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The purpose of this study was to investigate the effects of including 30-s sprints in one 
weekly low-intensity training (LIT) session during a 3-week transition period in elite cyclists. 
Sixteen male elite cyclists (maximal oxygen uptake, VO2max: 72 ± 5 ml·kg−1·min−1) reduced 
their training load by ~60% for 3 weeks from the end of competitive season and performed 
only LIT or included 30-s sprints (SPR) in one weekly LIT-session. Performance and 
physiological capacities were evaluated during a prolonged (~2.5 h) test-session, including 
a strength test, a submaximal blood lactate profile test, an incremental test to exhaustion 
to determine VO2max, 1 h continuous cycling including four maximal 30-s sprints, and a 
20-min all-out test. In addition, mental recovery was evaluated using the Athlete Burnout 
Questionnaire (ARQ). The only significant between-group change during the transition 
period was an 8 ± 11% larger improvement in 30-s sprint performance in SPR compared 
to control (CON; SPR: 4 ± 5%, CON: −4 ± 5%, p = 0.01). Although not different from 
CON, SPR maintained 20-min all-out performance (−1 ± 5%, p = 0.37) and fractional 
utilization of VO2max (1.9 ± 6.1%-points, p = 0.18) during the 20-min all-out test, whereas 
corresponding declines were observed in CON (−3 ± 5%, p = 0.04, and −2.5 ± 2.9%-
points, p = 0.02, respectively). Power output at 4 mmol·L−1 blood lactate concentration 
decreased similarly in SPR (−4 ± 4%, p = 0.02) and CON (−5 ± 5%, p = 0.01), while 
VO2max, maximal aerobic power (Wmax), and total burnout score were unaffected in both 
groups. Including sprints in one weekly LIT-session in the transition period improves sprint 
performance and maintains 20-min all-out power and fractional utilization of VO2max without 
compromising mental recovery. Inclusion of sprints in LIT-sessions may therefore be a 
plausible, time-efficient strategy during short periods of reduced training.
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INTRODUCTION

The annual training season for an elite cyclist can be  broken 
into three distinct periods, the preparatory, competition, and 
transition period (Mujika et  al., 2018). Elite cyclists typically 
spend up to 100 days in competition (Lucia et al., 2001), which 
is both a high physical and psychological exertion, with an 
inherent risk of burnout toward the end of the season (Silva, 
1990; Lemyre et al., 2006). Although the need for a subsequent 
period of physical and mental recovery is regarded as necessary 
for elite athletes (Mujika et  al., 2018), the manipulation of 
training in these transition periods is scarcely investigated 
(Garcia-Pallares et al., 2009; Ronnestad et al., 2014). To recover 
from the strenuous competition period, cyclists’ training load 
is often drastically reduced for 2–3  weeks in the subsequent 
transition period (Lucia et al., 2000; Sassi et al., 2008). However, 
too long periods (>4  weeks) of training cessation might lead 
to deterioration of performance (Mujika and Padilla, 2000; 
Decroix et  al., 2016; Maldonado-Martin et  al., 2017).

Maintaining a minimum of training load in periods of 
decreased training volume seems necessary to avoid performance 
decrements (Mujika, 1998; Bosquet et  al., 2007), with high-
intensity training (HIT) playing a key role for maintenance 
of endurance performance (Neufer, 1989; Garcia-Pallares et al., 
2009; Ronnestad et  al., 2014). Maintenance of fitness in the 
transition period might also be  crucial for continuous 
improvement in the following seasons of elite athletes (Mujika 
et  al., 1995). Indeed, a study by Ronnestad et  al. (2014) on 
well-trained cyclists showed that performing a HIT session 
every 7–10  days during an 8-week period following the 
competition period maintained power output at 4  mmol·L−1 
[BLa−], maximal oxygen uptake (VO2max), and 40-min all-out 
performance better than low-intensity training (LIT; Ronnestad 
et  al., 2014). However, performing HIT-sessions during the 
transition period where physical and mental recovery is needed 
might be  too strenuous, leading to overreaching and burnout. 
Therefore, including sprint (SPR) training instead might be  a 
beneficial, low-load alternative for elite cyclists.

Short maximal-effort intervals have been reported to be  of 
less strain compared to longer HIT-intervals (Valstad et  al., 
2018) and might serve as an intensive stimulus, sufficient for 
maintaining endurance performance in shorter periods of reduced 

training volume. For example, the addition of sprint training 
in periods with 25–65% reductions in training volume has shown 
to maintain endurance performance-determining factors in 
moderately trained athletes (VO2max, muscle oxidative capacity, 
and capillarization; Joyner and Coyle, 2008) and improved 
performance at or above intensities eliciting VO2max (Bangsbo 
et al., 2009; Iaia et al., 2009; Skovgaard et al., 2018). Furthermore, 
including 30-s sprints every 10  min in 60-min LIT-sessions 
during an 8-week intervention has recently shown improved 
performance in trained cyclists (Gunnarsson et al., 2019). Therefore, 
implementing 30-s sprints in habitual LIT-sessions for short 
transition periods (3  weeks) might be  a time-efficient strategy 
of relatively low strain for maintaining endurance performance.

