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Abstract 

Introduction: Resistance training is volume dependent. The muscular adaptations to resistance 

training vary between moderate and low training volume. Little is known about how these 

muscular adaptions happen. LncRNAs have emerged as an interesting regulator of different 

signaling pathways connected to cell proliferation and growth. The aim of this study was to 

explore and identify differentially expressed lncRNAs in m. vastus lateralis, and thus, explore 

volume- and time-effects on muscular adaptations.  

Method: Forty-one female and male participants were recruited to the study, of which 25 had 

biopsies, from all three timepoints, with sufficient RNA-quality. Strength tests and muscle 

biopsies were taken before, in the middle and after a 12week contralateral, within subject, 

resistance training intervention. Biopsies from the 25 participants were sent to RNA sequencing. 

RNA-seq data was analyzed with Mixed-effects negative binomial count models, and differential 

expression and log2fold-change was calculated on all three timepoints.  

Results: Analysis of RNA-seq data identified 1400 lncRNAs, of which ~12% percent were 

differentially expressed (DE). Between timepoint w2pre and w12, 169 lncRNAs were 

differentially expressed. Most of the lncRNAs identified were upregulated, and 17 lncRNAs were 

DE at all three timepoints. No significant difference was found between low and moderate 

volume. 

Conclusion 
As many as17 DE lncRNAs were found on all three timepoints, suggesting that they are 

important in muscle adaptations to resistance training. Resistance training with low and moderate 

volume resulted in similar changes in lncRNA expression, reiterating on the fact that the different 

volume conditions to not lead to substantial differences in cellular phenotypes measured per unit 

muscle tissue (though higher volume is associated with larger increases in muscle mass). More 

research is needed to expand the entrezgene id database and allocate gene annotations. 

 

Keywords 

RNA-seq, qPCR, resistance training, long non-coding RNA, skeletal muscle. 
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Abbreviations  

Differentially expressed (DE) 

Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) 

Extracellular matrix (ECM)  

Enhancer of zeste 2 polycomb repressive complex 2 subunit(EZH2  

Focal adhesion kinase (FAK) 

Fold change (FC) 

Growth arrest specific 5 (GAS5) 

Long non coding RNA (lncRNA) 

Mammalian target of rapamycin (mTOR) 

Mammalian target of rapamycin complex 1 (mTORC1) 

Mammalian target of rapamycin complex 2 (mTORC2) 

Mitogen-activated protein kinase (MAPK) 

Mitogen-activated protein kinase kinase (MAP2K) 

Mitogen-activated protein kinase kinase kinase (MAP3K) 

Muscle protein synthesis (MPS) 

Over-representation analysis (ORA), 

Phosphatidic acid (PA) 

Protein Kinase B (Akt) 

Quantitative /real time polymerase chain reaction (qPCR) 

Ribosomal protein S6K (p70S6K) 
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RNA component of mitochondrial RNA processing endoribonuclease (RMRP) 

40S ribosomal protein S6 kinase (RSK)  
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I. Theory 

Humans are made for movement. As such, it is important to sustain proper skeletal muscle 

functions throughout the life course. This can effectively be achieved through exercise training 

directed at improving muscle functions, with resistance training standing out as the preferred 

training modality, improving exercise performance and functionality, as well as promoting 

systemic health (Kraemer, Ratamess, & French, 2002). Resistance training exposes skeletal 

muscle to mechanical and metabolic stress, thus triggering cellular signaling cascades and 

changes in gene expression that eventually leads to muscle growth and increased muscle strength 

and endurance (Hughes, Ellefsen, & Baar, 2018). Despite this simplified view, there are vast 

numbers of different resistance training programs and methods, varying in training volume, 

repetitions or load (Egan & Zierath, 2013). Training volume is interesting. During the past few 

years, studies have shown that higher training volume increases the changes in muscle growth 

and strength. Contralateral resistance training protocols have shown high correlations between 

volume and muscular adaptations (Hammarström et al., 2020). Although relatively much is 

known about the gross adaptations to different resistance training protocols, and thus how to 

maximize strength and muscle gain (Hughes et al., 2018), little is known about the microbiology 

controlling muscle adaptations. Whereas we know fairly well which main signaling pathways that 

are involved, such as Akt and MAPK (Bodine et al., 2001) our knowledge about the detailed 

changes in muscle biology are far from complete. For example, we hardly know anything about 

the role of long non-coding RNAs (lncRNAs), which are protruding as important regulators of 

cellular growth and differentiation in other experimental human cell models. 

LncRNAs thus remain a bit of a mystery. For a long time they were solely regarded as 

transcriptional noise, but in recent years they have gained reputation as important contributors to 

and regulators of cellular functions (Kung, Colognori, & Lee, 2013). They represent a diverse 

class of long RNAs that are not typically translated into protein (Chen et al., 2018). Instead they 

affect cellular functionality by interacting with other types of RNA (e.g. mRNA and microRNA) 

or by altering micropeptide functions (Cesana et al., 2011; Douglas et al., 2015; G. Hu et al., 

2018; G.-Q. Wang et al., 2016), and are often seen to affect cellular growth, so also in muscle 

fibre. As such, it remains plausible that LncRNAs are involved in adaptations to resistance 
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training in humans. However, so far the effects of such training on their expression and their 

implications for muscle adaptations and functions remain elusive (Hughes et al., 2018). 

 

I.I Training volume and muscle growth 

Different resistance training protocols yields different training effects. Some are more effective 

than others, and especially training volume correlates with muscle mass (Folland & Williams, 

2007; Hammarström et al., 2020). Muscle mass correlates with muscle strength, and this 

correlation is primarily visible after long periods of resistance training (Folland & Williams, 

2007). Muscle strength is also correlated with pennation angle and other muscle biological 

features like ECM.  Adaptation to resistance training is an individual response and are not yet 

fully understood. Usually the load vary between 1RM and 10RM, the repetitions between 4-12 

and the sets between 1-6 (Fry, 2004). Prediction models on how the human body responds and 

adapts to various stimuli, are made to understand muscle adaptations. The results from these 

models advocates that there are a strong correlation between training volume and muscle growth 

(Hester, Iliescu, Summers, & Coleman, 2011). For a long time this was debated, but recent meta-

studies have shown that the former is true (Ralston, Kilgore, Wyatt, & Baker, 2017).  

Resistance training induces mechanical, and metabolic, stimuli to skeletal muscles (Folland & 

Williams, 2007).  and the muscle adapts, among others, by adding sarcomeres in parallel in 

muscle fibers (Folland & Williams, 2007). Resistance training results in neural adaptations, 

improved strength, alter muscle phenotype and increased cross sectional area (CSA) of the 

muscle fiber. Other adaptations to resistance training are increase in noncontractile tissue, e.g 

collagen, and change in muscle fibers angle of pennation. Adaptations to resistance training can 

be identified after 8-12 weeks of repeated training (Folland & Williams, 2007). Over time, the 

strength gain will be more due to muscle growth than neural adaptations. There will be an 

increase in muscle net protein synthesis (MPS). MPS is increased due to lower protein 

degradation and higher, maybe more efficient, protein synthesis (Damas et al., 2016). The central 

neural component is important for muscle adaptations due to resistance training, especially with 

unilateral training. With the latter, the CSA in the untrained leg does not change, but one can 

observe an increase in strength (Munn, Herbert, & Gandevia, 2004). 
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Results from animal studies indicate that lncRNAs may regulate satellite cell biology (Li, Chen, 

Sun, & Wang, 2018). Satellite cells are important for muscle regeneration. If an injury occurs, the 

satellite cells will be activated and become myoblasts. Pax7 is downregulated and myogenic 

regulatory factors (MRFs) are activated to start cell differentiation, thereby making new muscle 

fibers and replenish the damaged muscle cells (Kuang, Kuroda, Le Grand, & Rudnicki, 2007). 

 

I.II Cellular pathways 
Muscle growth is facilitated by organells in the muscle cell, and involves translation capacity 

changes and gene expression patterns. Sattelite cells facilitates muscle growth by providing 

myocores, and different signalling pathways controls cellular growth and differentiation. Usuallly 

changes in protein and RNA expression, including rRNA, mRNA and other RNA species, are a 

result of the latter (Hughes et al., 2018). Changes in gene expression are crucial in muscular 

adaptations to resistance training, and the latter are controlled by cellular pathways. Many 

different signaling pathways have been identified and explored. Some of them are connected to 

muscle adaptation after resistance training. One of the most important to resistance training 

adaptations is mammalian target of rapamycin (mTOR)  (Hoppeler, 2016). mTOR is a part of the 

phosphatidylinositol 3-kinase-related kinase family and are important in two distinct multi-

protein complexes, mTOR C1 and C2, that regulates muscle growth (Hoppeler, 2016). The 

former is recognized as the one most important to muscle adaptation. The complete function of 

mtorc2 is still eluded, but research advocates that it may be associated with regulating ribosomal 

activity, and cell survival (Chaillou, Kirby, & McCarthy, 2014). Initiation of protein translation is 

activated by phosphatidic acid (PA), the latter activates mTORC1 and thereafter ribosomal 

protein S6K (p70S6K) (Bodine et al., 2001).  mTORC1 is targeting different signaling pathways 

and proteins, and is probably very important for muscle protein synthesis (MPS) (Mirzoev & 

Shenkman, 2018). Mechanical stress, such as resistance training, activates mitogen-activated 

protein kinase (MAPK), which can phosphorylate C-myc. C-myc regulates transcription factors 

and thereby may regulate transcription of proteins (Hoppeler, 2016). Insulin-like growth factor 1 

(IGF-1) is also activated, by mechanical stress, and binds to receptors in the cell membrane, and 

this initiate stimulation of Phosphoinositide 3-kinase PI3K- and protein kinase B (Akt)-activity 

(Bodine et al., 2001; McCarthy & Esser, 2010). Akt phosporylates downstream effectors and that 
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activates G-protein Rheb (Ras-homolog enriched in brain) and that again activates mTORC1 

(Bodine et al., 2001) Ras is activated when extracellular mitogen binds to the membrane receptor  

(McCarthy & Esser, 2010). Followed by activation of Mitogen-activated protein kinase kinase 

kinase(MAP3K) , Mitogen-activated protein kinase kinase (MAP2K) and Mitogen-activated 

protein kinase (MAP), thus activate Myc, or other transcription factors (McCarthy & Esser, 

2010).  

Little is known of proteins that regulates satellite cells. McCroskery, Thomas, Maxwell, Sharma, 

and Kambadur (2003) advocates that satellite cells are regulated by myostatin. Upregulated 

myostatin levels increase p21, a cyclin-dependent kinase inhibitor, and inhibits differentiation. 

Satellite cells, or muscle stem cells, are small cells that can evolve to skeletal muscle cells. When 

activated they can proliferate and transform to myoblasts. The latter can induce muscle fiber 

hypertrophy or make new muscle cells (Morgan & Partridge, 2003). They are situated between 

the sarcolemma and membrane of the muscle fiber. Activated upon mechanical strain. Exercise 

triggers a cascade of different signaling molecules, e.g. growth factors and cytokines. HGF 

activates satellite cells, fibroblast growth factor (FGF) and insulin-like growth factor-I (IGF-1) 

increases proliferation. Translation of ribosome and the making of proteins is the key to muscle 

growth. Translation depends on two variables, translation capacity and translation efficiency. 

Translation capacity is the number of ribosome available, tRNA and translation factors. And 

translation efficiency is the efficiency of the protein synthesis (Chaillou et al., 2014). Increase in 

the latter is likely one of the main variables behind elevated MPS as a response to resistance 

training (O’Neil, Duffy, Frey, & Hornberger, 2009). Mdm2 -p53 stress response pathway 

regulates cellular homeostasis. If activated it results in apoptosis, cell cycle arrest, DNA repair or 

replicative senescence. It is important to regulate cell growth (Bartlett, Close, Drust, & Morton, 

2014). 

 

I.III Long non-coding RNA 

The lncRNAs are made up of over 200 nucleotides (Ponting, Oliver, & Reik, 2009). Little is 

known of their function and the evidence for lncRNAs function is scarce. But due to more 

advanced research methods, and higher interest the recent years, many lncRNAs has been 
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identified and annotated. It may be plausible to claim that lncRNAs could be very responsive to 

resistance training, since studies have shown that they control different groups of genes and 

proteins responsible for cell- differentiation, proliferation and cell growth (Chen et al., 2018). As 

late as in the early 1990s, Brannan, Dees, Ingram, and Tilghman (1990) were the first to discover 

that the lncRNA H19 was involved in epigenetic regulation. Later, many more lncRNAs have 

been identified and described. Their function in epigenetic regulation are still eluded, but some of 

them are well known. Some of the lncRNAs can alter the coding gene by pairing with mRNA 

(G.-Q. Wang et al., 2016), and other can interact with microRNAs and make them miss their 

target mRNA (Cesana et al., 2011). Yet another group of lncRNAs can encode micropetides, that 

are shorter than 100 amino acids, and by doing that alter the micropeptide induced functions 

(Douglas et al., 2015). Most of the lncRNAs directly linked to myogenesis acts as transcriptional 

or epigenetic regulators (Li et al., 2018). LncRNAs can be allocated to five categories based on 

where they are situated in the genome: 1) sense, 2) antisense, 3)bidirectional, 4)intronic and 

5)intergenic (Ponting et al., 2009). In the first category they overlap one or more exons of another 

exon on the same strand. The second is the same as the first, except the lncRNA is on the 

opposite strand. In the third category, the lncRNA is in close genomic proximity to a coding 

transcript on the opposite strand. The fourth is when it is derived from an intron on a second 

transcript, and the fifth is when it is in the genomic interval between two different genes.   

 

I.III.I Cell growth and proliferation 

Some of the most known lncRNAs induces cell growth and cell proliferation. Knockout gene 

studies have been conducted to explore lncRNAs role in tumor growth. Another important feature 

for the lncRNAs is that they play a role in epigenetic and transcriptional regulation of chromatins. 

The lncRNAS interacts with chromatins, and may inhibit other transcriptional regulators 

activities (Han et al., 2014). In mice, lncRNA SYISL interacts with polycomb repressive complex 

2 and regulates myogenesis (Jin et al., 2018). SYISLs human homolog is lncRNA AK021986, 

but no ensemble ID has been allocated and the latter is therefore removed from the qPCR 

analysis. The lncRNA H19 induces muscle differentiation in mice, but its function in human 

muscle cells are not fully understood (Kallen et al., 2013). The lncRNA Growth arrest specific 5 
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(GAS5), suppress MYC translation (Pickard, Mourtada-Maarabouni, & Williams, 2013). 

Parrot/LINP1 is a positive regulator of c-Myc and ribosomal biogenesis (Zhang et al., 2016). 

PVT1 is activated in the early phase of muscle atrophy. PVT1 alter mitochondrial respiration, 

myofiber size, apoptosis and mito/autophagy (Tseng et al., 2014). RNA component of 

mitochondrial RNA processing endoribonuclease (RMRP) alters the transport trough the 

mitochondrial membrane (X. Wang et al., 2018). Linc-MD1 has many functions related to muscle 

adaptations. It regulates myogenic differentiation, myogenesis and hypertrophy. Linc-MD1 

downregulates myogenic markers when depleted. It is reported to influence the mRNA levels of 

miRNA-targeted muscle differentiation genes, by and blocking the target mRNA for miR-133 

and miR-135 (Cesana et al., 2011). 

 

I.III.II Methods used to study lncRNAs in human muscle cells 

As mentioned, little is known of lncRNAs function and expression in human biology. And 

especially in muscle biology. How their expression changes dependent on training stimuli, are 

largely unknown. The lncRNAs may alter signaling pathways and cellular responses. By altering 

signaling pathways, they may alter muscle growth and differentiation. Discovery and 

characterization of lncRNAs has sped up due to the recent years leap in high throughput gene 

sequencing technology (Jason, Spacek, & Michael, 2015). qPCR analysis is considered the gold 

standard when analyzing gene expression, but it is time-consuming to explore big data frames 

(Adamski, Gumann, & Baird, 2014). The RNA sequencing method yields massive data, and 

mining for lncRNAs are possible with the right tools. The polyA-primed sequencing method used 

in this paper needs lncRNAs with poly A tails. A poly A tail consists of many adenosine 

monophosphates and helps preventing degradation of mRNA. LncRNAs normally have low 

expression and are highly tissue specific. They usually have a poly A+ or poly A- tail at the 3’ 

end of the transcript (Cabili et al., 2011). X. Sun et al. (2016) defined 7692 lncRNAs in bovine 

skeletal muscle using Ribo-Zero RNA-seq. This sequencing technology can identify both poly 

A+ and poly A- transcripts. GO analysis are important when exploring RNA-seq data. It 

describes the genes cellular location, molecular function and biological functions (Yamaguchi et 
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al., 2008). Few annotated lncRNAs complicates GO analysis. An alternative approach could be to 

explore shared DE lncRNAs across different timepoints or top 5 genes based on log2FC/p-value.  

 

The lack of knowledge on how lncRNAs adapts to mechanical stimuli, resistance training, in 

human muscle, advocates further research on the topic. The goal of this study was to (i) identify 

lncRNAs that are expressed in m. vastus lateralis, to (ii) explore and identify lncRNAs  responding 

to low resistance training volume in contrast to moderate volume, (iii) validate expression patterns 

of lncRNAs identified in RNA-seq data using gene-specific qPCR, and (iiii) to explore lncRNAs  

that are differentially expressed at all three timepoints. Within subject RNA-seq data and qPCR 

data were used to compare the benefits of moderate and low resistance training volume. 
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1. Introduction 

Humans are made for movement. As such, it is important to sustain proper skeletal muscle 

functions throughout the life course. This can effectively be achieved through exercise training 

directed at improving muscle functions, with resistance training standing out as the preferred 

training modality, improving exercise performance and functionality, as well as promoting 

systemic health (Kraemer et al., 2002). Resistance training exposes skeletal muscle to mechanical 

and metabolic stress, thus triggering cellular signaling cascades and changes in gene expression 

that eventually leads to muscle growth and increased muscle strength and endurance (Hughes et 

al., 2018). Despite this simplified view, there are vast numbers of different resistance training 

programs and methods, varying in training volume, repetitions or load (Egan & Zierath, 2013). 

Training volume is interesting. During the past few years, studies have shown that higher training 

volume increases the changes in muscle growth and strength. Contralateral resistance training 

protocols have shown high correlations between volume and muscular adaptations 

(Hammarström et al., 2020). Although relatively much is known about the gross adaptations to 

different resistance training protocols, and thus how to maximize strength and muscle gain 

(Hughes et al., 2018), little is known about the microbiology controlling muscle adaptations. 

Whereas we know fairly well which main signaling pathways that are involved, such as Akt and 

MAPK (Bodine et al., 2001), our knowledge about the detailed changes in muscle biology are far 

from complete. For example, we hardly know anything about the role of long non-coding RNAs 

(lncRNAs), which are protruding as important regulators of cellular growth and differentiation in 

other experimental human cell models. 

LncRNAs thus remain a bit of a mystery. For a long time they were solely regarded as 

transcriptional noise, but in recent years they have gained reputation as important contributors to 

and regulators of cellular functions (Kung et al., 2013). They represent a diverse class of long 

RNAs that are not typically translated into protein (Chen et al., 2018). Instead they affect cellular 

functionality by interacting with other types of RNA (e.g. mRNA and microRNA) or by altering 

micropeptide functions (Cesana et al., 2011; Douglas et al., 2015; G. Hu et al., 2018; G.-Q. Wang 

et al., 2016), and are often seen to affect cellular growth, so also in muscle fibre. As such, it 

remains plausible that LncRNAs are involved in adaptations to resistance training in humans. 

However, so far the effects of such training on their expression and their implications for muscle 
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adaptations and functions remain elusive (Hughes et al., 2018). Improved RNA-sequencing 

methods have made it possible to statistically explore massive data frames with millions of gene 

counts. qPCR is considered gold standard for gene expression analysis (Adamski et al., 2014), 

but the method is cumbersome and time-consuming. Thus, studies on the correlation between 

qPCR and RNA-seq are important.   

