculture, hydrologic mod-
elling and drought monitoring, but also some studies using this in disease control programs
(e.g. Thomson et al. (2017), Horn et al. (2018)). The chirps package aims to make it
possible for researchers in these fields to implement this tool into a replicable and reproducible
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workflow in R.
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Summary
Abiotic factors play an important role in most ecological and crop systems that depend on certain levels
of temperature, light and precipitation (and their interplay) to initiate important physiological events
(Schulze et al., 2019). In the walk of climate change, understanding how these factors drive the physiological
processes is a key approach to provide recommendations for adaptation and biodiversity conservation. The
package climatrends aims to provide the methods in R (R Core Team, 2020) to compute precipitation and
temperature indices that serve as input for climate and crop models (Kehel, Crossa, & Reynolds, 2016; van
Etten et al., 2019), trends in climate change (Aguilar et al., 2005; de Sousa et al., 2018) and applied ecology
(Prentice et al., 1992; Liu & El-Kassaby, 2018).

Methods and features
Implementation
Six main functions are provided (Table 1), crop_sensitive(), ETo(), GDD(), late_frost(), rainfall()
and temperature() with a default method for numeric ‘vector’ and additional methods implemented via
the package methods (R Core Team, 2020) for classes ‘matrix’ (or array), ‘data.frame’, and ‘sf’ (of geometry
POINT or POLYGON) (Pebesma, 2018). The last two methods are designed to fetch data from cloud sources,
until now from the packages nasapower (Sparks, 2018) and chirps (de Sousa, Sparks, Ashmall, van Etten,
& Solberg, 2020).

Table 1: Main functions available in climatrends.

Function Definition
crop_sensitive() Compute crop sensitive indices
ETo() Reference evapotranspiration using the Blaney-Criddle method
GDD() Compute growing degree-days
late_frost() Compute the occurrence of late-spring frost
rainfall() Precipitation indices
temperature() Temperature indices

These functions started as a set of scripts to compute indices in citizen science trials. In these trials. Aiming
to capture the environmental variation across different sites, which can differ since each data-point generally



have a different starting day and duration, the arguments day.one and span are vectorised and may be
variable across data-points. For time series analysis, where fixed periods are defined across many locations,
the indices can be adjusted with the argument last.day linked to the argument day.one.

Temperature and precipitation indices
The package climatrends computes 12 temperature indices and 10 precipitation indices that were suggested
by previous research on climatology and crop science (Aguilar et al., 2005; Kehel et al., 2016). The indices
computed by the functions temperature() and rainfall() are described in Table 2.

Table 2: Temperature and precipitation indices available in climatrends.

Index Definition Unit
maxDT Maximun day temperature °C
minDT Minimum day temperature °C
maxNT Maximun night temperature °C
minNT Minimum night temperature °C
DTR Diurnal temperature range (mean difference

between DT and NT)
°C

SU Summer days, number of days with maximum
temperature > 30 °C

days

TR Tropical nights, number of nights with
maximum temperature > 25 °C

days

CFD Consecutive frosty days, number of days with
temperature < 0 °C

days

WSDI Maximum warm spell duration, consecutive
days with temperature > 90th percentile

days

CSDI Maximum cold spell duration, consecutive
nights with temperature < 10th percentile

days

T10p The 10th percentile of night temperature °C
T90p The 90th percentile of day temperature °C
MLDS Maximum length of consecutive dry day, rain

< 1 mm
days

MLWS Maximum length of consecutive wet day, rain
>= 1 mm

days

R10mm Heavy precipitation days 10 >= rain < 20 mm days
R20mm Very heavy precipitation days rain >= 20 days
Rx1day Maximum 1-day precipitation mm
Rx5day Maximum 5-day precipitation mm
R95p Total precipitation when rain > 95th

percentile
mm

R99p Total precipitation when rain > 99th
percentile

mm

Rtotal Total precipitation in wet days, rain >= 1 mm mm
SDII Simple daily intensity index, total

precipitation divided by the number of wet
days

mm/days

Growing degree-days
Growing degree-days (gdd) is an heuristic tool in phenology that measures heat accumulation and is used to
predict plant and animal development rates (Prentice et al., 1992). Growing degree-days are calculated by
taking the integral of warmth above a base temperature (T0). The function GDD() applies by default the



following equation.