Therefore, the main aim of this study was to investigate 
the effect of including 30-s sprints in one weekly LIT-session 
during a 3-week transition period on measures of sprint and 
endurance performance in elite cyclists, as well as the associated 
changes in physiological capacities and mental recovery. 
We hypothesized that inclusion of sprints during the transition 
period would improve sprint performance and maintain 
endurance performance-related measures compared to LIT only.

MATERIALS AND METHODS

Participants and Ethics Statement
Twenty-one cyclists volunteered for the study. Two participants 
withdrew due to circumstances unrelated to the study and 
three participants were excluded due to sickness or lack of 
adherence to the intervention, leaving a total of 16 participants. 
Physiological parameters, participants’ characteristics, and training 
volume are presented in Table 1. All participants were informed 
of the possible risks and discomforts associated with the study 
and all gave their written informed consent to participate before 
commencing the study. The study was approved by the Local 
Ethical Committee at Inland Norway University of Applied 
Sciences and performed according to the Declaration of Helsinki, 
1975. The study was a multi-center study conducted at four 
Norwegian universities with identical laboratory equipment 
using the same standardized testing procedures supervised by 
the same physician. To categorize the cyclists, the physiological 
characteristics suggested by De Pauw et  al. (2013) was used. 

TABLE 1 | Participants’ characteristics measured 3–5 days after each cyclists’ last competition and weekly training volume in the last 4 weeks of the competition 
period.

SPR n = 7 CON n = 9 Group diff.

Age (years) 22.9 ± 3.0 21.1 ± 3.9 p = 0.32
Body mass (kg) 73.6 ± 9.0 73.1 ± 4.8 p = 0.89
VO2max (L·min−1) 5.4 ± 0.7 5.2 ± 0.5 p = 0.57
VO2max (ml·kg−1·min−1) 73.4 ± 4.9 71.3 ± 4.5 p = 0.40
Wmax (W) 439 ± 58 442 ± 48 p = 0.93
Power output at 4 mmol·L−1 [BLa−] (W) 328 ± 66 321 ± 41 p = 0.80
Training volume 30 days prior to inclusion (h·wk.−1) 14 ± 4 12 ± 3 p = 0.33
Reduction in iTRIMP training load (%) −62 ± 9 −64 ± 11 p = 0.72

VO2max, maximal oxygen uptake; Wmax, maximal minute power output (W), reduction in training load per week from 4 week of competition period to 3 week of transition period 
quantified using individualized TRIMP, mean ± SD and matching of groups.
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Eleven participants were regarded as performance level 5 athletes 
(VO2max: >71  ml·kg−1·min−1, Wmax: >5.5  W·kg−1) and five 
participants were regarded as level 4 athletes (VO2max: 
65–71  ml·kg−1·min−1, Wmax: 4.9–6.4  W·kg−1), hence referred to 
as elite cyclists.

Experimental Design
The intervention was initiated 3–5  days after each cyclist’s last 
competition of the season and was carried out over 
21.2  ±  0.4  days. The participants were randomly assigned to 
either a SPR group or a control (CON) group. During the 4 
weeks prior to the intervention, the cyclists performed on average 
the same number of training sessions per week (SPR: 6.4  ±  0.7 
vs. CON: 6.2  ±  1.1 sessions, p  =  0.80) of which an equal 
amount was characterized as HIT-sessions (SPR: 15  ±  10% vs. 
CON: 15  ±  9%, p  =  0.95) and the training load from HIT 
was not different between groups (p  =  0.24). SPR and CON 
reduced training load from the competition period to the 
transition period equally (Table 1), and only LIT was performed 
during the intervention (SPR: 13  ±  4 vs. CON: 12  ±  3 sessions, 
p  =  0.58). However, once a week SPR performed a supervised 
90-min LIT-session, riding at a power output equivalent to 
60% of VO2max, including three sets of 3 × 30-s maximal sprints, 
interspersed by 4-min of active recovery (100  W) and 15  min 
between sets. CON performed a time-matched supervised session 
at a power output equivalent to 60% of VO2max.

Testing Procedures
The participants were instructed to refrain from caffeine, beta-
alanine, and bicarbonate 24  h prior to testing. Participants 
were also instructed to register and duplicate food intake and 
time of consumption 24  h prior to both tests, but food diaries 
were not collected. All testing was performed on the same 
time of the day (±1 h) in a controlled environmental condition 

(16–18°C and 20–35% relative humidity) with a fan ensuring 
air circulation around the rider. A schematic presentation of 
the prolonged test protocol is outlined in Figure  1.