The lack of knowledge on how lncRNAs adapts to mechanical stimuli, resistance training, in 

human muscle, advocates further research on the topic. The goal of this study was to (i) identify 

lncRNAs that are expressed in m. vastus lateralis, to (ii) explore and identify lncRNAs  responding 

to low resistance training volume in contrast to moderate volume, (iii) validate expression patterns 

of lncRNAs identified in RNA-seq data using gene-specific qPCR, and (iiii) to explore lncRNAs  

that are differentially expressed at all three timepoints. Within subject RNA-seq data and qPCR 

data were used to compare the benefits of moderate and low resistance training volume. 

  

2. Methods 

This study is based on the 1/3 set study completed by Hammarström et al. (2020). A contralateral 

leg resistance training protocol was used. The aim was to evaluate how single and multiple set 

resistance training affected muscle hypertrophy, strength gain, fibre-type total RNA, mRNA and 

ribosomal RNA. The effects on mTORC1 related protein phosphorylation were also explored 

(Hammarström et al., 2020).   

  

2.1. Ethical approval 

Information about potential discomforts and risks associated with the study were given to all the 

participants and they gave their informed consent before study enrolment. All procedures were 

performed in accordance to the Declaration of Helsinki. The study design was pre-registered 

(ClinicalTrials.gov Identifier: NCT02179307) and approved by the local ethics committee at 

Lillehammer University College, Department of Sport Science (no. 2013-11-22:2). 
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2.2. Intervention and participants overview 

Forty-one female and male participants were recruited to the study. Twenty-five of them had 

biopsies from all the different timepoints, with sufficient RNA quality, and they were sent to 

RNA sequencing. The eligibility criteria were age between 18 and 40 years and non-smoking. 

The exclusion criteria were impaired muscle strength due to ongoing or previous injury, 

prescribed medicine that could alter exercise adaptations, more than one strength exercise bout 

weekly during the last 12 months or local anesthetic intolerance. 7 participants were excluded 

during data analysis due to different reasons. Details can be found in Hammarström et al. (2020). 

 

2.3. Training protocol and testing of muscle strength 

The training bouts always started with 5 min of ergometer cycling with Borgs RPE 12-14 as a 

warm-up. Afterwards 4 bodyweight exercises (sit-ups, push-ups, back-extensions and squats) 

with 10 repetitions each. Followed by 10 reps at 50% of 1 repetition maximum (1RM) for each 

strength exercise. Thereafter unilateral leg press, leg curl and knee extension either as one set or 

three sets for the latter. The leg exercises were performed unilaterally to differentiate between 

single and multiple set. Thus, a contralateral protocol was induced to explore within subject 

Figure 1. Study overview. The long arrow represents the 12 weeks of resistance training intervention. Muscle biopsies (red dots) were 
taken from m. vastus lateralis before the intervention, pre and post resistance training at week 2 and at 12 weeks. Strength tests 
(green dots) were conducted at week 0, 3, 5, 9 and 12. A contralateral, within subject, training program was performed and the 
resistance training was made up by three weekly sessions. The participant performed unilaterally leg exercises that were randomly 
assigned to one leg with single set resistance training and the other three set (multiple set) resistance training. 



16 
 
 

volume differences. After the lower leg exercises, they performed two sets of pull-down, seated 

rowing or shoulder-press and bench press. The intensity was progressed from 10RM (2 weeks), 

8RM (3 weeks) to 7RM (7weeks). The rest period between the latter sets was 90-180 seconds. 

Strength tests were performed at week 0, 3, 5, 9 and 12. A dynamometer (Cybex 6000, Cybex 

International, Medway, MA, USA) was used to assess isometric and isokinetic unilateral knee-

extension strength. Knee extension and unilateral leg press, tested at 1RM, determined Maximal 

strength (Hammarström et al., 2020). For more details see Hammarström et al. (2020).  

 

2.4. Muscle biopsies 

The muscle biopsies were taken, within 10 minutes, bilaterally from m. vastus lateralis using a 

spring-loaded biopsy instrument (Bard Magnum, Bard, Rud, Norway) with a 12-gauge needle 

(Universal-plus, Medax, San Possidonio, Italy). Local anaesthetics (Xylocaine, 10 mg ml−1 with 

adrenaline 5µgml−1, AstraZeneca AS,Oslo,Norway) was used during the latter protocol. The 

resting samples were taken after a standardized meal, at the same timepoint in the morning. 

Biopsies were taken minimum 48 hours after ended resistance training bout. Patella and spina 

iliaca anterior superior (SIAS) were used as landmarks, and the first biopsy was taken from 1/3 of 

the latter distance. Consecutive biopsies were taken 2 cm proximal to the latter sample. Ice cold 

saline solution (0,9%) was used when dissecting the muscle samples free from connective tissue 

and blood. The muscle tissue (~60 mg) that were to be used in RNA- and protein-analysis were 

quickly frozen in isopentane and stored at -80 degrees Celsius 

 

2.5. Total RNA extraction 

RNA extraction was done in accordance with the protocol found in Hammarström et al. (2020) 

article. 1 ml of TRIzol reagent (Invitrogen, Life technologies AS, Oslo, Norway) was used to 

homogenize about 25 mg of wet muscle tissue. RNase-free zirconium oxide beads was then 

added to the solution and run in a Bullet blender (Bullet Blender,NextAdvanced,Averill Park,NY, 

USA). 400 μl of the phase was allocated and isopropanol was used to precipitate a RNA pellet. 
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Before the RNA pellet was eluted in TE buffer, 70% EtOH was used in three washing steps. A 

spectrophotometer determined quality and amount of RNA. 

 

2.6. RNA sequencing data 
RNA-sequencing was performed in accordance to the unpublished paper conducted by Khan, 

Hammarstrøm, Rønnestad, Ellefsen & Ahmad (2020) at Norwegian Sequencing center 

(Apendix1). 

LncRNAs were identified with BiomaRT R package and Ensemble ID. With this method is it not 

possible to find lncRNAs without Ensemble id. The latter applied to AKO21986, one of the 

lncRNAs analyzed with qPCR, and it was removed from further analysis. Data mining showed 

that Parrot was annotated with the Hgnc-symbol LINP1.  

Only some of the lncRNAs identified in the gene sequence data have entrezgene id id number. 

Entrezgene id id is needed to perform a gene ontology analysis (GO). A GO analysis usually 

gives information about genes cellular location, molecular function and biological functions 

(Yamaguchi et al., 2008). GO makes it possible to sort genes based on the three latter variables 

and thus make a picture of the gene expression. National Center for Biotechnology Information 

(NCBI) hosts the gene specific database Entrez Gene. The database generates unique and stable 

gene identifier integers (Maglott, Ostell, Pruitt, & Tatusova, 2011). This gene ID are then used to 

integrate different information about the specific gene, such as nomenclature, sequence, pathways 

and protein interaction (Maglott et al., 2011). The information in the database is based on results 

from NCBI’s other databases. Research on lncRNAs and their functions are therefore important 

and needed to evolve the database and increase the number of annotated lncRNAs. Thus, little 

information about lncRNAs in the NCBI database gives low quality gene analysis, which in 

return gives little information to the database.  
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2.7. Quantitative real-time reverse transcription polymerase chain 
reaction (qPCR) 

qPCR was performed on selected lnRNAs (Table 1).  cDNA synthesis was done, in accordance to 

Hammarström et al. (2020) prior to qPCR analysis. Oligo-dT random hexamer primers (Thermo 

Scientific) and Super Script IV Reverse Transcriptase (Invitrogen) were used to reverse 

transcribe 500 nanograms of RNA.  A tissue offset normalisation factor was created based on the 

amount of tissue used in cDNA synthesis, and qPCR results (rested state samples from w2pre and 

w12) normalized, in accordance to Hammarström et al. (2020). The accute results (from w2post) 

were normalized to lib-size (Khan et al., 2020). 

The qPCR was done with a qPCR machine (Applied Biosystems 7500 fast Real-Time PCR 

Systems, Life Technologies AS). Used 384 well plates filled with total 10 µl solution. The latter 

consisting of 2 µl cDNA, specific primers (Forward and Reverse, total 1µl), H20 and a prepared 

master mix (2X SYBR Select Master Mix, Applied Biosystems, Life Technologies AS). The 

qPCR protocol was 40 cycles (3 s 95°C denaturing and 30 s 60°C annealing).  

Primers were designed for all selected long non coding RNAs (lncRNAs) with Primer3Plus 

(Untergasser et al., 2012) and ordered from Thermo Scientific. Primertests were performed and 

the primers with the best melt-curves, with no biproduct or primerdimers, was selected (single 

product amplification) (Table 1). 

 

Table 1.Primers used for qPCR analysis of m.vastus lateralis biopsies. Primertests were conducted, and the primers with single product 
amplification, visually controlling the melt curves, were chosen. 

NAME GENE TRANSCRIPT FORWARD_PRIMER REVERSED_PRIMER 

GAS5 F1R1 ENSG00000234741 ENST00000650796.1 TGAAGAAATGCAGGCAGACC CACTCTAGCTTGGGTGAGGC 

LINCAKO17368 F2R2 ENSG00000268518 ENST00000595005.1 CCATCTGTCCGGAACTCTGG AGGCAAGTTGCTTCCTGTCT 

LINCMD1 F3R3 ENSG00000225613 ENST00000418518.2 AGGTAGTGTGTCCCCAGCAC CCTGTCTGGAAAGCCTTCAT 

LNC1405 F3R3 ENSG00000185847 ENST00000657482.1 AACGGCTGGTCTTGAACTCC ATTGTGTCTTGGCTGTGCAC 

LNC310CON1 F2R2 ENSG00000249515 ENST00000510302.1 GGATGACAGTGTCAGGTCCC ATAATGGTGGGGTGGCTGTG 

LNC310CON2 F5R5 ENSG00000249515 ENST00000510302.1 TGAACAAATGAGACAAGGCTGC GACAAGAGTCGGGGCCTGAG 

LINP1 F1R1 ENSG00000223784 ENST00000650334.1 ACAGCCCTTAGGCTTGGACT TCCCCATACCCTCTCCTACC 

PVT1 F1R1 ENSG00000249859 ENST00000660438.1 CTGCATGGAGCTTCGTTCAAG CGTGTGTCATTCCAGTGCATG 

RMRP F1R1 ENSG00000269900 ENST00000602361.1 CTCTGTTCCTCCCCTTTCCG TCTTGGCGGACTTTGGAGTG 
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2.8. Statistics  

All data-analysis and wrangling was done in RStudio (RStudio Team, 2016). LncRNAs were 

identified using biomaRT package in R. Mixed-effects negative binomial count models were 

fitted and saved in: ./R/dge_list_models.R. Results saved in RDS files for easy loading. The fixed 

effects are reduced to only contain gene-specific time + time:sets according to Hammarström et 

al. (2020). The RNAseq data was normalized to tissue weight, according to (Khan et al.2020). 

Statistical significance was set to α = 0.01 and significant fold-change (FC) were below -0.5 and 

above 0.5. Fold change analysis was done at all timepoints and between low and moderate 

training volume. With the α set to 0.01 and the fold change significance level set to < -0.5 : >0.5, 

no significant difference was found between low and moderate volume. The same applied to the 

data when adjusting α level to 0.05 and 0.1 

Raw data was exported from the qPCR machine and uploaded to RStudio and analyzed with the 

qpcR-package (Ritz & Spiess, 2008) written for R (Team, 2013). Threshold cycles (Ct) were 

estimated within the latter. Gene expression data were log-transformed prior to statistical 

analysis. The qPCR data was normalized to tissue weight based on amount of tissue used in 

cDNA synthesis (Hammarström et al., 2020). A Correlation test between qpcr data and RNAseq 

was performed using Pearson test. A GO analysis ,enrichGO from clusterprofiler (Yu, Wang, 

Han, & He, 2012)  was performed, but no relevant genes could be sorted due to not annotated any 

GO groups. A literature survey was performed on top 5 lncRNAs for three timepoints, based on 

log2FC and adjusted p-value. The latter method was also applied to the 17 differentially 

expressed (DE) lncRNAs that were present at all three timepoints.  

All datafiles, scripts, figures and code can be found at github.com “Innlevering_masteroppgave” 

https://github.com/ragnvalds/Innlevering_masteroppgave 

 

3. Results 

Analysis was based on  based on the muscle samples from Hammarström et al. (2020). Twelve 

weeks of moderate-volume resistance training led to larger increased in muscle strength 
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compared to low-volume training (3.4–7.7% difference, all P < 0.05) and CSA (5.2 (3.8)% versus 

3.7 (3.7)%, P < 0.001) (Hammarström et al., 2020). 

 

3.1. LncRNAs 

In the entire RNA-seq data set, 15025 genes were identified as being expressed in m. vastus 

lateralis, 1400 of which were identified as lncRNAs (appendix 2). Analyses of pooled data (both 

legs combined) yielded differential expression (DE) of 169 transcripts at w2 (Figure 2A; 164 of 

which increased), 64 transcripts at w12 (Figure 2B; all of which increased) and 102 transcripts at 

w2post (Figure 2C; 40 of which increased), with as many as 17 transcripts being shared DE-

genes between the three timepoints (Figure 2G). In analyses of the effects of resistance training 

volume on differential expressed lncRNAs, no differential responses for any of the lncRNAs 

were found (Figure 2D-F). RNA-seq-based estimates of the effects of resistance training on the 

expression of 6 selected lncRNAs (LincMD1, GAS5, LINP1 and PVT1, LINC01405 and RMRP) 

were correlated with qPCR-based estimates (r=0.75, p=0.088, 95% CI, -0.1650172 to 0.9702552; 

Figure 2H). Suggesting that RNA-seq and qPCR provided similar estimates of gene expression 

responses to resistance training. 

 

The GO method, over-representation analysis (ORA), with significance level of adjusted p-value 

set to 0.05, log2fold-change to 0.5, was conducted on all the lncRNAs with Entrezgene id id 

using enrichGO from the clusterprofiler package made for R (Yu et al., 2012). ORA was used to 

assess if DE lncRNAs were affiliated to specific gene clusters. The latter analysis used pooled 

data (both legs combined) to explore time effects on adaptations to resistance training. Of the 

1400 identified lncRNAs, 507 had been assigned Entrezgene id id, enabling GO-assessment, of 

which only 2 genes were annotated with description of cellular functions. As an alternative 

approach, the top five lncRNAs at each time point were chosen, based on adjusted p-value and 

log2FC, and explored further using literature survey (Table 2). Of the top 15 lncRNAs (5 from 

w2pre, w12 and w2post respectively), 11 were assigned with hgnc symbol of which 9 returned 

information after a literature survey. Of the top 15 lncRNAs from all three timepoints, only one 
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transcript from w2post (ENSG00000270605), was downregulated. Literature survey was also 

used to explore the 17 DE lncRNAs that were shared between the three timepoints (Table 3). 

Many of the lncRNAs have previously been associated with tumor growth or cancer cell 

proliferation. Others are known to accelerate muscle differentiation (H19), stimulate p53 

(MEG3), β-catenin signaling (MIR4435-2HG) or activate the PI3K/AKT pathway (LINC00963).  

The shared 17 DE lncRNAs across all three timepoints show two distinct patterns. One is up-

down-up, w2pre, w2post and w12 respectively. The other is up at all the three timepoints. 
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Figure 1. Results from pooled (both legs combined) analysis.  Differentially expressed (DE) lncRNAs.  A, B & C: shows DE lncRNAs that are DE 
log2fold change with single set at timepoint w2pre, w12 and w2post respectively. D, E  & F:  shows DE  lncRNAs that are DE log2fold change  
with multiple set at timepoint w2pre, w12 and w2post respectively. G: A Venndiagram that visualizes shared DE lncRNAs across different 
timepoints. 17 transcripts are shared between all three timepoints. H: Correlation between RNA-seq and qPCR data based on data from 
timepoint w12. 
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Table 2. Top 5 lncRNAs, from all timepoints sorted on log2foldchange and P.adj. P.adj is adjusted p-value with “fdr” method in R . Not one 
of the lncRNAs were assigned with entrezgene id id. “Function” is known functions described in the referenced article. The arrows in 
“Expected consequence for muscle cell signaling” means up or downregulating, stimulating or supressing.  Sp = species, Ref = references. 
NA = not available.  

R
esistance training-related responses in rested-state m

uscle  

Ensemble gene id 
(Hgnc-symbol) 

log2FC P.adj Function Mode of action Expected 
consequence 
for muscle cell 
signaling 

Sp. Ref. 

W2pre 
  

 
 

ENSG00000214548 
(MEG3) 

0.64 2.00E-33 Tumor supressor.  Stimulates expression 
of growth 
differentiation factor 
15 (GDF15) 

Stimulates p53 Human Zhou et al. 
(2007) 

ENSG00000172965 
(MIR4435-2HG) 

1.33 8.00E-29 Lung cancer cells 
proliferation.  

Proteasome system β-catenin ↑ 
signaling 

Human Qian et al. 
(2018) 

ENSG00000204054 
(LINC00963) 

1.08 4.40E-28 Promoting the 
proliferative ability of 
HCC cells 

Promote protein 
expression 

Activating 
PI3K/AKT 
pathway, 

Human Wu, Tian, 
An, Guan, 
and Hao 
(2018) 

ENSG00000230630 
(DNM3OS) 

0.9 4.40E-28 Growth and skeletal 
development in mice 

Antisense miR-199a, miR-
199a, and miR-
214 ↓ 

Mice Watanabe  
et al. 
(2008) 

ENSG00000130600 
(H19) 

1.2 8.70E-26 Acelerate muscle 
differentiation.  

Molecular sponge Regulates 
major let-
7family of 
microRNAs. 

Human 
and 
Mice 

Kallen et 
al. (2013) 

w12  
 

ENSG00000286214 0.66 1.40E-13  NA  NA  NA  NA  NA 

ENSG00000250208 
(FZD10-AS1) 

0.73 7.40E-12 Non-small-cell lung 
carcinomas ? 

Antisense 
 

Human Yu et al. 
(2015) 

ENSG00000260807 
(CEROX1) 

1.27 1.80E-11 Regulates catalytic 
activity mitochondrial 
complex 1 

Blocks effect of 
microRNA 

miR-488-3p Human Sirey et al. 
(2019) 

ENSG00000286191 1.45 4.10E-11 NA NA NA NA NA 

ENSG00000272168 
(CASC15) 

0.67 2.30E-09 Tumor supressor Tumor promoting 
properties 

siRNAs Human Lessard et 
al. (2015) R

esistance training-related responses in 
acute-state m

uscle  

  
  
w2post               
ENSG00000259820 1.14 1.00E-70 NA NA NA NA NA 

ENSG00000221817 
(PPP3CB-AS1) 

1.23 1.80E-69 May regulate 
Hutingtons disease and 
Parkinsons disease 

Antisense 
NA  Human B. Hu et al. 

(2016) 

ENSG00000270605 -0.78 4.80E-46 NA NA NA NA NA 

ENSG00000242902 
(FLNC-AS1) 

1.78 3.10E-45 NA Antisense 
NA  NA  NA  

ENSG00000212719 
(LINC02693) 

0.6 2.30E-44 NA NA NA NA NA 
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Table 3. Shared DE lncRNAs across all three timepoints with estimate and p-value adjusted. Shared across all three timepoints means that 
they are differentially expressed at all three timepoints.  P.adj is adjusted p-value with “fdr” method in R . Not one of the lncRNAs were 
assigned with entrezgene id id. “Function” is known functions described in the referenced article. The arrows in “Expected consequence 
for muscle cell signaling” means up or downregulating, stimulating or supressing. Sp = species, Ref = references  

Ensemble gene id 
(Hgnc symbol) 

W2pre 
log2FC 
(p.adjust) 

W2post 
log2FC 
(p.adjust) 

W12  
log2FC 
(p.adjust) 

Function Mode of 
action 

Expected 
consequence 
for muscle cell 
signaling 

Sp. Ref. 

ENSG00000116652 
(DLEU2L) 

1.17 
(9.20E-10) 

-0.71 
(7.10E-06) 

1.15 
(2.90E-07) 

Accelerates 
hepato-cellular 
carcinoma (HCC) 

Binds to 
EZH2 

Aggravates 
profileration and 
migration in 
HCC  

H
um

an  

Guo et 
al. 
(2019)  

ENSG00000130600 
(H19) 

1.2 
(8.70E-26) 

-0.61 
(3.70E-06) 

0.58 
(1.30E-05) 

Acelerate muscle 
differentiation. 