Equation [1]

GDD = Tmax + Tmin

2 − T0

where Tmax is the maximum temperature in the given day, Tmin is the minimum temperature in the given
day and T0 is the minimum temperature for growth (as per the physiology of the focal organism or ecosystem
averages).

Additionally, the function GDD() offers three modified equations designed for cold environments and for
tropical environments. For cold environments, where Tmin may be lower than T0, there are two modified
equations that adjust either Tmean (variant a) or Tmin (variant b). The variant a changes Tmean to T0 if
Tmean < T0 and is expressed as follow.

Equation [2]

GDD = max

(
Tmax + Tmin

2 − T0, 0
)

The variant b, is calculated using Equation 1, but adjusts Tmin or Tmax to T0 if T < T0, the equation is
adjusted as follows.

Equation [3]

T < T0 → T = T0

where T may refer to Tmin and/or Tmax when the condition of being below T0 applies.

For tropical areas, where the temperature may surpass a maximum threshold (T0max), resulting in limited
development, the minimum temperature is adjusted using Equation 3 and the maximum temperature is
adjusted to a maximum base temperature as follow.

Equation [4]

Tmax > T0max → Tmax = T0max

where T0max
is the maximum base temperature for growth, defined in GDD() using the argument tbase_max.

These modified equations are defined as ‘a’, ‘b’ and ‘c’, respectively, and can be selected using the argument
equation.

By default, the function returns the degree-days that is accumulated over the time series using Equation 1.
Additionally, the function may return the daily values of degree-days or the number of days that a given
organism required to reach a certain number of accumulated degree-days. These values are defined by ‘acc’,
‘daily’ or ‘ndays’ and can be adjusted using the argument return.as. The required accumulated gdd is
defined with argument degree.days. For example, the Korean pine (Pinus koraiensis) requires 105 ◦C
accumulated gdd to onset the photosynthesis (Wu, Guan, Yuan, Wang, & Jin, 2013). In that case, GDD()
will calculate the growing degree-days (gdd) and sum up the values until it reaches 105 ◦C and return the
number of days required in the given season (GDDr), as follows.



Equation [5]

‖ GDDr ‖= ggd1 + ... + gddn

where GDDr is the length of the vector with accumulated degree-days from day 1 to n.

Late-spring frost
Late-spring frost is a freezing event occurring after a substantial accumulation of warmth. Frost damage is a
known issue in temperate and boreal regions, it is associated with the formation of extracellular ice crystals
that cause damage in the membranes (Lambers, Chapin III, & Pons, 2008). Freezing occurring after an
advanced phenological stage during spring may harm some plant species, resulting in lost of productivity in
crop systems (Trnka et al., 2014) and important ecological impacts (Zohner et al., 2020).

The function late_frost() supports the computation of late-spring frost events. The function counts
for the number of freezing days with minimum temperature below a certain threshold (argument tfrost).
And returns the number of days spanned by frost events (temperature below tfrost), latency (event with
no freezing temperature but also no accumulation of growing degree-days) and warming (when growing
degree-days are accumulated enabling the development of the target organism). Additionally the function
returns the first day of the events. The function calculates the growing degree-days applying the variant b (Eq.
3), which can be adjusted using the argument equation passed to GDD() as explained in the later section.
The main inputs are a vector with maximum and minimum temperatures to compute the degree-days, a
vector of dates (argument date), and, if needed, the tbase and tfrost, set by default to 4 and -2 ◦C.