Strength Test
After a 10-min cycling warm-up at self-selected power output 
(150–200  W) a predetermined, standardized, 10-repetition 
incremental leg press test set to 250  kg for all participants 
on a Keiser AIR300 horizontal leg-press dynamometer (Keiser 
Sport health equipment INC., Fresno, CA) was initiated. 
Changes in strength parameters might affect the sprint ability 
and was therefore included (Ronnestad et  al., 2017). The 
Keiser AIR300 uses pneumatic resistance to measure force 
and velocity in each repetition. The incremental test was 
performed in the seated position with a 90° knee-joint angle, 
starting at 41  kg and increasing to 250  kg at the tenth 
repetition with increased and standardized increments and 
rest-periods between repetitions. If the participant exceeded 
250  kg, the test continued with 60-s rest between attempts 
until failure. The participants were instructed to push as 
explosively as possible until failure. The theoretical, maximal 
velocity (Vmax), maximal force (Fmax), and maximal power 
(Pmax) was then calculated based on the second-order polynomial 
relationship between force and power (Colyer et  al., 2018).

Blood Lactate Profile
After a 5-min break, a blood lactate [BLa−] profile test to 
determine the relationship between power output, and [BLa−] 
concentration during a submaximal continuous incremental 
test was initiated. This test has previously been described in 
detail (Ronnestad et  al., 2010). Briefly, participants cycled for 
5  min at 175  W, followed by 50-W increments every 5  min 
until a [BLa−] of 3  mmol·L−1, after which increments were 
25 W. The test was terminated at a [BLa−] of 4 mmol·L−1 or higher. 

FIGURE 1 | Schematic illustration of the test protocol, including strength test, blood lactate [BLa−] profile, 6-s all-out sprint, incremental test to exhaustion, and 
60 min continuous cycling including 4 × 30-s maximal sprints and 20-min all-out.
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All cycling tests were performed on an electromagnetic braked 
cycle ergometer (Lode Excalibur Sport, Lode B. V., Groningen, 
The Netherlands), which was adjusted to each cyclists’ individual 
preferences and replicated throughout all testing. The fixed 
modus was used during continuous cycling, allowing the 
cyclists to freely choose frequency with a fixed resistance. 
VO2 measurements started from 2  min into every bout and 
VO2 was calculated as an average from 2.5 to 4.5  min. VO2 
was measured using a computerized metabolic system with 
mixing chamber (Oxycon Pro, Erich Jaeger, Hoechberg, 
Germany), which was calibrated every hour. Blood was sampled 
from the fingertip on completion of each 5-min bout and 
analyzed for whole blood [BLa−] using a lactate analyzer 
(Biosen C line, EKF Diagnostic, Germany). Heart rate (HR) 
was recorded at the end of each steady-state increment using 
the participants’ own HR-monitor and rate of perceived 
exertion (RPE) was recorded according to Borg Scale 6–20. 
Based on these measures, the power output at 4  mmol·L−1 
[BLa−] was calculated by interpolation and was used as a 
submaximal performance measure to compare each participant 
from Pre to Post.

6-s All-Out Sprint
After 5 min of active recovery, a 6-s all-out sprint was performed 
in the seated position with a stationary start and a resistance 
of 0.8  Nm∙kg−1 body mass. Peak power output was defined 
as the highest value achieved during the 6-s all-out with 
recordings at 6  Hz.

VO2max Test
After an additional 5  min of active recovery at ~150  W, an 
incremental test to exhaustion to determine VO2max was initiated 
at 200 or 250  W depending on previous individual results. 
Power output increased by 25  W every minute until the RPM 
decreased below 60  min−1 despite audible encouragement from 
the test leader. VO2max was calculated as the highest average 
of a 1-min moving average using 5-s VO2-measurements and 
peak heart rate (HRpeak) was registered. Wmax was calculated 
as the mean power output during the last minute of the 
incremental test.

60 min Continuous Cycling With 4 × 30-s 
Maximal Sprints and Subsequently 20-min 
All-Out
Ten minutes after the incremental test to exhaustion, the 
participants proceeded with a 60-min continuous cycling session 
at an intensity equivalent to 60% of VO2max, which was calculated 
from the [BLa-] profile and VO2max using interpolation. Four 
repeated 30-s maximal sprints separated by 4  min active 
recovery (100  W) were undertaken between 36–50  min and 
the test was concluded by a self-paced 20-min all-out without 
rest-periods in between (Figure  1). The chosen intensity of 
60% of VO2max corroborates well with reported intensities of 
competitions (van Erp and Sanders, 2020), making the repeated 
sprints and 20-min all-out competition-relevant performance 
measures. At Post, the participants rode at the same power 