Molecular 
sponge 

Regulates major 
let-7family of 
microRNAs. 

H
um

an and 
M

ice 

Kallen 
et al. 
(2013) 

ENSG00000205056 
(LINC02397) 

1.3 
(6.80E-15) 

-0.97 
(4.90E-13) 

0.9 
(1.90E-06) 

Increases survival 
of melanoma 
metatstasis 

NA NA H
um

an 

L. Sun 
et al. 
(2019) 

ENSG00000224361 1.42 
(1.40E-13) 

-0.5 
(6.70E-05) 

1.08 
(3.20E-07) 

NA NA NA NA NA 

ENSG00000224609 1.11 
(9.00E-15) 

-0.89 
(6.70E-22) 

0.94 
(1.90E-08) 

NA NA NA NA NA 

ENSG00000225613 
(LINCMD1) 

1.19 
(1.10E-07) 

-0.82 
(4.20E-08) 

0.1 
(2.20E-04) 

Controls muscle 
differentiation 

Competing 
endogeneous 
RNA 

Controls miR-
133 and miR-135 

H
um

an 

Cesana 
et al. 
(2011) 

ENSG00000229821 1.27 
(8.80E-09) 

0.64 
(2.30E-04) 

0.67 
(7.30E-03) 

NA NA NA NA NA 

ENSG00000230438 
(SERPINB9P1) 

0.75 
(1.00E-07) 

-0.61 
(7.90E-10) 

0.69 
(2.90E-05) 

Affects post-
menopausal 
osteoporosis. 

Down-
regulated 

Interaction with 
mRNA 

H
um

an 

S. 
Wang 
(2020) 

ENSG00000237499 1.14 
(5.30E-15) 

-0.83 
(4.90E-13) 

0.88 
(1.20E-07) 

NA NA NA NA NA 

ENSG00000260793 0.82 
(1.10E-12) 

-0.5 
(3.90E-08) 

0.59 
(9.00E-06) 

NA NA NA NA NA 

ENSG00000260807 
(CEROX1) 

1.42 
(2.60E-16) 

-0.66 
(3.60E-05) 

1.28 
(1.80E-11) 

Regulates 
catalytic activity 
mitochondrial 
complex 1 

Blocks effect 
of microRNA 

miR-488-3p H
um

an 

Sirey et 
al. 
(2019) 

ENSG00000260966 0.76 
(4.50E-12) 

-0.53 
(3.70E-09) 

0.51 
(1.40E-04) 

NA NA NA NA NA 

ENSG00000263873 1.8 
(3.50E-14) 

-0.7 
(3.90E-05) 

1.05 
(1.90E-04) 

NA NA NA NA NA 

ENSG00000265206 1.15 
(1.90E-13) 

-0.54 
(7.70E-04) 

0.64 
(4.50E-04) 

NA NA NA NA NA 

ENSG00000266923 1.4 
(4.80E-10) 

-0.97 
(7.00E-08) 

1.09 
(2.00E-05) 

NA NA NA NA NA 

ENSG00000273812 0.78 
(1.70E-05) 

0.84 
(5.00E-08) 

0.65 
(2.00E-03) 

NA NA NA NA NA 

ENSG00000286191 1.86 
(6.20E-22) 

-1.16 
(4.60E-17) 

1.45 
(4.10E-11) 

NA NA NA NA NA 
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4. Discussion 

Too the best of the authors knowledge, this is one of the first studies to investigate global 

lcnRNA expression in skeletal muscle in humans, and the first study to investigate how their 

expression are affected by resistance training. RNA-seq analysis identified 1400  lncRNAs in 

muscle tissue and somewhere between 10 and 15 percent were differentially expressed .The total 

number of De lncRNAs found are lower than others have found (X. Sun et al., 2016). Yang et al. 

(2016) discovered a higher number of lncRNAs both up and downregulated in muscle cells, but 

without the resistance training intervention. 169 lncRNAs were DE at twelve weeks. Most of the 

DE lncRNAs detected were upregulated. Many of the lncRNAs were differentially expressed at 

more than one timepoint. As many as 17 lncRNAs were DE across all three timepoints, 

suggesting a role in muscle adaptations to resistance training. Indeed, some of these genes have 

either previously been shown to play a role in muscle differentiation and growth in animal (and in 

vitro) or to be involved in regulating pathways that have previously ascribed central roles in 

muscle plasticity. Little is known of lncRNAs function in muscle tissue, and few, if any, articles 

have studied DE across different timepoints after a training intervention period. Gene counts 

increased by 43-53% throughout the whole dataframe (Khan et al., 2020). Suggesting that the 

transcriptome increased significantly, the collected poly-RNA expression increased by 43-53%. 

No significant difference between low and moderate volume training was detected in the data 

analysis, which was in accordance with the findings in Khan et al. (2020). The study of Khan et 

al. (2020) is based on the same RNA-seq data as this study. They describe very similar responses 

to low and moderate volume. The resistance training intervention resulted in the expected 

increase muscle strength and muscle mass. Higher training volume was associated with increased 

adaptations (Khan et al., 2020). 

 

The lncRNAs have not been mapped with a GO analysis, thus the information that can be found 

are based on individual articles. Several of the top 5 genes are indicated to influence cellular 

plasticity in human and animal models thru signaling pathways. Such as p53, β-catenin and 

PI3K/AKT pathway. These signaling pathways are also important in muscle-plasticity (Qian et 

al., 2018; Wu et al., 2018; Zhou et al., 2007) Only 6 of the 17 DE lncRNAs that can be found at 
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all timepoints, are annotated with hgnc symbol. Thus, literature survey is possible on 6 of them. 

LincMD1 may be important for muscle biology and adaptation to resistance training Cesana et al. 

(2011). H19 is another interesting lncRNA, and the latter is part of the top 5lncRNAs and the 17 

DE lncRNAs that can be found at all timepoints. H19 is known to accelerate muscle 

differentiation in mice and probably also in human (Kallen et al., 2013), thus the rested state 

expression found in the RNA-seq data.  The lncRNA MEG3 is interesting. It regulates p53, and 

thus indirect regulates cellular homeostasis by the Mdm2 -p53 stress response pathway  (Bartlett 

et al., 2014). Thus, MEG3 could be important to regulate cell growth. Two distinct patterns can 

be found in the 17 shared DE lncRNAs. Most of them have an up-down-up expression profile at 

timepoints w2pre, w2post & w12, respectively (table 3). Some of them have an up-up-up profile. 

The former pattern is probably due to negative feedback. The acute training responses blocks cell 

growth to allow the cell to repair before growth. The latter pattern is interesting and unexpected. 

It could be explained by some sort of positive feedback mechanism.  Both of the patterns found 

indicates that the lncRNAs are exercise responsive. Many of the DE lncRNAs from (top 5 and 

shared 17) are novel, and not previously studied or annotated important functions in eukaryote 

cells. Much are still unknown. Rested state samples from timepoint w2pre and w12 expressed 

most of the DE lncRNAs with increased expression. This is according to Khan et al. (2020), 

Increased expression at rested state could be linked to general increase in mRNA expression 

(Khan et al., 2020).  

 

Only six genes at timepoint w12 were used in the correlation test between qPCR and RNA-seq. 

Why the correlation coefficient was not higher, is probably due to the normalizing discrepancies 

between qPCR and RNA-seq. qPCR result were normalized with a tissue offset normalizing 

factor based on amount of tissue used in cDNA synthesis. RNA-seq (rested state results, from 

w2pre and w12) were normalized with the tissue offset normalizing factor. The acute results 

(from w2post) was normalized to lib size. Khan et al. (2020) compared different RNA seg data 

normalizing approaches. They advocate tissue weight normalizing approach, as done in this 

study. Except from when normalizing acute data. Minimal muscle growth is expected after only 

one training bout, and lib size normalizing of the data are therefore sufficient (Khan et al., 2020). 
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Ten different lncRNAs were analyzed with qPCR, but only 6 (LincMD1, GAS5, LINP1, PVT1, 

LINC01405 and RMRP) were found in the RNA-seg data. Of them all were differentially 

expressed, at one timepoint, except PVT1. To rule out coding RNA, the ensemble database was 

used. A search was made, and only genes annotated as lncRNAs were chosen. This method may 

be biased, and important lncRNAs that are not annotated, may be wrongfully sorted out. Few 

lncRNAs with entrezgene id ID made it difficult to conduct a proper GO analysis. In this study 

the ORA method was used to assess time-based effect on pooled (both legs combined) resistance 

training data. Another option was to run a rank-based GO analysis to explore the volume effect 

on muscle adaptations after resistance training (Khan et al., (2020). The ORA test was impossible 

to implement due to lncRNAs not annotated. The same applied to the rank-based analysis. Most 

of the lncRNAs have hgnc numbers and literature surveys are possible to conduct, but little is 

known of their function and the studies are scarce at best. The lncRNAs functions in muscle 

adaptations are probably much more complex, but difficult to explore. No difference was 

detected in the statistical analysis between low and moderate training volume. That is probably 

due to measure difficulties as mentioned in Khan et al. (2020). The small bashful changes in the 

microbiology are difficult to measure. Sequencing depth determines how many genes that are 

recognized. One may stipulate that more lncRNAs could be discovered if the sequencing depth 

was adjusted. The correlation coefficient between qPCR and RNA-seq data was significant with a 

p-value of 0.088. Thus, the RNA-seq and the qPCR results yielded mostly comparable results. 

qPCR analysis is considered the gold standard when analyzing gene expression (Adamski et al., 

2014) thus the quality on the RNA-seq data was high. The RNA sequencing method used, only 

recognizes polyA lncRNAs. Thus, important lncRNAs could be eluded from the analysis. This 

study utilized only a part of the whole RNA-seq data frame. DE analysis was performed on 

lncRNAs only, thus the analysis could be biased.  

 

Many of the DE lncRNAs have been indicated to be important in muscle plasticity, but the 

mechanisms are largely unknown. Other DE lncRNAs remain completely uncharacterized, thus 

future studies are needed. LncRNAs are gaining status, and more research are conducted on their 

different functions. In cancer research, knockout studies of different lncRNAs shows promising 

treatment paths. The expression of different lncRNAs may also be used for predictive purposes. It 
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may be possible to predict the adaptation to specific strength training based on expression of 

lncRNAs that induces muscle growth or muscle differentiation. Knockout studies are difficult to 

conduct on humans, and therefore many studies are conducted on mice.  

 

5. Conclusion 
Despite the fact that GO-analyses could not be properly performed on these genes, making it 

difficult to decipher their biological role, several of the response LncRNAs have previously been 

ascribed roles as regulators of muscle plasticity. Between timepoint w2pre and w12, 169 

lncRNAs were differentially expressed. 17 DE lncRNAs were found on all three timepoints, 

suggesting that they are important in muscle adaptations to resistance training. Resistance 

training with low and moderate volume resulted in similar changes in lncRNA expression, 

reiterating on the fact that the different volume conditions to not lead to substantial differences in 

cellular phenotypes measured per unit muscle tissue (though higher volume is associated with 

larger increases in muscle mass). More research is needed to expand the entrezgene id database 

and allocate gene annotations. 
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Abstract   

Background: Human skeletal muscle responds to weight-bearing exercise with large inter-

individual differences. Investigation of transcriptome responses could improve our understanding 

of this variation. Interpretation of such data relies on appropriate selection of analytical tools. Here, 

we established a skeletal muscle-specific bioinformatic pipeline for transcriptome analyses. We 

then used it to assess dose-dependent changes in transcriptome responses to resistance training in 

m. vastus lateralis, using three different normalization strategies (tissue-offset, effective library size 

and naïve). Briefly, 25 young participants performed low- and moderate-volume resistance 

exercise for twelve weeks (31 sessions), allocated to the two lower limbs in a randomized manner. 

Bilateral muscle biopsies were sampled before and after the intervention (in a rested state), as well 

as before and after the fifth training session. Total RNA was extracted and subjected to RNA 

sequencing.  

Results: Bioinformatic tools were selected based on read quality, observed gene counts, 

methodological variation between paired observations, and correlations between RNA abundance 

and protein expression of myosin heavy chain family proteins. Overall, training led to robust 

transcriptome changes, with the number of differentially expressed (DE) genes ranging from 603-

5110, varying with time point and normalization strategy. In all models, >82% of DE genes 

increased in rested-state muscle (range 82-99%). After accounting for the amounts of muscle tissue 

used in library preparation (tissue offset), DE analysis revealed dose-dependent increases for 21 

genes in the early phase of resistance training. Many of these were related to extracellular matrix 

function (BGN, CILP, COL6A3, COL4A2, COL14A1, ELN, FN1, SCARA3, SPON1, SULF1), 

genes that are involved in elasticity, growth and maturation in muscle. No difference was seen 

between volume conditions at twelve weeks. In contrast, normalization to effective library size 

showed a counterintuitive reversed dose-dependence for many genes after the training period, 

resembling a non-normalized model.  

Conclusions: To achieve biologically meaningful data from transcriptome analyses of skeletal 

muscle subjected to altered growth conditions, normalization procedures need to account for global 

changes in rRNA and mRNA expression. These recommendations are likely applicable to studies 
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of other cell types and model systems undergoing increased or arrested growth. Keywords: RNA-

seq, skeletal muscle, bioinformatics pipeline, normalization 
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Introduction 

Skeletal muscle is a highly adaptable tissue that responds to environmental stress by altering growth 

rates and differentiation processes. During resistance training, signaling cascades that stimulate 

muscle plasticity are triggered. Upon repeated exposures, this facilitates growth and a phenotypic 

shift in a metabolically active direction [1], with the opposite happening during inactivity [2]. 

Despite this generalized view, muscle responsiveness and plasticity vary, both in response to 

different resistance-training protocols [3] and, perhaps more importantly, between individuals [4, 

5]. Selected individuals show a near-complete absence of muscle growth after prolonged resistance 

training, which markedly reduces the functional and health-beneficial outcomes of such 

interventions [4, 5]. Currently, little is known about the etiology of this variation. However, it is 

usually associated with muscle phenotypic traits [6–8], which implies interactions with 

environmental factors, genetics, epigenetics, and composites of the inner physiological milieu [9, 

10]. This multifaceted origin makes the training-response-spectrum difficult to study directly, with 

each of the underlying factors offering limited explanatory value alone [11]. Instead, a more 

indirect approach is necessary, whereby the combined effects of the factors are targeted by studying 

global patterns of mRNA, protein expression, and skeletal muscle biology. 

Previous studies have investigated transcriptome responses to acute resistance exercise 

[12–14] and chronic resistance training [12, 13, 15–18], as well as described associations between 

transcriptome characteristics and degrees of muscle growth [18, 19], and function [20, 21].Whereas 

these studies have merited interesting findings, they lack clear coherences in terms of differential 

expression events, even for classical exercise-inducible genes such as PGC1𝛼 [22]. This lack of 

clear coherence is potentially due to a combination of issues such as differences in study design 

and methods for synthesis and analysis of transcriptome data. Variability in transcriptome 

responses to exercise can be attributed to different exercise protocols (e.g. differences in exercise-

volume or intensity). This makes it difficult to discern a general transcriptome exercise response, 

as training variables (such as volume or intensity) are not standardized between studies. 

Additionally, biological heterogeneity between research participants affects the signal-to-noise 

ratio, making it difficult to discern effects of single independent factors such as training variables. 

Design stage decisions such as the use of within-participant designs (discussed elsewhere, e.g. [3, 

23]) are likely to reduce this variation and to provide transcriptome data with increased biological 
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meaningfulness. However, to fully exploit the potential of any study design we need to identify an 

appropriate pipeline for performing transcriptome analyses to ensure biologically valid 

interpretation of data. This entails identifying potential violations of common assumptions caused 

by the experimental model at hand, such as relating to data normalization [24, 25].  In cell models 

that exhibit high degrees of plasticity, gene expression events result in increased amounts of total 

RNA and mRNA transcripts per cell [26], specifically violating the assumption that most genes are 

not differentially expressed [24, 27]. At present, this perspective remains understudied in skeletal 

muscle subjected to increased mechanical stress such as resistance training, with no study 

addressing the need to account for such perspectives during transcriptome analyses. For 

transcriptome data to provide adequate biological information about a given experimental set-up, 

numerous bioinformatic steps need to be adopted in a customized manner [28]. Of these steps, data 

normalization is particularly decisive [25] to study gene expression, as it aims to transform naïve 

transcript counts into biologically meaningful results. This essentially means expressing them as 

per-cell abundances [27]. For most experimental models, this is equivalent to providing transcript-

to-total RNA ratios, given the accuracy of the assumption that total RNA levels remain stable 

between conditions on a per-unit-cell or per-unit-tissue basis [27]. In skeletal muscle, this 

assumption is violated after resistance training, as total RNA content increases markedly on a per-

unit-weight basis [3], with potential global changes also occurring in the mRNA pool, though this 

remains unaccounted. The extent to which total RNA, and therefore ribosomal RNA, increases, 

coincides with the increase in muscle mass [3, 7], underlining its importance for cellular growth 

but also its inevitable presence as a potential confounding factor in RNA sequencing experiments.  

In this study, we aimed to (i) establish a bioinformatic pipeline specific for analysis of 

RNA-seq data from skeletal muscles, to (ii) explore the effects of using different normalization 

strategies for analyzing skeletal muscle tissue subjected to resistance training, and to (iii) identify 

genes responding to moderate, compared to low exercise volume. To achieve these aims, we 

utilized RNA-seq data generated from a within-participant study, comparing the effects of low and 

moderate volume training, as previously described [3]. Also, myosin heavy chain protein 

expression, quantified by immunohistochemistry was used to validate RNA quantification tools. 
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Results 

For the RNA-seq analyses present here, a subset of participants was selected based on RNA quality 

measurements. Participants having functional and molecular responses were selected [3]. Twenty-

five participants had a full set of RNA-samples with RNA quality indicator scores of ≥7. RNA 

quality scores were not associated with RNA yield (Figure 1C). Also, the subset of participants 

selected for RNA-seq analyses did not differ from excluded participants concerning training-

induced changes in muscle mass, illustrated as the lean body-mass change in the two-volume 

conditions used in the study (Figure 1D). Twelve weeks of training with low- and moderate-volume 

led to greater muscle hypertrophy in response to moderate- compared to low-volume training 

(~3.5% vs. ~2.0%, Figure 1E). Greater muscle hypertrophy in the multiple-set condition coincided 

with greater strength gains (~25% vs. ~19%, Figure 1F). This is in agreement with what we have 

previously reported from the full cohort [3]. 

 

Bioinformatic pipeline for analysis of RNA-seq data from skeletal muscles  

To select the most appropriate tools for downstream bioinformatic analyses, we first proceeded 

with comparing Trimmomatic and Trim Galore, which are the two commonly used tools for quality 

filtering. [29,33,34] Quality scores were generally better with Trimmomatic compared to Trim 

Galore, which did not improve scores over non-filtered data (Figure 1G). Filtered reads were 

aligned to the human genome using three alignment-based methods (including HISAT2, STAR, 

RSEM, all used with Bowtie 2) and two non-alignment-based methods (kallisto and Salmon). 

RSEM, Salmon, and kallisto all showed similar characteristics in terms of gene counts with a 

bimodal distribution of counts resulting in a larger subset of detected genes after expression 

filtering compared to STAR and HISAT2 (Figure 1H). Using a selection of genes with known 

robust expression across tissues [30] it was confirmed that the differences between methods in 

genes grouped per detected counts with Salmon, kallisto, and RSEM had a higher proportion of 

genes with high counts (Figure 3C). Using this selection of genes, RSEM performed better in terms 

of technical variation expressed as a typical log fold difference between bilateral biopsies sampled 

prior to the intervention (Figure 1I). Also, a higher variation in HISAT2 and STAR coincided with 

lower correlations between myosin heavy chain family RNA and protein (Figure 2A and B). 
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Overall, these comparisons showed similar technical performance of RSEM, kallisto, and Salmon 

in terms of variability and biological validity. The slightly lower average variation between paired 

samples in RSEM led us to proceed further using this method. 