Crop-related indices
Two functions in climatrends are mainly designed to capture the effects of climate on the development and
stress of crop species, crop_sensitive() computes indices that aim to capture the changes in temperature
extremes during key phenological stages (e.g. anthesis), and ETo() computes the reference evapotranspiration.

The crop sensitive indices available in climatrends are described in Table 3. These indices were previously
used in crop models to project the impacts of climate change on crop yield (Trnka et al., 2014; Challinor,
Koehler, Ramirez-Villegas, Whitfield, & Das, 2016). Each index has a default temperature threshold(s)
which can be adjusted by using the arguments *.threshold. Where the * means the index. For example,
to change the defaults for hts_max (high temperature stress), a vector with the temperature thresholds is
passed through the argument hts_max.thresholds.

The reference evapotranspiration measures the influence of the climate on a given plant’s water need (Brouwer
& Heibloem, 1986). The function ETo() applies the Blaney-Criddle method, a general theoretical method
used when only air-temperature is available locally. It should be noted that this method is not very accurate
and aims to provide the order of magnitude of evapotranspitation. The reference evapotranspiration is
calculated using the following equation.

Equation [6]

ETo = p×
(

0.46× Tmax + Tmin

2 + 8
)
×Kc

Where p is the mean daily percentage of annual daytime hours, Tmax is the maximum temperature, Tmin is
the minimum temperature, and Kc is the factor for organism water need.

The percentage of daytime hours (p) is calculated internally by the ‘data.frame’ and ‘sf’ methods in ETo()
using the given latitude (taken from the inputted object) and date (taken from the inputted day.one). It
matches the latitude and date with a table of daylight percentage derived from Brouwer and Heibloem (1986).
The table can be verified using climatrends:::daylight.



Table 3: Crop sensitive indices computed by climatrends.

Index Definition Default thresholds
hts_mean High temperature stress using daily mean

temperature, and given as percentage number
of days a certain threshold is exceeded

32, 35, 38 °C

hts_max High temperature stress using daily max
temperature, and given as percentage number
of days a certain threshold is exceeded

36, 39, 42 °C

hse Heat stress event, and given as percentage
number of days a certain threshold is
exceeded for at least two consecutive days

31 °C

hse_ms Heat stress event, and given the maximum
number of days a certain threshold is
exceeded for at least two consecutive days

31 °C

cdi_mean Crop duration index using daily mean
temperature, and given as max(Tmean -
threshold, 0)

22, 23, 24 °C

cdi_max Crop duration index using daily max
temperature, and given as max(Tmax -
threshold, 0)

27, 28, 29 °C

lethal Lethal temperatures, defined as percentage of
days during the timeseries where daily mean
temperature exceeds a given threshold

43, 46, 49 °C

Examples
Common bean
During five growing seasons (from 2015 to 2017) in Nicaragua, van Etten et al. (2019) conducted a crowdsourc-
ing citizen-science experiment testing 11 common bean varieties (Phaseolus vulgaris L.) in 842 farmer-managed
plots. Sets of three varieties were allocated randomly to farms as incomplete blocks. A Plackett–Luce model
was used to analyse the data, this model estimates for each variety the probability that it wins, beating all
other varieties in the set (Turner, van Etten, Firth, & Kosmidis, 2020). An earlier version of climatrends
was used in this research to capture the seasonal climate variation, here we reproduce part of this analysis
regarding calculation and application of the climate indices. The approach here is slightly different because it
considers the growing-degree days from planting date to maturity (the earlier study used planting date to the
end of reproductive stage) and add new indices to illustrate the package implementation.

The data used here is available as supplementary material as cbean. This contains a data.frame with a
Plackett-Luce grouped rankings, the geographical coordinates of each sampled plot and the planting dates
from where each farmer decided to start the experiment. The planting dates differ from each other in the same
season. The temperature data used was the land surface temperature MODIS (MYD11A2) (Wan, Hook, &
Hulley, 2015) and is storaged as an array with two layers (1st for the day and 2nd for the night temperatures).
Each column corresponds to the dates (from 2015-09-10 to 2017-06-09) and the rows corresponds to the rows
in the cbean data.frame.