output as Pre during the 60-min continuous cycling. The start 
power output on the 20-min all-out was self-selected at Pre 
and power and cadence was self-administered throughout the 
Pre and Post tests, however, the participants were blinded to 
the average power output. The start power output was replicated 
at Post to ensure the same pacing conditions. VO2, HR, RPE, 
and [BLa−] were measured during the test, according to 
Figure 1. During sprints, the resistance was set to 0.8 Nm·kg−1 
in the Wingate modus and started at 80  RPM. Mean power 
output was presented as the 30-s average power output sustained 
throughout each maximal 30-s sprint. Fractional utilization 
of VO2max during the 20-min all-out was calculated from an 
average of respiratory VO2-measurements obtained in the 
periods 4–5, 9–10, 14–15, and 19–20 min, expressed relatively 
to VO2max obtained at the respective time-point. 
VO2-measurements started 30-s prior to each period to ensure 
steady measures of VO2. Water, energy-drink in standard 
mixture according to manufacturer’s description (HIGH-5, 
UK), and gels (SIS Isotonic Energy Gel, UK) without caffeine 
were provided ad libitum after the incremental test to exhaustion 
and throughout the test. All participants but one ingested 
energy-drink and gels during the experimental tests. The 
amount was recorded and repeated at Post to ensure the 
same relative hydration-level. On average, 745 ± 369 ml energy-
drink and 44  ±  21  ml gel were consumed at Pre and 
811  ±  454  ml (p  =  0.37) energy-drink and 38  ±  24  ml gel 
(p  =  0.17) were consumed at Post.

Gross efficiency (GE) was defined as the ratio between the 
mechanical power output (PO) and the metabolic power input 
(PI) calculated using VO2 measurements and the energetic 
equivalent (Peronnet and Massicotte, 1991) PI  =  VO2 L·s−1 x 
(4,840  J·L−1  ×  RER  +  16,890  J·L−1). GE was calculated from 
the [BLa-] profile test in the fresh state using the power output 
closest to that each participant rode at in the 60-min continuous 
cycling test. Equivalently, the GE in the semi-fatigued state 
was calculated using the steady-state period before sprinting 
(30–35  min) in the 60-min continuous cycling test (Figure  1). 
The power output was not different in fresh and semi-fatigued 
state in SPR (fresh: 227  ±  39 vs. semi-fatigued: 225  ±  41  W, 
p  =  0.71) or CON (fresh: 215  ±  28  W vs. semi-fatigued: 
219  ±  30  W, p  =  0.35).

Training Load and Administration
Training load was quantified using the individualized training 
impulse (iTRIMP) as described elsewhere (Manzi et  al., 2009), 
by weighing exercise intensity according to an individual’s own 
HR vs. [BLa−] relationship, calculated by line of best fit from 
the lactate profile and VO2max test. iTRIMP uses the weighting 
factor yi, which increases exponentially based on the HR vs. 
[La−] relationship to weight every HR. An accumulated iTRIMP 
score was calculated by the following equation:
 
iTRIMP arbitrary units AU D x x yratio i( )( ) = ( )min DHR

where ΔHRratio is calculated from (HRwork−HRrest)/(HRmax−
HRrest), and D is time spent exercising. Design and training 
load administration is specified in Figure  2.
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Athlete Burnout Questionnaire
To evaluate mental recovery, the 15-item sport-specific Athlete 
Burnout Questionnaire (ABQ) was used (Raedeke and Smith, 
2001). Athletes were asked to rate “How often do you  feel 
this way?” in 15 different statements to evaluate their participation 
motives in their sport on a 5-point Likert-scale from 1 = almost 
never to 5 = almost always. The ABQ has three 5-item subscales 
assessing three key dimensions of burnout: (1) reduced sense 
of accomplishment (e.g., “It seems that no matter what I  do, 
I don’t perform as well as I should”), (2) emotional and physical 
exhaustion (e.g., “I feel so tired from my training that I  have 
trouble finding energy to do other things”), and (3) devaluation 
of sport participation (e.g., “The effort I  spend participating 
in my sport would be  better spent doing other things”). A 
total summarized score for the ABQ is achieved by averaging 
all three subscale scores. The questionnaires were completed 
at Pre and Post.

Statistics
Variables were tested for normal distribution using 
Shapiro-Wilk test. Based on a study on amateur road cyclists 
performing sprint training (Fortes et  al., 2019), power 
calculations were made to determine the minimum of 
participants to include in the present study to detect changes 
in sprint performance. Based on the estimated effect size 
(ES) of 0.60 in changes in sprint performance when reducing 
training load for 3  weeks (Fortes et  al., 2019) together with 
an alpha-level of 0.05, a power of 0.80, and a correlation 
between repeated measures of 0.50, the minimum sample 
size needed to determine significant differences in sprint 
performance was calculated to be  eight in each group. A 
mixed linear model was applied to compare relative changes 
between groups in physiological, performance, and strength 
measures with group (and sprint) defined as fixed effects 

and corrected using Pre-values as a covariate using the 
software SPSS v.25. To compare main effects of time, a 
mixed linear model was applied with fixed effects defined 
by group, and time and random effects were defined by 
subject. Data are presented as mean  ±  SD. To evaluate the 
relationship between percentage changes in 20-min all-out 
performance and other performance measures, a stepwise, 
multiple linear regression was applied. The percentage changes 
in power output at 4 mmol·L−1 [BLa−], absolute VO2max, Wmax, 
[BLa−], and RPE at the end of 20-min all-out and fractional 
utilization during 20-min all-out, 30-s sprint performance, 
and GE in the semi-fatigued state were included in the 
model. For values expressed in %, the changes were calculated 
as percentage-points (%-points) by subtracting Post-values 
from Pre-values. All variables included in the final model 
had a variance inflation factor between 1.2–1.6 and p < 0.05. 
Whenever a significant main effect was obtained, a Sidak 
post hoc analysis was performed with an alpha-level of 0.05. 
Values of p > 0.05 and p < 0.1 were described as approaching 
significance. Hopkins’ ES using pooled SD ± 95% confidence 
interval (CI) was calculated to highlight the practical 
significance of differences in performance changes between 
groups. Interpretations of the magnitude of ES were as 
follows: <0.2 trivial, 0.2–0.6 small, 0.6–1.2 moderate, 1.2–2.0 
large, and 2.0–4.0 very large difference (Hopkins et al., 2009).