 

Effects of normalization strategies on transcriptomic data analysis from skeletal muscle under 

hypertrophic stress  

As previously reported [3], resistance training led to an increase in total RNA per-unit tissue 

weight. As an equal amount of total RNA was used for preparing RNA-seq libraries, the amount 

of muscle tissue used in library preparations decreased at 2 and 12 weeks of single-set training by 

13% and 9%, respectively. The decrease was more pronounced in response to multiple-set training 

(-7.1%, 95% CI: [-12.9, -1.0] and -6.3%, 95% CI: [-11.8, -0.4] for multiple-setvs.  single-set at 

Week 2 and 12 respectively, Figure 3A). Although a smaller amount of muscle tissue was used to 

prepare libraries, the total effective library size was increased by 25% and 38% from before to 2 

and 12 weeks of training, respectively (Figure 3B). The increase was not as pronounced in the 

moderate volume condition (-11%, 95% CI: [-22, 1.7] and -12%, 95% CI: [-24, 2.2] for multiple-

set vs. single-set at week 2 and 12 respectively, Figure 4B). The differences were less pronounced 

when the effective library size was normalized to tissue weight (-4%, 95% CI: [-16, 9.7] and -6%, 

95% CI: [-23, 14.1] for multiple-set vs. single-set at week 2 and 12 respectively, Figure 3C). 

 

Identification of genes responding to moderate, compared to low exercise volume 

Three models were used to compare normalization strategies. To account for the amount of tissue 

used in RNA-seq library preparation, tissue weight was included as an offset in the first model 

(tissue offset model) in addition to having the effective library size as a covariate in the model as 

previously suggested [31]. A second model only contained the effective library-size as a covariate 

(library-size normalization) and represented a scenario where normalization aimed to compare 

expression levels while accounting for technical variation in library preparation [24, 31]. Lastly a 

non-normalized model was used for comparison (naïve model).  
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In Week 2, when accounting for the amount of tissue used in library preparation, 21 genes were 

identified as differentially expressed (log2 fold-change > |0.5| and FDR < 0.05), having higher 

expression in multiple-set compared to single-set (Figure 3D). Seven genes were identified as 

having higher expression in multiple-set compared to  single-set when normalizing only to effective 

library size (Figure 3D). The gene set identified as up-regulated in multiple-set vs. single-set at 

week 2 in the effective library-size normalized model overlapped completely with the tissue offset 

model (Figure 3E). Rank based enrichment tests, using the minimum significant difference (MSD) 

identified gene ontology (GO) sets associated with the extracellular matrix (ECM) (Figure 3F, 

Table 2). The top ranked GO terms were also identified in over-representation tests (ORA) using 

DE (Figure 3F, Table 2).  In contrast to the tissue offset model, seven genes were identified as more 

highly expressed in single-set vs. multiple-set in the non-normalized naïve model; among these 

three were shared with the library-size normalized model (Figure 3E). No significantly enriched 

GO term was identified among genes identified as highly expressed in single-set vs. multiple-set 

in either model. When comparing rank metrics, like fold-change, between models the effect of the 

different normalization scenarios became apparent. Controlling for the amount of tissue shifted the 

distribution of fold-changes in favor of multiple set (Figure 3G). Subsequently, gene sets appeared 

with higher expression in multiple- vs. single-set, exemplified with the GO set Collagen containing 

ECM in Figure 3G. The number of genes identified as DE from this GO term were higher in the 

tissue offset model, followed by the effective library size normalized model and the naïve model, 

where no genes from the category were identified as DE (Figure 3G).     

At Week 12, no genes were identified as differentially expressed between single- 

vs. multiple- set training in the tissue offset model (Figure 3H). However, a small number of genes 

(n = 4) were identified as having higher expression in the single-set vs. multiple-set condition in 

the effective library size model of which two genes were shared with the naïve model (Figure 3I). 

The effects of acute exercise were examined as changes pre- to post-exercise in the fifth 

training session. Only the effective library size model was used as we did not expect changes in 

total RNA to muscle mass in this short time span [Figueriedo rev]. A total of 707 and 1029 genes 

were identified as DE with higher and lower expression post-exercise respectively when both 

conditions were analyzed collectively. Up-regulated genes were associated with stress related GO 

terms (Figure 4B, Table 3). In contrast to rested state biopsies, ECM related GO terms were 
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identified as down-regulated following acute exercise (Figure 4B, Table 3). When comparing 

multiple- and single-set acute exercise. A single gene was identified as DE (RFT1, Figure 4C) that 

was reduced to a greater extent in response to multiple-set vs. single-set exercise. Although only 

this single gene showed DE between conditions, five GO terms were identified as significantly 

enriched with top ranked genes based on MSD. Among these five categories, three had genes with 

MSD > 0 indicating that the lower bound of 95% CI did not overlap no change. However these 

categories were not identified in gene set enrichment analysis based on fold-changes as differences 

between volume conditions were both negative and positive as indicated by the rug-plot in Figure 

4D. Overall these analyses gives no strong indications of volume dependent regulation in the acute 

phase (1-h) after exercise.   

When examining the overall effects of training, 3923, 1609 and 3875 genes were identified 

as having higher expression and 77, 289 and 100 genes were identified as having lower expression 

at Week 2 compared to pre-training in the tissue offset, library-size normalized and naïve models 

respectively (Figure 5A). Majority of identified DE genes found in the intersection between all 

models  (Figure 5A lower panel). When comparing Week 12 to pre-training, 1733, 584 and 5108 

genes were identified as more highly expressed and 2, 19 and 2 genes identified as having lower 

expression in the tissue offset, library-size normalized and naïve model respectively (Figure 5B). 

Here, the largest number of DE genes identified with higher expression post-training were found 

in the intersection between the tissue offset model and the naïve model (Figure 5B lower panel). 

Enrichment analysis of time-effects in rested state samples (Week 2 vs. Week 0 and Week12 vs. 
Week 0) identified similar top-ranked GO terms associated with ECM structure, organization and 
synthesis as well as stress response (Table 2).   

Discussion 

In the present study, within participant model to study the effects of different training volumes on 

transcriptome responses. Similar to previous study [3]  and here, shown that this protocol resulted 

in robust differences in training outcomes, in line with previous studies [32]. Despite changes in 

muscle mass and strength, only small differences were detected in transcriptome profiles between 

conditions. Arguably, identification of these differences was made possible by systematic selection 

of analytic tools in establishing our bioinformatic pipeline. As a first step we sought to select a 
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suitable read trimming method and compared two commonly used algorithms [29, 33, 34].  Read 

trimming is known to affect downstream alignment and k-mer search in reads [29]. Trimmomatic 

and TrimGalore were compared and Trimmomatic was found to provide better quality than 

Trimgalore (Figure 1G). Subsequent transcript quantification is based on genome or transcriptome 

mapping of trimmed reads. For mapping two genome based mapping tools (STAR [35] and 

HISAT2 [36]) and three transcript based mapping tools (RSEM [37], kallisto [38] and Salmon [39]) 

were used. To select the most suitable alignment tool, the relationship between myosin heavy chain 

mRNA and protein abundances were evaluated, which are known to correlate in resting human 

skeletal muscle [40–42]. The use of gene/protein-family normalization [41, 43] allowed us to 

specifically interrogate mRNA to protein relationships without the need of other normalization 

assumptions. With the assumption that improved biological resolution would manifest in stronger 

correlations between relative mRNA and protein abundances we noted that STAR and HISAT 

performed worse than their transcriptome-mapping counterparts (RSEM, kallisto and Salmon). In 

the same analysis, a clear attenuation in the relationship between of MYH1 and corresponding Type 

IIX fibers was observed following initiation of training as an expected resulting from changes in 

MYH1 gene regulation in response to mechanical loading [44]. 

We further utilized the fact that collected baseline samples from both legs prior to any training and 

between leg variations can be expected to be negligible [23]. Here we assumed that maximal 

biological resolution would be achieved when technical variation between paired samples were 

minimized. Following suggestions from Teng et al. [45] with modifications to suit the within-

participant design of the present study, we calculated average log2-differences between replicates. 

Overall, these analyses showed that transcriptome- outperformed genome-mapping tools and that 

RSEM showed slightly lower average variation compared to Salmon and kallisto in the present 

data set. 

A basic assumption in many transcriptome studies is that transcripts are counted and compared 

between conditions at a per-cell level [27]. This is likely also often implicitly assumed to be 

equivalent to measuring transcriptome data as ratios between mRNA and total RNA as the input in 

sequencing or hybridization experiments usually is total RNA [13, 15, 46]. Using the present data 

set, we have previously reported that total RNA increases per-unit-tissue in a volume-dependent 

manner following initiation of resistance training [3]. This in turn resulted in different amounts of 
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tissue used for preparing cDNA libraries (Figure 3A), as a fixed amount of total RNA was used for 

this purpose. When unaccounted for, this arguably lead to comparison of transcript counts between 

different numbers of muscle tissue cells when comparing the two volume conditions. Interestingly, 

when normalizing the effective library size to the amount of muscle tissue used to prepare libraries 

(Figure 3B and C), the apparent difference between conditions in average library size was 

diminished. This suggests that the amount of mRNA increases similarly in response to resistance 

training per-unit-tissue weight regardless of training volume. This is in contrast to increases in total 

RNA, presumably relating to ribosomal RNA (rRNA) induction indicated by targeted analysis of 

rRNA species [3]. 

In the light of the above mentioned volume-dependent differences and with the aim to compare 

transcriptome perturbations between volume conditions, we decided to use three different 

normalization scenarios when examining condition differences. A first scenario was formulated to 

account for the amount of tissue used in the experiment together with the resulting library size. A 

second scenario accounted for effective library sizes and third, naïve scenario, represented an 

analysis without normalization. As any normalization strategy was included to affect all genes 

similarly in the analysis, this resulted in global shifts in differences between volume conditions 

between normalizations scenarios at Week 2. This was evident when examining the full distribution 

of fold-changes between conditions and specific subsets of genes related to specific GO terms 

(Figure 3G). The tissue offset model shifted fold-changes in the direction of multiple-set compared 

to other scenarios as when transcript counts were expressed as a rate per tissue-weight the lower 

amount of tissue used to prepare sequencing reactions pushed fold-changes in the direction of 

multiple-set. The naïve scenario showed a reversed shift compared to the tissue offset model as not 

accounting for the amount of tissue led to less counts in the multiple-set condition. Results from 

the effective library size model showed smaller differences between volume conditions, here 

differences in counts between conditions are differences at the average library size. These scenarios 

could conveniently be compared as corresponding models were fitted in the same statistical 

framework, i.e. using generalized linear mixed models (GLMM) as previously suggested [31]. An 

additional benefit of using GLMM was the incorporation of random effects to account for the 

present repeated measures design. Although approaches exists to account for correlated 
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observations in commonly used RNA-seq modelling frameworks [47], GLMMs provides a more 

robust and potentially more powerful framework for dealing with correlated data [31]. 

On a global scale, comparing these scenarios showed that accounting for the amount of tissue used 

in library preparations affected the interpretation of the data to some degree. More specifically this 

led to the identification volume dependence in extracellular matrix related genes in the early stage 

of resistance training. Extracellular matrix (ECM) remodeling has been shown to be induced by 

exercise training evident from acute phase, collagen synthesis studies [48, 49], studies of long term 

endurance and resistance training examining mRNA and protein abundances [13, 18, 50, 51] and 

single bout damaging muscle contractions [52] affecting ECM related proteins and mRNAs as well 

single bout non-damaging exercise affecting ECM related genes [53]. Although thought to have an 

important function in protecting skeletal muscle from injury [52], studies comparing eccentric 

exercise, known induce more muscle damage, to concentric exercise have shown diverging results 

regarding acute collagen synthesis [49, 54]. Additionally, light vs. heavy loadings were not shown 

to affect collagen synthesis differently when total load lifted were equated between conditions [48]. 

Overall, these limited data from human exercise studies gives no clear indication which exercise 

modalities affects ECM remodeling. Studying ECM remodeling in response to exercise could 

prove important for the understanding of exercise induced adaptations in specific populations. 

Ageing and disuse affects the ECM leading to increased stiffness and potentially decreased force 

transmission and muscle efficiency [55, 56]. Although exercise-training generally affects muscle 

function and specifically ECM remodeling [13, 18, 50, 51], there are indications that aged muscle 

responds differently with regard to ECM remodeling [53, 57]. In order to study e.g. effects of 

ageing on ECM remodeling, robust exercise models should be utilized. Our data provides a 

valuable direction showing dose dependence of ECM related genes in response to resistance 

training. Recently, increases in ECM and collagen fibril organization proteins in response to 

training was shown to scale to their respective mRNAs [50]. This suggests transcriptional 

regulation of ECM, however, the time course of this relationship could however be more complex 

as transcriptional regulation of e.g. COL1A2 shows a a considerable lag from stimuli to 

transcription as shown in fibroblasts [58]. Indeed, acute exercise counterintuitively leads to reduced 

expression of e.g. collagen mRNA evident from our study and others [18]. In contrasts chronic 

resistance training leads to increased expression [13, 18]. Together this indicates that the time-point 
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selected in the initial part of the present study was well suited to study specifically ECM related 

gene expression. After twelve weeks of training, differences between sets were diminished 

indicating that the initial phase training response provides relevant information with regards to dose 

effects. 

In contrast to initial resting state biopsies, the acute phase comparison between volume conditions 

did not reveal any apparent volume-dependent effects. Only a single gene, RFT1 was shown to be 

differentially expressed as it was down-regulated 1-h after acute exercise (~ 0.8-fold, corroborating 

previous indications [22]) and more so in response to multiple- compared to single-set training (~ 

0.7-fold). RFT1 is associated with GO terms lipid transport, carbohydrate transport and 

endoplasmic reticulum membrane. The possible importance of this and previous estimates [22] of 

RFT1 regulation in response to acute exercise warrants more research. 

As single genes provides limited information, gene set enrichment analysis could provide more 
valuable insights. In the acute phase three gene GO sets were identified has more highly ranked 
among equally sized gene sets with regard to their minimum significant difference. Closer 
examination of these gene sets showed genes both up- and down-regulated in multiple- compared 
to single-set exercise and there by missed by gene set enrichment analysis basd on fold-changes. 
Additionally only a small fraction of these transcripts actually showed positive MSD, indicating 
changes with unadjusted P-values < 0.05. Overall, these results did support robust volume-
dependent regulation of these gene sets (RNA splicing, RNA localization and covalent chromatin 
modification). This also underlines the fact that the chosen sampling time-point was not insufficient 
to provide potentially valuable information on volume-dependent regulation of gene expression in 
the acute phase.  

Conclusions 

Transcriptomic analyses of skeletal muscle subjected to altered growth condition should account 

for global changes in mRNA to total RNA and cell density to accurately reflect biologically 

meaningful events. When accounting for such aspects in the present study, ECM remodeling in 

response to resistance training was identified as volume-dependent Recommendations regarding 

normalization assumptions could be applicable to the study of other cell types and model systems 

undergoing increased or arrested growth. 
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Methods 

Participants and study overview  

The full study design has been previously described in detail [3]. Thirty-four participants completed 

a 12-week training-intervention with legs allocated to either low- (one set per exercise, single-set) 

or moderate-volume (three sets per exercise, multiple-set) training (Figure 1A). Muscle biopsies 

were obtained from each leg prior to and after the intervention, as well as prior to and 60-min after 

the fifth training session. Participants with a complete set of high-quality RNA samples (RQI ≥ 7, 

n=25) were selected for RNA-seq (Figure 1B). Training-induced changes in muscle size and 

strength were estimated for each leg using several methods (for complete overview, see[3]). Herein, 

we present DXA-based measurement of lean mass for the 25 participants eligible for RNA-seq, as 

well as a weighted combined measure of strength (combining data from different strength tests).  

Information about potential risks and discomforts associated with the study was given to 

participants prior to enrollment and all participants gave their written informed consent prior to 

inclusion. All procedures were approved by the local ethics committee at Inland Norway University 

of Applied Sciences (nr 2013-11-22:2) and the study design was pre-registered at 

ClinicalTrials.gov (Identifier: NCT02179307). The study was conducted in accordance with the 

Declaration of Helsinki. 

Training protocol 

The training protocol consisted of unilateral lower body exercises (leg-press, leg-curl and knee-

extension). Each participant leg was randomly assigned to  perform either one or three sets per 

exercise, ensuring within-subject comparisons. Rest periods between sets were 90-180 sec. The 

single-set leg was always trained in the rest period between the second and third set of the multiple-

set protocol. Training protocols were performed in a progressive manner, whereby resistance was 

continuously adjusted to ensure that the targeted number of repetitions where reached at volatile 

fatigue. This was equivalent to 10 repetitions maximum (RM) in weeks one and two, followed by 

8RM in weeks three to five and 6RM in weeks six to twelve. Each week consisted of either 2 or 3 

training sessions. From week four, weeks with three sessions contained one session at a sub-

maximal load (90% of previous session load). All sessions commenced with a standardized warm-

up. After each session, participants were given a standardized milk-based drink [3]. 
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Muscle strength and hypertrophy assessments 

Muscle strength was assessed twice before and once after the intervention. A detailed description 

of strength outcomes resulting from the study has been reported previously [3]. For the purpose of 

the present analyses, we present a weighted average of strength gains for the 25 participants eligible 

for RNA-seq, based on data from unilateral isometric and isokinetic (60∘, 120∘ and 240∘  × sec ) 

knee extension, and one-repetition maximum (1RM) in unilateral knee extension and leg press. 

Isometric and isokinetic strength was assessed using an individually adjusted dynamometer (Cybex 

6000, Cybex International, Medway USA). 1RM was defined as the maximum load lifted through 

the full range of motion. From pre-intervention tests, the highest values were used for change score 

calculations. 

Muscle hypertrophy was assessed from full-body dual-energy X-ray absorptiometry (DXA; Lunar 

prodigy, GE Healthcare, Oslo, Norway) scans performed prior to and after the intervention. Leg 

lean-mass was derived from region of interests covering the full leg from collum femoris to the 

distal end of the foot defined in the analysis software (enCore, GE Healthcare, Oslo, Norway). 

Muscle tissue sampling and RNA extraction 

Muscle tissue was obtained bilaterally from m. vastus lateralis using a 12-gauge needle (Universal-

plus, Medax, San Possidonio, Italy) under local anesthesia (Xylocaine, 10 𝑚𝑔 × 𝑚𝑙  with 

adrenaline 5 𝜇𝑔 × 𝑚𝑙 , AstraZeneca AS, Oslo, Norge). Samples were obtained from the two legs 

within 10 minutes of each other at all time-points. All rested state samples were obtained in the 

morning after a standardized breakfast. Participants were instructed to ingest standardized meals 

during the last 24 h leading up to the sampling event, and to refrain from strenuous physical activity 

the last 48 h. Samples were dissected in ice-cold sterile saline solution (0.9% NaCl), blotted dry, 

weighed and snap-frozen in isopentane, before storage at −80∘C until further processing. For RNA 

extraction, frozen muscle samples were homogenized in 1 ml of TRIzol reagent (Invitrogen, Life 

technologies AS, Oslo, Norway) using a bead homogenizer (Bullet Blender, Next Advanced, 

Averill Park, NY, USA). After phase separation, 400 𝜇𝑙 of the aqueous phase was used in 

isopropanol precipitation of RNA, and after three washing steps (70% ethanol) the pellet was eluted 

in TE buffer. All samples showed 260/280 𝑛𝑚 ratio > 1.95 assessed using a spectrophotometer 

(NanoDrop 2000, ThermoFisher Scientific, Oslo, Norway). RNA integrity scores (RQI) were 
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determined using capillary electrophoresis (Experion Automated Electrophoresis Station using 

RNA StdSens Assay, Bio-Rad). Participants with complete sets of high quality RNA samples had 

an average RQI score of 9.0 (0.4) (full data set, 8.1 (2.1), range: 1-9.7) (Figure 1C). 

Illumina library preparation and sequencing 

For each participant, mRNA sequencing libraries were prepared from the same amount of RNA 

(1000 ng, depending on the minimum amount available) using TruSeq Stranded Total RNA Library 

Prep (Illumina, San Diego, CA USA). Paired-end sequencing (150 bp) was performed using an 

Illumina HiSeq 3000 (Illumina) at the Norwegian Sequencing Centre. 