Since the phenological stages were not available, we estimate these stages based on the amount of growing
degree-days required to reach a given stage using the function GDD(). For common beans, we define 900
degree-days, from planting date to maturity (de Medeiros, Daniel, & Fengler, 2016). The input data is
the array with the temperature data, the vector with planting dates (cbean$planting_date), the required
amount of degree-days passed to the argument degree.days and the character string ‘ndays’ specifying that
the function must return the values as number of days. GDD() calls internally the function get_timeseries()
which will match the given dates in day.one with the column names in the array and concatenate the values
for each row. Then GDD() computes the degree-days for the time series and return the length of the vector



where the accumulated gdd reached the pre-defined threshold (900).

The degree-days spanned from 54 to 100 days as shown in Fig. 1a. For simplicity we take the average per
season and use this vector to compute the temperature indices.
library("climatrends")
library("PlackettLuce")
library("tidyverse")

# compute the number of days required to accumulate
# gdd from planting date to maturity
gdd <- GDD(modis,

day.one = cbean$planting_date,
degree.days = 900,
return.as = "ndays")

# add gdd to the cbean data and take the average
# of gdd per season
cbean %<>%

mutate(gdd = gdd$gdd) %>%
group_by(season) %>%
mutate(gdds = as.integer(mean(gdd)))

To compute the temperature indices we use the array with tempeture data, the vector with planting dates, and
the seasonal averaged degree-days passed as a vector using the argument span. temperature() concatenates
the data from the given day.one to the given span and compute the indices for each row.

In van Etten (2019), a forward variable selection was applied to retain the most representative covariates
based on the deviance reduction. This analysis retained the maximum night temperature (maxNT) as the
most representative covariate. To illustrate how the Plackett-Luce trees can grow in complexity as we add
more indices, we included the summer days (SU, number of days with maximum day temperature > 30 ◦C)
together with maxNT.
# compute the temperature indices from planting date to the
# number of days required to accumulate the gdd in each season
temp <- temperature(modis,

day.one = cbean$planting_date,
span = cbean$gdds)

# combine the indices with the main data
cbean <- cbind(cbean, temp)

# fit a Plackett-Luce tree
plt <- pltree(G ~ maxNT + SU, data = cbean, minsize = 50)

Across-season distribution of maxNT captured for each sample plot in this experiment is shown in Fig. 1b.
The data has a bimodal distribution which is reflected in the splitting value (18.7 ◦C) for the Plackett-Luce
trees in Fig. 1c. The upper node splits with 49 summer days (SU). We can interpret these results as that
differences in growing performance of common beans is led by a considerable amount of diurnal temperature
above a warmer threshold of 30 ◦C (in this case >70% of the growing days) and warmer nights (> 18.7 ◦C).



Fig. 1. Application of climatrends functions to support the analysis of a citizen-science data testing 11
common bean varieties in Nicaragua. (A) Days required to reach 900 growing-degree days from planting
date calculated using the function GDD(). (B) Maximum night temperature (°C) distributed across seasons
computed using the function temperature(). (C) Plackett-Luce Tree showing the probability of one common
bean variety has to win against the others (axys X) in three different nodes splitted with the summer days
(day temperature > 30 °C) and maximum night temperature (°C). Note: the first season (primera, Pr) spans
from May to August, the second (postrera, Po) from September to October, and the third (apante, Ap) from
November to January.