RESULTS

Sprint Performance
After the 3-week transition period, SPR had a larger increase 
in 30-s sprint performance than CON from Pre to  
Post (8  ±  11%, p  =  0.01) with ES on changes between  
groups being moderate to large (ES: 0.6–1.7, Figure  3B).  

FIGURE 2 | Training load during lead-in and 3 week intervention using the individualized TRIMP method. Mean ± SD.
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An overall, positive effect of time was observed in 30-s sprint 
performance in SPR (p  =  0.04) and a negative effect of time 
was observed in CON (p = 0.01, Figure 3A). ES were considered 
small to moderate for all Post sprints in SPR (first sprint: 
0.2  ±  0.3, second sprint: 0.4  ±  0.9, third sprint: 0.9  ±  1.1, 
fourth sprint: 0.7  ±  0.5) and small to moderate effects for 
CON (first sprint: −0.5  ±  0.3, second sprint: −0.5  ±  0.2, third 
sprint: −0.7  ±  0.3, fourth sprint: −0.5  ±  0.3) in relation to 
Pre. Peak power output during 6-s sprint did not change 
differently between groups (p  =  0.59, Figure  3B) and did not 
change from Pre to Post in either group (Figure  3A).

20-min All-Out
Twenty-minutes all-out performance did not change differently 
between groups (p  =  0.63, ES: 0.1, Figure  4C). However, 
20-min all-out performance was maintained from Pre to 
Post in SPR (−1  ±  5%, p  =  0.37, ES: −0.2  ±  0.4), whereas 
a small decline of −3  ±  5% was observed in CON (p  =  0.04, 
ES: −0.4  ±  0.3, Figure  4A). Fractional utilization of VO2max 
during 20-min all-out did not change differently between 
groups but the difference in change was considered moderate 
(p  =  0.19, ES: 0.8, Figure  4D). Specifically, SPR maintained 
utilization from Pre to Post (1.9  ±  6.1%-points, p  =  0.18, 

A

B

FIGURE 3 | Peak power output (W·kg−1) on maximal 6-s sprint and mean power output on 4 × 30-s sprints (A, mean ± SD) before (Pre) and after (Post) a 3-week 
transition period of reduced training load in elite cyclists, including sprints in a low-intensity training session once a week [sprint group (SPR); n = 7] or only 
performing low-intensity training [control group (CON); n = 8] and individual percentage changes from Pre to Post (B). *indicates main effect of time (p < 0.05). 
§indicates main effect of group on changes from Pre to Post (p < 0.05). Mean ± SD.
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ES: 0.2  ±  4.5), whereas CON decreased moderately 
(−2.5  ±  2.9%-points, p  =  0.02, ES: −0.6  ±  2.3, Figure  4B). 
[BLa−] and RPE after 20-min all-out did not change differently 
between groups (p  =  0.54 and p  =  0.26, respectively) and 
was unaltered from Pre to Post in SPR and CON (Table  2). 
Likewise, the change in %HRpeak during 20-min all-out was 
not different between groups (p  =  0.18) and was unaltered 
from Pre to Post in SPR and CON (Table  2). Stepwise 
multiple linear regression revealed that changes in fractional 
utilization of VO2max during 20-min all-out (p < 0.01), VO2max 
(p  <  0.01), and GE in the semi-fatigued state (p  =  0.05) 
explained the changes observed in 20-min all-out (p  <  0.01, 
adjusted R2  =  0.89).

Performance-Related Measures and Body 
Mass
Power output at 4  mmol·L−1 [BLa−] decreased similarly from 
Pre to Post (p  =  0.83, ES: 0.1, Figure  5C) in SPR 

(−4  ±  4%, p  =  0.02, ES: −0.4  ±  0.2) and CON (−5  ±  5%, 
p  =  0.01, ES: −0.6  ±  0.4, Figure  5A). Fractional utilization 
of VO2max at 4  mmol·L−1 [BLa−] did not change differently 
between groups but the ES was considered moderate (p = 0.16, 
ES: −1.0, Figure  5D). Specifically, SPR maintained fractional 
utilization of VO2max at 4  mmol·L−1 [BLa−] (p  =  0.69, ES: 
0.2  ±  1.1) while CON approached significance to decrease 
moderately (p  =  0.09, ES: −1.0  ±  0.7, Figure  5B). GE did 
not change differently between groups from Pre to Post in 
fresh (p  =  0.18) or semi-fatigued state (p  =  0.63; Table  3). 
The change in GE from fresh to semi-fatigued state was not 
different between groups at Pre (p = 0.13) or Post (p = 0.26); 
however, GE decreased from the fresh state to the semi-
fatigued state in SPR at Pre (p  =  0.02). The increase in 
body mass did not differ between groups from Pre to Post 
(p  =  0.93, ES: 0.0, Table  2). Specifically, body mass tended 
to increase in SPR (p  =  0.07, ES: 0.1  ±  0.1) and increased 
in CON from Pre to Post (p  =  0.05, ES: 0.1  ±  0.1, Table  2). 