Bioinformatic analysis 

Pre-alignment filtering 

Trim Galore (version 0.6.5) [34] and Trimmomatic (version 0.39) [33] were used to discard low-

quality reads and trim poor-quality bases before alignment, using default settings. The quality of 

filtered files was calculated by FastQC (version 0.11.4) [59] and summarized using MultiQC 

(version 1.8) [60]. 

Read alignment and quantification 

Filtered reads were aligned to the Human genome (GRCh38 release-97 downloaded from 

ftp.ensemble.org) using the alignment-based methods HISAT2 (version 2.1.0) [36], STAR (version 

2.7.2) [35], and RSEM (version 1.3.1) [37], used together with Bowtie 2 (version 2.3.4.3) [61], and 

the non-alignment methods Kallisto (version 0.44.0) [38] and Salmon (version 0.13.1) [39]. For 

HISAT2 and STAR, HTSeq was used for quantification as previously described [62]. RSEM, 

kallisto, and Salmon have in-built quantification functions. 

Modeling of gene counts 

Gene counts were modeled using negative binomial generalized linear mixed models (GLMM), as 

suggested in [31], with modifications. Three model formulations were used to represent three 

different normalization scenarios. First, to account for fluctuations in RNA-to-tissue ratios, the 

amount of tissue used in cDNA synthesis was included as an offset term  together with the effective 

library size and study conditions (time and volume condition), added as a fixed effects in the model 
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(tissue offset model). A simplified model contained only the  effective library size together with 

study conditions, included as fixed effects (Effective library-size model). And finally, a naïve 

model formulation, without any form of normalization term was used for comparisons. For acute 

exercise effects (fifth session pre- to post-exercise), only the library size normalized model was 

used as we expected that fluid shifts [63] could influence the muscle weight measurement and 

changes in Total-RNA were unlikely to occur in this short time span [64]. The effective library size 

was calculated by multiplying the total library size with the RNA composition normalization factor, 

calculated using the trimmed mean method [24], followed by dividing the value by the median 

effective library size, as suggested by Cui et al. [31]. The effect of resistance training on gene 

counts was assessed as i) the effect of exercise volume and ii) the effect of time. For analyses of 

the effect of exercise volume, differential expression was evaluated using models containing the 

interaction between time and exercise volume. For analyses of the effect of time, differential 

expression was evaluated using models containing only the time factor, combining all data 

irrespective of volume condition.  In all models, a single random effect was used, giving each 

participant an individual intercept. Models were iteratively fitted using glmmTMB [65]. Utilization 

of the negative binomial distribution was supported by comparing the full model with a Poisson 

model (not containing the dispersion term), providing likelihood-ratio tests p-values that were 

distributed of p-primarily below p=0.05 (0.37% of models showed p > 0.05). Heteroscedasticity 

was assessed using the uniformity test in the DHARMa package [66], which generally showed 

good agreement with model assumptions, providing p-values concentrated near 1 (98.51% of 

models showed p > 0.05).  

Genes were identified as differentially expressed when the absolute log2 fold-change was greater 

than 0.5 and the adjusted p-value was below 5%.  P-values were adjusted per-model coefficient to 

control for the false discovery rate [67]. 

Functional annotation 

Enrichment analyses of gene ontology (GO) gene sets were performed using three approaches. 

First, a non-parametric rank test (described in [68] and implemented in the tmod package [69], 

version 0.40) was performed based on gene specific minimum significant differences (MSD). MSD 

was defined as the lower limit of the 95% confidence interval (CI, based on estimated standard 
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errors) around the log(FC) when log(FC) > 0 and the negative inverse of the upper 95% CI when 

log(FC) < 0. This metric has been shown to have lower false positive rates compared to other 

metrics applied to enrichment analysis [70]. As the MSD metric is positive when the CI does not 

overlap 0 and negative when overlap occurs, the rank test does not discern between up and 

downregulated gene sets. A second approach, gene set enrichment analysis (GSEA) [71], was used 

to quantify directional regulation of the gene set. GSEA was performed using the fgsea package 

[72] with log2 fold-change as the gene level metric. Thirdly, over-representation analysis (ORA) 

was performed to assess if genes identified as differentially expressed (|log2 fold-change| > 0.5 and 

adjusted p-values < 0.05) belonged to specific gene sets. ORA was performed using the enrichGO 

function in the clusterProfiler package [73], version 3.16.0. GO gene sets (biological process, 

cellular component and molecular function) were retrieved from the molecular signature database 

(version 7.1) [74]. 

 

Statistical analysis 

Descriptive data are presented as mean and standard deviation (SD). Changes in muscle strength 

and CSA were estimated using linear mixed models on change scores with baseline values as 

covariates. Alignment tools were assessed by comparing log2-differences between biological 

replicates, as suggested by Teng et al. [39], with modifications. Briefly, a subset of genes 

previously shown to be stably expressed between tissues was selected [45], whereupon log fold-

differences between paired biopsy samples was calculated (i.e. using biopsies collected from each 

of the two legs prior to the training intervention). In addition, alignment tools were assessed by 

comparing relationships (Pearson’s correlation coefficient) between gene family profiling of 

myosin heavy chains (MYH1, MYH2 and MYH7; muscle-specific) and the corresponding myosin 

heavy chain protein expression (measured using immunohistochemistry as fiber types IIX, IIA and 

I).. These mRNA and protein profiles were expressed as a fraction of total counts, thus removing 

the need for normalization of the RNA-seq data, as previously described for qPCR data [41]. 

Notably, these data also provided insight into the overall biological validity of the RNA-seq data, 

linking gene counts to protein phenotypes.   
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Immunohistochemistry 

Quantification of myosin heavy chain abundance from formalin-fixed muscle biopsy cross-

sections was performed as previously described and reported [3]. Briefly, 4 𝜇𝑚 transverse 

sections were incubated with primary antibodies detecting all myosin isoforms but type IIX (BF-

35, 5 𝜇𝑔 × 𝑚𝑙 , Developmental Studies Hybridoma Bank, deposited by Schiaffino, S.) and type 

I myosin (MyHCSlow, 1:4000, catalogue M8421L, Sigma-Aldrich Norway AS, Oslo, Norway). 

Primary antibodies were visualized using BMU UltraView DAB and UltraView Red (Ventana 

Medical Systems, Inc. Tucson, USA). Muscle fibers were identified as either Type I (red), Type 

IIA (brown), Type IIX (unstained) or hybrid fibers Type IIA/IIX (light brown) (for representative 

images, see figure 3 in [3]. Hybrid fibers were analyzed as 0.5 × Type IIA and 0.5 × Type IIX. 
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Figure legends 

Figure 1: Study overview and RNA-seq analysis pipeline. Forty-one participants were recruited 

and had their legs randomized to either single- (one set per exercise) or multiple-set (three set per 

exercise) training for the duration of twelve weeks (2-3 sessions week-1) (A). Pre- and post-training 

testing included strength and muscle lean-mass assessments. M. vastus lateralis muscle biopsies 

were collected at four time-points, prior to and after the intervention (Week 0 and 12) and before 

and after the fifth training session (Week 2). Biopsies from participants who completed > 85% of 

prescribed sessions were used for RNA extraction (n=34; A). RNA quality was assessed (B) and a 

subset of participants with RNA quality indicator (RQI) scores > 7 were included in the RNA-seq 

experiment. RNA quality was not associated with muscle tissue weight (C) and participants 

included in RNA-seq experiments (n=25) did not differ from excluded in terms of muscle lean-

mass gains (D). Multiple-set training led to greater gains in lean-mass (E) and lower extremity 

strength (F) compared to single-set training in the subset of participants included in the RNA-seq 

experiment. RNA-seq data was quality filtered using trimgalore and trimmomatic and reads were 
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compared to unfiltered reads (G). Read alignment was performed using five tools of which RSEM, 

kallisto and Salmon showed greater fractions of genes with robust expression after removing low-

abundance genes (expression filtering; H) compared to HISAT2 and STAR. RSEM, kallisto and 

Salmon also showed less log2-differences between biological replicates in a subset of genes with 

known robust expression (see text for details, I).   

Figure 2: Correlations between myosin heavy chain mRNA and protein abundance. mRNA 

abundances estimated with RSEM, kallisto and Salmon showed stronger correlations with the 

corresponding protein expression (B). Relative abundances of mRNA and protein were calculated 

as a percentage of the whole mRNA and protein family respectively (MYH1, MYH2 and MYH7 for 

mRNA and Type IIX, IIA and I for protein).  

Figure 3: Effects of training on muscle tissue used in cDNA synthesis and comparison 

between exercise volume conditions in rested state biopsies between normalization methods. 

Biopsy tissue mass used in cDNA synthesis varied over the course of the study and between volume 

conditions (A) as a result of varied RNA to tissue weight ratios [3]. Despite lower amounts of 

tissue, effective library sizes increased after the onset of training with an tendency towards greater 

increase in the Single-set condition (B). When expressing library sizes per-unit tissue weight 

differences between volume conditions were diminished but increases from baseline were 

maintained (C). Between volume-condition comparisons in three different modeling scenarios 

resulted in different sets of differentially expressed (DE) genes. The naive model shared DE genes 

with higher expression in the single-set condition with the effective-library size normalized model 

but no genes with the Tissue-offset model at week 2 (D, E). The tissue offset-normalized model 

shared ten genes with higher expression in multiple-sets with the effective library-size normalized 

model at week 2 (D, E). The naive model shared genes showing higher expression in the single-set 

condition at week 12 (H, I). No genes were identified as more highly expressed in multiple-set at 

week 12. Enrichment analysis revealed gene sets related to extracellular matrix as more highly 

expressed in multiple-set at Week 2 in the tissue offset model (F). All gene sets identified in the 

tissue offset model were more highly expressed in multiple-set, indicated by a positive enrichment 

score in F. Purple dots represents gene categories also identified from over-representation analysis 

(ORA) from DE genes. Normalization strategies had global effects on rank tests as fold-changes 

and minimum significant differences scores (not shown) shifted as exemplified by the “Collagen 
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containing extracellular matrix” gene set in G and the full distribution of log2 fold-changes shown 

as density curves. Gray bars represents genes not contained in the gene set, black bars represents 

genes contained in the gene set. Genes symbols indicate genes identified as differentially expressed 

in each normalization scenario (log2 fold-change > 0.5 and adjusted P-values < 0.05).    

Figure 4: Effects of acute exercise on gene expression. Many genes changed in both directions 

in response to acute exercise when both volume conditions were combined (A). Functional 

annotation revealed increased expression of gene ontology categories associated with stress 

response and transcription and decreased response of categories related to extracellular matrix (B). 

Categories also identified in over-representation analysis (ORA) are highlighted in B. Comparing 

expression perturbations between volume conditions identified a single differentially expressed 

gene (RFT1, C). Three gene ontology categories were identified as enriched based on minimum 

significant difference (MSD) ranking, genes from these categories with MSD > 0 are identified in 

(C) and traces from rank tests are displayed in D.     

Figure 5: Comparison of differential expression over time between normalization scenarios. 

Volcano plot identifies differentially expressed genes (adjusted P-values < 0.05 and log2 fold-

changes > 0.5, filled circles). Bar-plots shows total number of differentially expressed genes 

(horizontal bars) and sets exclusively found in each model or shared among models (vertical bars). 

Comparing Week 2 to pre-training between model showed that the largest fraction of genes were 

shared among normalization scenarios although downregulated genes were to a large extent 

identified in the Effective library size normalized model (A). The majority of up-regulated genes 

from pre-training to Week 12 were found in the tissue-offset and naïve models (B).     

 

Table 1. Participant characteristics  

   
Mean  SD  

Female  n = 11  Age (years)  22.6  0.9  

Body mass (kg)  166.2  6.2  

Stature (cm)  61.5  7.4  



61 
 
 

Male  n = 14  Age (years)  23.9  4.2  

Body mass (kg)  183.7  5.6  

Stature (cm)  77.4  10.4  
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Table 2. Functional enrichment analysis  

 GSEA   

Comparison 
Normalization 
model  

Gene 
ontology 
category  

ID  Description  
Rank 
P-
value 

GSEA 
P-
value  

NES ORA P-value 

Week 2  

Tissue offset  

Biological 
process  

GO:0043062
Extracellular structure 
organization  

2.04e-
40  

2.98e-
24  

1.93 9.04e-28  

GO:0030199Collagen fibril organization  
3.33e-
18  

9.99e-
13  

2.31 1.94e-08  

GO:0060326Cell chemotaxis  
2.36e-
15  

1.34e-
15  

1.91 2.20e-11  

Cellular 
component 

GO:0062023
Collagen containing 
extracellular matrix  

6.84e-
68  

4.34e-
46  

2.20 5.88e-53  

GO:0005788
Endoplasmic reticulum 
lumen  

2.62e-
23  

9.11e-
13  

1.75 5.21e-17  

GO:0005581Collagen trimer  
4.92e-
21  

4.38e-
14  

2.25 1.29e-10  

GO:0031983Vesicle lumen  
1.82e-
15  

1.09e-
09  

1.63 1.37e-12  

Molecular 
function  

GO:0005201
Extracellular matrix 
structural constituent  

6.52e-
40  

1.75e-
24  

2.21 8.04e-30  

GO:0005539Glycosaminoglycan binding  
7.40e-
16  

5.06e-
12  

1.88 1.87e-09  

GO:0005178Integrin binding  
2.83e-
14  

1.60e-
08  

1.82 1.17e-12  

Effective 
library size  

Biological 
process  

GO:0043062
Extracellular structure 
organization  

3.58e-
34  

2.22e-
23  

2.02 4.27e-29  
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GO:0030199Collagen fibril organization  
5.66e-
17  

1.75e-
10  

2.27 2.49e-14  

GO:0061448
Connective tissue 
development  

4.04e-
14  

1.60e-
07  

1.73 1.88e-10  

GO:0060326Cell chemotaxis  
4.99e-
14  

2.03e-
12  

1.95 7.75e-15  

GO:0051216Cartilage development  
3.04e-
12  

5.19e-
07  

1.80 2.59e-10  

Cellular 
component 

GO:0062023
Collagen containing 
extracellular matrix  

1.37e-
60  

2.50e-
37  

2.19 4.43e-52  

GO:0005581Collagen trimer  
1.51e-
19  

5.35e-
12  

2.23 1.18e-14  

GO:0005788
Endoplasmic reticulum 
lumen  

3.36e-
17  

2.34e-
12  

1.87 1.50e-10  

Molecular 
function  

GO:0005201
Extracellular matrix 
structural constituent  

3.46e-
37  

7.63e-
19  

2.20 2.82e-28  

GO:0005539Glycosaminoglycan binding  
1.60e-
13  

1.89e-
10  

1.97 2.86e-12  

Naïve  

Biological 
process  

GO:0043062
Extracellular structure 
organization  

3.86e-
40  

9.85e-
24  

1.89 3.36e-26  

GO:0030199Collagen fibril organization  
6.38e-
18  

3.18e-
12  

2.27 1.67e-08  

GO:0060326Cell chemotaxis  
2.66e-
16  

2.57e-
16  

1.89 5.00e-11  

Cellular 
component 

GO:0062023
Collagen containing 
extracellular matrix  

5.25e-
69  

5.33e-
48  

2.18 1.01e-53  

GO:0005788
Endoplasmic reticulum 
lumen  

1.94e-
23  

2.76e-
12  

1.72 4.68e-18  
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GO:0005581Collagen trimer  
3.27e-
21  

2.86e-
14  

2.19 2.17e-11  

GO:0031983Vesicle lumen  
4.65e-
15  

4.18e-
10  

1.60 6.31e-13  

Molecular 
function  

GO:0005201
Extracellular matrix 
structural constituent  

7.62e-
40  

1.79e-
24  

2.22 6.38e-29  

GO:0005539Glycosaminoglycan binding  
1.28e-
16  

4.15e-
13  

1.92 5.04e-10  

GO:0005178Integrin binding  
1.11e-
14  

6.29e-
08  

1.81 4.81e-12  

Week 12  Tissue offset  

Biological 
process  

GO:0043062
Extracellular structure 
organization  

5.20e-
49  

5.18e-
29  

2.19 1.09e-37  

GO:0030199Collagen fibril organization  
1.03e-
19  

2.50e-
12  

2.54 1.29e-15  

Cellular 
component 

GO:0062023
Collagen containing 
extracellular matrix  

2.84e-
68  

7.31e-
53  

2.50 8.25e-67  

GO:0005581Collagen trimer  
1.57e-
24  

9.48e-
21  

2.63 2.40e-25  

GO:0005788
Endoplasmic reticulum 
lumen  

3.10e-
19  

2.35e-
10  

1.83 1.87e-13  

GO:0005604Basement membrane  
7.34e-
16  

9.58e-
13  

2.28 1.26e-14  

Molecular 
function  

GO:0005201
Extracellular matrix 
structural constituent  

9.47e-
47  

5.58e-
34  

2.62 4.24e-46  

GO:0005539Glycosaminoglycan binding  
5.69e-
20  

2.79e-
14  

2.13 2.01e-17  

GO:0008201Heparin binding  
2.20e-
18  

3.75e-
14  

2.23 9.82e-16  
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GO:0030020
Extracellular matrix 
structural constituent 
conferring tensile strength  

1.71e-
16  

2.18e-
12  

2.49 1.60e-13  

Effective 
library size  

Biological 
process  

GO:0043062
Extracellular structure 
organization  

5.01e-
44  

3.34e-
22  

1.87 8.48e-33  

GO:0030199Collagen fibril organization  
1.33e-
18  

2.37e-
08  

2.09 2.69e-10  

Cellular 
component 

GO:0062023
Collagen containing 
extracellular matrix  

8.19e-
63  

9.42e-
39  

2.07 2.59e-56  

GO:0005581Collagen trimer  
7.47e-
24  

3.20e-
13  

2.17 1.11e-26  

GO:0005788
Endoplasmic reticulum 
lumen  

5.55e-
17  

5.58e-
09  

1.67 1.58e-13  

Molecular 
function  

GO:0005201
Extracellular matrix 
structural constituent  

1.36e-
44  

1.14e-
21  

2.14 4.31e-42  

GO:0005539Glycosaminoglycan binding  
7.82e-
18  

2.72e-
12  

1.89 1.05e-15  

GO:0008201Heparin binding  
1.27e-
17  

1.38e-
10  

1.94 6.20e-16  

GO:0030020
Extracellular matrix 
structural constituent 
conferring tensile strength  

1.85e-
16  

8.08e-
08  

2.08 1.35e-16  

GO:0005518Collagen binding  
1.77e-
15  

2.43e-
06  

1.92 1.12e-07  

Naïve  
Biological 
process  

GO:0043062
Extracellular structure 
organization  

8.12e-
52  

1.27e-
38  

2.85 1.06e-28  

GO:0030199Collagen fibril organization  
1.26e-
20  

1.26e-
14  

3.11 5.82e-08  
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Cellular 
component 

GO:0062023
Collagen containing 
extracellular matrix  

2.31e-
78  

3.28e-
71  

3.35 4.01e-46  

GO:0005581Collagen trimer  
2.27e-
26  

4.96e-
27  

3.37 4.83e-12  

GO:0005788
Endoplasmic reticulum 
lumen  

3.11e-
23  

7.77e-
16  

2.36 1.45e-14  

Molecular 
function  

GO:0005201
Extracellular matrix 
structural constituent  

4.70e-
50  

6.57e-
48  

3.54 6.42e-28  

GO:0005539Glycosaminoglycan binding  
2.92e-
23  

2.16e-
19  

2.75 6.84e-13  

GO:0008201Heparin binding  
7.04e-
21  

3.05e-
18  

2.83 1.97e-09  

GO:0005178Integrin binding  
7.84e-
17  

3.77e-
12  

2.53 3.06e-09  

GO:0030020
Extracellular matrix 
structural constituent 
conferring tensile strength  

1.98e-
16  

2.90e-
15  

3.16 3.77e-06  
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Appendix 2, All lncRNA 
identified in RNA-seq 
muscle biopsies data. 