Trends in climate variability in Norway and Sweden
We randomly selected 100 points in hexagonal within the coordinates 7◦ and 17◦ W, and 59 ◦ and 63 ◦ N,
that comprises Norway and Sweden before the Arctic Circle. We compute the temperature indices from
2000-01-01 to 2019-12-31 using the function temperature() with the method for objects of class ‘sf’. The
temperature data is fetched from from the NASA Langley Research Center POWER Project funded through
the NASA Earth Science Directorate Applied Science Program (https://power.larc.nasa.gov/), using the R
package nasapower (Sparks, 2018).
library("climatrends")
library("sf")
library("nasapower")

# create a polygon within the coordinates 7, 17, 59, 63
e <- matrix(c(7, 59, 17, 59, 17, 63,

7, 63, 7, 59),
nrow = 5, ncol = 2, byrow = TRUE)

e <- st_polygon(list(e))

# sample 100 points in the hexagonal type
p <- st_sample(e, 100, type = "hexagonal")
p <- st_as_sf(p, crs = 4326)

# compute the temperature indices using the random points
temp <- temperature(p,

day.one = "2000-01-01",
last.day = "2019-12-31",
timeseries = TRUE,
intervals = 365)

We then select the indices CSDI (cold spell duration of night temperature), WSDI (warm spell duration of
day temperature), and their associated indices the T10p (the 10th percentile of night temperature) and T90p
(the 90th percentile of day temperature), in Figure 2. Plots are generated with ggplot2 (Wickham, 2016)
and patchwork (Pedersen, 2020).

The trends show a decrease in the cold spell duration (number of consecutive cold nights bellow the 10th
percentile) and warm spell duration (number of consecutive warm days above the 90th percentile). However,
the values of the percentiles show an increase over the time series. The T10p index shows a decrease around
the year of 2010, but again rises up to the a value around the -10 ◦C, meaning that the could nights are
becoming a bit warmer over the time. The T90p index also shows an increase in the temperature across the
sampled area, with the average 90th percentile rising from ~ 16 ◦C to ~ 18 ◦C over the time series.

Further development
The package can support the integration with other datasets as they become available in R via API client
packages. Also new indices related to the physiology of crops could be implemented.
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Fig. 2. Trends in temperature indices across Southern Norway and Sweeden from 2000 to 2019. CSDI,
maximum cold spell duration, consecutive nights with temperature < 10th percentile. WSDI, maximum
warm spell duration, consecutive days with temperature > 90th percentile. T10p, the 10th percentile of night
temperature. T90p, the 90th percentile of day temperature. Red line indicates the historical mean of each
index in the time series. Blue line indicates the smoothed trends in each index using the ’loess’ method.



Data availability statement
To explore the latest functionalities of climatrends, please check the package’s updates at CRAN (https:
//cran.r-project.org/package=climatrends).
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Increased agrobiodiversity through farm diversification and varietal selection 
is an alternative to help farmers to cope with the negative effects of climate 
change while ensuring food security. However, such approach have been 
difficult to scale up, since we often lack information to understand the contexts 
that drive farmers’ adaptation decisions and how to develop recommendations 
for adaptation. 

This thesis presents results from three continents to improve this understanding, 
specifically in smallholder farming. It provide insights for the different biological 
levels: species, focusing on trees as slow grower organisms for interspecific  
diversification; varieties, looking for locally adapted phenotypes; and genotypes, 
focusing on genotype by environmental interactions.

The results show that farmers have a clear preference to a set of adaptation 
strategies, with agroforestry as the first choice. The most preferred trees in 
coffee and cocoa agroforestry are the most vulnerable, but farmers could 
re-think the agroforestry designs using a portfolio of underutilised species 
already present in low densities at the current systems. At the variety level, the 
results show that scaling agricultural experimentation with citizen science can 
support recommendations for crop variety management for climate adapta-
tion. Also, that linking farmer-generated data to scientist-generated data can 
support breeding programs targeting challenging crop production environ-
ments. Overall, the results of this thesis should be seen as starting point to 
develop lines of research that support recommendations to adapt agricultural 
systems to a changing climate.

insights for risk management in small-scale farming
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