A B

C D

FIGURE 4 | 20-min all-out performance expressed in relative power output (W·kg−1; A) and percentage change (C) from before (Pre) to after (Post) a 3-week 
transition period of reduced training load in elite cyclists including sprints in a low-intensity training session once a week (SPR group; n = 7) or only performing low-
intensity training (CON group; n = 8). Fractional utilization of VO2max during 20-min all-out (%; B) and changes in %-points from Pre to Post (D). *indicates main effect 
of time (p < 0.05). Mean ± SD.
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There was no difference in changes between groups in VO2max 
or Wmax and both groups remained unchanged from Pre to 
Post (Table  2).

Strength Parameters
Maximal velocity, Fmax and Pmax, did not change differently 
between groups (p  =  0.13 p  =  0.65, p  =  0.36, respectively) 
and Fmax and Pmax, did not change within the group from Pre 
to Post (Table  3). However, Vmax was increased by 14  ±  19% 
from Pre to Post in CON (p  =  0.02).

Burnout Symptoms
Total burnout did not change differently (p  =  0.49) between 
SPR and CON and both groups were unchanged from Pre 
to Post. However, for the subscale “reduced sense of 
accomplishment,” the difference in development between 
groups approached significance (p  =  0.09). In the change 
from “rarely” toward “sometimes, SPR did not change (Pre: 
2.3  ±  0.5 vs. Post: 2.2  ±  0.5, p  =  0.62) whereas CON 
approached significance” (Pre: 2.5  ±  0.7 vs. Post: 2.8  ±  0.5, 
p  =  0.04). For “devaluation,” the difference in development 
between groups approached significance (p  =  0.09) but 
neither SPR (Pre: 1.6  ±  0.6 vs. Post: 1.8  ±  0.7, p  =  0.26) 
nor CON (Pre: 1.7  ±  0.4 vs. Post: 1.5  ±  0.4, p  =  0.15) 
changed from Pre to Post. No group-differences or within-
group changes were observed for “emotional and 
physical exhaustion.”

DISCUSSION

The present study investigated the effects of including 30-s 
sprints in a LIT-session once a week during a 3-week transition 
period of reduced training load in elite cyclists. The main 
finding was that inclusion of sprints in SPR improved sprint 
performance compared to LIT only in CON who had a 

deterioration hereof. Although no group differences occurred, 
20-min all-out performance and fractional utilization of VO2max 
during the 20-min test were maintained in SPR, whereas small 
to moderate declines were observed in CON. Power output 
at 4  mmol·L−1 [BLa−] was equally reduced in both groups, 
while VO2max, Wmax and total burnout were unaffected in 
both groups.

Sprint Performance
As expected, SPR improved 30-s sprint performance in the 
present study, whereas absence of sprinting led to deterioration 
of 30-s sprint performance in CON. Although sprint training 
has proven to be  a potent training modality for both 
untrained and trained participants (Gist et  al., 2014), this 
study is the first to show the potency of improving sprint 
performance in elite athletes even by inclusion of a relatively 
small amount of sprints (27  ×  30-s) during the transition 
period. We also expected that an improved anaerobic capacity, 
indicated by the improved 30-s sprints, should improve 
short high-intensity endurance performance, such as Wmax 
determined here. However, this was not the case in the 
present study, which is in contrast to previous studies where 
sprint training is added to the habitual volume of LIT 
(Laursen et  al., 2002) or when sprints are implemented in 
LIT-sessions (Gunnarsson et  al., 2019). This discrepancy 
could be  related to the ~60% decrease in training load, 
the relatively short intervention of the present study, compared 
to previous studies (3 vs. 7–8  weeks) and smaller amounts 
of sprint training (27 vs. 96–144  ×  30-s sprints; Laursen 
et  al., 2002; Gunnarsson et  al., 2019). In our approach, 
neither peak power during 6-s sprint nor Vmax changed 
differently between groups but Vmax was improved in CON 
only. This is in contrast to previous findings where improved 
peak power output (Fortes et al., 2019) and muscle strength 
(Martin et  al., 1994) were found from short periods 
(2–4  weeks) of reduced training volume and maintained 
intensity-distribution in well-trained cyclists and runners. 

TABLE 2 | Changes (Δ) in performance-related measures and body mass from before (Pre) to after (Post) a 3-week transition period of reduced training load in elite 
cyclists including sprints in a low-intensity training session once a week [sprint group (SPR); n = 7] or only performing low-intensity training [control group (CON); n = 9]. 
Mean ± SD.