ENSEMBLE GENE 
ID 

ENTREZGENE 
ID ID 

HGNC -
SYMBOL 

ENSG00000093100 NA 
 

ENSG00000116652 NA DLEU2L 

ENSG00000117242 100861548 PINK1-AS 

ENSG00000130600 283120 H19 

ENSG00000130600 102724852 H19 

ENSG00000145075 NA CCDC39 

ENSG00000151303 NA 
 

ENSG00000153363 NA LINC00467 

ENSG00000157306 NA ZFHX2-AS1 

ENSG00000163364 NA LINC01116 

ENSG00000163597 100507246 SNHG16 

ENSG00000164385 154386 LINC01600 

ENSG00000165511 220979 ZNF22-AS1 

ENSG00000166770 NA ZNF667-AS1 

ENSG00000167920 147184 TMEM99 

ENSG00000170161 554249 
 

ENSG00000170919 NA TPT1-AS1 

ENSG00000172965 541471 MIR4435-2HG 

ENSG00000174365 128439 SNHG11 

ENSG00000174403 NA MIR1-1HG-AS1 

ENSG00000174407 128826 MIR1-1HG 

ENSG00000175061 125144 SNHG29 

ENSG00000175611 100128782 LINC00476 

ENSG00000175772 NA LINC01106 

ENSG00000176124 10301 DLEU1 

ENSG00000176124 100874074 DLEU1 

ENSG00000176593 100128398 
 

ENSG00000176659 284756 C20orf197 

ENSG00000176728 83869 TTTY14 

ENSG00000177337 NA DLGAP1-AS1 

ENSG00000177406 100049716 NINJ2-AS1 

ENSG00000177410 441951 ZFAS1 

ENSG00000177738 648987 
 

ENSG00000178977 284029 LINC00324 

ENSG00000179406 285908 LINC00174 

ENSG00000179523 645212 EIF3J-DT 

ENSG00000179743 729614 
 

ENSG00000179818 400960 PCBP1-AS1 

ENSG00000179935 NA LINC00652 

ENSG00000180139 NA ACTA2-AS1 

ENSG00000180525 414235 PRR26 

ENSG00000180769 404201 WDFY3-AS2 

ENSG00000181798 151477 LINC00471 

ENSG00000182165 NA TP53TG1 

ENSG00000182257 NA PRR34 

ENSG00000182648 100506380 LINC01006 

ENSG00000183154 102723701 
 

ENSG00000184068 112637020 SREBF2-AS1 

ENSG00000184224 100505621 C11orf72 

ENSG00000185847 100131138 LINC01405 

ENSG00000186019 NA 
 

ENSG00000186594 84981 MIR22HG 

ENSG00000186615 100129075 KTN1-AS1 

ENSG00000187951 100288637 
 

ENSG00000188004 284677 SNHG28 

ENSG00000188185 NA LINC00265 

ENSG00000188242 25845 
 

ENSG00000188825 NA LINC00910 

ENSG00000189223 654433 PAX8-AS1 

ENSG00000189316 441239 
 

ENSG00000196167 399948 COLCA1 

ENSG00000196204 441191 RNF216P1 

ENSG00000196295 NA GARS1-DT 

ENSG00000196696 283970 
 

ENSG00000196741 NA LINC01560 

ENSG00000196756 388796 SNHG17 

ENSG00000196810 NA CTBP1-DT 

ENSG00000196951 100129858 SCOC-AS1 

ENSG00000197180 158960 
 

ENSG00000197182 400931 MIRLET7BHG 

ENSG00000197291 100190938 RAMP2-AS1 

ENSG00000197536 NA IRF1-AS1 

ENSG00000197815 NA 
 

ENSG00000197989 85028 SNHG12 

ENSG00000198358 101928372 
 

ENSG00000198468 642946 FLVCR1-DT 

ENSG00000198496 10230 NBR2 

ENSG00000203280 100128531 KIAA1671-AS1 

ENSG00000203288 109729141 TDRKH-AS1 

ENSG00000203392 NA 
 

ENSG00000203506 NA RBMS3-AS2 

ENSG00000203620 NA 
 

ENSG00000203644 NA 
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ENSG00000203709 NA MIR29B2CHG 

ENSG00000203804 574406 ADAMTSL4-AS1 

ENSG00000203808 154442 BVES-AS1 

ENSG00000203875 NA SNHG5 

ENSG00000203930 NA LINC00632 

ENSG00000203993 85026 ARRDC1-AS1 

ENSG00000203999 284751 LINC01270 

ENSG00000204054 NA LINC00963 

ENSG00000204261 100507463 PSMB8-AS1 

ENSG00000204282 100131096 TNRC6C-AS1 

ENSG00000204387 50854 SNHG32 

ENSG00000204460 151121 LINC01854 

ENSG00000204588 440894 LINC01123 

ENSG00000204677 653316 FAM153CP 

ENSG00000204685 NA STARD7-AS1 

ENSG00000205056 NA LINC02397 

ENSG00000205106 374387 LINC02716 

ENSG00000205181 149837 LINC00654 

ENSG00000205500 100129724 MAPRE3-AS1 

ENSG00000205740 107984285 
 

ENSG00000205791 503693 LOH12CR2 

ENSG00000205885 283314 C1RL-AS1 

ENSG00000205959 NA 
 

ENSG00000206195 503637 DUXAP8 

ENSG00000206337 10866 HCP5 

ENSG00000206344 253018 HCG27 

ENSG00000206567 NA 
 

ENSG00000206573 440944 THUMPD3-AS1 

ENSG00000212694 338799 LINC01089 

ENSG00000212719 339263 LINC02693 

ENSG00000212978 339803 
 

ENSG00000213121 NA 
 

ENSG00000213599 100526830 SLX1A-
SULT1A3 

ENSG00000213742 102724826 ZNF337-AS1 

ENSG00000213888 NA LINC01521 

ENSG00000213904 100996307 LIPE-AS1 

ENSG00000213904 101930071 LIPE-AS1 

ENSG00000213963 100130691 
 

ENSG00000214106 NA PAXIP1-AS2 

ENSG00000214145 NA LINC00887 

ENSG00000214293 100505854 APTR 

ENSG00000214401 644246 KANSL1-AS1 

ENSG00000214401 107984142 KANSL1-AS1 

ENSG00000214548 55384 MEG3 

ENSG00000214708 105371730 
 

ENSG00000214719 NA 
 

ENSG00000214783 84820 POLR2J4 

ENSG00000214900 283551 LINC01588 

ENSG00000214942 NA 
 

ENSG00000214970 NA 
 

ENSG00000215039 678655 CD27-AS1 

ENSG00000215067 100506713 ALOX12-AS1 

ENSG00000215068 153684 
 

ENSG00000215244 399715 LINC02649 

ENSG00000215256 55449 DHRS4-AS1 

ENSG00000215386 NA MIR99AHG 

ENSG00000215417 407975 MIR17HG 

ENSG00000215424 114044 MCM3AP-AS1 

ENSG00000215769 109286553 ARHGAP27P1-
BPTFP1-
KPNA2P3 

ENSG00000216895 100506302 
 

ENSG00000218018 100291105 RBM38-AS1 

ENSG00000218510 29092 LINC00339 

ENSG00000219410 NA 
 

ENSG00000219665 101928464 ZNF433-AS1 

ENSG00000221817 101929145 PPP3CB-AS1 

ENSG00000221990 NA EXOC3-AS1 

ENSG00000222041 112597 CYTOR 

ENSG00000223403 100507257 MEG9 

ENSG00000223482 728190 NUTM2A-AS1 

ENSG00000223704 NA LINC01422 

ENSG00000223745 NA CCDC18-AS1 

ENSG00000223768 642852 LINC00205 

ENSG00000223784 NA LINP1 

ENSG00000223797 285266 ENTPD3-AS1 

ENSG00000223799 NA IL10RB-DT 

ENSG00000223891 100505783 OSER1-DT 

ENSG00000223960 101927027 CHROMR 

ENSG00000224023 399821 EDRF1-DT 

ENSG00000224032 NA EPB41L4A-AS1 

ENSG00000224078 NA SNHG14 

ENSG00000224086 NA PPM1F-AS1 

ENSG00000224152 NA 
 

ENSG00000224165 729723 DNAJC27-AS1 

ENSG00000224189 401022 HAGLR 

ENSG00000224259 NA LINC01133 

ENSG00000224272 NA 
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ENSG00000224281 100303728 SLC25A5-AS1 

ENSG00000224361 NA 
 

ENSG00000224424 100506637 PRKAR2A-AS1 

ENSG00000224568 105373537 LINC01886 

ENSG00000224609 729467 
 

ENSG00000224660 100505696 SH3BP5-AS1 

ENSG00000224699 NA LAMTOR5-AS1 

ENSG00000224713 NA 
 

ENSG00000224843 100133205 LINC00240 

ENSG00000224870 148413 MRPL20-AS1 

ENSG00000224914 439994 LINC00863 

ENSG00000224934 NA 
 

ENSG00000224958 572558 PGM5-AS1 

ENSG00000224975 8552 INE1 

ENSG00000224985 NA 
 

ENSG00000225032 102723566 
 

ENSG00000225083 NA GRTP1-AS1 

ENSG00000225138 NA SLC9A3-AS1 

ENSG00000225313 NA 
 

ENSG00000225339 NA 
 

ENSG00000225377 100507459 NRSN2-AS1 

ENSG00000225439 100507171 BOLA3-AS1 

ENSG00000225470 554203 JPX 

ENSG00000225472 NA 
 

ENSG00000225484 101060691 NUTM2B-AS1 

ENSG00000225613 NA LINCMD1 

ENSG00000225655 NA 
 

ENSG00000225670 NA CADM3-AS1 

ENSG00000225733 100505641 FGD5-AS1 

ENSG00000225746 NA MEG8 

ENSG00000225778 219731 PROSER2-AS1 

ENSG00000225783 440823 MIAT 

ENSG00000225791 401264 TRAM2-AS1 

ENSG00000225855 284618 RUSC1-AS1 

ENSG00000225889 NA 
 

ENSG00000225914 414764 TSBP1-AS1 

ENSG00000226029 107984921 LINC01772 

ENSG00000226051 253264 ZNF503-AS1 

ENSG00000226137 440465 BAIAP2-DT 

ENSG00000226167 100287722 AP4B1-AS1 

ENSG00000226200 NA SGMS1-AS1 

ENSG00000226239 NA 
 

ENSG00000226312 65072 CFLAR-AS1 

ENSG00000226328 100506714 NUP50-DT 

ENSG00000226380 NA 
 

ENSG00000226416 100133545 MRPL23-AS1 

ENSG00000226419 100506392 SLC16A1-AS1 

ENSG00000226476 105378763 LINC01748 

ENSG00000226688 728558 ENTPD1-AS1 

ENSG00000226696 104355426 LENG8-AS1 

ENSG00000226715 NA LINC01709 

ENSG00000226833 112267877 
 

ENSG00000226853 NA 
 

ENSG00000226891 NA LINC01359 

ENSG00000226950 57291 DANCR 

ENSG00000227107 NA 
 

ENSG00000227128 NA LBX1-AS1 

ENSG00000227252 NA 
 

ENSG00000227354 100505538 RBM26-AS1 

ENSG00000227398 NA KIF9-AS1 

ENSG00000227456 114036 LINC00310 

ENSG00000227467 101928555 LINC01537 

ENSG00000227496 NA 
 

ENSG00000227518 NA 
 

ENSG00000227543 NA SPAG5-AS1 

ENSG00000227591 101930114 HSD11B1-AS1 

ENSG00000227617 100861402 CERS6-AS1 

ENSG00000227627 NA 
 

ENSG00000227811 NA INKA2-AS1 

ENSG00000227946 NA 
 

ENSG00000227953 NA LINC01341 

ENSG00000228013 101928101 IL6R-AS1 

ENSG00000228113 NA 
 

ENSG00000228223 493812 HCG11 

ENSG00000228242 NA 
 

ENSG00000228274 NA 
 

ENSG00000228315 91316 GUSBP11 

ENSG00000228340 284757 MIR646HG 

ENSG00000228393 NA LINC01004 

ENSG00000228434 NA 
 

ENSG00000228506 NA 
 

ENSG00000228526 106614088 MIR34AHG 

ENSG00000228587 NA 
 

ENSG00000228606 100287049 
 

ENSG00000228649 109729180 SNHG26 

ENSG00000228748 NA 
 

ENSG00000228775 285962 WEE2-AS1 



70 
 
 

ENSG00000228794 643837 LINC01128 

ENSG00000228801 102724330 
 

ENSG00000228830 NA 
 

ENSG00000228843 NA 
 

ENSG00000228863 NA 
 

ENSG00000228878 NA SEPTIN7-DT 

ENSG00000229043 NA 
 

ENSG00000229047 NA 
 

ENSG00000229108 NA LINC02587 

ENSG00000229140 137196 CCDC26 

ENSG00000229140 728724 CCDC26 

ENSG00000229140 106144608 CCDC26 

ENSG00000229152 NA ANKRD10-IT1 

ENSG00000229388 105378616 LINC01715 

ENSG00000229425 101927745 
 

ENSG00000229425 105369302 
 

ENSG00000229444 101929592 
 

ENSG00000229589 100128640 ACVR2B-AS1 

ENSG00000229619 401093 MBNL1-AS1 

ENSG00000229807 7503 XIST 

ENSG00000229821 NA 
 

ENSG00000229847 196047 EMX2OS 

ENSG00000229852 NA 
 

ENSG00000229951 403150 
 

ENSG00000229980 400604 TOB1-AS1 

ENSG00000230082 100874032 PRRT3-AS1 

ENSG00000230091 NA TMEM254-AS1 

ENSG00000230148 100874362 HOXB-AS1 

ENSG00000230387 100505664 
 

ENSG00000230438 NA SERPINB9P1 

ENSG00000230454 NA 
 

ENSG00000230479 NA 
 

ENSG00000230487 114796 PSMG3-AS1 

ENSG00000230530 NA LIMD1-AS1 

ENSG00000230537 NA 
 

ENSG00000230551 NA 
 

ENSG00000230555 NA 
 

ENSG00000230590 100302692 FTX 

ENSG00000230606 NA 
 

ENSG00000230630 NA DNM3OS 

ENSG00000230724 NA LINC01001 

ENSG00000230733 NA 
 

ENSG00000230844 NA ZNF674-AS1 

ENSG00000230896 NA 
 

ENSG00000230910 NA 
 

ENSG00000230943 101927686 LINC02541 

ENSG00000231013 107105282 SCTR-AS1 

ENSG00000231064 NA 
 

ENSG00000231074 414777 HCG18 

ENSG00000231160 NA KLF3-AS1 

ENSG00000231312 NA MAP4K3-DT 

ENSG00000231365 101929147 WARS2-AS1 

ENSG00000231367 101929596 LINC02613 

ENSG00000231419 154822 LINC00689 

ENSG00000231527 105379444 FAM27C 

ENSG00000231536 NA 
 

ENSG00000231560 400002 CLEC12A-AS1 

ENSG00000231607 8847 DLEU2 

ENSG00000231628 NA 
 

ENSG00000231663 101927765 COA6-AS1 

ENSG00000231711 NA LINC00899 

ENSG00000231721 378805 LINC-PINT 

ENSG00000231742 101927541 LINC01273 

ENSG00000231768 100506795 LINC01354 

ENSG00000231806 NA PCAT7 

ENSG00000231856 NA 
 

ENSG00000231889 NA TRAF3IP2-AS1 

ENSG00000231890 NA DARS-AS1 

ENSG00000231969 NA MMADHC-DT 

ENSG00000232063 NA 
 

ENSG00000232079 284825 LINC01697 

ENSG00000232098 NA 
 

ENSG00000232160 101928578 RAP2C-AS1 

ENSG00000232164 729348 LINC01873 

ENSG00000232233 102724699 LINC02043 

ENSG00000232300 NA FAM215B 

ENSG00000232442 100505771 MHENCR 

ENSG00000232611 NA 
 

ENSG00000232656 55853 IDI2-AS1 

ENSG00000232677 100506930 LINC00665 

ENSG00000232774 NA 
 

ENSG00000232807 NA 
 

ENSG00000232850 389791 
 

ENSG00000232931 NA LINC00342 

ENSG00000232940 414765 HCG25 

ENSG00000232956 285958 SNHG15 

ENSG00000232973 285154 CYP1B1-AS1 
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ENSG00000232977 100506697 LINC00327 

ENSG00000233006 553103 MIR3936HG 

ENSG00000233016 84973 SNHG7 

ENSG00000233117 NA LINC00702 

ENSG00000233178 NA 
 

ENSG00000233183 NA 
 

ENSG00000233184 NA 
 

ENSG00000233223 100996842 
 

ENSG00000233237 79940 LINC00472 

ENSG00000233251 100129434 
 

ENSG00000233396 NA LINC01719 

ENSG00000233429 NA HOTAIRM1 

ENSG00000233461 NA 
 

ENSG00000233593 105378853 LINC02609 

ENSG00000233621 728431 LINC01137 

ENSG00000233695 NA GAS6-AS1 

ENSG00000233871 NA DLG5-AS1 

ENSG00000233912 NA 
 

ENSG00000233937 101928649 
 

ENSG00000234072 NA 
 

ENSG00000234171 NA RNASEH1-AS1 

ENSG00000234281 NA LANCL1-AS1 

ENSG00000234290 NA 
 

ENSG00000234323 100996590 LINC01505 

ENSG00000234327 101928000 
 

ENSG00000234431 NA 
 

ENSG00000234456 100505881 MAGI2-AS3 

ENSG00000234608 51275 MAPKAPK5-AS1 

ENSG00000234636 100873985 MED14OS 

ENSG00000234665 NA LERFS 

ENSG00000234678 NA ELF3-AS1 

ENSG00000234684 100507495 SDCBP2-AS1 

ENSG00000234722 103724390 LINC01287 

ENSG00000234741 60674 GAS5 

ENSG00000234771 NA SLC25A25-AS1 

ENSG00000234899 400618 SOX9-AS1 

ENSG00000234912 654434 SNHG20 

ENSG00000235016 100129060 SEMA3F-AS1 

ENSG00000235027 NA 
 

ENSG00000235033 100505635 DAAM2-AS1 

ENSG00000235070 NA 
 

ENSG00000235257 101928153 ITGA9-AS1 

ENSG00000235288 NA 
 

ENSG00000235295 100192420 LINC01634 

ENSG00000235314 NA LINC00957 

ENSG00000235381 NA 
 

ENSG00000235437 92249 LINC01278 

ENSG00000235513 NA L3MBTL2-AS1 

ENSG00000235531 100132891 MSC-AS1 

ENSG00000235535 NA TRDN-AS1 

ENSG00000235560 107984875 
 

ENSG00000235609 NA 
 

ENSG00000235652 NA FBXO30-DT 

ENSG00000235703 NA LINC00894 

ENSG00000235706 400242 DICER1-AS1 

ENSG00000235823 90271 OLMALINC 

ENSG00000235831 100507582 BHLHE40-AS1 

ENSG00000235865 57000 GSN-AS1 

ENSG00000235888 NA 
 

ENSG00000235904 NA RBMS3-AS3 

ENSG00000235919 645676 ASH1L-AS1 

ENSG00000235927 374987 NEXN-AS1 

ENSG00000235954 284900 TTC28-AS1 

ENSG00000236008 101929567 LINC01814 

ENSG00000236017 NA ASMTL-AS1 

ENSG00000236088 100874058 COX10-AS1 

ENSG00000236144 100506469 TMEM147-AS1 

ENSG00000236200 NA KDM4A-AS1 

ENSG00000236208 NA C10orf71-AS1 

ENSG00000236255 NA 
 

ENSG00000236333 NA TRHDE-AS1 

ENSG00000236404 401491 VLDLR-AS1 

ENSG00000236540 NA 
 

ENSG00000236581 NA STARD13-AS 

ENSG00000236618 100306951 PITPNA-AS1 

ENSG00000236682 100506922 MAP3K2-DT 

ENSG00000236753 100506881 MKLN1-AS 

ENSG00000236778 NA INTS6-AS1 

ENSG00000236810 100506963 ELOA-AS1 

ENSG00000236819 101060544 LINC01563 

ENSG00000236830 100506428 CBR3-AS1 

ENSG00000236833 NA 
 

ENSG00000236859 254128 NIFK-AS1 

ENSG00000236871 751580 LINC00106 

ENSG00000236901 81571 MIR600HG 

ENSG00000237036 220930 ZEB1-AS1 

ENSG00000237037 NA NDUFA6-DT 
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ENSG00000237188 NA 
 