SPR CON

Pre Post Δ Pre Post Δ

[BLa−] 20-min all-out (mmol·L−1) 4.7 ± 3.3 5.6 ± 3.0 0.7 ± 2.2 7.0 ± 2.2 6.2 ± 1.6 −0.7 ± 2.2
RPE 20-min all-out 18.1 ± 2.9 18.1 ± 1.6 0.0 ± 2.8 18.9 ± 0.6 19.3 ± 1.1 0.4 ± 1.4
HR (% of HRpeak) 91.8 ± 4.4 93.4 ± 1.3 1.6 ± 3.8 91.3 ± 0.9 92.3 ± 1.6 1.1 ± 1.6
GE fresh (%) 19.9 ± 1.0 19.5 ± 1.0 −0.4 ± 1.0 19.1 ± 1.0 19.2 ± 1.0 0.1 ± 1.0
GE semi-fatigued (%) 18.9 ± 1.0 18.9 ± 1.0 0.1 ± 1.0 19.1 ± 1.0 19.3 ± 1.0 −0.2 ± 1.1
ΔGE fresh vs. semi-fatigued −1.0 ± 1.2† −0.6 ± 1.1 −0.4 ± 1.2 0.0 ± 1.3 0.0 ± 1.1 0.0 ± 1.2
Body mass (kg) 73.6 ± 9.0 74.2 ± 9.4 0.7 ± 1.0 73.1 ± 4.8 73.7 ± 4.9* 0.8 ± 1.0
VO2max (ml·min−1·kg−1) 73.4 ± 4.9 71.4 ± 4.0 −2.5 ± 5.7 71.3 ± 4.5 71.0 ± 4.8 −0.5 ± 4.0
Wmax (W·kg−1) 6.0 ± 0.3 6.0 ± 0.3 1.1 ± 6.5 6.0 ± 0.5 6.0 ± 0.4 −0.9 ± 4.9

%HRpeak, percent of peak heart rate during 20-min all-out; [BLa−], blood lactate concentration measured 1 min after conclusion of 20-min all-out; RPE, rate of perceived exertion 
immediately after 20-min all-out; GE, gross efficiency measured in steady-state periods in the fresh and the semi-fatigued state during the ~2.5 h long test protocol; ΔGE, change in 
gross efficiency from the fresh state to the semi-fatigued state (%-points); VO2max, maximal oxygen uptake; Wmax, maximal minute power output. 
*indicates main effect of time (p < 0.05).
†significant difference between fresh and semi-fatigued state (p < 0.05).
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Inactivity has previously been reported to change fiber-type 
distribution toward type IIX phenotype (Coyle et  al., 1985; 
Andersen and Aagaard, 2000). Hypothetically, an absence 
of type II muscle fiber activation as might be  assumed 
during 3  weeks of LIT only and an absence of muscular 
activation might therefore favor a switch in fiber-specific 
characteristics, toward a more fast-twitch phenotype, possibly 
explaining an improved Vmax in CON.

20-min All-Out Performance
Although changes in 20-min all-out performance did not differ 
between groups, performance was unaltered in SPR, whereas 
a small decline of ~3% was observed in CON. However, the 
relevance of avoiding a decrease in 20-min all-out performance 
after prolonged cycling would arguably be  of importance in 
cycling competitions (van Erp et  al., 2019). Endurance 
performance, such as 20-min all-out test, is mainly determined 

A B

C D

FIGURE 5 | Relative power output at 4 mmol·L−1 [BLa−] W·kg−1 (A), fractional utilization of VO2max at 4 mmol·L−1 [BLa−] (B) and individual changes in 
percentage and %-points (C,D) from before (Pre) to after (Post) a 3-week transition period of reduced training load in elite cyclists including sprints in a low-
intensity training session once a week (SPR group; n = 7) or only performing low-intensity training (CON group; n = 9). *indicates main effect of time (p < 0.05). 
Mean ± SD.

TABLE 3 | Strength parameters from before (Pre) to after (Post) a 3-week transition period of reduced training load in elite cyclists including sprints in a low-intensity 
training session once a week [sprint group (SPR); n = 7] or only performing low-intensity training [control group (CON); n = 9].

SPR CON

Pre Post Time Pre Post Time

Vmax (M·S−1) 4.0 ± 0.8 4.1 ± 0.9 p = 0.87 3.8 ± 08 4.2 ± 0.5   p = 0.02
Fmax (N) 3,030 ± 441 2,971 ± 528 p = 0.74 3,400 ± 902 3,095 ± 725   p = 0.11
Pmax (W) 1,516 ± 332 1,524 ± 460 p = 0.88 1,553 ± 251 1,611 ± 310   p = 0.25