ENSG00000237248 100499405 LINC00987 

ENSG00000237298 100506866 TTN-AS1 

ENSG00000237298 101927055 TTN-AS1 

ENSG00000237352 NA LINC01358 

ENSG00000237399 100507034 PITRM1-AS1 

ENSG00000237491 105378580 LINC01409 

ENSG00000237499 100130476 WAKMAR2 

ENSG00000237505 101927891 PKN2-AS1 

ENSG00000237560 102723487 LINC01497 

ENSG00000237686 101929705 
 

ENSG00000237742 NA 
 

ENSG00000237753 NA 
 

ENSG00000237775 NA DDR1-DT 

ENSG00000237943 439949 PRKCQ-AS1 

ENSG00000237945 100506334 LINC00649 

ENSG00000237949 NA LINC00844 

ENSG00000238009 NA 
 

ENSG00000238035 NA 
 

ENSG00000238045 NA 
 

ENSG00000238142 105376805 
 

ENSG00000238164 NA TNFRSF14-AS1 

ENSG00000238197 100506215 PAXBP1-AS1 

ENSG00000238198 100996251 LRIG2-DT 

ENSG00000238266 100507127 LINC00707 

ENSG00000238273 NA 
 

ENSG00000239213 NA NCK1-DT 

ENSG00000239219 100128164 
 

ENSG00000239415 NA 
 

ENSG00000239569 NA KMT2E-AS1 

ENSG00000239653 100507062 PSMD6-AS2 

ENSG00000239665 NA 
 

ENSG00000239677 NA PDZRN3-AS1 

ENSG00000240288 100126793 GHRLOS 

ENSG00000240291 NA 
 

ENSG00000240401 NA 
 

ENSG00000240731 NA 
 

ENSG00000240801 NA 
 

ENSG00000240859 100507642 
 

ENSG00000240875 730091 LINC00886 

ENSG00000240990 221883 HOXA11-AS 

ENSG00000241168 NA 
 

ENSG00000241288 101927056 LINC02614 

ENSG00000241316 101927111 SUCLG2-AS1 

ENSG00000241684 NA ADAMTS9-AS2 

ENSG00000241769 100131434 LINC00893 

ENSG00000241860 NA 
 

ENSG00000241956 102546299 
 

ENSG00000241990 NA PRR34-AS1 

ENSG00000242086 NA MUC20-OT1 

ENSG00000242125 8420 SNHG3 

ENSG00000242282 NA 
 

ENSG00000242288 113939925 
 

ENSG00000242539 NA 
 

ENSG00000242588 NA 
 

ENSG00000242759 NA LINC00882 

ENSG00000242902 110806300 FLNC-AS1 

ENSG00000243069 100507524 ARHGEF26-AS1 

ENSG00000243155 NA 
 

ENSG00000243368 NA MCCC1-AS1 

ENSG00000243701 344595 DUBR 

ENSG00000243926 NA TIPARP-AS1 

ENSG00000243960 NA 
 

ENSG00000244041 401232 LINC01011 

ENSG00000244198 NA ARHGEF35-AS1 

ENSG00000244513 NA 
 

ENSG00000244625 NA MIATNB 

ENSG00000244733 NA 
 

ENSG00000244879 NA GABPB1-AS1 

ENSG00000244945 101928445 RUFY1-AS1 

ENSG00000244968 100506495 LIFR-AS1 

ENSG00000244998 NA 
 

ENSG00000245025 NA 
 

ENSG00000245060 729678 LINC00847 

ENSG00000245105 144571 A2M-AS1 

ENSG00000245146 NA MALINC1 

ENSG00000245149 101927612 RNF139-AS1 

ENSG00000245156 NA 
 

ENSG00000245281 101929066 
 

ENSG00000245317 100996419 
 

ENSG00000245466 101928075 
 

ENSG00000245498 100507283 
 

ENSG00000245532 283131 NEAT1 

ENSG00000245556 728769 SCAMP1-AS1 

ENSG00000245573 497258 BDNF-AS 

ENSG00000245694 643911 CRNDE 

ENSG00000245694 101927480 CRNDE 
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ENSG00000245812 101927740 LINC02202 

ENSG00000245849 100505648 RAD51-AS1 

ENSG00000245910 641638 SNHG6 

ENSG00000245937 644873 LINC01184 

ENSG00000245970 NA 
 

ENSG00000245975 101928725 
 

ENSG00000246022 100862662 ALDH1L1-AS2 

ENSG00000246067 NA RAB30-DT 

ENSG00000246090 100507053 
 

ENSG00000246174 100289388 KCTD21-AS1 

ENSG00000246263 NA UBR5-AS1 

ENSG00000246273 283104 SBF2-AS1 

ENSG00000246308 101928053 
 

ENSG00000246339 101929402 EXTL3-AS1 

ENSG00000246430 100507632 LINC00968 

ENSG00000246451 NA 
 

ENSG00000246465 NA 
 

ENSG00000246523 100506368 FZD4-DT 

ENSG00000246528 101929759 
 

ENSG00000246560 105377348 UBE2D3-AS1 

ENSG00000246695 NA RASSF8-AS1 

ENSG00000246859 100505678 STARD4-AS1 

ENSG00000246982 NA 
 

ENSG00000246985 144481 SOCS2-AS1 

ENSG00000247092 NA SNHG10 

ENSG00000247121 NA 
 

ENSG00000247137 NA 
 

ENSG00000247240 440288 UBL7-AS1 

ENSG00000247271 729013 ZBED5-AS1 

ENSG00000247373 NA TMED2-DT 

ENSG00000247400 100289274 DNAJC3-DT 

ENSG00000247516 100505738 MIR4458HG 

ENSG00000247556 729082 OIP5-AS1 

ENSG00000247572 100131067 CKMT2-AS1 

ENSG00000247679 NA 
 

ENSG00000247728 NA 
 

ENSG00000247765 NA 
 

ENSG00000247796 257396 
 

ENSG00000247828 100505894 TMEM161B-AS1 

ENSG00000247903 NA 
 

ENSG00000247982 283663 LINC00926 

ENSG00000248008 100506668 NRAV 

ENSG00000248015 NA 
 

ENSG00000248019 285512 FAM13A-AS1 

ENSG00000248049 NA UBA6-AS1 

ENSG00000248092 NA NNT-AS1 

ENSG00000248275 100507602 TRIM52-AS1 

ENSG00000248309 101929423 MEF2C-AS1 

ENSG00000248323 NA LUCAT1 

ENSG00000248360 201853 LINC00504 

ENSG00000248429 285505 FAM198B-AS1 

ENSG00000248445 NA SEMA6A-AS1 

ENSG00000248508 100131089 SRP14-AS1 

ENSG00000248514 NA 
 

ENSG00000248538 157273 
 

ENSG00000248587 NA GDNF-AS1 

ENSG00000248636 NA 
 

ENSG00000248738 101929237 
 

ENSG00000249087 NA ZNF436-AS1 

ENSG00000249102 NA 
 

ENSG00000249249 NA 
 

ENSG00000249348 100885776 UGDH-AS1 

ENSG00000249456 NA 
 

ENSG00000249464 285419 LINC01091 

ENSG00000249614 NA LINC02503 

ENSG00000249669 NA CARMN 

ENSG00000249673 NA NOP14-AS1 

ENSG00000249731 NA 
 

ENSG00000250041 NA 
 

ENSG00000250056 NA LINC01018 

ENSG00000250069 NA 
 

ENSG00000250091 NA DNAH10OS 

ENSG00000250132 NA 
 

ENSG00000250159 NA 
 

ENSG00000250208 440119 FZD10-AS1 

ENSG00000250303 283140 LINC02762 

ENSG00000250333 NA 
 

ENSG00000250392 100996694 LINC02502 

ENSG00000250397 NA 
 

ENSG00000250451 100874363 HOXC-AS1 

ENSG00000250497 NA 
 

ENSG00000250616 NA 
 

ENSG00000250742 400043 LINC02381 

ENSG00000250802 NA ZBED3-AS1 

ENSG00000250899 NA 
 

ENSG00000250900 NA 
 

ENSG00000250903 NA GMDS-DT 
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ENSG00000250978 NA 
 

ENSG00000250988 100505616 SNHG21 

ENSG00000251022 NA THAP9-AS1 

ENSG00000251034 NA 
 

ENSG00000251136 101929709 
 

ENSG00000251141 NA MRPS30-DT 

ENSG00000251143 100128494 
 

ENSG00000251151 100874365 HOXC-AS3 

ENSG00000251209 91948 LINC00923 

ENSG00000251257 NA 
 

ENSG00000251364 100506258 
 

ENSG00000251379 NA 
 

ENSG00000251417 NA 
 

ENSG00000251562 378938 MALAT1 

ENSG00000251580 NA LINC02482 

ENSG00000251602 100507437 
 

ENSG00000251615 NA 
 

ENSG00000251665 NA 
 

ENSG00000251867 NA 
 

ENSG00000252690 NA 
 

ENSG00000253106 NA 
 

ENSG00000253115 NA 
 

ENSG00000253200 NA 
 

ENSG00000253320 NA AZIN1-AS1 

ENSG00000253389 NA 
 

ENSG00000253552 NA HOXA-AS2 

ENSG00000253636 NA 
 

ENSG00000253645 NA 
 

ENSG00000253661 NA ZFHX4-AS1 

ENSG00000253712 NA 
 

ENSG00000253716 100507316 MINCR 

ENSG00000253738 NA OTUD6B-AS1 

ENSG00000253741 100288181 LNCOC1 

ENSG00000253948 NA VPS13B-DT 

ENSG00000253982 NA 
 

ENSG00000254154 NA CRYZL2P-
SEC16B 

ENSG00000254162 NA 
 

ENSG00000254231 105375624 
 

ENSG00000254258 NA 
 

ENSG00000254343 NA 
 

ENSG00000254363 101929719 
 

ENSG00000254369 100133311 HOXA-AS3 

ENSG00000254428 NA 
 

ENSG00000254473 NA 
 

ENSG00000254539 NA 
 

ENSG00000254614 728975 
 

ENSG00000254635 NA WAC-AS1 

ENSG00000254682 NA 
 

ENSG00000254721 NA 
 

ENSG00000254837 100287896 
 

ENSG00000254860 493900 TMEM9B-AS1 

ENSG00000254873 NA 
 

ENSG00000254876 100499484 SUGT1P4-
STRA6LP 

ENSG00000254911 619383 SCARNA9 

ENSG00000254911 100158262 SCARNA9 

ENSG00000254929 NA 
 

ENSG00000255036 57653 STRA6LP 

ENSG00000255039 NA LINC02553 

ENSG00000255135 NA 
 

ENSG00000255182 NA 
 

ENSG00000255198 NA SNHG9 

ENSG00000255234 NA 
 

ENSG00000255248 399959 MIR100HG 

ENSG00000255284 171391 
 

ENSG00000255310 NA 
 

ENSG00000255389 NA 
 

ENSG00000255426 NA 
 

ENSG00000255455 103611081 
 

ENSG00000255458 NA 
 

ENSG00000255468 102724064 
 

ENSG00000255471 NA 
 

ENSG00000255495 NA 
 

ENSG00000255650 84983 FAM222A-AS1 

ENSG00000255717 23642 SNHG1 

ENSG00000255727 NA LINC01489 

ENSG00000255772 101927922 LINC01479 

ENSG00000255857 NA PXN-AS1 

ENSG00000255874 283487 PRECSIT 

ENSG00000255970 101927901 LINC02421 

ENSG00000256028 NA 
 

ENSG00000256073 84996 URB1-AS1 

ENSG00000256092 NA SBNO1-AS1 

ENSG00000256193 100862680 LINC00507 

ENSG00000256364 NA 
 

ENSG00000256628 100009676 ZBTB11-AS1 

ENSG00000257097 NA CLIP1-AS1 
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ENSG00000257135 NA ODC1-DT 

ENSG00000257252 NA 
 

ENSG00000257261 NA 
 

ENSG00000257298 NA 
 

ENSG00000257303 NA 
 

ENSG00000257337 283335 
 

ENSG00000257354 NA 
 

ENSG00000257379 NA 
 

ENSG00000257599 101055625 OVCH1-AS1 

ENSG00000257607 NA 
 

ENSG00000257621 379025 PSMA3-AS1 

ENSG00000257663 NA 
 

ENSG00000257698 NA GIHCG 

ENSG00000257894 NA 
 

ENSG00000257900 NA 
 

ENSG00000257913 105369758 DDN-AS1 

ENSG00000258056 105369779 
 

ENSG00000258057 100286844 BCDIN3D-AS1 

ENSG00000258168 NA 
 

ENSG00000258232 NA 
 

ENSG00000258283 NA 
 

ENSG00000258301 100506603 VASH1-AS1 

ENSG00000258377 NA 
 

ENSG00000258430 NA 
 

ENSG00000258441 283624 LINC00641 

ENSG00000258498 64150 DIO3OS 

ENSG00000258515 NA 
 

ENSG00000258545 101928969 RHOXF1-AS1 

ENSG00000258559 NA 
 

ENSG00000258584 283592 FAM181A-AS1 

ENSG00000258603 NA 
 

ENSG00000258604 NA 
 

ENSG00000258610 NA 
 

ENSG00000258634 NA 
 

ENSG00000258655 NA ARHGAP5-AS1 

ENSG00000258675 NA LINC02308 

ENSG00000258711 NA 
 

ENSG00000258727 102724814 
 

ENSG00000258733 NA LINC02328 

ENSG00000258768 NA 
 

ENSG00000258938 NA 
 

ENSG00000258952 NA SALRNA1 

ENSG00000259049 NA 
 

ENSG00000259065 NA 
 

ENSG00000259172 NA 
 

ENSG00000259248 NA USP3-AS1 

ENSG00000259291 109729181 ZNF710-AS1 

ENSG00000259319 NA 
 

ENSG00000259366 NA 
 

ENSG00000259380 NA 
 

ENSG00000259456 101927631 ADNP-AS1 

ENSG00000259488 NA 
 

ENSG00000259495 NA 
 

ENSG00000259498 NA TPM1-AS 

ENSG00000259583 101927751 
 

ENSG00000259623 NA 
 

ENSG00000259642 NA ST20-AS1 

ENSG00000259659 NA 
 

ENSG00000259661 NA 
 

ENSG00000259673 100506686 IQCH-AS1 

ENSG00000259768 NA 
 

ENSG00000259820 NA 
 

ENSG00000259828 NA 
 

ENSG00000259865 NA 
 

ENSG00000259877 NA 
 

ENSG00000259881 101927793 
 

ENSG00000259884 NA NR4A1AS 

ENSG00000259891 NA 
 

ENSG00000259943 NA 
 

ENSG00000259953 NA 
 

ENSG00000259959 NA 
 

ENSG00000259972 NA 
 

ENSG00000259976 NA 
 

ENSG00000259994 NA 
 

ENSG00000260000 NA 
 

ENSG00000260032 647979 NORAD 

ENSG00000260035 NA 
 

ENSG00000260077 NA 
 

ENSG00000260083 101928736 MIR762HG 

ENSG00000260197 NA 
 

ENSG00000260231 100134229 KDM7A-DT 

ENSG00000260233 NA ZNRD2-AS1 

ENSG00000260236 NA 
 

ENSG00000260244 NA 
 

ENSG00000260257 NA 
 

ENSG00000260260 100507303 SNHG19 

ENSG00000260267 NA 
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ENSG00000260274 NA 
 

ENSG00000260280 100526831 SLX1B-
SULT1A4 

ENSG00000260285 NA 
 

ENSG00000260296 NA 
 

ENSG00000260317 NA 
 

ENSG00000260329 NA 
 

ENSG00000260337 NA 
 

ENSG00000260391 NA 
 

ENSG00000260398 NA 
 

ENSG00000260400 NA 
 

ENSG00000260401 NA 
 

ENSG00000260425 NA 
 

ENSG00000260442 100289092 ATP2A1-AS1 

ENSG00000260448 NA LCMT1-AS1 

ENSG00000260465 NA 
 

ENSG00000260526 NA 
 

ENSG00000260528 NA FAM157C 

ENSG00000260563 NA 
 

ENSG00000260565 NA ERVK13-1 

ENSG00000260566 NA 
 

ENSG00000260604 NA 
 

ENSG00000260618 NA 
 

ENSG00000260630 197187 SNAI3-AS1 

ENSG00000260641 NA 
 

ENSG00000260669 NA 
 

ENSG00000260708 NA 
 

ENSG00000260711 NA 
 

ENSG00000260751 NA 
 

ENSG00000260772 NA 
 

ENSG00000260774 NA 
 

ENSG00000260793 NA 
 

ENSG00000260804 150967 LINC01963 

ENSG00000260805 NA 
 

ENSG00000260807 115804232 CEROX1 

ENSG00000260834 NA 
 

ENSG00000260852 283932 FBXL19-AS1 

ENSG00000260853 NA 
 

ENSG00000260855 NA 
 

ENSG00000260912 NA 
 

ENSG00000260917 103344931 
 

ENSG00000260923 NA LINC02193 

ENSG00000260942 NA CAPN10-DT 

ENSG00000260948 NA 
 

ENSG00000260966 NA 
 

ENSG00000260971 NA 
 

ENSG00000261054 NA 
 

ENSG00000261067 NA 
 

ENSG00000261069 NA 
 

ENSG00000261087 NA ZNNT1 

ENSG00000261094 NA 
 

ENSG00000261098 NA 
 

ENSG00000261123 NA 
 

ENSG00000261126 NA RBFADN 

ENSG00000261167 NA 
 

ENSG00000261168 NA 
 

ENSG00000261175 NA LINC02188 

ENSG00000261188 NA 
 

ENSG00000261200 NA 
 

ENSG00000261211 NA 
 

ENSG00000261215 NA 
 

ENSG00000261220 NA 
 

ENSG00000261253 100287036 
 

ENSG00000261269 NA 
 

ENSG00000261324 NA 
 

ENSG00000261326 NA LINC01355 

ENSG00000261338 NA 
 

ENSG00000261386 NA 
 

ENSG00000261423 105370888 TMEM202-AS1 

ENSG00000261434 NA 
 

ENSG00000261455 NA LINC01003 

ENSG00000261460 NA 
 

ENSG00000261485 NA PAN3-AS1 

ENSG00000261490 NA 
 

ENSG00000261505 NA 
 

ENSG00000261512 NA 
 

ENSG00000261526 NA 
 

ENSG00000261534 NA 
 

ENSG00000261553 NA 
 

ENSG00000261584 NA 
 

ENSG00000261613 NA 
 

ENSG00000261616 NA 
 

ENSG00000261659 NA 
 

ENSG00000261663 NA 
 

ENSG00000261684 NA 
 

ENSG00000261759 NA 
 

ENSG00000261799 NA 
 

ENSG00000261804 NA 
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ENSG00000261824 148189 LINC00662 

ENSG00000261845 NA 
 

ENSG00000261879 100130950 
 

ENSG00000261971 NA MMP25-AS1 

ENSG00000262061 NA 
 

ENSG00000262160 NA 
 

ENSG00000262370 NA 
 

ENSG00000262410 NA 
 

ENSG00000262420 NA 
 

ENSG00000262454 NA MIR193BHG 

ENSG00000262468 NA LINC01569 

ENSG00000262533 NA 
 

ENSG00000262580 NA 
 

ENSG00000262691 NA 
 

ENSG00000262879 NA 
 

ENSG00000262967 NA 
 

ENSG00000263004 NA 
 

ENSG00000263069 100294362 RNF213-AS1 

ENSG00000263072 NA ZNF213-AS1 

ENSG00000263089 NA 
 

ENSG00000263126 NA 
 

ENSG00000263165 NA 
 

ENSG00000263244 NA 
 

ENSG00000263272 NA 
 

ENSG00000263276 NA 
 

ENSG00000263345 NA 
 

ENSG00000263370 NA 
 

ENSG00000263400 101101775 TMEM220-AS1 

ENSG00000263412 NA NFE2L1-DT 

ENSG00000263489 NA 
 

ENSG00000263731 NA 
 

ENSG00000263753 339290 LINC00667 

ENSG00000263873 NA THY1-AS1 

ENSG00000264112 NA 
 

ENSG00000264151 NA 
 

ENSG00000264247 NA LINC00909 

ENSG00000264456 NA 
 

ENSG00000264490 NA 
 

ENSG00000264575 NA LINC00526 

ENSG00000264772 NA 
 

ENSG00000264920 102724532 
 

ENSG00000265142 102723167 MIR133A1HG 

ENSG00000265206 NA 
 

ENSG00000265287 NA 
 

ENSG00000265399 NA 
 

ENSG00000265413 NA 
 

ENSG00000265479 441263 DTX2P1-
UPK3BP1-
PMS2P11 

ENSG00000265751 NA 
 

ENSG00000265778 101927989 
 

ENSG00000265992 790952 ESRG 

ENSG00000266208 NA 
 

ENSG00000266340 NA 
 

ENSG00000266718 NA 
 

ENSG00000266872 NA 
 

ENSG00000266896 NA 
 

ENSG00000266904 NA LINC00663 

ENSG00000266923 NA 
 

ENSG00000266947 NA 
 

ENSG00000266962 108783654 
 

ENSG00000266993 NA 
 

ENSG00000267002 NA 
 

ENSG00000267040 100505549 
 

ENSG00000267058 100505715 
 

ENSG00000267075 NA 
 

ENSG00000267080 339201 ASB16-AS1 

ENSG00000267100 147727 ILF3-DT 

ENSG00000267106 NA ZNF561-AS1 

ENSG00000267107 100505495 PCAT19 

ENSG00000267121 339192 
 

ENSG00000267152 NA 
 

ENSG00000267160 NA 
 

ENSG00000267165 NA CHMP1B-AS1 

ENSG00000267169 100507373 
 

ENSG00000267199 NA 
 

ENSG00000267247 NA 
 

ENSG00000267257 NA 
 

ENSG00000267265 NA 
 

ENSG00000267272 339524 LINC01140 

ENSG00000267296 80054 CEBPA-DT 

ENSG00000267302 101927755 RNFT1-DT 

ENSG00000267309 728752 
 

ENSG00000267317 NA 
 

ENSG00000267321 NA SNHG30 

ENSG00000267322 677769 SNHG22 

ENSG00000267322 103091864 SNHG22 

ENSG00000267325 NA LINC01415 
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ENSG00000267328 NA 
 

ENSG00000267364 NA 
 

ENSG00000267365 400617 KCNJ2-AS1 

ENSG00000267383 NA 
 

ENSG00000267390 NA 
 

ENSG00000267414 101927943 SETBP1-DT 

ENSG00000267423 NA 
 

ENSG00000267469 NA 
 

ENSG00000267470 100507433 ZNF571-AS1 

ENSG00000267480 NA 
 

ENSG00000267481 NA 
 

ENSG00000267519 NA 
 

ENSG00000267520 NA 
 

ENSG00000267532 100506755 MIR497HG 

ENSG00000267575 101927151 
 

ENSG00000267632 NA 
 

ENSG00000267633 NA 
 

ENSG00000267784 NA 
 

ENSG00000267801 NA 
 

ENSG00000267834 NA 
 

ENSG00000267858 100131691 MZF1-AS1 

ENSG00000267871 105372476 ZNF460-AS1 

ENSG00000267904 NA 
 

ENSG00000267934 NA 
 

ENSG00000268001 100505812 CARD8-AS1 

ENSG00000268006 100506033 PTOV1-AS1 

ENSG00000268030 NA 
 

ENSG00000268061 100505681 NAPA-AS1 

ENSG00000268108 NA 
 

ENSG00000268119 NA 
 

ENSG00000268129 NA 
 

ENSG00000268199 NA 
 

ENSG00000268205 NA 
 

ENSG00000268362 NA 
 

ENSG00000268403 644656 
 

ENSG00000268471 54553 MIR4453HG 

ENSG00000268516 105372482 
 

ENSG00000268518 NA 
 

ENSG00000268555 NA 
 

ENSG00000268575 NA 
 

ENSG00000268628 NA 
 

ENSG00000268713 NA 
 

ENSG00000268858 112268269 
 

ENSG00000268912 NA 
 

ENSG00000268947 NA 
 

ENSG00000268996 100289341 MAN1B1-DT 

ENSG00000269044 NA 
 

ENSG00000269176 NA 
 

ENSG00000269243 NA 
 

ENSG00000269293 100129195 ZSCAN16-AS1 

ENSG00000269352 NA PTOV1-AS2 

ENSG00000269386 100507567 RAB11B-AS1 

ENSG00000269399 NA 
 

ENSG00000269439 100507551 
 

ENSG00000269473 NA 
 

ENSG00000269486 NA ERVK9-11 

ENSG00000269514 NA 
 

ENSG00000269604 NA 
 

ENSG00000269609 100505761 RPARP-AS1 

ENSG00000269696 NA 
 

ENSG00000269821 10984 KCNQ1OT1 

ENSG00000269825 NA 
 

ENSG00000269834 NA ZNF528-AS1 

ENSG00000269867 NA 
 

ENSG00000269893 100093630 SNHG8 

ENSG00000269900 6023 RMRP 

ENSG00000269910 NA 
 

ENSG00000269918 NA 
 

ENSG00000269929 NA MIRLET7A1HG 

ENSG00000269930 NA 
 

ENSG00000269934 NA 
 

ENSG00000269937 NA 
 

ENSG00000269940 NA 
 

ENSG00000269945 NA 
 

ENSG00000269958 NA 
 

ENSG00000269973 NA 
 

ENSG00000269982 NA 
 

ENSG00000269983 NA 
 

ENSG00000269994 440173 
 

ENSG00000270012 NA 
 

ENSG00000270021 NA 
 

ENSG00000270039 NA 
 

ENSG00000270049 101927837 
 

ENSG00000270055 NA 
 

ENSG00000270060 NA 
 

ENSG00000270074 NA 
 

ENSG00000270110 NA 
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ENSG00000270112 NA 
 

ENSG00000270127 NA 
 

ENSG00000270175 NA 
 

ENSG00000270194 152048 
 

ENSG00000270344 NA POC1B-AS1 

ENSG00000270362 100288198 HMGN3-AS1 

ENSG00000270412 NA 
 

ENSG00000270419 100526820 CAHM 

ENSG00000270580 105369154 
 

ENSG00000270605 NA 
 

ENSG00000270638 NA 
 

ENSG00000270641 9383 TSIX 

ENSG00000270659 NA 
 

ENSG00000270681 NA 
 

ENSG00000270696 NA 
 

ENSG00000270820 NA 
 

ENSG00000270959 339929 LPP-AS2 

ENSG00000271009 NA 
 

ENSG00000271122 101930085 
 

ENSG00000271147 NA ARMCX5-
GPRASP2 

ENSG00000271270 100507032 TMCC1-AS1 

ENSG00000271344 NA 
 

ENSG00000271420 NA 
 

ENSG00000271533 NA 
 

ENSG00000271553 NA 
 

ENSG00000271576 NA 
 

ENSG00000271614 NA ATP2B1-AS1 

ENSG00000271643 NA 
 

ENSG00000271646 NA 
 

ENSG00000271795 NA 
 

ENSG00000271811 NA 
 

ENSG00000271816 729096 
 

ENSG00000271848 NA 
 

ENSG00000271851 NA 
 

ENSG00000271880 119385 AGAP11 

ENSG00000271894 NA 
 

ENSG00000271895 NA 
 

ENSG00000271918 NA 
 

ENSG00000271959 NA 
 

ENSG00000271976 NA 
 

ENSG00000272010 NA 
 

ENSG00000272030 NA 
 

ENSG00000272054 NA 
 

ENSG00000272070 NA 
 

ENSG00000272077 NA 
 

ENSG00000272078 NA 
 

ENSG00000272079 NA 
 

ENSG00000272086 NA 
 

ENSG00000272106 NA 
 

ENSG00000272114 NA 
 

ENSG00000272129 NA 
 

ENSG00000272140 NA 
 

ENSG00000272144 NA 
 

ENSG00000272145 NA NFYC-AS1 

ENSG00000272168 NA CASC15 

ENSG00000272173 NA 
 

ENSG00000272195 NA 
 

ENSG00000272221 NA 
 

ENSG00000272273 NA IER3-AS1 

ENSG00000272288 101929243 
 

ENSG00000272316 NA 
 

ENSG00000272335 NA 
 

ENSG00000272341 NA 
 

ENSG00000272356 NA 
 

ENSG00000272374 NA 
 

ENSG00000272447 642361 
 

ENSG00000272455 NA MRPL20-DT 

ENSG00000272462 NA 
 

ENSG00000272501 NA 
 

ENSG00000272505 NA 
 

ENSG00000272512 NA 
 

ENSG00000272540 NA 
 

ENSG00000272599 NA 
 

ENSG00000272604 NA 
 

ENSG00000272630 NA 
 

ENSG00000272631 NA 
 

ENSG00000272638 NA 
 

ENSG00000272654 NA 
 

ENSG00000272668 107985216 
 

ENSG00000272686 NA WASL-DT 

ENSG00000272688 NA 
 

ENSG00000272695 100506394 GAS6-DT 

ENSG00000272720 NA 
 

ENSG00000272732 NA 
 

ENSG00000272734 NA ADIRF-AS1 

ENSG00000272752 101752399 STAG3L5P-
PVRIG2P-PILRB 

ENSG00000272758 NA 
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ENSG00000272760 NA 
 

ENSG00000272789 NA 
 

ENSG00000272848 NA 
 

ENSG00000272884 NA 
 

ENSG00000272888 NA LINC01578 

ENSG00000272894 NA 
 

ENSG00000272909 NA 
 

ENSG00000272918 NA 
 

ENSG00000272941 NA 
 

ENSG00000272975 NA MYHAS 

ENSG00000272977 NA 
 

ENSG00000272983 NA 
 

ENSG00000272990 NA 
 

ENSG00000272994 NA 
 

ENSG00000273015 NA 
 

ENSG00000273018 80039 FAM106A 

ENSG00000273033 100129550 LINC02035 

ENSG00000273038 NA 
 

ENSG00000273066 NA 
 

ENSG00000273108 NA 
 

ENSG00000273142 NA LINC02604 

ENSG00000273148 NA LINC00653 

ENSG00000273151 NA 
 

ENSG00000273156 NA 
 

ENSG00000273221 NA 
 

ENSG00000273230 NA 
 

ENSG00000273247 NA 
 

ENSG00000273267 NA 
 

ENSG00000273270 NA 
 

ENSG00000273275 NA 
 

ENSG00000273295 NA 
 

ENSG00000273301 NA 
 

ENSG00000273314 NA 
 

ENSG00000273319 NA 
 

ENSG00000273329 NA 
 

ENSG00000273344 202781 PAXIP1-AS1 

ENSG00000273345 NA 
 

ENSG00000273356 NA LINC02019 

ENSG00000273372 NA SFTPD-AS1 

ENSG00000273373 NA 
 

ENSG00000273374 NA 
 

ENSG00000273381 NA 
 

ENSG00000273448 NA 
 

ENSG00000273466 NA 
 

ENSG00000273486 NA 
 

ENSG00000273487 NA 
 

ENSG00000273489 NA 
 

ENSG00000273576 NA 
 

ENSG00000273599 NA 
 

ENSG00000273702 NA 
 

ENSG00000273711 NA 
 

ENSG00000273723 NA SUGT1-DT 

ENSG00000273729 NA 
 

ENSG00000273812 NA 
 

ENSG00000273906 NA 
 

ENSG00000274020 NA LINC01138 

ENSG00000274080 NA 
 

ENSG00000274104 NA 
 

ENSG00000274220 NA 
 

ENSG00000274265 NA 
 

ENSG00000274281 NA 
 

ENSG00000274292 NA 
 

ENSG00000274333 102724219 
 

ENSG00000274422 NA 
 

ENSG00000274460 NA 
 

ENSG00000274536 NA MIR223HG 

ENSG00000274565 NA 
 

ENSG00000274605 105370333 PCCA-DT 

ENSG00000274776 NA 
 

ENSG00000274828 NA 
 

ENSG00000274925 NA ZKSCAN2-DT 

ENSG00000275120 NA 
 

ENSG00000275155 NA 
 

ENSG00000275198 NA 
 

ENSG00000275216 NA 
 

ENSG00000275329 NA 
 

ENSG00000275367 NA 
 

ENSG00000275383 NA 
 

ENSG00000275494 NA 
 

ENSG00000275496 102724701 
 

ENSG00000275512 NA 
 

ENSG00000275672 NA 
 

ENSG00000275734 NA 
 

ENSG00000275759 NA 
 

ENSG00000275764 NA 
 

ENSG00000275765 NA 
 

ENSG00000275897 NA 
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ENSG00000276077 102724951 
 

ENSG00000276232 NA 
 

ENSG00000276248 NA 
 

ENSG00000276278 NA 
 

ENSG00000276308 NA 
 

ENSG00000276445 NA 
 

ENSG00000276488 NA 
 

ENSG00000276564 NA 
 

ENSG00000276570 NA 
 

ENSG00000276698 NA 
 

ENSG00000276724 NA 
 

ENSG00000276728 NA 
 

ENSG00000276791 NA 
 

ENSG00000276900 NA 
 

ENSG00000276997 NA 
 

ENSG00000277007 NA 
 

ENSG00000277067 102724843 
 

ENSG00000277142 NA LINC00235 

ENSG00000277200 NA 
 

ENSG00000277283 NA 
 

ENSG00000277449 NA CEBPB-AS1 

ENSG00000277476 NA 
 

ENSG00000277543 NA 
 

ENSG00000277701 NA 
 

ENSG00000277715 NA 
 

ENSG00000277767 NA 
 

ENSG00000277801 NA 
 

ENSG00000277870 653203 FAM230A 

ENSG00000277879 NA 
 

ENSG00000277938 NA 
 

ENSG00000277954 NA 
 

ENSG00000277969 NA 
 

ENSG00000277991 102723360 
 

ENSG00000278058 NA 
 

ENSG00000278126 NA 
 

ENSG00000278133 NA 
 

ENSG00000278156 641467 TSC22D1-AS1 

ENSG00000278175 389741 GLIDR 

ENSG00000278291 NA 
 

ENSG00000278376 NA 
 

ENSG00000278390 101929140 
 

ENSG00000278445 NA 
 

ENSG00000278464 NA 
 

ENSG00000278576 NA 
 

ENSG00000278600 NA 
 

ENSG00000278709 105416157 NKILA 

ENSG00000278730 NA 
 

ENSG00000278768 NA BACE1-AS 

ENSG00000278784 NA 
 

ENSG00000278834 NA 
 

ENSG00000278878 NA 
 

ENSG00000278903 NA 
 

ENSG00000278970 100859930 HEIH 

ENSG00000279066 NA HEXD-IT1 

ENSG00000279080 NA 
 

ENSG00000279094 105379487 LINC01670 

ENSG00000279145 NA 
 

ENSG00000279159 NA 
 

ENSG00000279168 NA 
 

ENSG00000279175 NA 
 

ENSG00000279232 NA 
 

ENSG00000279278 NA 
 

ENSG00000279442 NA 
 

ENSG00000279484 NA KLHL30-AS1 

ENSG00000279529 NA 
 

ENSG00000279668 NA 
 

ENSG00000279738 NA 
 

ENSG00000279833 NA 
 

ENSG00000280007 NA 
 

ENSG00000280018 NA 
 

ENSG00000280109 191585 PLAC4 

ENSG00000280145 NA 
 

ENSG00000280213 100113386 UCKL1-AS1 

ENSG00000280279 NA 
 

ENSG00000280341 NA 
 

ENSG00000280383 NA 
 

ENSG00000280434 NA 
 

ENSG00000280441 NA 
 

ENSG00000280474 NA 
 

ENSG00000280614 NA 
 

ENSG00000280634 102659353 THRIL 

ENSG00000280734 NA LINC01232 

ENSG00000280739 440952 EIF1B-AS1 

ENSG00000280798 283267 LINC00294 

ENSG00000280800 NA 
 

ENSG00000280927 285463 CTBP1-AS 

ENSG00000281026 116828 N4BP2L2-IT2 
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ENSG00000281181 NA 
 

ENSG00000281183 NA NPTN-IT1 

ENSG00000281332 NA LINC00997 

ENSG00000281344 NA HELLPAR 

ENSG00000281383 NA 
 

ENSG00000281392 100846978 
 

ENSG00000281398 NA SNHG4 

ENSG00000281453 103611157 TGFB2-OT1 

ENSG00000281501 NA SEPSECS-AS1 

ENSG00000281649 100506710 EBLN3P 

ENSG00000281691 100775107 RBM5-AS1 

ENSG00000281852 NA LINC00891 

ENSG00000281904 NA 
 

ENSG00000282024 NA 
 

ENSG00000282033 105373553 
 

ENSG00000282393 NA 
 

ENSG00000282508 NA LINC01002 

ENSG00000282556 101927825 
 

ENSG00000282840 NA 
 

ENSG00000282851 105221694 BISPR 

ENSG00000283078 NA 
 

ENSG00000283103 NA 
 

ENSG00000283175 101929130 
 

ENSG00000283294 NA 
 

ENSG00000283341 NA 
 

ENSG00000283445 NA 
 

ENSG00000283633 NA 
 

ENSG00000283662 NA 
 

ENSG00000283674 729732 
 

ENSG00000283696 NA 
 

ENSG00000283828 102724474 
 

ENSG00000283907 NA 
 

ENSG00000284116 NA 
 

ENSG00000284196 NA 
 

ENSG00000284237 NA LINC02767 

ENSG00000284294 NA 
 

ENSG00000284391 105373244 
 

ENSG00000284428 NA 
 

ENSG00000284602 NA 
 

ENSG00000284606 NA 
 

ENSG00000284624 NA 
 

ENSG00000284633 NA 
 

ENSG00000284642 NA 
 

ENSG00000284650 NA 
 

ENSG00000284669 NA 
 

ENSG00000284672 NA 
 

ENSG00000284693 100506022 LINC02606 

ENSG00000284707 NA 
 

ENSG00000284734 NA 
 

ENSG00000284735 NA 
 

ENSG00000284879 NA 
 

ENSG00000284959 NA 
 

ENSG00000284966 NA 
 

ENSG00000284968 NA 
 

ENSG00000285051 101928583 SLC7A14-AS1 

ENSG00000285103 NA 
 

ENSG00000285106 NA 
 

ENSG00000285155 NA 
 

ENSG00000285184 NA 
 

ENSG00000285219 100506207 HULC 

ENSG00000285331 145783 
 

ENSG00000285336 101928882 
 

ENSG00000285410 55056 GABPB1-IT1 

ENSG00000285533 105369347 RELA-DT 

ENSG00000285540 NA 
 

ENSG00000285541 NA 
 

ENSG00000285564 NA 
 

ENSG00000285596 NA 
 

ENSG00000285608 NA 
 

ENSG00000285628 NA 
 

ENSG00000285667 NA 
 

ENSG00000285669 NA 
 

ENSG00000285725 NA 
 

ENSG00000285752 NA CDC42-AS1 

ENSG00000285756 NA 
 

ENSG00000285774 NA 
 

ENSG00000285793 285074 
 

ENSG00000285796 NA 
 

ENSG00000285803 NA 
 

ENSG00000285813 NA 
 

ENSG00000285830 NA 
 

ENSG00000285844 NA 
 

ENSG00000285864 NA 
 

ENSG00000285886 NA 
 

ENSG00000285928 NA 
 

ENSG00000285967 646719 NIPBL-DT 

ENSG00000285979 NA 
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ENSG00000286004 NA 
 

ENSG00000286044 NA 
 

ENSG00000286067 NA 
 

ENSG00000286078 NA 
 

ENSG00000286104 NA 
 

ENSG00000286122 NA 
 

ENSG00000286125 NA 
 

ENSG00000286128 NA 
 

ENSG00000286129 NA 
 

ENSG00000286130 NA 
 

ENSG00000286147 NA 
 

ENSG00000286162 NA 
 

ENSG00000286177 105372401 
 

ENSG00000286191 NA 
 

ENSG00000286214 NA 
 



 

 