Effects of time are defined by p. Mean ± SD. Vmax, maximal velocity; Fmax, maximal force; Pmax, maximal power.
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by fractional utilization of VO2max, VO2max, and efficiency and 
to a lesser fraction anaerobic capacity (Jeukendrup et al., 2000; 
Joyner and Coyle, 2008). In the current study, the maintained 
20-min performance in SPR was coincided by maintained 
fractional utilization of VO2max during the test, whereas it 
decreased by ~3%-points in CON. However, VO2max, Wmax, or 
GE in fresh state or semi-fatigued state did not change in 
any group, and both SPR and CON showed similar decreases 
in power output at 4  mmol·L−1 [BLa−]. Thus, the different 
development pattern in fractional utilization of VO2max within 
groups is probably the main explanation for the changes in 
20-min all-out performance. This was further confirmed by 
a stepwise multiple linear regression analysis, where changes 
in fractional utilization of VO2max during 20-min all-out, 
together with changes in VO2max and GE explained 89% of 
the variance in 20-min all-out changes, supporting the 
importance of these variables for high-intensity endurance 
performances (Jeukendrup et al., 2000; Joyner and Coyle, 2008).

The reductions in submaximal exercise measures in CON, 
such as fractional utilization of VO2max are possibly related 
to a decreased oxidative capacity (Coyle et  al., 1984), which 
has been reviewed to decline with training reduction in a 
volume-dependent fashion (Neufer, 1989). Maintaining or 
increasing intensity of exercise during such reduced training 
volumes, however, seems of importance to maintain 
submaximal endurance performance (Neufer, 1989; Ronnestad 
et  al., 2014), probably explaining the unchanged fractional 
utilizations of VO2max in SPR. This is supported by a previous 
study of inclusion of sprint training in a 4-week period of 
65% decreased training volume, where mitochondrial oxidative 
enzyme activity was maintained (Iaia et al., 2009). Furthermore, 
the present study and others (Neufer, 1989; Rietjens et  al., 
2001) show that maintaining 30–50% of the training volume 
maintains VO2max in trained and elite cyclists for short periods 
(3  weeks). The importance of maintaining a minimum of 
endurance training is showed in studies where training 
cessation decreases VO2max by 7–11% after 3–5  weeks in 
trained athletes (Coyle et  al., 1984; Maldonado-Martin et  al., 
2017). Changes in blood volume and hemoglobin mass are 
regarded as main causes for changes in VO2max (Coyle et  al., 
1986), and the unchanged VO2max in the present study is 
supported by an unchanged blood volume and hemoglobin 
mass, although this measure was only performed on a sub-set 
of the participants (see Appendix). However, small decreases 
<200 ml in blood volume has recently been shown not to 
alter VO2max (Skattebo et al., 2020), which could have been 
the case in our short intervention study. Overall, our study 
indicates that elite cyclists are able to reduce training load by 
~60% for short periods without affecting the maximal 
aerobic power.

Mental Recovery
One might expect a decrease in the burnout markers during 
the transition period due to the great reduction in training 
load and absence of strenuous competitions, which has earlier 
been argued a necessity for elite athletes (Mujika et  al., 2018). 
However, in our study, total burnout was unchanged from  

Pre to Post within both groups. The average score for all 
subscales were comparable to a recent study in a population 
of young elite-sportsmen (Gerber et  al., 2018), and the general 
low scores in the mental subscales indicates a state of relatively 
low burnout in the elite cyclists, possibly explaining why this 
does not change during a 3-week transition period. In addition, 
only small changes were observed in the subscales, which 
indicates that changes in mental recovery might be  difficult 
to measure during such short periods in a small group of 
elite cyclists. In any case, inclusion of sprints in one weekly 
LIT-session during the transition period does not seem to 
pose any effect on mental recovery compared to LIT only in 
elite cyclists with initially low levels of burnout scores.

Limitations
The relatively short intervention applied in the current study 
yields limited insight into the effects of including sprints in 
LIT-sessions on performance and mental recovery in elite 
cyclists. The lack of control of the training and competitions 
performed prior to the intervention might affect the outcomes, 
despite our effort for matching the groups according to training 
load and fitness. In addition, food consumption was not strictly 
controlled for in the present study and might have introduced 
unaccounted noise in the outcomes. However, with the unchanged 
body composition (see Appendix) and well-developed nutritional 
routines among elite athletes, we  regard this possible effect to 
be small. After the short transition periods of typically 2–3 weeks, 
elite cyclists often increase training load gradually. Whether 
the current small, positive effects observed in SPR compared 
to CON translate into improved performance later in the 
preparatory period and competition period, however, needs 
further investigation.

In conclusion, including series of 30-s sprints in a LIT-session 
once a week during a 3-week transition period improves sprint 
performance compared to LIT only. In addition, 20-min all-out 
performance and fractional utilization of VO2max was maintained 
in SPR while LIT only reduced these variables. Inclusion of 
sprints does not affect the power output at 4  mmol·L−1 [BLa−], 
which was equally reduced in both groups. However, neither 
VO2max and Wmax nor total burnout seem affected by a 3-week 
transition period with severely reduced training load independent 
of sprinting. Inclusion of sprints in LIT-sessions may therefore 
be  a plausible, time-efficient strategy to maintain performance 
for elite cyclist during short periods of reduced training load 
without affecting mental recovery.
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